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We apply the Adaptive Multilevel Splitting method to the Ceq → Cax transition of alanine dipeptide in
vacuum. Some properties of the algorithm are numerically illustrated, such as the unbiasedness of the prob-
ability estimator and the robustness of the method with respect to the choice of the reaction coordinate. We
also calculate the transition time obtained via the probability estimator, using an appropriate ensemble of
initial conditions. Finally, we show how the Adaptive Multilevel Splitting method can be used to compute
an approximation of the committor function.
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I. INTRODUCTION

Simulation of rare events has been an important field
of research in biophysics for nearly two and a half
decades now. The goal is to obtain kinetic information
for processes like protein (un)folding or ligand-protein
(un)binding. A usual quantity of interest is the transi-
tion rate, or equivalently its inverse, the transition time.
This quantity is, for example, directly related to drug-
target affinity, making its calculation an important step
in drug design1. The committor function, which gives
the probability to reach a targeted configuration before
going back to the initial conformation, is also interesting
for computational and modeling purposes2.

The events of interest in molecular dynamics gener-
ally involve transition between metastable states, which
are regions of the phase space where the system tends
to stay trapped. These transitions are rare, making the
simulation too long and sometimes even computation-
ally impracticable. To deal with this difficulty, sam-
pling methods have been developed to efficiently simu-
late rare events. Among them are splitting methods,
that consists in dividing the rare event of interest into
successive nested more likely events. For example, a re-
active trajectory is divided into pieces which gradually
progress from the initial state to the target one. Exam-
ples of splitting methods include Milestoning3, Weighted
Ensemble4, Forward Flux Sampling5 and Transition In-
terface Sampling6. In these methods, the intermediate
milestones or dividing surfaces, used to split the rare
event of interest, are fixed, so they are parameters that
should be defined in advance. Let us however mention
that there exists an adaptive version of the Forward Flux
Sampling method5, in which a few preliminary runs en-
able to optimize the position of the dividing surfaces.

The Adaptive Multilevel Splitting (AMS) method7 is
a splitting method in which the positions of the inter-
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mediate interfaces, used to split reactive trajectories, are
adapted on the fly, so they are not parameters of the algo-
rithm. The surfaces are defined such that the probability
of transition between them is constant, which are known
to be the best surfaces in terms of the variance of the rare
event probability estimator8. Moreover, as illustrated be-
low, the method gives reliable results for a large class
of sensible reaction coordinates, making it particularly
straightforward to use for practitioners. This method has
been used with success to estimate rare events probabil-
ities in many contexts. In particular, the AMS method
was already efficiently applied to a large scale system to
calculate unbinding time9. Let us emphasize that the
AMS algorithm can be used not only to estimate the
probability of a rare event, but also to simulate the as-
sociated rare events (typically, the ensemble of reactive
trajectories in the context of molecular dynamics). This
allows us to study the possible transition mechanisms,
that are often more than one, and to estimate the com-
mittor function, for example.

Compared to previous publications on AMS9,10, we
provide in this paper a full description of the correct way
to implement the algorithm in a discrete in time setting.
The reader will find this description in Section II, as well
as a brief discussion of some important properties of the
method and the way to obtain the transition time using
AMS. We apply the method to a toy problem, namely the
isomerization of alanine dipeptide in vacuum (Ceq → Cax
transition). In this small example, we are able to numer-
ically illustrate the consistency and the unbiasedness of
the AMS method, as well as to explore in details its prop-
erties, by comparing the results to brute force direct nu-
merical simulation. These numerical results are reported
in Section III. They illustrate the interest of the method
and lead us to draw useful practical recommendations to
get reliable results with AMS.
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II. METHODS

Assume that the simulations are done using Langevin
dynamics. Let us denote by Xt = (qt,pt) ∈ Rd×d the po-
sitions and momenta of all the particles in the system at
discrete time t, d being three times the number of atoms.
The vector Xt evolves according to a time discretization
of the Langevin dynamics such as:

pt+ 1
2

= pt −
∆t

2
∇V (qt)−

∆t

2
γM−1pt

+
√

∆tγβ−1Gt

qt+1 = qt + ∆tM−1pt+ 1
2

pt+1 = pt+ 1
2
− ∆t

2
∇V (qt+1)

−∆t

2
γM−1pt+1 +

√
∆tγβ−1Gt+ 1

2 .

(1)

Here, V denotes the potential function, M is the mass
tensor, γ is the friction parameter, β−1 = kBT is pro-
portional to the temperature, and (Gt,Gt+ 1

2 )t≥0 is a se-
quence of independent centered Gaussian vectors with co-
variance identity. Let us emphasize that, although we use
this dynamic as an example to present the algorithm, it
applies to any Markovian stochastic dynamics (like over-
damped Langevin, Andersen thermostat, kinetic Monte
Carlo, etc...).

Let us call A and B the source and target regions
of interest. The goal is to sample reaction trajectories
that link A and B and to estimate associated quantities.
Both A and B are subsets of Rd×d. In practice, they are
typically defined only in terms of positions. In addition,
assume that A is a metastable region for the dynamics.
This means that starting from a point in the neighbor-
hood of A, the trajectory is most likely to enter A before
visiting B. To measure the progress from A to B one
needs to introduce a reaction coordinate ξ, i.e. a real-
valued function defined over Rd×d, whose values will be
called levels. Again, in practice, ξ typically only depends
on the positions of the atoms. The function ξ is assumed
to satisfy the following condition:

∃ zmax ∈ R such that B ⊂ ξ−1(]zmax,+∞[), (2)

that makes necessary to exceed a level zmax of ξ to en-
ter B when starting from A. Let us emphasize that this
is the only condition we assume on ξ in the following:
the algorithm can thus be applied with many different
reaction coordinates.

Note that the definitions of the zones A and B are inde-
pendent of the reaction coordinate. Since ξ does not need
to be continuous, the former condition can be enforced
by just forcing ξ to be infinity on B. More precisely, if
a function ξ̃ is a good candidate for the reaction coordi-
nate but does not satisfy the previous condition (2), it is

possible to obtain ξ from ξ̃ by setting:

ξ(X) =

{
ξ̃(X) X ∈ Rd×d \B
∞ X ∈ B. (3)

The condition (2) is then satisfied with zmax equal to the

maximum value of ξ̃ outside B.
We will focus on the estimation of the probability to

observe a reaction trajectory, that is, coming from a set
of initial conditions in Rd×d \ (A∪B), the probability to
enter B before returning to A. Let us call τA and τB the
first hitting times of A and B, respectively (see equa-
tions (4) and (5) below). What we aim to calculate is
then the probability P(τB < τA). As will be explained
bellow, this probability can be used to compute tran-
sition times. As mentioned earlier, AMS also yields a
consistent ensemble of reactive trajectories (this will be
illustrated in Section III).

A detailed description of the AMS algorithm is given
in Section II A. In Section II B we present a brief discus-
sion of some interesting features of the method. From
the probability obtained using an appropriate set of ini-
tial conditions, the transition time can also be computed.
This is explained in Section II C.

A. The AMS algorithm

The three numerical parameters of the algorithm are:
the reaction coordinate ξ, the total number of repli-
cas N , and the minimum number k of replicas killed
at each iteration. Let us denote by Xn,q

t the vector
of positions and momenta at time t of the nth replica
(1 ≤ n ≤ N) at iteration q of the AMS algorithm. Let

us now consider a set of initial conditions (Xn,0
0 )1≤n≤N ,

which are i.i.d. random variables distributed accord-
ing to a distribution µ0 over Rd×d, supported outside
but in a neighborhood of A. For all n ∈ {1, ..., N}
the path from Xn,0

0 to either A or B is computed,

creating the first set of replicas (Xn,0

t∈[0,τn,0
AB ]

)1≤n≤N ,

where τn,0AB = min(τn,0A , τn,0B ) with:

τn,0A = inf
{
t ≥ 0 : Xn,0

t ∈ A
}

(4)

and

τn,0B = inf
{
t ≥ 0 : Xn,0

t ∈ B
}
. (5)

So τn,0AB is the first time that the nth replica at itera-
tion q = 0 enters A or B. In this initialization step, since
the trajectories start in a neighborhood of A, they enter
A before B with a probability very close to one. No-
tice that the replica Xn,0

t∈[0,τn,0
AB ]

reaches B if and only if

τn,0B < τn,0A . Let us denote by (wn,0)1≤n≤N the weight of
each replica, that is initialized as 1/N :

∀ 1 ≤ n ≤ N,wn,0 =
1

N
. (6)

The algorithm then consists of iterating over q ≥ 0 the
three following steps:
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FIG. 1. First AMS iteration with N = 5 and k = 2. Both lower level replicas (in gray) are killed. Two of the remaining
replicas are randomly selected to be duplicated until level z0kill (dotted red line) and then continued until they reach A (typically
more likely) or B.

1. Computation of the killing level.
At the beginning of iteration q the set of repli-
cas is (Xn,q

t∈[0,τn,q
AB ]

)1≤n≤N . Let us note by zqn the

highest achieved value of the reaction coordinate
by the nth replica:

zqn = sup {ξ(Xn,q
t ) : 0 ≤ t ≤ τn,qAB} . (7)

This is called the level of the replica. To compute
the killing level, the replicas are ordered according
to their level. Hence, let us introduce the permuta-
tion αq : [1, N ] → [1, N ] of the trajectories’ labels
such that:

zqαq(1) ≤ z
q
αq(2) ≤ ... ≤ z

q
αq(N). (8)

The killing level is defined as the kth order level,
i.e. zqkill = zqαq(k). If all the replicas have

a level lower or equal to the killing level one
sets zqkill = +∞.

2. Stopping criterion.
The algorithm stops at iteration q if zqkill > zmax.
This happens if all the replicas reached the last
level zmax or if zqkill = +∞, a situation called ex-
tinction in the following. When the stopping cri-
terion is satisfied, the algorithm is stopped and
the current iteration index q is stored in a variable
called Qiter. Notice that Qiter may be null, since
q starts from zero. The integer Qiter is exactly the
number of replication steps (see step 3 below) that
have been performed when the algorithm stops.

3. Replication.
All the kq+1 replicas for which zqn ≤ z

q
kill are killed.

Notice that kq+1 ∈ {k, k + 1, ..., N − 1}. Among
the N−kq+1 remaining replicas, kq+1 are uniformly
chosen at random to be replicated. Replication
consists in copying the replica up to the first time

it goes beyond the level zqkill, so the last copied
point has a level strictly larger than zqkill. From
that point, the dynamics is run until A or B is
reached. This will generate kq+1 new trajectories
with level larger than zqkill. Once all the killed
replicas have been replaced, the new set of repli-
cas (Xn,q+1

t∈[0,τn,q+1
AB ]

)1≤n≤N is defined. To complete

iteration q one has to update the new weights by:

∀ 1 ≤ n ≤ N,wn,q+1 =
N − kq+1

N
wn,q. (9)

From this, q is incremented by one and one comes
back to the first step to start a new iteration.

Let us consider the set of all M replicas Xm
t∈[0,τm

AB]
generated during the algorithm run, including the killed
ones, and call wm their weight. The estimator of
E(F (Xt∈[0,τAB ])), for any path functional F is11

M∑
m=1

wmF (Xm
t∈[0,τm

AB ]). (10)

This will be used in Section III C to compute the com-
mittor function over the phase space.

Note from the description of the algorithm that, at
a giving iteration, all the living replicas have the same
weight. The weight of a killed replica stops being updated
after it is killed. Therefore, the replica weight depends
on up to which iteration it has survived.

As previously mentioned, we will be particularly in-
terested in the estimation of the probability P(τB < τA),
which corresponds to the choice of the path functional
1τB<τA(Xt∈[0,τAB ]) in (10). This means that only the
trajectories that survived until the end of the algorithm
run will be taken into account. Therefore, using condi-
tion (2) and Equation (10):

pAMS =

N∑
n=1

wn,Qiter1τn,Qiter
B <τ

n,Qiter
A

(11)
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is an estimator of P(τB < τA). Here the weights are
all equal. Using Equations (6) and (9), and denoting
by r the number of replicas that reached B at the last
iteration of the algorithm, pAMS can be rewritten as

pAMS =
r

N

Qiter−1∏
q=0

(
N − kq+1

N

)
, (12)

where by convention
−1∏
q=0

= 1. To gain intuition in this

formula, notice that the term N−kq+1

N in Equation (12)
is an estimation of the probability of reaching level zqkill,

conditioned to the fact that level zq−1kill has been reached,

(where by convention z−1kill = −∞). Also, as an exam-

ple, if all the replicas in the initial set (Xn,0

t∈[0,τn,0
AB ]

)1≤n≤N

reached B, r = N and thus pAMS = 1. In case of ex-
tinction r = 0, because no replica reached B, and thus
pAMS = 0.

Note that the number kq+1 of killed replicas at itera-
tion q may exceed k. The situation were kq+1 > k hap-
pens if there is more than one replica with level equal
to zqkill. There are typically two situations for which this
occurs. First, this may happen if there exists a region
where the reaction coordinate is constant. Second, it may
be a consequence of the replication step at a previous it-
eration if the following occurs: (1) The point up to which
the replica is copied has a ξ-value which is the maximum
of the ξ-values along the trajectory (namely the level of
the replica); (2) The replicated replica has the same level
as the copied replica. Notice that this happens because
the AMS method is applied to a discrete in time Markov
process.

This algorithm is implemented in NAMD12 as a Tcl
script, easily used via the configuration file. The script
is compatible with NAMD version 2.10 or higher13. In
order to decrease the computational cost, the reaction
coordinate of a point in the trajectory is only calculated
every KAMS = ∆tAMS/∆t timesteps. This means that, in
practice, the algorithm is actually applied to the subsam-
pled Markov chain (XsKAMS

)s∈N. It is indeed useless to
consider the positions of the trajectory at each simula-
tion time step, as no significant change occurs in a 1 or
2 fs time scale. Also notice that, along a trajectory, only
the points that can possibly be used in future replica-
tion steps must be recorded, reducing memory use. This
corresponds to points for which the reaction coordinate
strictly increases.

B. Properties of the AMS method

Let us recall some important properties of the AMS
method obtained in previous works. One of them is the
unbiasedness of the algorithm. It can be proven11 that
the expected value of the probability estimator is equal

to the probability to be calculated:

E(pAMS) = P(τB < τA). (13)

This is more generally true for the estimator (10):

E

(
M∑
m=1

wmF (Xm
t∈[0,τm

AB ])

)
= E(F (Xt∈[0,τAB ])). (14)

Hence, in practice, the algorithm is run more than once
and the result is obtained as an empirical average of
the estimators for each run. This also provides natu-
rally asymptotic confidence interval on the results, us-
ing the central limit theorem. Notice that unbiasedness
holds whatever the choice of the reaction coordinate ξ,
the number of replicas N and the minimum number of
killed replicas k at each iteration. Therefore, one can
compare the results obtained with different sets of pa-
rameters (in particular different reaction coordinates) to
gain confidence in the result. These parameters however
affect the variance of the estimator and, consequently, its
efficiency.

In another paper14, one considers the ideal case,
namely the situation where the reaction coordinate is
the committor function. It can be proven that this is
the best reaction coordinate in terms of the variance of
pAMS . Moreover, this ideal case is interesting since ex-
plicit computations give some insights on the efficiency
of the algorithm, that are observed to be useful beyond
the ideal case. In the ideal case, variance and the effi-
ciency of the method are then proportional to 1/N . Let
us recall that the efficiency of a Monte Carlo method can
be defined as the inverse of the product of the compu-
tational cost and the variance15. The number of itera-
tions Qiter is a random variable that follows a Poisson
distribution with mean value −N log(P(τB < τA)). This
indicates that the method is well suited to estimate small
probabilities, hence appropriate to the simulation of rare
events.

We concentrated here on the estimation of the prob-
ability P(τB < τA), but as explained above, see (10),
other estimations can be made with this method11. It
is possible, for example, to calculate unbiased estima-
tors of E(F ((Xt∈[0,τAB ]))1τB<τA) for any path functional
F by simply making averages over the trajectories ob-
tained at the end of the algorithm that reached B before
A. Consequently, it is also possible to obtain estimators
of conditional expectations E(F ((Xt∈[0,τAB ]))|τB < τA).
Such estimators have a bias of order 1/N in the large N
limit. This will be used in particular in Section III to
compute the flux of reactive trajectories from A to B.

C. The transition time equation

Another quantity that we aim to obtain is the transi-
tion time from A to B, using the probability estimated by
AMS. The transition time is the average time of the tra-
jectories, coming from B, from its first entrance in A until
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the first entrance in B afterwards2,16. As A is metastable,
the dynamics makes in and out of A loops before visiting
B. To correctly define those loops let us fix an interme-
diate value zmin of the reaction coordinate, defining an
isolevel surface Σzmin

:

Σzmin = {X ∈ Rd×d : ξ(X) = zmin}. (15)

If A is metastable and Σzmin
is close to A the num-

ber of loops made between A and Σzmin
before visit-

ing B is large. After some of them, the system reaches
an equilibrium. When this equilibrium is reached the
first hits of Σzmin

follow a so-called quasi-stationary dis-
tribution µQSD. Here, we call the first hitting points
of Σzmin

the first points that, coming from A, have
a ξ-value larger than zmin. If one then uses as a set of
initial conditions the random variables (Xn,0

0 )1≤n≤N dis-
tributed according to µQSD, it is possible to evaluate the
probability p to reach B before A starting from Σzmin

at
equilibrium by using AMS. As A is metastable, the num-
ber of loops needed to reach the equilibrium is small com-
pared to the total number of loops made before going
to B, so it can be neglected.

FIG. 2. The loops between A and Σzmin (green and red)
and the reaction trajectory (blue).

Let us now use these considerations to estimate the
transition time from A to B. Consider an equilibrium
trajectory coming from B that enters A and returns to
B. The goal is to calculate the average time (E(TAB))
of this trajectory2. A good strategy is to split this path
in two: the loops between A and Σzmin , and the reac-
tion trajectory, i.e. the path from A to B that does not
comes back to A after reaching Σzmin . This is outlined in
Figure 2. Neglecting the first time taken to go out of A,
one can define as T kloop the time of the kth loop between
two subsequent hits of Σzmin

, conditioned to have visited
A between them, and as Treac the time of the reaction
trajectory. If the number of loops made before visiting
B is n, the time TAB can be obtained as:

TAB =

n∑
k=1

T kloop + Treac. (16)

At each passage over Σzmin
there are two possible events,

first enter A or first enter B. As mentioned in the pre-
vious paragraph, it is possible to obtain with AMS the

probability p at equilibrium to visit B before A starting
from the probability distribution µQSD on Σzmin

. There-
fore, the waiting time to enter B is 1/p, so the mean
number of loops made before that is 1/p− 1. This leads
us to the final equation for the expected value of TAB :

E(TAB) =

(
1

p
− 1

)
E(Tloop) + E(Treac). (17)

The mathematical formalization of this reasoning is a
work in progress. The consistency of (17) has already
been tested on various systems in previous works9,10. In
this paper, we numerically investigate the quality of for-
mula (17) using the estimate of p obtained with AMS
starting from µQSD (see Section III B). Note that the
sampling of µQSD as well as E(Tloop) can be obtained
with short direct simulations while AMS is used to get
both p and E(Treac). The first term in Equation (17) is
much larger than the last one in the case of a rare event,
making crucial the achievement of good probability es-
timations to obtain good estimations for the transition
time. Typically, the term E(Treac) is small compared to
E(TAB) and can be ignored. In fact, other methods4,5 like
forward flux sampling and weighted ensemble approxi-
mate the reaction rate kAB = E(TAB)−1 by p/E(Tloop),
which is consistent with our formula (17).

Choosing the parameter zmin may be delicate. The
closer Σzmin

to A, the smaller the probability p to esti-
mate. On the other hand, if Σzmin

is too far from A,
there will be fewer loops, so the time to reach the quasi-
stationary distribution will not be negligible. Moreover,
the simulation time needed to obtain a good estimation
of Tloop will be larger. This will again be discussed in the
numerical example in the next section.

III. NUMERICAL RESULTS

We apply the AMS method to the Ceq → Cax tran-
sition of the N-acetyl-N-methylalanylamide, also known
as alanine dipeptide or dialanine. The transition between
its two stable conformations in gas phase occurs in a time
scale of the order of a hundred nanoseconds, allowing us
to obtain direct numerical simulation (DNS) estimations
to compare to results obtained with AMS.

Both conformations can be characterized by
two dihedral angles, ϕ and ψ (Figure 3). Re-
gions A and B (Ceq and Cax, respectively), are
defined as ellipses that covers the two most significant
wells on the free energy landscape (Figure 4).

Two reaction coordinates are investigated. The first
one (see (18)) is a continuous piecewise affine function
of ϕ and the second one (see (19)) is a measure of the
distance to the two regions A and B. Here are the precise
definitions of ξ1 and ξ2 (see Figure 5 for a contour plot
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φ ψ

FIG. 3. The dihedral angles ϕ and ψ used to distinguish
between the Ceq and Cax conformations.

FIG. 4. The free energy landscape17 with the definition of
zones A (yellow) and B (black).

of ξ2):

ξ1(ϕ) =


−5.25 if ϕ < −52.5
0.1ϕ if − 52.5 ≤ ϕ ≤ 45
4.5 if 45 < ϕ < 92.5
−0.122ϕ+ 15.773 if 92.5 ≤ ϕ ≤ 172.5
−5.25 if ϕ > 172.5

(18)

ξ2(ϕ,ψ) = min(dA, 6.4) − min(dB , 3.8) (19)

In Equation (19), dA (resp. dB) is the sum of the Eu-
clidean distances to the foci of the ellipse A (resp. B).

The values of zmax used for the simulations are 4.49
for ξ1 and 4.9 for ξ2. All the simulations are performed
using NAMD12 version 2.11 with the CHARMM27 force
field.

To numerically illustrate some properties of the algo-
rithm, we first calculate the transition probability start-
ing from one fixed (deterministic) initial condition. These
results are presented in Section III A, as well as the flux of
reaction trajectories obtained with different initial con-
ditions. The estimations of transition times are reported
in Section III B, where a proper way to sample µQSD is
proposed. Finally, we present in Section III C a way to

FIG. 5. Contour plot of the second reaction coordinate ξ2.
Regions A and B are marked in yellow and black, respec-
tively. The region Σzmax used for the AMS runs (zmax = 4.9)
is marked in white. The zone covered with black dots corre-
sponds to regions where ξ2 is constant and equal to 2.6.

use AMS in order to compute an approximation of the
committor function.

A. Calculating the Probability with AMS

To evaluate the efficiency of the algorithm to estimate
the probability to visit B before A, we first initiate all
the replicas from the same point x (fixed positions and

velocities for all atoms), i.e. ∀n ∈ [1, N ], Xn,0
0 = x.

This enables us to compare estimates of the probability
to enter B before A obtained with AMS with accurate
values obtained using DNS. In DNS, simulations start
from x and stop when A or B is reached. The ratio of
the number of times B is reached over the total number
of simulations is the DNS estimation for the probability
P(τB < τA). Results (both for DNS and AMS) are re-
ported in Figure 6 for four different choices of x (points
1 to 4 in Figure 5).

First note from Figure 6 the robustness of the AMS
algorithm with respect to the choice of the reaction coor-
dinate. The two reaction coordinates indeed give proba-
bility estimates in accordance with the direct simulation
values. The second interesting feature is the change in
the confidence interval, that tends to be smaller for ξ2.
This illustrates the fact that the average of the estimator
is the same whatever the choice of ξ (see (13)), but the
variance depends on ξ.

Notice from results in Figure 7 that different values
of k and N yield consistent estimates of the probability.
This is again a numerical illustration of (13). Notice
that the variance scales as 1/N , as already discussed in
Section II B.
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FIG. 6. Probability estimations using different points as a
initial condition: D is for DNS, 1 is for AMS using ξ1 and 2
is for AMS using ξ2. For each point we made about 200 AMS
runs and a 15 ns DNS.

FIG. 7. AMS estimations for the probability with different
values of k and N . Results were obtained using a fixed initial
condition (point 1 in Figure 5) with ξ2 and 1000 AMS runs
for each value of N and k.

Another interesting fact can be illustrated looking at
the number of killed replicas at each killing level (zqkill)
over the AMS runs with the reaction coordinate ξ2 (Fig-
ure 8). The number of replicas is close to k for all levels

FIG. 8. Variation of the number of replicas killed as a
function of the killing level. This graph was obtained with a
mean over 1000 AMS runs.

except for ξ2 = 2.6, which is the value of the reaction
coordinate in regions where it is constant (see Figure 5).
This implies that a large number of replicas are at the
same level when exploring these regions. So, at the stage
where zkill = 2.6, all replicas in this level are killed, which
explains this result. This phenomenon increases the pos-
sibility of getting zero as an estimator of the probabil-
ity, thus increases the variance. It is important to note
that, even with such a locally constant reaction coordi-
nate, ξ2 exhibits good results with low variances, showing
again that the AMS algorithm is robust in terms of the
choice of the reaction coordinate.

To obtain information on the reaction paths and thus
on the reaction mechanism, the flux of the reaction tra-
jectories is evaluated by a numerical approximation based
on the following formula (see2 and Remark 1.1316):

J(x) = lim
T→∞

1

T

∫ T

0

q̇tδ(x− qt)1R(t)dt, (20)

where for a given time t, 1R(t) is one if qt belongs to
a transition path from A to B and zero otherwise. Us-
ing a set {(X1

t )t∈[0,τ1
B ], ..., (X

n
t )t∈[0,τn

B ]} of reaction tra-
jectories obtained with the AMS method, each trajec-
tory i has a weight of wi and can be associated with
a vector (θit)t∈[0,τ i

B ] where (θit)=(ϕ(Xi
t), ψ(Xi

t)) are the

two dihedral angles (see Figure 3). The (ϕ,ψ) space is
split into L cells (Cl)1≤l≤L. The flux in each cell is then
defined up to a multiplicative constant by (compare with
Equation (20)):

J(Cl) =

n∑
i=1

wi

τ i
B−1∑
t=0

(
θit+1 − θit

∆t

)
1θi

t∈Cl
. (21)

In Figure 9, the fluxes approximated using Equation (21)
are represented for two different initial conditions. Such
a result is useful to visualize the transition paths from A
to B. These paths highly depend on the initial condition,
as can be seen by comparing the two results in Figure 9.
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FIG. 9. Flux for points 2 and 3 (see Figure 5) obtained with 500,000 trajectories, results of 1000 AMS runs with 500 replicas
each.

We also look at the efficiency of the method by apply-
ing it to eight initial conditions. As mentioned in Sec-
tion II B, the efficiency of a Monte Carlo method is de-
fined as the inverse of the product of the computational
cost and the variance15. In Figure 10 the variation of
the ratio of the AMS efficiency over the DNS efficiency
as a function of the probability P(τB < τA) is showed.
When this ratio is larger than 1, the AMS algorithm

FIG. 10. Efficiency ratio between AMS and DNS estimations
for points 1 to 8 in Figure 5. The confidence intervals are too
small to be seen on the graph.

is more efficient than DNS. Notice that all the points
show that AMS is more efficient than DNS but also that
this efficiency tends to be larger when the probability de-
creases. This illustrates that the method is particularly
well suited to calculate small probabilities. As an exam-
ple, for the point with probability 10−7 the wall clock
time for DNS is over a week, but the estimation with

1000 AMS run in parallel with 32 cores takes less than
two days.

B. Calculating the transition time

To evaluate the transition time using Equation (17)
one needs estimations of p, E(Treac) and E(Tloop). The
last is easily obtained by a short simulation starting from
A. The other two terms can be estimated using AMS,
as long as the initial condition’s points follow the dis-
tribution µQSD, as mentioned in Section II C. To ob-
tain a reference value for the transition time, which is
(309.5± 23.8) ns, a set of 97 direct simulations of 2µs
each is made.

At first, we make a 2µs simulation, sufficiently long
to observe transitions from A to B and thus to obtain
DNS estimates for p and E(Treac). For the probability
p we count the number of Σzmin→A and Σzmin→B tra-
jectories, respectively nA and nB , yielding the estimate
pDNS = nB/(nA + nB). To investigate the consistency
of Equation (17), we also calculate the transition time
with these DNS values.

Using the same 2µs simulation, and for a fixed value of
zmin, all the first hitting points of Σzmin

in the successive
loops between A and Σzmin

are stored and 500 among
them are randomly chosen to form the initial conditions’
set to run the AMS simulations. This gives the samples
distributed according to µQSD. In this process, estimates
of E(Tloop) are also obtained. To fix zmin we choose to
use levels of ξ2 and in total seven different values were
adopted. The obtained results are reported in Figure 11.

Notice from Figure 11 (bottom) that the transition
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FIG. 11. Probability and transition time obtained for the
seven sets of initial conditions with DNS and AMS with both
ξ1 (1) and ξ2 (2). The DNS estimations were made using a
2µs simulation and the AMS with 1000 independent runs. In
the bottom figure the reference value is represented as the
gray interval.

times obtained with the DNS estimates are consistent
with the reference value. In fact, they only differ by 2
ps one from each other. This validates the use of Equa-
tion (17).

For the results obtained with AMS, first observe from
Figure 11 (top) the consistency of the probability esti-
mates obtained with the two different reaction coordi-
nates. For some values of zmin, these estimations are not
consistent with the DNS ones. Accordingly, for those
values of zmin, the obtained transition times are also not
compatible with the reference value, see 11 (bottom).

In order to understand the non consistency between
the AMS and the DNS results, we look at the sampling of
the initial conditions. Recall that for AMS, an ensemble
of 500 samples is chosen and fixed for all the AMS runs,
while for DNS, these are actually sampled along the long
trajectory. Moreover, we observe that the probability to
reach B before A highly depends on the initial condition
in the sample distributed according to µQSD. This yields
a result which is not robust with respect to the choice of
the 500 initial conditions and raises question about how
to efficiently sample µQSD. The strategy we propose is,
instead of fixing 500 initial conditions once for all, redraw
new ones for each AMS run. This is made with a small
initial simulation previously to each run, where, starting

from A, the first 500 Σzmin
→A trajectories are used as

the first set of replicas (see Figure 12). This fixes the
500 initial conditions for each run. Notice that these

FIG. 12. The sample of the first 3 initial replicas (in red).
The simulation is made until all the 500 replicas are obtained
and this process is repeated before each AMS run.

simulations can also be used to obtain E(Tloop), excluding
the need to make the initial 2µs simulation previously
mentioned.

The results using this new strategy are reported in Fig-
ure 13. The estimations for the probability, in Figure 13

FIG. 13. Probability obtained varying the set of initial
conditions before each AMS run with ξ2 and the transition
time calculated with them. For each value of zmin 1000 AMS
runs were made with 500 replicas each.

(top), are in agreement with DNS. Nevertheless, observe
that the larger zmin, i.e. the far from A, the more dis-
tant the estimator is from the reference value, and also
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the larger the variance. This is because the more far
from A the more difficult it is to sample the distribution
µQSD. Notice that the calculation of the transition time
has a term in 1/p (see Equation (17)). Consequently,
small errors in the probability causes large errors in the
transition time. This can be observed in Figure 13 (bot-
tom), where the best estimator is for the smaller value of
zmin. Also notice that the results obtained for the transi-
tion time are in better agreement with the reference value
than the previous one. We therefore conclude from this
numerical experiment that it is worth redrawing new ini-
tial conditions for each AMS simulation in order to better
sample the distribution µQSD.

FIG. 14. Simulation steps used to initiate the 500 replicas
and for each AMS run.

Another important feature to be considered when fix-
ing zmin is the time required to initiate the replicas and
to run the AMS simulations. This is shown in Figure
14. The time for the initiation phase tends to grow ex-
ponentially as zmin is larger. However, because the AMS
method is appropriate to simulate rare events, the AMS
simulation time is approximately constant. Thus, we con-
clude it is better to have Σzmin

closer to A.

C. Calculating the committor function

Another quantity of interest is the committor function:

p(x) = P(τB < τA|X0 = x), (22)

i.e. the probability of entering A before B when starting
from x. Note that, from the definition of a conditional
probability, it is possible to rewrite p(x) as:

p(x) =
pB,X0

(x)

pX0
(x)

=
P(τB < τA ∩X0 = x)

P(X0 = x)
. (23)

To approximate the committor function let us consider
a large set of N trajectories (Xt∈[0,τn

AB ])1≤n≤N at equi-
librium that starts outside A and B. Using the same
strategy as for the flux, the space is split into L cells
(Cl)1≤l≤L. Let us now introduce an approximation of

the numerator pB,X0
(x) and the denominator pX0

(x) in
Equation (23), for each cell Cl:

pB,X0(Cl) =

N∑
n=1

1τn
B<τ

n
A

τn
AB∑
t=0

1Xn
t ∈Cl

N∑
n=1

(τnAB + 1)

, (24)

pX0
(Cl) =

N∑
n=1

τn
AB∑
t=0

1Xn
t ∈Cl

N∑
n=1

(τnAB + 1)

. (25)

Note that this consists in counting each time a trajec-
tory passes through Cl for pX0

(Cl) and considering it in
pB,X0

(Cl) only if the trajectory enters B before A. Since
we consider trajectories at equilibrium, pB,X0

(Cl) (resp.
pX0

(Cl)) actually approximates the probability to reach
B before A and to be in Cl (resp. the probability to be
in Cl) for a trajectory starting at equilibrium in Cl.

Let us now consider M AMS runs, where a total of
Nm replicas Xn,m

t∈[0,τn,m
AB ]

where obtained for each run m,

and call wn,m the weight of nth replica from the mth

run. From Equation (10), the following approximations
for Equations (24) and (25) are obtained:

p̃B,X0
(Cl) =

M∑
m=1

Nm∑
n=1

wn,m1τn,m
B <τn,m

A

τn,m
AB∑
t=0

1Xn,m
t ∈Cl

M∑
m=1

Nm∑
n=1

wn,m(τn,mAB + 1)

(26)

p̃X0
(Cl) =

M∑
m=1

Nm∑
n=1

wn,m

τn,m
AB∑
t=0

1Xn,m
t ∈Cl

M∑
m=1

Nm∑
n=1

wn,m(τn,mAB + 1)

(27)

The division of (26) by (27) gives us an estimation p̃(Cl)
of the committor function in cell Cl:

p̃(Cl) =

M∑
m=1

Nm∑
n=1

wn,m1τn,m
B <τn,m

A

τn,m
AB∑
t=0

1Xn,m
t ∈Cl

M∑
m=1

Nm∑
n=1

wn,m

τn,m
AB∑
t=0

1Xn,m
t ∈Cl

. (28)

The result obtained using Equation (28) is given in
Figure 15.
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FIG. 15. The committor function obtained with 5000 AMS
runs with 100 replicas each. In the second figure the same
result is presented in log-scale, with a cut at 10−10. We used
initial conditions at equilibrium, starting from equally dis-
tributed (ϕ,ψ) positions over the Ramachandran plot. The
red lines mark the isolevel 0.5, where the probability to enter
A before B is the same as to enter B before A, namely the
transition state.
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