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Abstract

Solvation is a notoriously difficult and nagging problem for the rigorous

theoretical description of chemistry in the liquid phase. Successes and fail-

ures of various approaches ranging from implicit solvation modeling through

dielectric continuum embedding and microsolvated quantum chemical mod-

eling to explicit molecular dynamics highlight this situation. Here, we focus

on quantum chemical microsolvation and discuss an explicit conformational

sampling ansatz to make this approach systematic. For this purpose, we

introduce an algorithm for rolling and automated microsolvation of solutes.

Our protocol takes conformational sampling and rearrangements in the sol-

vent shell into account. Its reliability is assessed by monitoring the evolution

of the spread and average of the observables of interest.
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1 Introduction

Solvation can, depending on the type of solvent into which a molecular system

is immersed, strongly modulate the properties of a solute.1,2 For example, the

kinetics of reactions in solution can be affected by the solvent. To that end,

experimental studies have investigated the interactions between solute and

solvent (see, for examples, Refs. 3–5). A solvent can take the role of an ob-

server in which it assists the course of a reaction solely through non-covalent

intermolecular interactions. It can also actively participate in a reaction in

such a way that well-structured intermediates inlcuding solvent molecules are

formed. Therefore, the accurate theoretical description of chemical processes

requires not only the elucidation of all relevant intermediates and elemen-

tary reactions (see Refs. 6–8) but also adequate modeling of the reactants’

environment.

There are three main approaches of including solvation effects in the-

oretical models: implicit solvation, hybrid cluster-continuum schemes, and

explicit solvation. They differ in accuracy and computational cost. In the

following, the different approaches are briefly reviewed mainly in the light of

their applicability to the study of chemical reaction mechanisms.

Molecular dynamics simulations can describe a solute’s dynamic sur-

rounding at a given temperature. Particularly suited for the solvation of

reactive species are ab initio molecular dynamics simulations9 as they do

not require the choice of some hard-wired interaction potentials, but rely

on the exactly known expression for the non-relativistic electromagnetic in-

teractions of elementary particles. However, as the configuration space can

become very large, computational costs of carrying out first-principles cal-

culations grow rapidly. As a result, they cannot be performed for every

intermediate in large reaction networks.7,8,10–13 This issue can be overcome

by the application of a reactive force-field.14–16 Unfortunately, next to the

reduced accuracy, force-field parameters will, in general, not be available

for any type of system which limits their applicability. For that reason, hy-

brid quantum-mechanical/molecular-mechanical (QM/MM) approaches have

been frequently applied to explore complex systems with many degrees of

freedom such as reactions in aqueous solution (e.g., Ref. 17 and reviews by
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Senn and Thiel18–20). Many studies have been devoted to studying the effect

of the number of explicitly treated solvent molecules on chemical reactivity

and optical properties (for examples, see Refs. 21–26). Recently, Boereboom

et al.27 explored multiscale approaches for the description of a reversible and

highly solvent-sensitive nucleophilic bond formation reaction. These studies

demonstrate that, while the size of the solute affects the number of QM water

molecules necessary to achieve convergence, additional system-specific prop-

erties such as solvent polarity, electronic structure of the solute, and solute-

solvent interactions determine the required number of solvent molecules.

An implicit solvent model simplifies the interactions between the solute

and the solvent by describing the solvent as a polarizable medium with a

solvent specific dielectric constant.28–30 The solute is then placed in a cavity

formed by this medium and the interaction between the solute and solvent is

calculated at the cavity boundaries. There exist many implicit solvent mod-

els including the polarized continuum model (PCM),28 the conductor-like

screening model (COSMO),31 integral equation formalism (IEFPCM),32 and

COSMO for ’real solvents’ (COSMO-RS),33 and the reference interaction site

model (RISM).34 Implicit solvent models remain popular mainly for three

reasons: (i) implicit solvation is, by far, the computationally cheapest ap-

proach of modeling solvation effects, (ii) most quantum chemistry programs

allow for the activation of an implicit solvation model in a straightforward

fashion, and (iii) a continuum model can provide efficient access to free ener-

gies, even if the electrostatic contribution to the enthalpy is negligible.33,35–37

However, implicit solvent models fall short in many practical cases. First,

they are known to describe strong (directed) interactions between solute and

solvent (e.g., hydrogen bonds) poorly. This is often the case when the solute

is charged (or contains a charged moiety) and the solvent is polar. Second,

they will fail if solvent molecules can react with the solute. This includes

cases in which intermediates are formed, protons are shuttled, or functional

groups such as aldehydes and ketones undergo tautomerization.

In 2015, Plata and Singleton’s study of the Morita-Baylis-Hillman reac-

tion highlighted issues of implicit solvation models for this specific reaction.38

Recent work on this reaction by Basdogan and Keith39 demonstrated the

necessity of explicit solvation when studying organic reaction mechanisms.
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However, the importance of explicit solvation has been shown numerous times

for chemical reactions (see, e.g., Refs. 27,40–43). Explicit solvation is also

critical for physico-chemical properties (such as pKa values of organic com-

pounds44), spectroscopic properties (such as NMR chemical shifts45,46), and

absorption spectra.21,26,47–49

A popular attempt to remedy the shortcomings of implicit solvent models

is the introduction of explicit solvent molecules to the system.50–55 The goal of

such hybrid cluster-continuum schemes is to model short-ranged interactions

explicitly and long-range effects through the continuum model surrounding

the cluster (for a recent review see Ref. 56). However, unless one knows

the solute’s local solvent environment a priori, this approach has multiple

pitfalls: First, it is unclear how many solvent molecules need to be added to

describe solvent effects to the desired accuracy. Second, the manual process

of adding solvent molecules to selected regions around a solute molecule is

often guided by ad hoc assumptions. Third, due to the unfavorable scaling

of most quantum chemical methods often only one (rarely a few) low-lying

solute-solvent configurations are taken into consideration. In the light of the

high dimensionality and rugged nature of the potential energy surface (PES)

of solvent-solute clusters, it is unlikely to find a representative configuration

through manual exploration.

Recent studies attempted to tackle the above-mentioned issues of the

static quantum chemical approach. In an extended study of solute-solvent

complexes that applied global structure optimization techniques, Li and

Hartke57 explored extreme effects of solvent molecules on chemical reactions

(in particular, on barrier heights) that will hardly be seen if one departs

from the most likely distribution of solvent molecules around the solute.

However, without a measure that informs about the probability of forming

such solute-solvent structures, it remains uncertain whether extreme cases

are likely to play a role in a reaction in solution. It is therefore manda-

tory to provide some way of configurational sampling to acquire information

on the density of structures in a relevant energy range. In their work on the

Morita-Baylis-Hillman reaction, Basdogan and Keith39 found that a stochas-

tic computational filtering procedure using a global optimization code can

help identify low energy structures. They justified the number of solvent
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molecules in the solvation model by comparing computational results with

experiment. In this way, they favored a model consisting of five methanol

molecules over a model with ten. Kildgaard et al.58,59 presented a stochas-

tic algorithm for the generation of hydration clusters of sulfuric acid. Their

algorithm places water molecules in selected orientations around a solute in

an iterative fashion. However, they have not attempted to obtain a distri-

bution over conformations but only the conformation with the lowest free

energy was sought. Moreover, the algorithm is not applicable to any choice

of solvent but has been tailored for the construction of water clusters.

Considering the shortcomings of current approaches, a method is sought

that fulfills the following key requirements:

1. Computational Feasibility: a cost-effective model is required that

strikes the right balance between accuracy and computational feasibil-

ity.

2. Systematic Improvability: the accuracy of the model should be

adaptable to the computational resources available and, in principle,

be systematically improvable so that the physically correct description

of solvation in the proper thermodynamic ensemble is recovered.

3. Universal Applicability: the model should be applicable to any

solute-solvent combination and even solvent mixtures.

4. Full Automation: the approach should not require any human inter-

vention to be unbiased and to avoid wasting human time.

In this paper, we present a static cluster-continuum scheme that ful-

fills these requirements. Regarding the first requirement, we apply efficient

generalized-gradient-approximation density functional theory with density

fitting for the optimization of solvent-solute clusters, but note that semi-

empirical quantum chemical methods60 can very much reduce the increasing

computational cost caused by considering solvent molecules explicitly.39,59

As these methods struggle to properly describe important interactions in

solution such as dispersion and hydrogen-bonding, corrections have been de-

veloped to alleviate such shortcomings.61–63 Hence, their application for the
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conformational sampling of large clusters will be beneficial. We develop our

approach at the example of a prototypical system: acetonitrile in the solvents

water and dichloromethane (DCM). The corresponding algorithm has been

integrated into our Chemoton structure exploration program13 that is part of

the SCINE software suite.64

2 Methodology

2.1 Stochastic Generation of Solvation Clusters

The algorithm presented below ensures that solvent molecules are placed

equally around any solute in a stochastic fashion. To ensure that require-

ments 3 ’Universal Applicability’ and 4 ’Full Automation’ are fulfilled, the

generation of solvation clusters may only depend on nuclear coordinates and

quantum chemical observables such as the electron density.

1. First, the accessible surfaces of the solute-solvent complex (which con-

sists of the solute only in the beginning) and solvent are identified. For

a given molecular structure, an icosahedral mesh consisting of 12 ver-

tices sa (called sites) is created around each atom a with radius equal

to its van der Waals radius Ra. With mesh sub-division algorithms,

meshes of arbitrary smoothness can be generated.

2. Sites will be marked as covered if a ray originating from the site going

in the direction of the site’s surface normal hits another mesh within

a distance of dcutoff. All sites that are buried by meshes from neigh-

boring atoms are removed. The concept of (open and covered) sites is

illustrated in Fig. 1.

3. Two open sites sa,solute and sb,solvent of the solute-solvent complex and

the solvent, respectively, are selected at random.

4. If there were no open sites in the solute, i.e., all sites are covered by the

solute itself or by solvent molecules, a complete solvation shell had been

formed. If more solvent molecules are to be added, the solute-solvent
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complex will be considered the new starting cluster and the algorithm

continues with step 1.

5. The solute-solvent complex and the solvent molecule are arranged rela-

tive to each other in such a way that site sa,solute, atom a, site sb,solvent,

and atom b are on one axis. The distance between the sites sa,solute and

sb,solvent is set to d.

6. The angle around this axis is chosen randomly under that constraint

that atoms do not come too close to each other, i.e., their van der Waals

spheres do not overlap.

7. If no orientation can be found for which atoms do not come too close

to one another, d will be increased in increments of dinc and step 6 will

be attempted again until a maximum distance dmax will be reached.

8. If it is not possible to place a solvent molecule, the site will be marked

as covered and the algorithm continues with step 3.

9. Once a solvent molecule is added to the solute-solvent complex, the

algorithm continues with step 2 until the desired number of solvent

molecules has been added.

The random selection of sites in step 3 will not be optimal if the so-

lute or solvent features charged polar functional groups or those containing

strong H-bond donors or acceptors. Depending on the polarity and charge

of the solute and solvent an equal distribution of solvent molecules around

the solute may be inefficient. To take this into account, one could augment

sites with descriptors based on first principles such as the Laplacian of the

electron density,65 Fukui functions,66 partial atomic charges,67–70 atomic po-

larizabilities,71–73 or dual descriptors74–77 (see also Refs. 78–80 for reviews).

As a result, electron-rich oxygen atoms, for example, would be placed in

such a way that they are facing electron-deficient hydrogen atoms. Such an

approach could reduce the number of steps required in the structure optimiza-

tion and improve the probability of generating a low-energy configuration.

At the same time, care should be taken so that the use of descriptors does

not introduce any bias.
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Figure 1: Open (black) and covered (blue) sites on the accessible surface of
solute (formaldehyde) and solvent (water). Sites on the added solvent molecules
are not considered until all sites at the solute are covered. This ensures that solvent
molecules are equally distributed around the solute.

If the solvent has multiple relevant conformations (e.g., hexane) or a

mixture of solvents is to be modeled, multiple structures (possibly with cor-

responding statistical weights) can be included in the site selection process

in step 3. Although these extensions are straightforward to implement, they

are beyond the scope of the present work.

2.2 Hybrid Solvation Model

The generated solute-solvent complexes are embedded in a cavity formed by

a continuum with the dielectric constant of the solvent εsolv.81 For the con-

struction of the cavity, its solvent accessible surface needs to be determined.

This can be achieved by probing the complex with a sphere of radius Rsolv
81

that is specific to the solvent. This procedure was originally developed for

single molecules, not for molecular clusters. In the latter case, unphysical

cavities can form within the complex (see Fig. 2). In practice, however,

these cavities can be easily detected and a larger Rsolv can be chosen to pre-

vent their formation. The small deviation from the idealized radius has a

negligible effect on the solute-solvent interaction, especially as the border of

the cavity should be far from the solute.
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a) b)

Figure 2: Acetonitrile-water cluster surrounded by a dielectric continuum (light
blue spheres). A cross-section (b) reveals an unphysical cavity within the cluster.

The resulting cluster structure is then subjected to quantum chemical

structure optimization that will lock it into a local minimum on the Born-

Oppenheimer PES. One could, however, also optimize the structures after

each addition of a solvent molecule.

2.3 Sampling of Solvation Clusters and Convergence

In the canonical ensemble, the importance of a set of nuclear coordinates x

(the configuration) of a molecular system at temperature T may be taken as

governed by a Boltzmann probability distribution,

p(x) =
1

z
exp {−E(x)/(kBT )} , (1)

with the total energy of the configuration E(x), the molecular contribution

z to the canonical partition function, and the Boltzmann constant kB. For

the sake of simplicity, we assume that the total energy is governed by the

electronic energy of each solute-solvent cluster in a dielectric continuum so

that we can rate the different configurations of one cluster size according to

this quantity (nuclear zero-point and finite-temperature contributions may be

added through the standard translation-in-a-box harmonic-oscillator rigid-

rotor approximation for the partition function equipped with a dielectric-
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continuum solvation model for assessing the change in free energy associated

with embedding a solute-solvent cluster into the liquid phase).

M samples drawn from this distribution then yield a configuration average

of an observable 〈O〉,

〈O〉 =
1

M

M∑
i=1

O(xi). (2)

A strategy now needs to be devised which ensures that sufficiently many rele-

vant configurations are generated so that the configurations are assigned the

proper weight p(xi) when calculating expectation values 〈O〉 for observables

O,

〈O〉 =
M∑
i=1

p(xi)O(xi), (3)

with the weights normalized according to Eq. (1) by

z ≈
M∑
j=1

exp {−E(xj)/(kBT )} . (4)

This is non-trivial (especially for systems with many floppy degrees of free-

dom such as solute-solvent clusters). For this reason, the inclusion of sol-

vent molecules is often avoided or only the lowest-total-energy configuration

xminimum is considered,

〈O〉 ≈ O(xminimum). (5)

Such an approximation of 〈O〉 by a single sample will only be reasonable if

it can be guaranteed that there exists a sufficiently large energy gap between

this single configuration and all others higher in energy. In general, this

assumption will not be justified for rugged PESs such as those created by

explicit solvation.

To ensure that our approach is systematically improvable (requirement 2)

yet computationally feasible (requirement 1), we present a procedure that

allows one to a) systematically determine a minimum number of solvent

molecules required for modeling the solvent effect to sufficient accuracy and

b) approximate the distribution over configurations of solute-solvent clusters

to obtain reliable ensemble properties at a given temperature.
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We now define the (electronic) interaction energy Einter between the solute

and its environment in the following way:

Einter = Etotal − Esolute − Esolvent, (6)

where Etotal is the total electronic energy of the solute-solvent complex, Esolute

is the electronic energy of the solute, and Esolvent is the electronic energy of

the solvent molecules including the implicit solvent model (see Fig. 3 for a

graphical representation of these energy components).

If the total electronic energy Etotal of the i-th cluster had been used in

Eqs. (3) and (4), it would be strongly dominated by configurations in which

the solvent molecules (most of which will be far away from the solute) are

arranged in a stable configuration. This effect would draw the attention

from the solute to the solvent, particularly in the case of large clusters. As a

remedy, we employ the following expression for the energy in the Boltzmann

weighting in Eq. (1):

Esolute+env = Esolute + Einter = Etotal − Esolvent (7)

In this way, also the interaction between the solvent molecules and the con-

tinuum model are quenched (this assumes that the solute is not in direct

contact with the continuum). With this partitioning scheme, however, free

energies cannot be straightforwardly calculated because vibrational modes

cannot (easily) be attributed to the solute and its direct surrounding (see

also the recent comparison of finite-temperature models for solution in Ref.

82 and references therein). We note that a recent study83 showed that the

inclusion of vibrational contributions in the free energy of solvation can have

a negligible effect on the accuracy of thermodynamic cycle predictions of

pKa’s and reduction potentials.

The complete algorithm then runs as follows:

1. GenerateNsample solute-solvent complexes by adding nsolv solvent molecules

to the solute with the procedure detailed in Section 2.1.

2. Optimize the structures of the complexes.
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solute explicit solvent implicit solvent

a) b) c)

Figure 3: Illustration of the components of Einter in our hybrid cluster-continuum
solvation scheme: (a) solute, solvent molecules, and continuum model (Etotal), (b)
solute (Esolute), (c) solvent molecules and continuum model surrounding empty
cavity formed by solute (Esolvent). To avoid basis set superposition errors, empty
nuclear positions are occupied by ghost atoms.

3. Evaluate 〈Einter〉 and 〈Edistort〉 employing Esolute+env for the weights w.

Edistort is defined as the energy of the solute (without counterpoise cor-

rection) from which the energy of the solute optimized in vacuum is

subtracted. With 〈Einter〉 and 〈Edistort〉 we have measures quantifying

the solute interactions with the solvent and the distortion of the solute

induced by the environment, respectively. If the cluster partition func-

tion z is dominated by only a few configurations, more samples must

be generated in step 1.

4. If 〈Einter〉 and 〈Edistort〉 are sufficiently close to the values of a set of

clusters consisting of fewer solvent molecules, terminate. Else, increase

nsolv and go back to step 1.

This algorithm is based on first principles and does not depend on the

solute’s shape or charge. As a result, it will, in principle, be applicable to

any solute, also to those that are strongly interacting with the solvent. In

these cases, more solvent molecules may be required until the convergence

criteria are met.

Further, when a larger complex is generated, its structure is not based on

a cluster from the previous iteration to ensure that no bias is introduced.
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3 Computational Details

The protocol described so far was implemented into our program package

Chemoton13 and carried out in a fully automated fashion. Icosahedral meshes

were generated with the C++ library OpenMesh.84 We will make Chemoton

including the features described in this work available through our SCINE

web page.64

All structure optimizations and single-point calculations were carried out

with the Orca program package (version 4.0.1)85 employing the exchange-

correlation density functional PBE,86 D3BJ dispersion corrections,87,88 the

def2-TZVPP89,90 basis set, and the corresponding density-fitting resolution-

of-the-identity approximation for the Coulomb integrals. For structure opti-

mizations and single-point calculations the default convergence criteria were

chosen. We note that for the raw-data generation other quantum chemistry

packages can be easily interfaced.

For the conformer generation according to the protocol described above

the following parameters were employed: dcutoff = 5 Å, the initial setting

of d = 0 Å, dinc = 0.25 Å, dmax = 5 Å, and Nsample = 100. Between each

iteration, in the protocol specified in Section 2.3, we increased the number of

solvent molecules by 5. This choice was made arbitrarily for this work, but

can, in principle, be treated as a solute-size-dependent parameter

The implicit solvent was described with the conductor-like polarizable

continuum solvation model (CPCM).31,91–93 The solvent probe radius was

increased from 1.3 to 1.9 Å to avoid cavities being formed within the solute-

solvent complex. To verify that even for small cluster sizes this parameter

change does not significantly distort our results we studied an extreme case.

We ran single point calculations for acetonitrile in a continuum (i.e., no

explicit solvent molecules) with two solvent probe radii: 1.3 (default) and

1.9 Å. With the computational setup described in the paper the electronic

energy does not change significantly (< 10−6 a.u.) for both solvents. In

addition, visual inspection of the cavities showed that they are practically

the same.

When calculating the Boltzmann weight of each solute-solvent complex,

the temperature was set to T=291.15 K. For the calculation of Esolute and
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Esolvent, a basis set superposition error was avoided by attaching the appro-

priate ghost-basis functions to unoccupied nuclear positions in the energy

evaluation.

The RDFs were calculated with a bin size of 1.8 a.u. A cluster’s average

solvent density was estimated by dividing the number of solvent molecules

by the volume of the convex hull spanned by all atoms.

All results were saved to a Mongo database.94 Automated data analysis

was performed with the Python libraries matplotlib95 and pandas.96 The

structures obtained are provided in the Supporting Information.

4 Results

We study our protocol at the example of acetonitrile as solute in the solvents

DCM and water. We chose these components because neither acetonitrile

nor either solvent contains conformational degrees of freedom to be sampled

in addition to the configurational ones. Moreover, acetonitrile is soluble

but chemically inert in both solvents and contains a polar, hydrogen-bond

accepting nitrile group as well as a non-polar methyl group. Our protocol

will terminate if the absolute differences with respect to 〈Einter〉 and 〈Edistort〉
between the current cluster and the previous one are both below 0.5 kcal/mol

(or ≈ 2.1 kJ/mol). This threshold value may be adjusted as it depends on

the system’s size and the required accuracy.

4.1 Acetonitrile-dichloromethane clusters

In Table 1, the number of successfully optimized acetonitrile-DCM clusters

Nclusters (out of Nsample = 100 generated starting structures) and the number

of clusters with significant contributions to the partition function nsig (p(x) >

0.05, where M = Nclusters) are given for different cluster sizes. A structure

optimization of a cluster is considered successful if the converge criteria are

met within 1200 structure optimization steps.

We note that the algorithm from Section 2.3 would have terminated after

15 solvent molecules. First, it can be seen that almost all generated clus-

ters could be optimized successfully. This demonstrates that our algorithm
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Table 1: Number of successfully optimized clusters Nclusters and number of sig-
nificant clusters nsig (p(x) > 0.05) for clusters containing nsolv DCM molecules. T
is the average wall time (in hours, on a 16-core CPU) and ncycles is the average
number of required optimization cycles.

nsolv Nclusters nsig T ncycles

5 98 5 2 225
10 99 4 8 264
15 95 6 18 254
20 93 4 35 248
25 83 5 45 179

produces starting structures that reproduce proper bonding patterns so that

subsequent structure optimizations do not yield dissociating structures such

as hydronium ions.

Second, Table 1 shows that the number of structure optimizations that

failed to converge within 1200 steps increases with the number of solvent

molecules. The slow convergence of these structure optimizations can be

attributed to the system size and its many soft degrees of freedom. Further,

the ratio between the number of significant clusters nsig and the total number

of generated clusters Nclusters is relatively low (≈ 2 − 5%) for all clusters

sizes. As described in Section 2.3, the weight of each cluster is calculated

from Esolute+env. Since the variance in Esolute is small (see below), it is the

interaction energy Einter that is responsible for the large spread. Therefore,

there must be a few configurations that have significantly higher Einter than

others.

In Fig. 4, Einter (left) and the dispersive component of Einter (right) of

acetonitrile-DCM complexes (white discs) are plotted as a function of the

number of solvent molecules. First, it can be seen that Einter drops from −26

to −90 kJ/mol with increasing cluster size until clusters consist of ten DCM

molecules. After that point, Einter remains constant (within error bars). A

similar trend can be observed for Einter, disp. Visual inspection of the com-

plexes shows that with ten DCM molecules a complete solvation shell can

be formed (see the most stable configuration in Fig. 5). This may explain

why the interaction energy does not change after that point: once a full sol-

vation shell is formed, hardly any further pronounced interactions between
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Figure 4: Einter (left) and its dispersive component Einter, disp (right) of
acetonitrile-DCM complexes (white discs) as a function of the number of solvent
molecules in kJ/mol. Black discs connected by black solid lines show 〈Einter〉 and
〈Einter, disp〉 (with error bars indicating ±2σ). Red discs connected by red dashed
lines highlight Einter and Einter, disp of the most stable complexes.

the solute and the additional solvent molecules emerge for this solute-solvent

combination.

Further, Fig. 4 shows that Einter and Einter, disp of the most stable com-

plexes are located close to the clusters with the strongest solute-solvent inter-

action (lowest Einter and Einter, disp). From this finding, we conclude that the

stability of the clusters can be attributed to the interaction between solute

and solvent, rather than from interactions between solvent molecules.

To study the effect of the environment, we also track the length of the C-N

bond in acetonitrile, dC-N. In Fig. 6, Edistort and dC-N are shown as a function

of the number of DCM molecules in the solute-solvent complex. It can be

seen, that Edistort, as well as changes in dC-N, are relatively small for all cluster

sizes. In addition, the spread of Edistort and dC-N among clusters of the same

size is small (≈ 0.4 kJ/mol and ≈ 0.005 bohr, respectively). Therefore, in

this system, the main contributor to deviations in Esolute+env among clusters

is the interaction energy Einter, not the stability of the solute. For large

molecules that can undergo large conformational changes in solution, this
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Figure 5: Ten DCM molecules form a complete solvation shell around one ace-
tonitrile molecule.
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Figure 6: Edistort (left, in kJ/mol) and dC-N (right, in atomic units (a.u.), i.e.
bohr in this case) of acetonitrile-DCM complexes (white discs) as a function of
the number of solvent molecules. Black discs connected by black solid lines show
〈Edistort〉 and 〈dC−N 〉 (with error bars indicating ±2σ). Red discs connected by
red dashed lines show Edistort and dC-N of the most stable complexes.

will not necessarily be the case. Furthermore, it can be seen that 〈Edistort〉
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converges (within error bars) whereas Edistort of the most stable configuration

does not. This showcases the issue of employing the total energy as a measure

for computing Boltzmann averages: with an increasing number of explicit

solvent molecules, the stability of the environment will dominate over that

of the solute.

4.2 Acetonitrile-water clusters

As a difficult case for microsolvation, we now turn to water as the medium for

acetonitrile. In Table 2, the number of successfully optimized acetonitrile-

water clusters nclusters and the number of clusters with significant contribu-

tions to the partition function nsig (p(x) > 0.05, where M = Nclusters) are

given for different cluster sizes. We note that the algorithm from Section 2.3

would have terminated after 35 solvent molecules. Similar trends as in Ta-

ble 1 can be identified, however, nsig is generally lower in water than in DCM.

This can be explained by the strong hydrogen-bond network formed around

the nitrile group which consists of a specific arrangement of water molecules

(see Fig. 7). Out of the optimized clusters, only a small fraction features this

particular arrangement.

Table 2: Number of successfully optimized clusters nclusters and number of sig-
nificant clusters nsig (p(x) > 0.05) for clusters containing nsolv water molecules. T
is the average wall time (in hours, on a 16-core CPU) and ncycles is the average
number of required optimization cycles.

nsolv Nclusters nsig T ncycles

5 97 7 1 230
10 98 3 3 302
15 98 1 4 296
20 99 1 7 319
25 99 3 12 328
30 98 3 16 309
35 96 2 24 324

In Fig. 8, Einter and the dispersive component ofEinter (right) of acetonitrile-

water complexes (white discs) are plotted as a function of the number of

solvent molecules. First, it can be seen that Einter drops from −30 to
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Figure 7: Formation of four hydrogen bonds (indicated by yellow dashed lines)
between water and the nitrile group of acetonitrile. Among the clusters containing
15 water molecules, this structure has the highest (absolute value of the) interac-
tion energy Einter.

−140 kJ/mol with increasing cluster size until the complex consists of 30

molecules; after that point, Einter remains constant (within error bars). A

similar trend can be observed for Einter, disp. As expected, more water than

DCM molecules are required to reach the point of convergence: visual inspec-

tion of the complexes consisting of 30 water molecules shows that one to two

solvation shells are formed (see the most stable configuration in Fig. 9). The

smaller water molecule interacts more strongly with the solute than DCM

(〈Einter〉 of −140 compared to −90 kJ/mol).

An outlier for the cluster size of 15 can be identified in Fig. 8. This

particular cluster (shown in Fig. 7) is the only one of that size that features

four hydrogen bonds. As a result, the absolute value of the interaction energy

is largest and so is the cluster’s weight in the cluster partition function z.

However, from Fig. 7 it can also be seen that a complete solvation shell has

not been formed yet. In Fig. 8, both Einter and Einter, disp reflect this fact.

In addition, it can be seen that the spread of Einter is large (≈ 90 kJ/mol

for clusters consisting of 30 solvent molecules). Considering that all of these

structures are minimum energy structures, this finding stresses the impor-
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Figure 8: Einter (left) and its dispersive component Einter, disp (right) of
acetonitrile-water complexes (white discs) as a function of the number of solvent
molecules in kJ/mol. Black discs connected by black solid lines show 〈Einter〉 and
〈Einter, disp〉 (with error bars indicating ±2σ). Red discs connected by red dashed
lines highlight Einter and Einter, disp of the most stable complexes.

Figure 9: Acetonitrile molecule surrounded by 30 water molecules.

tance of rigorous sampling: an inappropriate selection of solvation clusters

(from a manual exploration, for instance) can be detrimental to the signifi-
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cance of a theoretical study.

The spread of energies is lower for Einter, disp than for Einter. Not only is the

dispersive component smaller, but dispersive interactions are also not direc-

tional, and hence, not dependent on the exact arrangement of the molecules.

This is in contrast with non-dispersive interactions such as hydrogen bonds

that play a central role in this case.

Figure 10: Most stable acetonitrile-water cluster consisting of 20 water molecules.
No hydrogen bonds are formed between the nitrile group and the solvent and the
cluster stabilization is solely brought about by the strong network of solvent-solvent
hydrogen bonds.

Finally, it can be seen that 〈Einter〉 and 〈Einter, disp〉 do not coincide with

Einter and Einter, disp of the most stable complexes, respectively. This differ-

ence is more pronounced in water than in DCM (compare Fig. 4) because

in the former the interactions between the solvent molecules are stronger.

In Fig. 10, the most stable acetonitrile-water complex (consisting of 20 sol-

vent molecules) is shown. This structure is represented by the red point in

Fig. 8, left, for 20 solvent molecules. In this structure, no hydrogen bond

with the acetonitrile group is formed but the water molecules are arranged

such that the hydrogen-bond network of the solvent molecules is optimal.

However, such a configuration is solely a result of the limited number of

solvent molecules in the solvent shell and would be dissolved in larger clus-
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ters, where further water molecules break up the hydrogen network of the

20 water molecules and allow then for hydrogen bonding with the solute.

However, this most stable configuration with 20 water molecules would have

the highest weight if Etotal had been employed in the Boltzmann weighting.

This emphasizes again how decisive it is to choose a suitable energy measure

for calculating the weights p(x).
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Figure 11: Edistort (left, in kJ/mol) and dC-N (right, in atomic units (a.u.), i.e.
bohr) of acetonitrile-water complexes (white discs) as a function of the number of
solvent molecules. Black discs connected by black solid lines show 〈Edistort〉 and
〈dC−N 〉 (with error bars indicating ±2σ). Red discs connected by red dashed lines
show Edistort and dC-N of the most stable complexes.

In Fig. 11, Edistort and dC-N are shown as a function of the number of water

molecules in the solute-solvent complex. Compared to Fig. 6, it can be seen

that Edistort, as well as changes in dC-N, are larger for all cluster sizes. The

outlier in 〈Einter〉 for clusters with 15 water molecules represents the complex

shown in Fig. 7. The strong interaction also causes the strong nitrile bond

to be elongated. The presence of additional solvent molecules then reduces

the strong solute-solvent interaction. This is why a similar outlier cannot be

found for clusters with more than 15 water molecules.

In Fig. 12, the radial distribution function (RDF) g(r) between the ni-

trogen of acetonitrile and the oxygen of water for two cluster sizes are shown
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together with classical molecular dynamics reference data taken from Ref.

97. For the clusters, the RDF was approximated by taking the weighted

average of the RDFs of clusters of the same size. The cluster sizes 30 and

35 were chosen because clusters of this size describe the solute-solvent in-

teraction sufficiently well. It can be seen that clusters’ RDFs compare very

favorably with the reference data below r ≈ 8 a.u. The RDF is close to zero

below 5 a.u. to reach its maximum at ≈ 6.5 a.u. After that the cluster RDFs

drop rapidly as they should because the density of explicit solvent molecules

vanishes and replaced by implicit solvation of the continuum model in our

cluster-continuum approach. It should be noted that for the calculation of

the RDF a relatively large bin size of 1.8 a.u. was chosen to ensure that each

bin contains sufficiently many solvent molecules. Further, larger clusters and

a larger sample size would be required for a quantitative comparison with

simulation data, especially for the region of the RDF beyond 8 bohr.
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Figure 12: Radial distribution function g(r) of the nitrogen-oxygen distance
for cluster sizes 30 and 35 (circles) together with classical molecular dynamics
reference data (continuous curve) adapted from Ref.97 Note the matching position
of the maxima.
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5 Conclusions

In this study, we presented a systematic approach for modeling solvation

effects by establishing a fully automated static hybrid cluster-continuum

scheme with conformational sampling. Our general algorithm for the stochas-

tic generation of solute-solvent clusters is applicable to any solute or solvent.

We established criteria that not only indicate how many configurations need

to be generated but also how many explicit solvent molecules need to be

added to capture most of the interaction between the solute and its envi-

ronment. For this, we applied a scheme of weighting sampled configurations

to obtain meaningful configuration statistics. We then proposed measures

that indicate how many explicitly treated solvent molecules are necessary

to accurately describe the solute’s environment. As the required size of the

clusters depends strongly on the particular solvent and solute, this needs to

be determined in a case-by-case manner (and in an automated fashion) when

our hybrid cluster-continuum scheme is employed.

We note that the conformational sampling of the solute molecule can be

conveniently separated from that of the solvent shell through, for example,

our structure exploration program Chemoton,13 which first generates solute

conformations that can then be solvated. For the sake of efficiency, it is

also possible to first solvate one solute conformation and then change this

conformation in the solvent cages generated to obtain guess structures to be

subjected to structure optimization.

The application of our scheme to model acetonitrile in DCM and water

highlighted the shortcomings of standard quantum chemical microsolvation

attempts. The results show, as one would have expected, that in solvents with

strong intermolecular interactions (e.g., water) a single most-stable cluster

is unlikely to be representative. It is not appropriate then to identify only

the most stable cluster for calculating ensemble statistics. A fully automated

approach for systematically generating and sampling solute-solvent clusters

in a static quantum chemical picture will be mandatory. The PES of such

clusters is too rugged for a rigorous in-depth manual exploration. This also

points toward systematic sampling of configuration space through Monte-

Carlo or molecular dynamics algorithms, to which our automated cluster
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generation protocol may be seamlessly coupled to eventually allow sampling

even under periodic boundary conditions.

As such extensions will require significant computational resources, a

combination with approximate interaction models ranging from semi-empirical

methods to classical molecular-mechanics force fields and machine learn-

ing models is a natural extension (for the fast-growing literature on these

schemes, we may refer to references in Refs. 98–101). However, we empha-

size that reliability of such methods which trade accuracy for computational

efficiency is best guaranteed if suitable uncertainty quantification schemes

(such as those reported by us in Refs. 102–105) are in operation that in-

form about the range of applicability. Note also that such an approach

should then not be considered as some general transferable model, but as a

system-focused baseline model whose suitability is quantitatively assessed by

uncertainty quantification procedures in a rolling fashion through continuous

benchmarking as discussed in Refs. 102 and 105.
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Solvatochromic Shift of Phenol Blue in Water from a Combined

27



Car–Parrinello Molecular Dynamics Hybrid Quantum Mechanics-

Molecular Mechanics and ZINDO Approach. J. Chem. Phys. 2010,

132, 234508.

[23] Flaig, D.; Beer, M.; Ochsenfeld, C. Convergence of Electronic Structure

with the Size of the QM Region: Example of QM/MM NMR Shieldings.

J. Chem. Theory Comput. 2012, 8, 2260–2271.

[24] Zuehlsdorff, T. J.; Haynes, P. D.; Hanke, F.; Payne, M. C.; Hine, N.

D. M. Solvent Effects on Electronic Excitations of an Organic Chro-

mophore. J. Chem. Theory Comput. 2016, 12, 1853–1861.

[25] Provorse, M. R.; Peev, T.; Xiong, C.; Isborn, C. M. Convergence of

Excitation Energies in Mixed Quantum and Classical Solvent: Com-

parison of Continuum and Point Charge Models. J. Phys. Chem. B

2016, 120, 12148–12159.

[26] Milanese, J. M.; Provorse, M. R.; Alameda, E.; Isborn, C. M. Conver-

gence of Computed Aqueous Absorption Spectra with Explicit Quan-

tum Mechanical Solvent. J. Chem. Theory Comput. 2017, 13, 2159–

2171.

[27] Boereboom, J. M.; Fleurat-Lessard, P.; Bulo, R. E. Explicit Solvation

Matters: Performance of QM/MM Solvation Models in Nucleophilic

Addition. J. Chem. Theory Comput. 2018, 14, 1841–1852.
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