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Introduction 

The notion of a “chemical bond”, specifically in the 
framework of molecular orbital (MO) theory, is in-
grained in any chemist’s education, and the simplest 
and most iconic representative of that is the H2 mole-
cule with its bonding (sg stabilizing) and antibonding 
(su

* destabilizing) orbital interactions. The same con-
ceptual approach is used, very widely and arguably 
successfully, in many areas of solid-state chemistry 
and materials science. Despite perpetual controver-
sies surrounding the very idea of a chemical bond 
(and the trivial fact that a chemical bond is not a 
quantum-mechanical observable), the usefulness and 
predictive power of chemical-bonding models has led 
to substantial scientific progress, in particular, new 
chemical matter by rational syntheses. And despite 
the increasing role of automation and “big data” in 

chemical research, one may argue that more, not less, 
of this insight is needed because human beings are 
committed to understanding. 

In principle, bonding and antibonding orbital inter-
actions are defined for solids just as well as for iso-
lated molecules. Quantifying orbital overlap to under-
stand bonding has been pioneered for solids in the 
1980s, in Hughbanks’ and Hoffmann’s iconic Crystal 
Orbital Overlap Population (COOP) technique.[1] Re-
lated ideas were then pursued in the first-principles 
domain where weighting of orbital interactions by the 
associated Hamiltonian matrix element leads to the 
Crystal Orbital Hamilton Population (COHP).[2] The 
COHP in particular has been implemented in pro-
grams including the venerable TB-LMTO-ASA suite[3] 
and more recently in the CRYSTAL software.[4] 

One thing in common that the aforementioned 
programs share is the locality of the basis sets em-
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ployed for their calculations. However, many of to-
day’s DFT programs widely use delocalized plane-
wave (PW) basis sets in combination with the pseudo-
potential approach, which hinder the development of 
chemical bonding tools in such programs. Using a pro-
jection method which was similar to the method orig-
inally developed by Sánchez-Portal et al.,[5] and used 
early on in plane-wave calculations,[6] LOBSTER ena-
bles the chemical-bonding analysis from PW-based 
wavefunctions. It is worth mentioning that currently 
the projection method in LOBSTER has been designed 
to work with the projector-augmented wave (PAW) 
method,[11] which also marks the difference with the 
method developed in Ref. [5]. The reason for this is 
that the PAW method has been very widely imple-
mented in many PW-based DFT programs due to its 
efficiency and accuracy, making a powerful advance 
over many previous plane-wave pseudopotential 
schemes. Among the many applications of LOBSTER in 
recent years, we may highlight but a few: it has been 
used to chemically understand molecules on nano-
particle surfaces,[7] unconventional phases from crys-
tal-structure prediction,[8] or the reactivity of zeo-
lites[9] or oxide electrodes.[10] Furthermore, all the de-
tails of the projection method and of the local basis 
sets implemented in LOBSTER can be found in our 
previous publications[12] and the User’s Guide distrib-
uted with the program for any technical questions. In 
the present work, we describe developments in LOB-
STER that have been implemented and used over the 
recent years.



 

 

 
Figure 1. Overview of LOBSTER’s data flowchart. It starts from one-electron (Bloch) wavefunctions |𝜓$⟩ and the according eigen-
values 𝜀$ of a quantum-chemical system of interest, brought to self-consistency using a DFT program which employs the projector-
augmented wave (PAW) method. After wavefunction-related data are extracted through I/O interfaces (red block) specially tai-
lored to three DFT programs (VASP, ABINIT, and QE), a basis set of contracted Slater-type orbitals '(𝜒*+, is semi-automatically 
selected from a built-in database. Wavefunctions and basis sets are then brought into the projection routine to determine the 
overlap matrix 𝑆*.  and the transfer matrix 𝑇*0  between the delocalized and localized representations. From those, the projected 
coefficient and Hamiltonian matrices 𝐶*0 and 𝐻*., respectively, are accessible and enable various bond-analytic tools. The LOB-
STER logo is copyrighted by the Chair of Solid-State and Quantum Chemistry at RWTH Aachen University.

Methods 

The principal flow of data and procedures is illus-
trated in Fig. 1. LOBSTER’s primary idea is to recon-
struct the PAW wavefunctions by projecting them 
onto a local basis set, hence reconstructing the entire 
electronic structure in another representation. This 
very projection, furthermore, yields the coefficients 
of linear combinations of atomic orbitals (LCAO) that, 
together with the overlap and Hamiltonian matrices, 
allow the calculations of various chemical-bonding 
quantities. 

Furthermore, although originally LOBSTER was de-
signed with interfaces to handle only wavefunctions 
from VASP[13] and ABINIT,[14] another interface has 
been recently developed to process wavefunctions 
from another widely used and open-source DFT pack-
age, Quantum ESPRESSO (QE),[15] which has made 
LOBSTER more broadly accessible. Using QE and LOB-
STER, the chemical bonding analysis of the electronic 
and magnetic properties of manganese carbodiimide 
(MnNCN) and manganese oxide (MnO) was firstly 
demonstrated and reported in Ref. [16]. 

LOBSTER is a multiplatform tool that is written in 
object-oriented C++ and parallelized using OpenMP. 
It employs Boost libraries[17] as well as the highly effi-

cient Eigen library.[18] For further details of the tech-
nical aspects, readers may refer to our initial publica-
tions.[12] 

Time reversal symmetry 

As time progresses, (nanoscale) materials at the sci-
entific front can become so complex that their projec-
tions, as well as their prior DFT calculations, turn out 
as being extraordinarily expensive to compute. Paral-
lelism using OpenMP has been implemented in LOB-
STER since version 1.1.0 to reduce some of the com-
putational burden but more improvement in the effi-
ciency is still needed. Trivially, the entire projection is 
computationally costly because it must be done for all 
𝒌-points in the first Brillouin-zone (BZ), which affects 
a) calculation time and b) storage-space. Fortunately, 
𝒌-space symmetry can be exploited.  

Time-reversal (TR) symmetry is always present in 
systems isolated from external fields; mathemati-
cally, this symmetry conforms to an anti-unitary op-
erator 𝑇3  whose operation on a given Bloch wavefunc-
tion yields the complex conjugate of the wavefunc-
tion.[19] However, it is also already well known that 
Ψ0𝒌∗ (𝒓) = 	Ψ0(;𝒌)(𝒓). Therefore,  

T=	Ψ0𝒌(𝒓) = 	Ψ0(;𝒌)(𝒓). (1) 



 

  

Furthermore, since 𝑇3  commutes with the Kohn‒Sham 
Hamiltonian, 𝐻=, we also have 𝜀0𝒌 = 𝜀0(;𝒌).  

In LOBSTER, TR symmetry can be exploited by di-
rectly incorporating it into the equations of chemical-
bonding indicators, i.e., COOP and COHP. Since COOP 
and COHP only differ in the use of overlap and Hamil-
tonian matrices, respectively, in the following we will 
derive how time reversal symmetry affects COOP, and 
related conversions can be done for COHP as well.  

The first step in implementing TR symmetry in 
COOP is to split the 𝒌-point summation into two 
groups, in which one group is the inversion of the 
other, and to realize that the each 𝒌-point and its in-
version are energetically degenerate: 

COOP*𝑻.𝑻D(𝐸) =	

					𝑆*𝑻;.𝑻DGH	 G 𝑤𝒌		𝐶*𝑻;0𝒌∗ 	𝐶.𝑻D;0𝒌	
𝒌∈KLMN O0

	

															+ G 𝑤𝒌D		𝐶*𝑻;0𝒌D
∗ 	𝐶.𝑻D;0𝒌D

𝒌DQ;𝒌

R 𝛿'𝜀0𝒌 − 𝐸,. (2) 

All the notations are the same as described in Ref. 
[12].  We also recall that the reconstructed wavefunc-
tions are given as linear combinations of atomic orbit-
als (LCAO): 

(Ψ0𝒌+ =G𝐶*𝑻;0𝒌(χ0𝑻+
*𝑻

. (3) 

Here, (χ0𝑻+ are, in general, real functions, and thus 
unaffected by TR symmetry. Accordingly, if we apply 
eq. (1) to eq. (3), we have 

𝐶*𝑻;0𝒌∗ = 𝐶*𝑻;0(;𝒌). (4) 

Then, if eq. (4) is re-inserted into eq. (2), for each 
𝒌-point there is a term that adds with its complex 
conjugate, which is equivalent to twice the real part 
of the same term. In the end, we arrive at 

COOP*𝑻.𝑻D(𝐸) =	

𝑆*𝑻;.𝑻D G 𝑤Y𝒌		ℜ[	𝐶*𝑻;0𝒌∗ 	𝐶.𝑻D;0𝒌\	𝛿'𝜀0𝒌 − 𝐸,
0𝒌∈KLMN O

, (5)
 

where 𝑤Y𝒌 = 2𝑤𝒌. Here, ℜ{… } means the real part of 
a given complex value. Note that the summation over 
𝒌-points now only covers half of the BZ. Correspond-
ingly, by substituting  𝑆b with 𝐻=, the TR-exploited 
COHP now reads 

COHP*𝑻.𝑻D(𝐸) =	

𝐻*𝑻;.𝑻D G 𝑤Y𝒌		ℜ[	𝐶*𝑻;0𝒌∗ 	𝐶.𝑻D;0𝒌\	𝛿'𝜀0𝒌 − 𝐸,
0𝒌∈KLMN O

. (6)
 

With these modified equations of chemical-bond-
ing indicators, there is a huge gain in efficiency not 
only in LOBSTER but also in pre-projection DFT calcu-
lations. To demonstrate the benefits of TR symmetry 
in chemical-bonding analysis, the new LOBSTER ver-
sion was tested by checking both the DFT and the pro-
jection parts for a total of 174 crystalline cases (sys-
tems) of various kinds, including insulators, metals, 
and magnetic materials. The systems were selected 
from the well-known material database materialspro-
ject.org.[20]  This database, moreover, has a large col-
lection of materials that can be downloaded manually 
or automatically through the material analysis code 
pymatgen.[21]  

The DFT part produced PAW-based DFT data from 
three different DFT programs, namely VASP, ABINIT, 
and QE. To achieve DFT convergence throughout, the 
number of 𝒌-points targeted a 𝒌-point density rang-
ing from 6000 to 12000 𝒌-points×atoms. The cutoff 

Figure 2. The distributions of saved time (left) and storage-
space (right) gained in DFT calculation (red) and LOBSTER 
projection (blue) after using TR symmetry. 



 

 

energy values used to converge all the DFT calcula-
tions are listed in Table 1 of the SI. 

Furthermore, we have recently adapted the 
pymatgen code such that it provides users with VASP 
and LOBSTER input files specifically for LOBSTER cal-
culations. That is to say that a local basis set for the 
projection is automatically suggested, and the VASP 
calculation is adapted accordingly. The VASP input 
files have then been translated into similar input files 
for QE and ABINIT using independent scripts. The 
pymatgen code was also used and partially adapted 
to compare all computations with and without TR 
symmetry. These developments can be found in 
pymatgen version 2019.12.22 or newer. All raw data 
for our comparison can be accessed via https://ze-
nodo.org/record/3676916.   

Once completed, all information about the runtime 
and storage-space from the DFT and projection calcu-
lations with and without TR symmetry was compiled 
for analysis and benchmarked against its counterpart 
using the current release of LOBSTER (3.2.0). In the 
following paragraphs, we report the highlighted sum-
mary of the time and storage-space efficiency gained 
due to this new functionality. The complete numerical 
information can be found in Table 2 of the SI. 

Fig. 2 shows the percentage distributions as re-
gards saved time (left) and storage-space (right) with 
respect to prior DFT calculations (red) and LOBSTER 
projections (blue) after having incorporated TR sym-
metry. Regarding time efficiency (Fig. 2 left), all distri-
butions are normally centered at the 50% value such 
that all the three DFT programs saved 50% runtime in 
most cases, ABINIT showing the largest variance. Like-
wise, the time saved by LOBSTER projection using TR 
symmetry also follows a normal distribution, LOB-
STER typically running twice as fast.  

The storage-space efficiency gained by TR sym-
metry is even better (Fig. 2 right) because the distri-
butions have zero or nearly zero variance. In other 
words, DFT and LOBSTER calculations including TR 
symmetry almost always use 50% less storage-space. 

We have also checked the quality of the total den-
sity of states (TDOS) produced by this LOBSTER ver-
sion compared to standard LOBSTER by measuring 
the TDOS overlap mismatch which is defined as 

%	of	TDOS	overlap	mismatch =	

							
∫ 𝑑𝜀	|TDOSy(𝜀) − TDOSyz(𝜀)|
{
;{

∫ 𝑑𝜀	TDOSyz(𝜀)
{
;{

	× 100%, (7) 

thereby quantifying the match between the TDOS 
with (TDOSw) and without (TDOSwo) TR symmetry. The 
numerical results as detailed in Table 3 of the SI evi-
dence a typical overlap mismatch of less than 0.1% 
and a maximum mismatch still smaller than 10%. In 
most cases, the DOS with and without TR symmetry 
are indistinguishable. Moreover, out of 174 cases, 
there are only 3 cases in VASP, 0 cases in ABINIT, and 
2 cases in QE with mismatches larger than 5%; they 
are likely to go back to a still insufficient number of 𝒌-
points. It is also worth mentioning that the results for 
spin-polarized and non-spin-polarized cases do not at 
all differ in quality, a reassuring sign for magnetic sys-
tems.  

Regarding COHP, the results in general agree well 
with the TDOS although there are few cases (not 
shown here) where COHP mismatch values are larger 
than for the TDOS counterparts such that 𝒌-depend-
ency is more pronounced here, so these cases might 
still need additional 𝒌-points (since covalent bonding 
may become highly directional and then requires ex-
treme 𝒌-convergence). As a more typical example, 
Fig. 3 shows a COHP plot of one particular test case, 
i.e. aluminum (mp-134), in which the COHP calculated 
without TR symmetry using PAW data from different 
DFT programs can be perfectly reproduced by the 
much quicker TR approach. Note that the plot from 
ABINIT is wigglier than those from VASP and QE be-
cause the tetrahedron table necessary for the tetra-
hedron method is not output by ABINIT, so LOBSTER 
must use the default method, i.e., Gaussian smearing. 
Nevertheless, as shown in Table 3 of the SI, for all 
three programs the TDOS overlap mismatches of Al 
(mp-134) are zero in full agreement with COHP. 

New Analysis Tools 

Once the LCAO coefficients have been reconstructed 
(Fig. 1), LOBSTER can readily calculate DOS and COOP 

Figure 3. COHP of Al calculated after the LOBSTER projec-
tion of PAW data without (blue) and with (red) TR symmetry 
from three different DFT programs. The curves are shown 
as dashed lines and are indistinguishable to the naked eye. 



 

  

by 𝒌-space integration.[12] Furthermore, reconstruct-
ing the Hamiltonian matrix in a second step facilitates 
COHP analysis.[2],[12] Additionally, LOBSTER writes 
their energy-integrated counterparts IDOS (which 
yields the total number of electrons of the respective 
atoms, i.e. Mulliken’s gross population), ICOOP (Mul-
liken’s overlap population) and ICOHP.  

Population analyses and charge  

Computing the gross populations and charges is a fea-
ture which was recently added in LOBSTER[22],[23] using 
the techniques of population analyses as introduced 
by Mulliken and Löwdin.[24]-[27] In Mulliken’s ap-
proach, the gross (orbital) population GP* is deter-
mined as follows by using the density-matrix formal-
ism 

GP* =GG𝑃*.;𝒌𝑆*.;𝒌𝑤𝒌,
.𝒌

	 (8) 

with 𝑃*.;𝒌 and 𝑆*.;𝒌 as 𝒌-dependent density and over-
lap matrix elements for orbitals 𝜇 and	𝜈, respectively,  

𝑃*.;𝒌 =G𝑓0𝒌𝐶*;0𝒌∗ 𝐶.;0𝒌
0

, (9) 

𝑆*.;𝒌 = 〈𝜒*;𝒌(𝜒.;𝒌〉. (10) 

with the occupation number 𝑓0 of band 𝑗 and the 
LCAO-CO coefficients 𝐶*0;𝒌 in reciprocal space. 

For Löwdin’s approach, a new basis set 𝝌′ and a 
new coefficient matrix 𝑪′ are attained from the origi-
nal ones by applying Löwdin’s symmetric orthogonali-
zation (LSO)[25],[27] 

𝝌�𝒌 = 	𝑺𝒌;� N⁄ 𝝌𝒌, (11) 
𝑪�𝒌 = 	𝑺𝒌� N⁄ 𝑪𝒌.		 (12) 

The new basis functions 𝜒′, orthogonalized via LSO, 
are closest in Hilbert space to the original func-
tions.[27] A new density matrix 𝑷� = 𝑺�/N𝑷𝑺�/N is also 
obtained, so that the Löwdin gross orbital population 
GP* has the following form 

GP* =G𝑃�**;𝒌𝑤𝒌.
𝐤

(13) 

The Mulliken or Löwdin charge 𝑞� for any atom 𝐴 
is computed from the difference of the number of the 
atom’s valence electrons 𝑁 (when using pseudopo-
tentials) and the gross orbital population GP* includ-
ing all orbitals 𝜇 belonging to atom 𝐴, 

𝑞� = 𝑁 −GGP*.
*∈�

(14) 

We have recently demonstrated that the orbital-
based Mulliken and Löwdin population analyses, as 
implemented in LOBSTER by combining the ad-
vantages of PW and all-electron local basis sets, no 
longer suffer from the typical basis-set dependency as 
known from MO calculations. Additionally, both 
methods have been proven as being highly competi-
tive approaches compared to the traditional practice 
of using the density-based Bader charge analy-
sis.[22],[28] A comparison of both methods for one ap-
plication will be given later in the text. 

𝒌-dependent COHP  

Another feature recently added in LOBSTER is the 𝒌-
dependent COHP. While COHP is useful in describing 
chemical bonding in energy space, the chemical 
bonding often is direction-dependent, so a particular 
𝒌-point may be of special interest or at least more sig-
nificant than bonding at any other 𝒌-points. When-
ever topology comes into play, knowing this infor-
mation may be crucial in studying a given material. 
We have therefore developed a new routine, based 
on the original definition of COHP, that resolves COHP 
into individual contributions from each 𝒌-point and 
band. Mathematically, the 𝒌-dependent COHP is de-
fined as: 

COHP*.;0𝒌 = 	𝐶*;0𝒌∗ 	𝐻*.;𝒌	𝐶.;0𝒌	. (15) 

The first 𝒌-dependent COHP application was 
demonstrated in an optimization study of thermoe-
lectric materials eventually yielding n-type Mg3Sb2.[29] 
Using the 𝒌-dependent COHP, the authors revealed 
the main covalent interactions existing at the conduc-
tion-band minimum which plays a decisive role in im-
proving the thermoelectric property of the material. 
The new feature was also employed in a high-
throughput computational identification of a high Cu-
rie-temperature ferromagnetic semiconductor, 
In2Mn2O7,[30] and it also rationalized the distinct sem-
iconducting and ferromagnetic properties. Likewise, 
𝒌-dependent COHP contributed to high-throughput 
computational screening of diamond-like ABX2 com-
pounds[31] such as to help predicting exceptional and 
novel thermoelectric materials. Additionally, we 
demonstrate the use of the feature in one of the ap-
plications below. 

Applications 

To conclude this paper, we present three representa-
tive applications. The first one demonstrates the ad-
vantage of the TR functionality, whereas the second 



 

 

and the third applications describe, respectively, the 
population analyses-and-charge feature and the use 
of the 𝒌-dependent COHP technique. 

Gallium Arsenide (mp-2534) 

The III-V semiconductor GaAs, our first application, is 
part of the test cases and also included in the LOB-
STER package (Fig. 4a). It is a wide-bandgap semicon-
ductor crystallizing in the zinc blende structure 
(𝐹4�3𝑚) with two atoms per primitive unit-cell. The 
PAW data of GaAs presented here were obtained by 
QE using a 14 × 14 × 14 𝒌-point mesh.  

Without TR symmetry, the DFT calculation of GaAs 
used more than 4 CPU hours but by exploiting TR sym-
metry (see Table 2) the runtime was reduced by more 
than 50%. Likewise, the LOBSTER projection calcula-
tion without TR symmetry took about 17 CPU minutes 
but TR symmetry reduced its runtime by 51%. Taking 
DFT and LOBSTER projection together, TR symmetry 

reduces the total runtime from 296 min to a mere 145 
min, a speedup of 2.04. 

Fig. 5 shows TDOS (left) and COHP (right) of GaAs 
obtained by projecting QE PAW wavefunctions onto 
local orbitals without (blue) and with (red) TR sym-
metry. Clearly, both TDOS and COHP plots cannot be 
distinguished. The entire valence band is Ga‒As bond-
ing, just like for the isoelectronic silicon phase. Fur-
thermore, as given in Table 3 of the SI, the DOS over-
lap mismatches are virtually zero for all three differ-
ent DFT programs. 

Lithium intercalation in carbonaceous anode mate-
rials 

Carbon nanomaterials including “hard” and “porous” 
carbons with substantial degrees of structural disor-
der are promising candidates for the application as 
anode materials in Li-ion and Na-ion batteries. Such 
structures were generated by Huang et al. via a com-
bination of a machine-learning-based interatomic po-
tential to generate the carbonaceous host framework 
and DFT to then describe the Li intercalation, using a 
protocol detailed in Ref. [28]. One, Li-rich, structural 
model is directly taken from that study and used here 

Figure 4. The crystal structure of a) GaAs and b) TlF. 

Figure 5. Total DOS (left) and the shortest Ga–As bond’s 
COHP (right) calculated after the LOBSTER projection of QE 
PAW data without (blue) and with (red) the time reversal 
(TR) symmetry. 

Figure 6. a) Löwdin and b) Bader charges of a Li-rich struc-
tural model of intercalation in disordered carbon. The figure 
shows only part of the simulation cell to better focus on the 
central region, where a pore in one of the graphite-like 
sheets is found; see Ref. [28]. 



 

  

without further modification; albeit such charge anal-
yses have been reported in [28], we repeat them here 
to exemplify the approach (and to directly compare 
two separate charge-analysis methods as applied to 
the same structure). Because the intercalation behav-
ior of anode materials is important for the functional-
ity of batteries (i.e., the charging process), Löwdin 
charges on the Li atoms in this structure are examined 
and compared to those from the widely-used method 
of Bader charge analysis.[32] Recently strong differ-
ences in consuming computing resources between 
Bader’s method compared to the Mulliken and Lö-
wdin population analyses were demonstrated.[22] 
Similar results are also found now, as shown in Fig. S1 
in the SI. Another problem working with the electron 
density is that this method sometimes yields chemi-
cally non-intuitive charges, e.g. negative charges on 
alkali metals, like Na and Li, if combined with the 
more electronegative carbon, as reported in a previ-
ous study of such systems[33] and also seen in our pre-
sent calculations in Fig. 6b. According to Bader charge 
analysis, there is one Li ion with a small negative 
charge occupying the center of the pore in the carbon 
backbone, while the Li ions around it and further dis-
tributed in the structure exhibit charges close to +1. 
This kind of charge distribution is at variance with the 
chemically intuitive assumption of an alkali metal be-
ing either positively charged or neutral (metallic), but 
not negative. In the case of Löwdin charges (Fig. 6a) 
directly and far more quickly calculated from the 
wavefunction, a qualitatively different situation is ob-
served. The center of the pore is occupied by an al-
most metallic (uncharged) Li ion, from which other Li 
ions with increasing charges are clustering around it, 
so that a smooth charge distribution from the pore to 
the rest of the structure can be observed.[28] Details 
on the charges can be found in Fig. S2 in the SI. Whilst 
the intercalation of isolated Li atoms into carbona-
ceous materials is expected to lead to a charge stage 
close to Li+, it has been argued that pores in disor-
dered carbons can be filled with metallic-like clusters, 
and evidence of a (partial) charge transfer has been 
obtained, for example, from operando NMR meas-
urements on Li[34] and Na[35] anodes. For example, ap-
proximate charges of +0.66 e and +0.1 e have been 
deduced for two classes of Li atoms in such environ-
ments,[34] in qualitative agreement with the findings 
of Huang et al.[28] and with the data exemplified in Fig. 
6. 

Thallium Fluoride (mp-720) 

LOBSTER can also be employed to analyze orbital 
characters of electronic bands through fatbands and 
orbital interactions in those bands through the 𝒌-de-
pendent COHP. To demonstrate such features, we use 
the simple, yet low-symmetry fluoride TlF, which is 
also part of our test cases. TIF is an insulator which 
has an orthorhombic structure (𝑃𝑏𝑐𝑚) with 6 atoms 
per unit cell (Fig. 4b).   

TlF is also known as one of the systems showing a 
“lone-pair” crystal structure associated with the so-
called inert-pair effect. In a previous study, Häusser-
mann et al.[36] have proposed a simple, yet very rea-
sonable, bonding picture to understand why TlF 
adopts the aforementioned orthorhombic instead of 
the more symmetric CsCl structure. Their qualitative 
picture, based on the DOS and a schematic diagram 
of orbital interactions of Tl and F in the hypothetical 

Figure 7. Contributions to TlF electronic structure from a) 
fatbands of Tl 6s (left) and Tl 6p (right) as well as b) 𝒌-de-
pendent Tl–F COHP of 6s–2p (left) and 6p–2p (right). 



 

 

CsCl structure, yields that the orthorhombic structure 
is a natural way to circumvent orbital interactions 
which would be quite repulsive in the CsCl structure. 
Here we will demonstrate for the first time a more 
quantitative and spatially resolved picture of the or-
bital interactions of TlF supporting the earlier deduc-
tive conclusion by Häussermann et al.[36]  

PAW wavefunctions of TlF needed for the projec-
tion were calculated by VASP using 763 𝒌-points, also 
including TR symmetry saving runtime by about 50% 
(Table 2 of SI). After the projection, the 6𝑠 and 6𝑝 fat-
bands of Tl were calculated and are depicted in Fig. 
7a. As expected, the valence bands just below the 
Fermi level are moderately composed by Tl 6𝑠 (left, 
the inert pair showing up here), whereas the (unoccu-
pied) conduction bands are almost fully dominated by 
Tl 6𝑝 (right). In addition, F 2𝑝 (not shown) also mod-
erately contributes to the top of the valence bands.  

While the fatband feature reveals the orbital char-
acters of each band, it does not provide any insight 
into the mechanism of the electronic structure for-
mation through chemical bonding. To directly gain 
that information, Fig. 7b depicts the 𝒌-dependent 
COHP of Tl 6𝑠 — F 2𝑝 (left) and Tl 6𝑝 — F 2𝑝 (right) 
interactions. As usual, negative (positive) values rep-
resent bonding (antibonding) interactions.  

To start with, the top of the valence bands (about 
1 eV below the Fermi level) is composed of strong Tl 
6𝑠 — F 2𝑝 antibonding interactions, so the “inert 
pair” is not at all inert but strongly destabilizing at this 
particular energy.  More below, roughly between ‒2 
and ‒4 eV, however, there are two other sets, now 
mainly exhibiting nonbonding and bonding Tl 6𝑠 — F 
2𝑝 character, such that the bonding arising from Tl 6𝑠 
— F 2𝑝 interactions in its entirety is hardly significant 
and will not stabilize the system; the “inert pair” is in 
charge, once again. Quite to the contrary, one finds 
moderately strong Tl 6𝑝 — F 2𝑝 bonding interactions 
in the valence bands throughout, as seen from Fig. 7b 
(right), and they stabilize the system. The latter inter-
actions are possible due to the adopted orthorhombic 
structure with symmetry lower than the CsCl struc-
ture. Note also that such Tl 6𝑝 — F 2𝑝 interactions 
would be strongly antibonding if occupied in the con-
duction band (say, by electronic excitation), and the 
strength of the antibonding effects varies within the 
Brillouin zone, very much direction-dependent, being 
most destabilizing at G but only weakly so at R.  

These 𝒌-dependent COHP pictures are in agree-
ment with the prior description given by Häusser-
mann et al.,[36] but the 𝒌-dependent COHP provides a 
more quantitative picture and also allows for a more 
straightforward and convenient analysis. 

Conclusions 

We have presented new developments in the LOB-
STER software for chemical-bonding analysis. LOB-
STER processes delocalized PAW wavefunctions cal-
culated with VASP, ABINIT, or QE and performs pro-
jection onto an auxiliary LCAO basis, which makes 
bond-analytic tools such as DOS, COOP, and COHP ac-
cessible for state-of-the-art PAW-based simulations. 
Furthermore, LOBSTER’s efficiency has been signifi-
cantly improved such as to save 50% of the entire pro-
cess (DFT and LOBSTER calculations) as regards time 
and storage-space, namely by implementing time-re-
versal symmetry in the chemical bonding routines. 

Recent development has also added two major fea-
tures, namely atomic charges and related populations 
directly from the wavefunction as well as the 𝒌-de-
pendent COHP. The former is useful for examining 
ionic bonding in suchlike (or polar) compounds, for 
example simple salts, Zintl phases, intermetallics, 
thermoelectrics, or even phase-change materi-
als,[22][23][23],[37]-[39] whereas the latter serves useful for 
detailed band-wise and 𝒌-point-wise chemical bond-
ing analysis. 
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