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Computer simulations of model systems are widely used to explore striking phe-

nomena in promising applications spanning from physics, chemistry, biology, to ma-

terials science and engineering. The long range electrostatic interactions between

charged particles constitute a prominent factor in determining structures and states

of model systems. How to efficiently calculate electrostatic interactions in model sys-

tems subjected to partial or full periodic boundary conditions has been a grand chal-

lenging task. In the past decades, a large variety of computational schemes have been
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proposed, among which the Ewald summation method is the most reliable route to

accurately deal with electrostatic interactions in model systems. In addition, exten-

sive effort has been done to improve computational efficiency of the Ewald summation

based methods. Representative examples are approaches based on cutoffs, reaction

fields, multi-poles, multi-grids, and particle-mesh schemes. We sketched an ENUF

method, an abbreviation for the Ewald summation method based on Non-Uniform

fast Fourier transform technique, and have implemented this method in particle-

based simulation packages to calculate electrostatic energies and forces at micro-

and mesoscopic levels. Extensive computational studies of conformational properties

of polyelectrolytes, dendrimer-membrane complexes, and ionic fluids demonstrated

that the ENUF method and its derivatives conserve both energy and momentum to

floating point accuracy, and exhibit a computational complexity of O(N logN) with

optimal physical parameters. These ENUF based methods are attractive alternatives

in molecular simulations where high accuracy and efficiency of simulation methods

are needed to accelerate calculations of electrostatic interactions at extended spa-

tiotemporal scales.
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I. INTRODUCTION

Computer simulations of molecular systems have rapidly expanded over the past decades,

and have widely used to study phase behaviors of materials and biological systems [1, 2].

Electrostatic interactions between charged particles play a prominent role in determining

structures, dynamics, and states of these physical system, leading to many important ap-

plications in academia and industrial communities [3–8]. An accurate description of elec-

trostatic interactions in model systems is a non-trivial task in computer simulations. The

slow decay feature of electrostatic interactions with respect to particle distance poses a sig-

nificant challenge to model charged simulation systems as their computations are extremely

time consuming [1, 2, 4, 5]. The spherical cutoff treatment used for short-ranged interactions

(such as Lennard-Jones) ignoring particle interactions beyond a certain range is inadequate

for electrostatic interactions because any arbitrary truncation leads to nonphysical artifacts.

Therefore, one has to take electrostatic interactions between all pairs of ion species into

consideration, which is termed as direct summation method, leading to an unfavorable com-

putational complexity of O(N2) (where N is the number of charged particles in simulation

systems). As simulation system size expands, the calculation of electrostatic interactions be-

comes the major computational bottleneck for a thorough understanding of phase behaviors

of charged physical systems at extended spatiotemporal scales [1, 2, 4, 8].

A traditional way to sum electrostatic interactions between charged particles and all their

infinite periodic images is the Ewald summation method [9]. By introducing a differentiable,

localized function, the Ewald summation method recast the total electrostatic interaction,

a single slowly and conditionally convergent series, into a short range particle-particle inter-

action part that can be calculated using spherical cutoff treatment in real space and a long

range interaction part for smeared charges that can be computed by solving the Poisson’s

equation in reciprocal space [1, 2]. Although this representation is exact, it contains infinite

summation terms and therefore calls for error-controlled approximations for their applicable

utilizations in molecular simulations of charged model systems. The parameters entering

the Ewald summation method, i.e., the interaction range of short range part, the number

of Fourier modes in long range part, and the splitting parameter controlling the relative

weight of short range and long range terms, can be optimized in such a way that the overall

performance of the Ewald summation method is reduced to O(N3/2) [1, 2, 4].
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Although the Ewald summation method represents a substantial improvement respect to

the direct summation method and removes the quadratic complexity, the numerical effort

is still too large for simulation systems extending to millions of charged particles and long

time simulations. Alternative splitting methods having the same underlying idea as the

Ewald summation method were developed to accelerate solvation of the Poisson’s equation

in reciprocal space by taking advantages of fast Fourier transform (FFT) technique, lead-

ing to an O(N logN) scaling of computation time. Examples include the particle-particle

particle-mesh (PPPM) Ewald summation method [10–13], the particle-mesh Ewald summa-

tion method (PME) [14, 15], and a variety of derivatives from these splitting methods [16–

20]. These methods have been successfully employed in the past decades at varied levels

of molecular simulations, but the related physical parameters should be carefully optimized

for speedy and accuracy. Although these splitting methods are substantially faster than

the standard Ewald summation method, their accuracy is inferior. Errors are inevitably

introduced in the particle-mesh scheme, which first interpolates particle charges onto a uni-

form mesh, and thereafter extrapolates the solution of the Poisson’s equation represented on

mesh back to charged particles [14, 15, 18–20]. Therefore, the quality of interpolation and

extrapolation plays a critical role in determining computational accuracy of these splitting

methods [12, 13, 18–20].

In previous works, we sketched an ENUF method [21], an abbreviation for the Ewald sum-

mation method based on Non-Uniform fast Fourier transform (NFFT) technique [22, 23],

to calculate electrostatic energies and forces between charged particles in molecular simu-

lation systems. The ENUF method is easy-to-implement and efficient for calculating long

range electrostatic interactions, and additionally, both energy and momentum are conserved

to floating point accuracy. Indeed, the ENUF method is the starting point for the subse-

quent development of particle-particle NFFT with periodic boundary conditions [24]. By

choosing a set of optimal physical parameters, the ENUF method gives a good precision as

desired and bears a computational complexity of O(N logN) [8, 21, 25]. Later, the ENUF

method was implemented in the dissipative particle dynamics (DPD) framework to calculate

electrostatic interactions between charge density distributions at mesoscopic level [25–27].

The ENUF and ENUF-DPD methods were adopted to explore the dependence of confor-

mational properties of polyelectrolytes on charge fraction, ion concentration and counterion

valency of added salts [27], to investigate specific binding structures of dendrimers on bilayer
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membranes and the corresponding permeation mechanisms [28], and to study heterogeneous

structures and dynamics in ionic liquids (ILs) and how electrostatic interactions between

charged particles affect these properties at extended spatiotemporal scales [8].

In addition, great endeavors have been made in recent years to accelerate scientific com-

putation using, for example, dedicated and specialized hardware and high-performance ac-

celerator processors [29]. The commodity graphics processing unit (GPU) and the compute

unified device architecture (CUDA) represent a disruptive technology advance in simula-

tion hardware, provide a mature programming environment, and have been the majority

of investigations in computational materials science [30–33]. It has been recognized that

high-performance GPU accelerated molecular simulations would have a significant impact

on all aspects of modelling physical systems [19, 31, 34, 35]. At present, most molecular sim-

ulation packages support GPU acceleration [36–40]. We have implemented the ENUF and

EUNF-DPD methods in an open source GALAMOST (GPUaccelerated largescale molecular

simulation toolkit) package [8, 41, 42]. In addition, several (hybrid) parallelization strategies

based on gridding [43] and NearDistance algorithms [44] were developed to accelerate the

evaluation of electrostatic energies and forces using GPU and CUDA technology [45, 46].

These derivatives of the ENUF and ENUF-DPD methods exhibit distinct computational

efficiencies in handling long range electrostatic interactions between charged particles at

extended spatiotemporal scales.

In current contribution, we present a comprehensive review on the detailed implemen-

tation of the ENUF method in molecular simulation and DPD frameworks based on CPU

nodes, the hybrid parallelization of the ENUF and ENUF-DPD methods using GPU and

CUDA toolkit, the determination of effective interactions parameters to achieve an opti-

mal computational complexity, and representation applications of the ENUF and ENUF-

DPD methods in treating long range electrostatic interactions between charges particles

and charge density distributions in inorganic crystals, polyelectrolytes, dendrimer-membrane

complexes, and IL systems.
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II. THE IMPLEMENTATION AND PARALLELIZATION OF ENUF AND

ENUF-DPD METHODS IN CPU FRAMEWORK

A. The Ewald summation method

We consider a simple cubic simulation system with box length L consisting of N charged

particles, each one carrying partial charge qi at position ri and interacting with each other

according to the Coulomb’s law. An overall charge neutrality is assumed in such a simulation

system and the boundary condition without cutoff is represented by replicating the simula-

tion box in three dimensional (3D) space. The total charge-charge electrostatic interaction

energy is given as

UE(rN) =
1

4πε0

†∑
n

∑
i

∑
j>i

qiqj
|rij + nL|

, (1)

where n = (nx, ny, nz), and nx, ny, and nz are arbitrary integers representing a replication

of charged particles in the whole 3D space. The summation over n takes into account all

periodic images, and the † symbol indicates that the self-interaction terms for all charged

particles are omitted when n = 0. The variable ε0 is the permittivity (dielectric constant)

of the vacuum space.

The direct summation of Eq. 1, although simple to implement, suffers a major drawback

as a direct numerical evaluation of Eq. 1 is excessively computational demanding [1, 2, 4].

In the triply periodic case, the direct and infinite summations in Eq. 1 are conditionally

convergent for charge neutral systems, and the computational results (electrostatic energies

and forces between charged particles) depend on the order of summation. In fact it was

discovered that any conditionally convergent series can be rearranged to yield a series which

converge to any prescribed summation [1, 2]. Such a situation is very similar to the case

when a linear equation has an infinite number of solutions because it is under-determined; by

adding a set of conditions a unique solution will be defined. In other words, the summation

result is not well defined unless one specifies a detailed procedure to sum up these terms. For

electrostatic energies and forces between charged particles, a physically relevant summation

order has to be prescribed, and the boundary condition (spherical, cubic, cylindrical, etc.)

of surrounding medium has to be specified [1, 2, 4].

The Ewald summation formula for the triply periodic case was derived by Ewald in
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1921 [9]. The resulting formula imposes two choices: a spherical summation order and an

assumption that the dielectric constant of the surrounding medium is infinite, i.e., it is a

conductor, which is often referred to tin foil boundary condition. To gain more physical

insights, we consider the electric field generated by a charged particle with partial charge qi

located at ri

φi(r) =
1

4πε0

qi
|r− ri|

. (2)

The electric field generated by N charged particles and their periodic images at ri is

φ(ri) =
1

4πε0

∑
n

N∑
j=1

qj
|rj − ri + nL|

. (3)

Herein, we define φ[i](ri) as the electric field generated by all other charged particles and

their periodic images at ri, excluding ion i itself,

φ[i](ri) ≡ φ(ri)− φi(ri) =
1

4πε0

∑
n

N∑
j 6=i

qj
|rj − ri + nL|

. (4)

Therefore, the charge-charge electrostatic interaction energy in Eq. 1 can be rewritten as

UE(rN) =
1

2

N∑
i

qiφ[i](ri) . (5)

The Ewald summation method splits the slowly convergent in Eq. 1 into two terms that

exhibit exponentially fast and absolute convergence at fixed level of accuracy. The partial

charges, described by a collection of delta functions ρi(r) = qiδ(r− ri), are decomposed into

two parts by adding and subtracting a set of Gaussian charge density distributions [47]

ρi(r) = ρRi (r) + ρKi (r) ,

ρRi (r) = qiδ(r− ri)− qiGσ(r− ri) , (6)

ρKi (r) = qiGσ(r− ri) .

where

Gσ(r) =
1

(2πσ2)3/2
e−
|r|2

2σ2 . (7)

σ is the standard deviation parameter of Gaussian charge density distribution. In literature,

α ≡ 1/(
√

2σ) denoted as the Ewald convergence parameter is always used in molecular
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simulations. This splitting scheme leads to the electric field φi(r) being described by two

terms,

φi(r) = φRi (r) + φKi (r) ,

φRi (r) =
qi

4πε0

∫
δ(r− ri)−Gσ(r− ri)

|r− ri|
d3r , (8)

φKi (r) =
qi

4πε0

∫
Gσ(r− ri)

|r− ri|
d3r .

The electric field φ[i](ri) generated by all other charged particles and their periodic images

at ri excluding ion i itself can be decomposed in a similar way,

φ[i](ri) = φR[i](ri) + φK[i](ri) . (9)

Correspondingly, the charge-charge electrostatic energy in Eq. 5 is given as

UE(rN) =
1

2

N∑
i

qiφ
R
[i](ri) +

1

2

N∑
i

qiφ
K
[i](ri) . (10)

The electric field φG(r) generated by the Gaussian charge density distribution Gσ(r) can

be obtained by solving the Poissons equation,

∇2φG(r) = −qiGσ(r)

ε0
. (11)

In spherical coordinate system, φG(r) is symmetric and only depends on the magnitude of

r = r, and therefore it is described as

φG(r) =
qi

4πε0r
erf(αr) , (12)

where erf(x) = 2√
π

∫ x
0
e−t

2
dt is the well-known error function. Therefore, the electric fields

φRi (r) and φKi (r) in Eq. 8 can be expressed as

φRi (r) =
qi

4πε0|r− ri|
erfc(α|r− ri|) , (13)

φKi (r) =
qi

4πε0|r− ri|
erf(α|r− ri|) , (14)

in which erfc(x) ≡ 1− erf(x) is the complementary error function. As limx→∞ erf(x) = 1,

the φKi (r) is a long-ranged nonsingular potential and the φRi (r) is a short-ranged singular

potential. The short-ranged singular potential φR[i](r) generated by all other charged particles

and their periodic images at ri excluding ion i itself is given by

φR[i](ri) =
1

4πε0

∑
n

N∑
j 6=i

qj
|rj − ri + nL|

erfc(α|rj − ri + nL|) . (15)
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The short range part of electrostatic energy (UE,R(rN) in Eq. 10) can be rewritten as

UE,R(rN) =
1

2

N∑
i

qiφ
R
[i](ri) =

1

2

1

4πε0

∑
n

N∑
i

N∑
j 6=i

qiqj
|rij + nL|

erfc(α|rij + nL|) . (16)

Choosing a suitable value of the Ewald convergence parameter α, the short range part of

electrostatic energy extends no longer than a cutoff distance and can be expressed as

UE,R(rN) =
1

4πε0

N∑
i

N∑
j>i

qiqj
rij

erfc(αrij) , (17)

and therefore, this part can be obtained from a direct summation in real space calculations.

As φKi (r) is a long-ranged nonsingular potential, the long range part of electrostatic energy

UE,K(rN) in Eq. 10 is not feasible via a direct computation in real space summations. It

is noteworthy that all Gaussian charge density distributions constitute a periodic function

and can be described as

ρK(r) =
∑
n

N∑
i=1

ρKi (r + nL) . (18)

Considering electrostatic contributions from all charged particles, φK(r) is the electric field

generated by a periodic array of charged particles. This indicates that φK(r) and UE,K(rN)

are smooth periodic functions and hence their Fourier transformations exhibit fast decay in

reciprocal space.

By solving the Poisson’s equation in reciprocal space

∇2φK(r) = −ρ
K(r)

ε0
, (19)

we can get the electric field generated by all Gaussian charge density distributions as

φK(r) =
1

V ε0

∑
k 6=0

N∑
j

qj
k2
eik·(r−rj)e−k

2/4α2

, (20)

where V = L3 is the volume of the central simulation system. The long range part of

electrostatic energy can be expressed as

UE,K(rN) =
1

2

N∑
i

qiφ
K(ri) =

1

2V ε0

∑
k 6=0

N∑
i

N∑
j

qiqj
k2

eik·(ri−rj)e−k
2/4α2

. (21)

By defining a lattice structure factor S(k) =
∑N

i=1 qie
ik·ri , the long range part of electrostatic

energy can be rewritten as

UE,K(rN) =
1

2V ε0

∑
k 6=0

e−k
2/4α2

k2
|S(k)|2 . (22)
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The summation over all Gaussian charge density distributions in Eq. 18 indicates that a

self-interaction term is included for the calculation of long range electrostatic interactions

between all Gaussian charge density distributions. Therefore, this self-interaction energy

should be subtracted from the total electrostatic energy. Taking the electric field φG(r)

generated by the Gaussian charge density distribution Gσ(r) at r = 0, we have

φself = φG(0) =
qi

4πε0r

2α√
π
. (23)

The total self-interaction energy becomes

UE,Self (rN) =
1

2

N∑
i

qiφself (ri) =
1

4πε0

α√
π

N∑
i

q2
i . (24)

Therefore, in standard Ewald summation method, the electrostatic energy in Eq. 1 is

decomposed into three contribution terms

UE(rN) = UE,R(rN) + UE,K(rN) + UE,Self (rN)

=
1

4πε0

{ N∑
i

N∑
j>i

qiqj
rij

erfc
(
αrij

)
+

2π

V

∑
k 6=0

e−k
2/4α2

k2
S(k)S(−k)− α√

π

N∑
i

q2
i

}
,(25)

with

S(k) =
N∑
i=1

qie
−ık·ri and k =

2π

L
n . (26)

From electrostatic energy we can easily obtain the electrostatic force FE
i acting on charged

particle i by taking a partial derivative of the electrostatic energy UE
i with respect to its

position ri,

FE
i (rN) = −∇iU

E
i (rN) . (27)

Splitting electrostatic force using a similar procedure as recasting electrostatic energy, we

can get the total electrostatic force acting on charged particle i from real and reciprocal

summations,

FE
i (rN) = −∇i

[
UE,R(rN) + UE,K(rN) + UE,Self (rN)

]
= FE,R

i (rN) + FE,K
i (rN) . (28)
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The short range part of electrostatic force acting on charged particle i can be obtained as

FE,R
i (rN) = −∇i

[ 1

4πε0

N∑
i

N∑
j>i

qiqj
rij

erfc(αrij)
]

=
1

4πε0

N∑
j=1

qj

[erfc(αrij)
r2
ij

+
2α√
π

exp(−α2r2
ij)
]
. (29)

Similarly, the long range part of the electrostatic force on charged particle i can be obtained

as

FE,K
i = −∇i

[ 1

2V ε0

∑
k 6=0

N∑
i

N∑
j

qiqj
k2

eik·(ri−rj)e−k
2/4α2

]
=

1

2V ε0

∑
k 6=0

1

k2
e−k

2/4α2

{[ N∑
i

qi cos(k · ri)
]2

+
[ N∑

i

qi sin(k · ri)
]2
}

=
1

2V ε0

∑
k 6=0

1

k2
e−k

2/4α2

{
sin(k · ri)Re(S(k)) + cos(k · ri)Im(S(k))

}
(30)

The implementation of Ewald summation method requires the Ewald convergence pa-

rameter α, a presettled energy accuracy parameter δ(� 1), and two cutoffs (rc for real

space and nc for reciprocal space). These parameters are inter-correlated with the following

conditions:

e−π
2|n|2/(αL)2 ≤ δ =⇒ nc ≥

αL

π

√
− log(δ) =⇒ nc ∝ L ∝ N1/3 , (31)

erfc(αrc) ≈ e−α
2r2c ≤ δ =⇒ rc ≈

πnc
α2L

. (32)

In practical applications with presettled δ, it is straightforward to choose a suitable value

for nc, and thereafter one can determine α and rc directly from Eq. 32.

B. Discrete Fourier transforms for non-equispaced data

The Fourier transform for non-equispaced data-points is a generalization of FFT [22, 48].

The basic idea of NFFT is to combine standard FFT algorithm with various window func-

tions, which are well localized both in space and in frequency domains. Representative

window functions include Gaussian, B-spline, Sinc-power, and Kaiser-Bessel types. A con-

trolled approximation using a cutoff scheme in frequency domain and a limited number of

terms in space domain results in an aliasing error and a truncation error, respectively. The
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aliasing error is controlled by an oversampling factor σs, and the truncation error is deter-

mined by the number of terms, m, in spatial approximation [22]. For representative window

functions mentioned above, it was found that for a fixed oversampling factor, σs > 1, the

truncation error decays exponentially with m [21, 24, 49–51].

For a finite number of Fourier coefficients f̂k ∈ C with k ∈ IM , we wish to evaluate the

trigonometric polynomial f(x) =
∑

k∈IM f̂ke
−2πık·x at N non-equispaced points (xj ∈ Dd :

j = 0, 1, . . . , N−1). The space of the d-variable function f ∈Dd is restricted to the space of

d-variable trigonometric polynomial
(
e−2πık : k ∈ IM

)
with a degree of Mt(t = 0, 1, . . . , d−1)

in the t-th dimension. The possible frequencies k are collected in the multi index set IM

with

IM =
{
k = (kt)t=0,1,...,d−1 ∈ Zd : −Mt

2
≤ kt ≤

Mt

2

}
. (33)

The dimension of the d-variable function or the total number of data-points in the index set

is MΠ = Πd−1
t=0Mt. As such, the resulting FFT algorithm has a computational complexity of

O(MΠ logMΠ + log(N/δ)), where δ is the desired computational accuracy [49].

With these preliminary definitions we can perform discrete Fourier transform for non-

equispaced data. The trigonometric polynomial for N given data-points can be described

by

fj = f(xj) =
∑
k∈IM

f̂ke
−2πık·xj (j = 0, 1, . . . , N − 1) . (34)

Using a matrix-vector notation, all trigonometric polynomials can be rewritten as f = Af̂ ,

where f = (fj)j=0,1,...,N−1, A = (e−2πık·xj)j=0,1,...,N−1;k∈IM , and f̂ = (f̂k)k∈IM .

In the following implementations, the related matrix-vector products are the conjugated

form

f = Āf̂ , f j =
∑
k∈IM

f̂ke
2πık·xj , (35)

and the transposed form

f̂ = ATf , f̂k =
N−1∑
j=0

f je
−2πık·xj , (36)

in which Ā and AT are the conjugated and transposed complex of matrix A, respectively.

With given Fourier coefficients f̂ , the Fourier samples f can be transformed with suitable

FFT algorithms in both directions. More in-depth discussion and technical details can be

found in publications [21, 24, 25, 27, 49–51] and references therein.
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C. The ENUF method

1. Implementation of the ENUF method

The ENUF method combines standard Ewald summation method with Non-Uniform FFT

technique to handle electrostatic interactions between charged particles. It is noteworthy

that in the ENUF method NFFT only makes approximations for computing long range part

of electrostatic energies and forces between charged particles in reciprocal space summa-

tions [21, 25, 27]. Therefore in the following subsections, we present the detailed procedures

to calculate reciprocal space summations of electrostatic energies and forces using NFFT

technique.

For electrostatic energies obtained from reciprocal space summations (Eq. 22), replacing

parameter k with n in the structure factor S(k), and then normalizing particle positions

xi = ri/L, the lattice structure factor in Eq. 26 is rewritten to another form S(n) as

S(k) =
N∑
i=1

qie
−ık·ri =

N∑
i=1

qie
− 2πı

L
n·ri =

N∑
i=1

qie
−2πın·xi = S(n) . (37)

For a fixed vector n, the lattice structure factor S(n) is just a complex number.

It is clear that the structure factor S(n) in Eq. 37 and the transposed FFT form in

Eq. 36 have similar structures. Substituting qi with f j, the structure factor S(n) is then

a 3D sample of the transposed FFT form. By viewing the structure factor S(n) as a

trigonometric polynomial f̂n, the long range part of electrostatic energy determined from

reciprocal space summations can be rewritten as

UE,K(rN) =
1

4πε0

1

2πL

∑
n6=0

e−(πn)2/(αL)2

n2
|f̂n|2 . (38)

The reciprocal space summations are approximated by a linear combination of window

functions sampled at non-equidistant MΠ grids. These grids are used as input to transposed

FFT, with which we can calculate each component of the structure factor S(n), and there-

after the reciprocal space summations of electrostatic energy. The reciprocal space part of
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electrostatic force on charged particle i can be obtained in a similar procedure

FE,K
i = −∇iU

E,K

= − 1

4πε0

1

2πL

∑
n6=0

e−(πn)2/(αL)2

n2

(
4πqj
L

n

)
{
− sin(

2π

L
n · ri)

∑
j

qj cos(
2π

L
n · rj) + cos(

2π

L
n · ri)

∑
j

qj sin(
2π

L
n · rj)

}

=
1

4πε0

2qj
L2

∑
n6=0

n
e−(πn)2/(αL)2

n2

{
sin(

2π

L
n · ri)Re

(
S(n)

)
+ cos(

2π

L
n · ri)Im

(
S(n)

)}
.(39)

Since the structure factor S(n) is a complex number, the expression in the bracket of

Eq. 39 can be written as the imaginary part of a product

sin(
2π

L
n · ri)Re

(
S(n)

)
+ cos(

2π

L
n · ri)Im

(
S(n)

)
= Im

{
e

2π
L
ın·riS(n)

}
. (40)

Following this expression, Eq. 39 can be expressed as

FE,K
i =

1

4πε0εr

2qi
L2

∑
n 6=0

n
e−(πn)2/(αL)2

n2
Im

{
e

2π
L
ın·riS(n)

}

=
1

4πε0εr

2qi
L2
Im

{∑
n6=0

n
e−(πn)2/(αL)2

n2
S(n)e

2π
L
ın·ri
}

=
1

4πε0εr

2qi
L2
Im

{∑
n6=0

ĝne
2πın·xi

}
, (41)

where ĝn = n e−(πn)2/(αL)2

n2 S(n) with n 6= 0. Again, Eq. 41 is a 3D sample of the conjugated

FFT form (Eq. 35). Assuming n ∈ IM and ĝ0 = 0, we can reformulate Eq. 41 into a series

of Fourier terms

FE,K
i =

1

4πε0

2qi
L2
Im

{ ∑
n∈IM

ĝne
2πın·xi

}
=

1

4πε0r

2qi
L2
Im(gi) . (42)

Therefore, we can calculate the reciprocal space summations of electrostatic force on charged

particle i using conjugated FFT algorithm based on the structure factor S(n) obtained from

the transposed FFT algorithm in the calculation of electrostatic energy.

2. Determination of optimal parameters for the ENUF method

Since the ENUF method makes an approximation of the reciprocal space summation of

electrostatic energy and force, it is reasonable to expect that the ENUF method behaves in
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a consistent manner with the standard Ewald summation method. For the ENUF method,

besides the parameters used in the standard Ewald summation method (Eq. 31 and Eq. 32),

there are additional two parameters from NFFT controlling the approximation errors: the

oversampling factor σs and the number of terms m in spatial domain approximation [21, 22,

24]. These two parameters are regarded as “knobs” controlling how accurately the structure

factor is approximated in NFFT.

Through the calculation of electrostatic energies between charged particles using the

standard Ewald summation method and the ENUF method, it is shown in Fig. 1 that for

a fixed over-sampling factor σs > 1, the relative error for electrostatic energy exhibits a

significant decrease with m [21, 22]. For a cutoff of m ≥ 2, the approximation error is

negligible in practice, indicating a strong similarity of the ENUF method with the standard

Ewald summation method in handling electrostatic interactions between charged particles.

Similar computational results are also observed in the relative error and the maximum

relative error of electrostatic force acting on charged particle i [21].

The scaling characteristic of the ENUF method was estimated by varying the number of

charged particles in simulation systems. For the physical parameters related to the standard

Ewald summation method shown in Eq. 31 and Eq. 32, we fix δ and ncut, and thereafter

determine α and rcut using constraints as listed in these two equations. The optimization

procedure iterates from the smallest ncut permitted by the simulation system size, and

stops when the resulting real space cutoff rcut is compatible with that for short-ranged

interactions (such as Lennard-Jones). With optimal parameters, the ENUF method exhibits

a O(N logN) scaling behavior.

D. The ENUF-DPD method

1. The DPD method

The DPD method is a particle-based approach, originally introduced by Hoogerbrugge

and Koelman in 1992 as a novel scheme to simulate hydrodynamic phenomena of complex

fluids at mesoscopic level [52, 53]. One important conceptual difference between DPD and

atomistic molecular dynamics (MD) approach is the use of coarse-graining procedure al-

lowing a mapping of several atoms or molecules in atomistic simulation systems onto large
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FIG. 1. Relative error (

√
(E − Ẽ)2/E2) of electrostatic energy for the standard Ewald summation

method and the ENUF method with a given Ewald accuracy parameter δ ≈ 10−5. E is the

electrostatic reference energy, and Ẽ is the electrostatic energy calculated via either the standard

Ewald summation method (�) or the ENUF method (+) using different approximation parameters

with (A) m = 1 and σs = 1.5, (B) m = 1 and σs = 2.0, (C) m = 2 and σs = 1.5, (D) m = 2 and

σs = 2.0, (E) m = 3 and σs = 1.5, and (F) m = 3 and σs = 2.0.

dissipative particles. The time evolution of dissipative particles is governed by the Newton’s

equation of motion

∂ri
∂t

= vi , mi
∂vi
∂t

= fi , (43)

where ri, vi, and mi denote the coordinate, velocity, and mass of dissipative particle i,

respectively. The total force fi acting on the dissipative particle i is normally composed of

three different pairwise additive forces: the conservative force FC
ij, the dissipative force FD

ij ,

and the random force FR
ij,

fi =
∑
i 6=j

(FC
ij + FD

ij + FR
ij) , (44)
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with

FC
ij = αijω

C(rij)r̂ij , (45)

FD
ij = −γωD(rij)(vij · r̂ij)r̂ij , (46)

FR
ij = σωR(rij)θij r̂ij , (47)

where rij = ri − rj, rij = | rij|, r̂ij = rij/rij, and vij = vi − vj. The parameters αij, γ, and

σ determine the strength of conservative, dissipative, and random forces, respectively. θij is

a random fluctuating variable with zero mean and unit variance.

The pairwise conservative force is usually written as a weight function ωC(rij) with the

form of

ωC(rij) =

 (1− rij/rc) (rij ≤ rc)

0 (rij > rc)
. (48)

Compared with the Lennard-Jones 12-6 potential, the conservative force adopted in the DPD

method is a soft repulsive force, and hence it allows a large time step in the integration of

the equation of motion of all dissipative particles. The unit of length rc is related to the

volume of dissipative particles and can be determined from specific coarse-graining schemes.

Two weight functions ωD(rij) and ωR(rij) for dissipative and random forces are coupled

together via the fluctuation-dissipation theorem

ωD (r) =
[
ωR (r)

]2
and σ2 = 2γkBT (49)

to form a thermostat and generate natural canonical distribution [54]. In most applications,

the weight function ωD(r) adopts a simple form as [55]

ωD (r) =
[
ωR (r)

]2
=

 (1− r/rc)2 (r ≤ rc)

0 (r > rc)
. (50)

One important consequence of the DPD formulation is that all interactions are pairwise

additive and satisfy the Newton’s third law, leading to both linear and angular momentum

being conserved [52, 53, 55]. In addition, all three pairwise forces depend only on the relative

positions and velocities between interacting dissipative particles, leading to the DPD model

Galilean-invariant. The satisfaction of these conditions makes the DPD method a consis-

tent coarse-grained (CG) approach particularly appealing for studying soft matter systems
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at mesoscopic level [56–58]. Examples of these investigations are microphase separation

of multiblock polymers [59, 60], polymeric surfactants in solution [61], colloidal suspen-

sions [62, 63], structural and rheological behavior of biological membranes [64–66] and red

blood cells [33, 67, 68].

2. Implementation of the ENUF-DPD method

In the DPD method, one critical advantage is the soft repulsive nature of the conser-

vative potential, which enables to integrate the equation of motion of dissipative particles

using a large time step. However, such an advantage restricts the direct incorporation of

electrostatic interactions in DPD model because dissipative particles carrying opposite point

charges tend to collapse onto each other, forming artificial ion clusters due to stronger elec-

trostatic interactions than soft repulsive conservative interactions [69–73]. In order to avoid

such non-physical phenomena, point charges at the center of dissipative particles are re-

placed by charge density distributions meshed around particles to remove the divergence of

electrostatic interactions between point charges at r = 0 [69, 70, 74, 75].

In the ENUF-DPD framework [26, 27], we used a Slater-type charge density distribution

with the form of

ρe(r) =
q

πλ3
e

e
−2r
λe , (51)

in which λe is the decay length of charge q. The integration of Eq. (51) over the whole space

gives the total charge q [69, 70]. The electric field φ(r) generated by the Slater-type charge

density distribution ρe(r) can be obtained by solving the Poisson’s equation

φ(r) =
1

4πε0

q

r

(
1− (1 +

r

λe
)e
−2r
λe

)
. (52)

The electrostatic energy between two interacting Slater-type charge density distributions i

and j is the product of the total charge density distribution i and the electric field generated

by the Slater-type charge density distribution j at position ri

UE,DPD
ij (rij) = qiφj(ri) =

1

4πε0

qiqj
rij

(
1− (1 +

rij
λe

)e
−2rij
λe

)
. (53)

The electrostatic force acting on the Slater-type charge density distribution i is obtained by

taking the negative of the derivative of electrostatic energy UE,DPD
ij respect to its position
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ri

FE,DPD
ij (rij) = −∇iU

E,DPD
ij (rij) =

1

4πε0

qiqj
(rij)2

{
1−

(
1 +

2rij
λe

(
1 +

rij
λe

))
e
−2rij
λe

}
. (54)

By defining a dimensionless parameter r∗ = r/rc as the reduced center-to-center distance

between two Slater-type charge density distributions and β = rc/λe, the reduced electrostatic

energy and force are given by

UE,DPD
ij (r∗ij) =

1

4πε0

qiqj
rcr∗ij

{
1−

(
1 + βr∗ij

)
e−2βr∗ij

}
, (55)

FE,DPD
ij (r∗ij) =

1

4πε0

qiqj
(rcr∗ij)

2

{
1−

(
1 + 2βr∗ij(1 + βr∗ij)

)
e−2βr∗ij

}
. (56)

Now it is clear that the electrostatic energy and force between Slater-type charge density

distributions in DPD simulations are those between point charges in MD simulations scaled

with correction factors of

BU = 1−
(

1 + βr∗
)
e−2βr∗ , (57)

BF = 1−
(

1 + 2βr∗(1 + βr∗)
)
e−2βr∗ . (58)

Such similarities between electrostatic energies and forces in MD and DPD simulations imply

that once we get electrostatic energies and forces between point charges in MD simulations,

from which the electrostatic energies and forces between Slater-type charge density distribu-

tions in DPD simulations can be directly scaled with the corresponding correction factors.

In the limit of r∗ij → 0, the reduced electrostatic energy and force between the Slater-type

charge density distributions are described by

lim
r∗ij→0

UE,DPD
ij (r∗ij) =

1

4πε0

qiqj
Rc

β , (59)

lim
r∗ij→0

FE,DPD
ij (r∗ij) = 0 . (60)

From Eq. 59 and Eq. 60, we can specify that the adoption of Slater-type charge density

distributions in DPD simulations removes the divergence of electrostatic interactions at

r∗ij = 0, indicating that both electrostatic energies and forces between Slater-type charge

density distributions are finite quantities.

By matching electrostatic interactions between Slater-type charge density distributions

at r∗ij = 0 with previous work [69], it gives β = 1.125. From the relation of β = Rc/λe,

we can get λe = 6.954 Å, which is consistent with the electrostatic smearing radii used in
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FIG. 2. Electrostatic potential and force between Slater-type charge density distributions calcu-

lated from the ENUF and the Ewald summation methods. The Coulombic potential and force,

both of which diverge at r = 0, are included for a comparative purpose. Both electrostatic potential

and force expressions are plotted for two equal sign charge density distributions.

González-Melchor’s computational model [70]. It should be noted that as charge density

distributions in simulation systems are affected by hydrodynamic flow [76], these proposed

methods provide a natural coupling between electrostatics and fluid motion.

Fig. 2 presents the reduced electrostatic potential and force between Slater-type charge

density distributions. It is clearly demonstrated that at short distance r < 3.0Rc the electro-

static energy and force calculated using the ENUF-DPD method are comparable with those

obtained from the Ewald summation method. In addition, both the ENUF-DPD and the

Ewald summation methods give indistinguishable electrostatic energy and force at r ≥ 3.0Rc.

Therefore, the ENUF-DPD method can capture essential characteristics of electrostatic in-

teractions as the Ewald summation method does in DPD simulations in describing phase

behaviors of charged soft matter systems at extended spatiotemporal scales [69–75, 77–79].
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3. Determination of physical parameters for the ENUF-DPD method

The implementation of the ENUF-DPD method uses similar parameters as the ENUF

method does, and the correlations between these physical parameters are described by Eq. 31

and Eq. 32 with pre-determined oversampling factor σs and parameter m controlling the

number of terms in spatial domain approximation [21, 22, 24]. However, due to the fact that

nc should be an integer and rc, which is the short range cutoff for conservative interactions

between dissipative particles and is related to the volume of dissipative particles determined

from specific coarse-graining schemes, should be a suitable value for the link-cell list update

scheme in DPD simulations, we adopted another procedure to determine these parameters

for the ENUF-DPD method.

First, due to the soft repulsive feature of conservative force FC in the DPD method,

we adopted δ = 1.0 × 10−4 for the computational accuracy parameter, which is enough

to keep acceptable accuracy in describing electrostatic interactions between charge density

distributions in DPD simulations [21].

Second, we determined a suitable value for the short range cutoff rc. González-Melchor et

al. [70] adopted 1.08Rc and 3.0Rc, respectively, as electrostatic smearing radii and real space

cutoff for electrostatic interactions between Slater-type charge density distributions calcu-

lated using the Ewald summation method. In the ENUF-DPD method, as specified in Eq. 55

and Eq. 56, electrostatic energy UE,DPD
ij (r∗ij) and force FE,DPD

ij (r∗ij) are scaled with correc-

tion factors, BU and BF , respectively, both of which are r-dependent. This indicates that

reciprocal space summations of electrostatic energy UE,K,DPD
ij (r∗ij) and force FE,K,DPD

ij (r∗ij)

are also scaled with the corresponding correction factors. It is noteworthy that the elec-

trostatic energy and force we obtained from conjugated and transposed FFT algorithms

are the total influence of the other charged dissipative particles on particle i. It is difficult

to differentiate their individual contributions since the corresponding correction factors for

the other charged dissipative particles are related to their relative distance to particle i.

But if we choose suitable rc, beyond which two correction factors BU and BF approximate

to 1.0, the total reciprocal space summations of electrostatic energy BUU
E,K,DPD
ij (r∗ij) and

force BFF
E,K,DPD
ij (r∗ij) can be approximately expressed as UE,K,DPD

ij (r∗ij) and FE,K,DPD
ij (r∗ij),

respectively. Such an approximation enables us to directly use conjugated and transposed

FFT results as reciprocal space summations. It was found that both BU and BF converge
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to unity when r ≥ 3.0Rc, which is consistent with those for electrostatic energy and force

between Slater-type charge density distributions shown in Fig. 2. Therefore in the ENUF-

DPD scheme, rc = 3.0Rc is taken as the cutoff for real space summations of electrostatic

interactions. Such an adoption indicates that both BU and BF are only applied on real

space summations of electrostatic interactions within a cutoff of rc = 3.0Rc.

Since the Fourier-based Ewald summation methods utilize FFT to evaluate reciprocal

space summations, it is more appropriate to choose a suitable value for the Ewald con-

vergence parameter α, with which we can minimize the total computational time in the

calculation of electrostatic interactions from real and reciprocal space summations. The

choice of α is system-dependent and is related to trade-offs between accuracy and compu-

tational speed. Based on Eq. 31 and Eq. 32, as well as the determined rc = 3.0Rc, one can

deduce that α ≥ 0.12 Å
−1

. Although the electrostatic energy is invariant to α, the value of

α indeed affects the total time in calculating electrostatic interactions. In order to find a

suitable value for α, we carried out a set of trial simulations to evaluate the Madelung con-

stant of a face-centered cubic (FCC) crystal lattice consisting of 4000 charged particles, half

of which are positively charged with partial charge of +1.0 and the other half have negative

partial charge of −1.0, respectively. It was revealed that for a wide range of α values the

calculated Madelung values coincide with the theoretical value [80]. The lowest acceptable

value, α = 0.20 Å
−1

, is then adopted in the subsequent DPD simulations to minimize the

total computational effort.

In the last step, the parameter nc was determined together with additional two parameters

(σs and m) controlling approximation errors in NFFT. It has been shown in MD simulations

that σs = 2 is adequate to provide reliable computational accuracy in the calculation of

electrostatic interactions between charged particles [21]. Therefore, this value is used in DPD

simulations to keep a comparable accuracy in handling electrostatic interactions between

charge density distributions at mesoscopic level.

Additional trial simulations were performed on bulk electrolyte systems to determine

parameters nc and m. It is shown in Fig. 3A that the relative errors of electrostatic energies

and forces calculated from the ENUF-DPD and the Ewald summation methods with m = 2

and nc ≥ 7 fluctuate within pre-determined accuracy values, indicating that these two

methods behave in a same manner in describing electrostatic interactions between charge

density distributions with adopted physical parameters. With larger m and nc values, we
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FIG. 3. (A) The errors in electrostatic energy (∆U =
(UE−UEref )

UEref
) and force (∆F = F̄E−F̄E,ref

F̄E,ref
)

calculated using the ENUF-DPD and the Ewald summation methods with m = 2 and various nc

are compared with those calculated from the standard Ewald summation method with reference

parameters. UEref (F̄E,ref ) is the total (averaged) electrostatic energy (force) on charged dissipative

particles calculated from the Ewald summation method with reference parameters, and UE (F̄E)

is the total (averaged) electrostatic energy (force) on charged dissipative particles calculated via

either the ENUF-DPD or the Ewald summation methods with determined parameters. (B) The

pair correlation functions between different types of dissipative particles calculated from the ENUF-

DPD and the Ewald summation methods with determined parameters, as well as the standard

Ewald summation method with reference parameters. (C) The computational complexity of the

ENUF-DPD method with pre-determined physical parameters.

can further increase the accuracy of electrostatic interactions in DPD simulations, which,

however, leads to increased computational time in handling electrostatic interactions. By

compromising the accuracy and computational efficiency of the ENUF-DPD method, m = 2

and nc = 7 were used in following DPD simulations.

A third set of trial simulations were performed to study microstructural properties of

dilute aqueous electrolyte solution with a salt concentration of 0.6 mol using the standard

Ewald summation method with reference parameters, and the ENUF-DPD and the Ewald

summation methods with above determined parameters. It is shown in Fig. 3B that pair

correlation functions for the same pair particles calculated from three methods exhibit similar

tendencies. A peculiar feature is that there is no ion cluster formation at distance close to r =

0. In addition, pair correlation functions between Slater-type charge density distributions

satisfy g+−(r)g++/−−(r) = g2
00(r), where +, −, and 0 correspond to positive, negative,

and neutral dissipative particles in simulation systems, respectively. This indicates that

microstructures between charged particles are related to the effective electrostatic potentials
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between different particle pairs [69].

By a systemic variation of the number of charged dissipative particles in simulation sys-

tems, we estimated the scaling behavior of the ENUF-DPD method with pre-determined pa-

rameters. Fig. 3C presents the averaged time per 103 steps in DPD simulations as a function

of the number of charged dissipative particles. It is shown that the standard Ewald summa-

tion method with reference parameters scales as O(N2), and its computational complexity is

reduced to O(N3/2) with pre-determined optimal parameters, which is consistent with that

observed in previous studies [70, 71]. The ENUF-DPD method with the above determined

parameters exhibits an excellent computational efficiency in describing electrostatic interac-

tions between charge density distributions at extended spatiotemporal levels, and scales as

O(N logN), which is in line with the scaling behavior of FFT in treating electrostatic inter-

actions. Theoretically, the computational complexity of NFFT is O(MΠ logMΠ +log(N/δ)),

where MΠ is the total number of data-points in the index set, and δ is the desired computa-

tional accuracy and also a function of m for fixed over-sampling factor σs [22]. Combining

the definition of MΠ and the relationship in Eq. 31 and Eq. 32, we can get MΠ ∝ n3
c ∝ N .

Therefore the theoretical complexity of the ENUF-DPD method is O(N logN + log(N/δ)),

which is well reproduced from trial DPD simulations.
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III. PARALLELIZATION OF THE ENUF METHOD IN CPU AND GPU

FRAMEWORKS

A. Development of the CU-NFFT

It is shown in the previous section that the ENUF and the ENUF-DPD methods are

mainly responsible for the computation of reciprocal space summations of electrostatic en-

ergies and forces via conjugated and transposed NFFTs. More specifically, the estimation

of electrostatic energies in the ENUF and the ENUF-DPD methods needs a forward NFFT,

and the evaluation of electrostatic forces on charged particles or charge density distributions

needs three inverse NFFTs. These two processes overwhelmingly dominate the computa-

tional efficiency of NFFT. Therefore, the speedup of NFFT calculations is another procedure

to improve the efficiency of the ENUF and the ENUF-DPD methods in handling electrostatic

interactions at extended spatiotemporal scales.

Following the work of Greengard and Lee [81], we proposed a gridding algorithm to ac-

celerate NFFT [43]. The main idea of the gridding algorithm is to transform non-equispaced

data-points in 3D space into equivalent equispaced ones via an approximation scheme, and

thereafter to accelerate NFFT calculations using standard FFT algorithms [43]. The ap-

proximation scheme mapping data from non-equispaced to equispaced matrices is performed

on the basis of a window function φ that is well localized both in spatial and in frequency

domains, respectively. The forward NFFT for the estimation of electrostatic energies be-

tween charged particles or charge density distributions is decomposed into spreading, FFT,

and scaling steps (upper panel in Fig. 4), which first spreads the values of f(xi) from non-

equispaced data-points xi to equispaced and over-sampled cells using a periodic window

function φ, then performs forward NFFT on equispaced cells using standard FFT algo-

rithms, and finally scales the computational FFT results to obtain f̂(k) in a given frequency

domain.

Correspondingly, the inverse NFFT for the estimation of electrostatic forces on charged

particles or charge density distributions is divided into subdividing, inverse FFT, and in-

terpolating steps, respectively (lower panel in Fig. 4). In the inverse NFFT calculations,

the values of f̂(k) are first subdivided into ĝ(k) in an over-sampled cells, which are further

converted to gl in real space using an inverse FFT algorithm. Then a interpolation process is
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FIG. 4. The forward (upper panel) and inverse (lower panel) NFFTs are decomposed into spread-

ing, FFT, and scaling steps, and into subdividing, inverse FFT, and interpolating steps, respec-

tively, in the proposed gridding algorithm.

executed on the given data-points xi to obtain the values of f(xi) using the periodic window

function φ. In the implementations of spreading and interpolating steps, a Gaussian win-

dow function is adopted due to the fact that its periodic version has a uniformly convergent

Fourier series and is also well localized both in spatial and frequency domains [43].

The NFFT and the proposed gridding algorithm have been implemented and paralleled

using NVIDIA GPU via CUDA-C language and is named as CU-NFFT [43]. The parallel

codes of CUDA threads called kernels are designed for data-parallel processing to speed

up computations using GPU. As shown in a representative diagram in Fig. 5A, the kernels

map data elements to parallel processing threads, which are executed s times in parallel

using s CUDA threads with high arithmetic intensity. In CU-NFFT, all CUDA threads

are performed on physically separated devices (GPU) that operate as co-processors of the

host (CPU) to run CUDA-C program. The CU-NFFT algorithm is composed of three main

steps: allocating global memory in device (GPU) and loading data f(xi) from host (CPU)

to device (GPU), executing kernel functions using CU-FFT, and retrieving computational

results f̂k from device (GPU) to host (CPU) before releasing global memory. More specifi-

cally, the spreading kernels divide the task into n threads that are evenly partitioned into s

steaming multiprocessors (SMs) for concurrent computations (Fig. 5A). Once all SMs final-

ize their spreading processes, the forward CU-NFFT in CUDA library starts to conduct a
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FIG. 5. Schematic diagrams for (A) the forward CU-NFFT algorithm and (B) the hybrid parallel

scheme for the HP-ENUF method.

standard Fourier transformation. Subsequently, all scaling kernels execute their tasks with

m threads in a similar manner. Correspondingly, the inverse CU-NFFT is performed in a

similar manner for subdividing, inverse CU-FFT, and interpolating kernels. It is noteworthy

that an advantage of the proposed CU-NFFT algorithm is that both the forward and the

inverse procedures are executed concurrently in GPU without interruption of transferring

data between CPU and GPU so as to improve the computational efficiency of CU-NFFT.

B. Implementation of the CU-ENUF method

Based on CU-NFFT algorithm, we have implemented the ENUF method in GPU, which

is termed as CU-ENUF because in this method both real and reciprocal space summations

are handled using GPU and CUDA technology [44]. In another word, the CU-ENUF method

is an essential ENUF method paralleled with GPU and CUDA threads. In real space sum-

mations, a NearDistance algorithm was developed to effectively reduce neighbor list size so

as minimize computational time in searching interacting particle pairs within a desired cutoff

distance, whereas in reciprocal space calculations, the CU-NFFT replaces traditional NFFT

for an efficient evaluation of electrostatic energies and forces among charged particles. Both

real and reciprocal space summations are accelerated by using GPU and CUDA technology.

An additional procedure was proposed to determine optimal simulation parameters so that
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the CU-ENUF method can achieve a good efficiency in handling long range electrostatic

interactions among charged particles at extended spatiotemporal scales.

In real space summations of electrostatic energies and forces among charged particles

(Eq. 17 and Eq. 29), we need to sum up all contributions of interacting particles within a

cutoff sphere with a radius of rc. In the linked-cell list scheme [10, 11], the cubic simulation

box is decomposed into a regular lattice of small cells, and the side length of these cells is

slightly larger than the cutoff rc. Herein, we adopted a simple neighbor-list scheme to further

refine the size of these cells, with which one can further decrease the computational time in

searching interacting particles nearby. A set of trial MD and DPD simulations indicated that

in dense granular systems the adoption of an average distance between interacting particles

as the side length of the decomposed cells will be a optimal balance of cell partitioning

and particle counting [44]. The proposed neighbor-list scheme embedded in linked-cell list

scheme was implemented in real space summations of electrostatic interactions using the

CU-ENUF method.

For the calculations of reciprocal space summations of electrostatic energies and forces

between charged particles using the CU-ENUF method, the computations of structure factor

S(n) and FE,K , corresponding to a forward FFT and three inverse FFTs, are calculated using

NFFT (for CPU) and accelerated using CU-NFFT (for GPU), respectively. In the CU-

ENUF method, reciprocal space summations of electrostatic interactions are transformed

into parallel structure capable of running GPU acceleration based on CUDA technology. The

parallel structure accepts particle charges and positions as input from CPU, and produces

total electrostatic energies and forces on charged particles, the latter of which are thereafter

combined with those determined from real space summations as output to CPU.

Additional art of programming were included in the CU-ENUF method to further opti-

mize its efficiency in handling electrostatic interactions. For examples, some shared data,

i.e., mainly the values of window functions in CU-NFFT, are computed in local memory

instead of being calculated and stored in global memory so as to avoid scarifying efficiency

when accessing to global memory of GPU. Many pre-processing and post-processing compu-

tations in CPU are computed using GPU. In addition, the calculations of electrostatic forces

in 3D space are packed into a single calculation entity in the inverse CU-NFFT procedure,

which can reduce a large amount of execution time for initialization and redundant loops for

three independent inverse NFFT calls in the ENUF method. These improvements, together
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with pre-determined optimal simulation parameters, render the CU-ENUF method a pure

CUDA-based program and have a comparable or a better performance than the particle-

mesh Ewald summation method and the ENUF method using CPU for computations.

The CU-ENUF method has been implemented as a computational module in the

GALAMOST package for the computation of electrostatic interactions among charged

particles in model simulation systems [8, 41, 42]. Both real and reciprocal space sum-

mations are accelerated using one GPU card without any participation of CPUs. With

the GALAMOST package, the CU-ENUF method can be adopted to perform CG MD

and DPD simulations of charged soft matter systems at microcanonical, canonical, and

isothermal-isobaric ensembles under periodic boundary conditions. In each step calculation,

the GALAMOST package maximizes the amount of computations using GPU card and

minimizes communications between GPU and CPUs, except compulsory I/O performance.

Benchmarks on representative IL systems demonstrated that the performance of the PPPM

Ewald summation method appears better than the CU-ENUF method by roughly 50% for

small and intermediate simulation systems with the number of ion pairs less than 0.2 mil-

lion, whereas these two methods exhibit comparable computational efficiencies in handling

electrostatic interactions in large simulation systems with number of ion pairs exceeding 0.5

million [8]. In addition, the performance of the ENUF method in the GALAMOST pack-

age is better than the PME method in the GROMACS package using one GPU and upto

28 CPU processors for the computations of electrostatic interactions in small simulation

systems. However, at current stage, it is difficult to accurately quantify the computational

performances of the GALAMOST and GROMACS packages for charged soft matter systems

since these two packages support different features with different computational demands.

Additional parallelization strategy will be explored to further improve the computational

efficiency of the ENUF related methods, and the compatibility of the GALAMOST and the

GROMACS packages such that we can perform consistent multiscale modelling of charged

soft matter systems at micro- and mesoscopic levels to explore their striking phase behaviors

at extended spatiotemporal scales using GPU and CUDA technology
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C. Architecture of the HP-ENUF method

Although the CU-ENUF method achieves a qualitative leap compared with other particle-

mesh based methods in handling electrostatic interactions between charged particles, its

computational efficiency is limited to the throughput capacity of GPU for simulation sys-

tems at extreme spatiotemporal scales. Therefore, we proposed a hybrid parallel scheme

combining multiple CPU and GPU devices to upgrade the CU-ENUF method, which is

described as HP-ENUF method [45, 46]. Similarly to the CU-ENUF method [44], a GPU-

optimized particle-data structure is employed in the HP-ENUF method so that all compu-

tations are mainly performed using multiple GPU devices. The HP-ENUF method enables

direct communications between GPU devices within different computer nodes via NVIDIA

GPUDirect technology supported by CUDA-aware MPI (Message Passing Interface) library,

which eliminates unnecessary data transfer between CPU and GPU devices.

The hybrid parallel scheme in the HP-ENUF method consists of multiple MPI ranks, each

of which includes a CPU node and a GPU node responsible for calculations of electrostatic

energies and forces between charged particles in specific domains (subcells) in simulation

systems. A schematic diagram of the hybrid parallel scheme for the HP-ENUF method is

illustrated in Fig. 5B. Both real and reciprocal space summations of electrostatic interac-

tions are first paralleled via a domain decomposition scheme, which is implemented using

MPI libraries on multiple CPU nodes, and thereafter paralleled via GPU threads in each

CPU node. Using the domain decomposition scheme, each simulation task (large simula-

tion system) is uniformly decomposed into several subtasks (small simulation subcells) that

are partitioned to different CPU nodes for CPU-parallel computation. Each CPU node is

responsible for calculations of electrostatic interactions between charged particles in its own

subcell and its communication with other CPU nodes is relatively low. The MPI library is

used to implement CPU parallel strategy (process level), and each MPI rank delivers subtask

(the data of its own subcell) to the corresponding GPU card, and this subtask is executed

in GPU-parallel computation (thread level) using CUDA technology.

For each subcell, the real space summations of electrostatic interactions between charged

particles in the HP-ENUF method is the same as that we used in the CU-ENUF method.

However, unlike independent calculations of real space summations, the computations of

reciprocal space summations of electrostatic interactions in each subcell depend on interac-
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tions of charged particles with those in the other subcells, indicating that CU-NFFT must

be performed for charged particles in all subcells of the simulation system. It should be

mentioned that an additive property of NFFT for the calculation of structure factor S(n)

is that it can be decomposed into several sub-NFFTs with arbitrary particle distributions,

which makes the parallel computation of CU-NFFT feasible in the HP-ENUF method. As-

suming that N charged particles are uniformly distributed in n subcells, there are C = N/n

charged particles in each subcell. The total structural factor for the whole simulation system

is mathematically composed of n partial structural factors determined from n subcells as

S(n) =
N∑
i=1

qie
− 2πı

L
n·ri

=
C∑
i=1

qie
− 2πı

L
n·ri +

2C∑
i=C+1

qie
− 2πı

L
n·ri + · · ·+

nC∑
(n−1)C+1

qie
− 2πı

L
n·ri (61)

= S1(n) + S2(n) + · · ·+ Sn(n) . (62)

Once Si(n) is calculated from node i, all partial structural factors will be collected and

summarized in a specific computer node, and thereafter the total S(n) will be broadcasted

to all computer nodes to calculate electrostatic interactions between charged particles in

each subcell.

All in all, as a significant extension of the CU-ENUF method, the HP-ENUF scheme

successfully removes the throughput capacity of a single GPU, and is capable of conducting

efficient simulations of charged soft matter systems at extended spatiotemporal scales. In

addition, the HP-ENUF method is constructed with concise software architectures using

C and CUDA C language, which makes it pretty transferable to other popular CUDA-

accelerated packages, such as HOOMD and LAMMPS.
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IV. APPLICATIONS OF THE ENUF RELATED METHODS IN MODELLING

CHARGED SOFT MATTER SYSTEMS

The ENUF method and its derivatives can capture essential characteristics of electro-

static interactions between charged particles and charge density distributions at extended

spatiotemporal scales, and have been adopted to explore representative properties of charged

soft matter systems, such as the effect of charge fractions of polyelectrolytes, ion concen-

tration and counterion valency of added salts on conformational properties of polyelec-

trolytes [27], the binding structures of dendrimers on bilayer membranes and the corre-

sponding permeation mechanisms [28], and the heterogeneous structures and dynamics in

ILs matrices and how electrostatic interactions between charged particles affect these prop-

erties at extended spatiotemporal scales [8].

A. Polyelectrolyte conformational properties

Electrostatic interactions between charged particles on polyelectrolytes lead to rich con-

formational properties of polyelectrolytes [27], which are qualitatively different from those of

neutral polymers [82, 83]. CG MD simulations demonstrated that the size of polyelectrolyte

increases with increasing the degree of ionization of polyelectrolyte, exhibiting a structural

transition of polyelectrolyte from collapse (Fig. 6A) to fully extended conformation (Fig. 6C).

These computational results are qualitatively consistent with experimental observations [84]

and theoretical predictions [85] for weakly charged polyelectrolytes.

The intramolecular pair correlation functions between charged particles on polyelec-

trolytes reveal distinct tendencies with an increase of charge fraction of polyelectrolytes.

The intramolecular correlations in initial zone (r < 1) are dominated by soft conservative

repulsions. In the regime of r > 1, two striking tendencies are observed in simulations

and shown in Fig. 6G. For polyelectrolytes with a small charge fraction, a small scaling-like

domain is observed and then followed by a terminal correlation range. In contrast, poly-

electrolytes with a large charge fraction exhibit a scaling behavior over the entire range.

These simulation results are consistent with the theoretical description of weakly charged

polyelectrolytes deduced from scaling theory [86].

In the absence of inorganic salts, polyelectrolytes adopt extended conformations, owing
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FIG. 6. Typical conformations of polyelectrolytes with different charge fraction f (upper panels),

and with varied charge valency of added salts (lower panels) at a condition where the total charge of

salt counterions is equal to that of polyelectrolyte. (A) f = 0.0, (B) f = 0.5, and (C) f = 1.0. The

red and cyan spheres indicate charged and neutral particles on polyelectrolytes, respectively. The

counterions of polyelectrolytes are represented by yellow spheres. (D) (1:1) salt, (E) (2:1) salt, and

(F) (3:1) salt. Monovalent, divalent and trivalent ions of added salts are represented by purple,

green and blue spheres, respectively. All counterions of added salts are presented by magenta

spheres. (G) Intramolecular pair correlation functions between charge particles on polyelectrolytes

with varied charge fraction f .

to strong electrostatic repulsions between charged particles on polyelectrolytes. However,

these electrostatic interactions are partially screened upon addition of salts into solution [87].

Both ion concentration and valency of salt ions can significantly affect conformational prop-

erties of polyelectrolytes due to strong electrostatic correlations between multivalent ions

and charged particles on polyelectrolytes. The condensation ability of trivalent ions on

polyelectrolytes (Fig. 6F) is much stronger than that of monovalent ions (Fig. 6D), leading

to a decrease of osmotic pressure and a conformational collapse of polyelectrolytes in so-

lution [88, 89]. It is noted that a gradual increase in multivalent counterion concentration

after a threshold leads to a structural transition of polyelectrolytes from fully collapsed to

semi-swelled conformations, which is akin to the redissolution behavior of multichain aggre-

gates and is attributed to a competitive feature of counterions with varied charge valencies

in condensating polyelectrolytes [87–89].

The effect of ion concentration and charge valency of counterions on polyelectrolyte con-
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formations can be specified by the Debye screening length in polyelectrolyte solution. The

addition of inorganic salts with multivalent counterions leads to a short Debye screening

length [77], demonstrating that electrostatic interactions between charge particles beyond

a certain distance separated are screened and hence are no longer long-ranged interactions.

Therefore, it is very likely that a finite cutoff for electrostatic interactions, or a screened

interaction potential (like the Yukawa potential) between charge particles, can be used in

describing electrostatic interactions in ion-concentrated simulation systems.

B. Dendrimer-lipid membrane complexes

The ENUF-DPD method were adopted to investigate specific binding structures of den-

drimers on amphiphilic bilayer membranes [28]. Polyamidoamine (PAMAM) dendrimers

have hollow core and dense shell structures, and are promising nano-vehicles to protect small

drug molecules during delivery process [90, 91]. Moreover, PAMAM dendrimers undergo

conformational transitions from dense shell to dense core under external stimuli, facilitating

the release of drug molecules to specific targets [92]. When PAMAM dendrimers are used as

nano-devices for nonviral gene delivery and antitumor therapeutics, the central issue is how

they interact with cell membranes and how to control structures of dendrimer-membrane

complexes during drug delivery [91].

Mutually consistent CG models of PAMAM dendrimers and dimyristoylphosphatidyl-

choline (DMPC) lipid molecules were constructed based on volume criteria and chemi-

cal identities. These CG models could qualitatively describe conformational properties

of charged dendrimers and surface tension of atomistic DMPC lipid membranes, respec-

tively [93, 94]. DPD simulation results revealed that the permeability of dendrimers across

tensionless DMPC bilayer membranes is enhanced upon increasing dendrimer size. The 3rd

generation (G3) PAMAM dendrimer rests on DMPC bilayer membranes without any impact

on membranes, whereas G5 dendrimer spreads on bilayer membranes and attracts some lipid

head groups into the vicinity of dendrimer cations. For larger generation dendrimers, signif-

icant bending of bilayer membranes is observed due to a strong coordination of dendrimers

with membranes (Fig. 7B). The dendrimer-membrane contact region is characterized with

high surface tension, facilitating the permeation of dendrimers across membranes.

In addition, the conformational properties of dendrimers and binding structures of den-
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FIG. 7. Phase diagram of binding structures of charged dendrimers on bilayer membranes. In CG

lipid model, H represents charged head group particles and T represents neutral tail group particles,

respectively. The H3(T4)2 amphiphile corresponds to the lipid molecule consisting of one charged

head with three beads and two neutral tails, each of which consists of four beads. Snapshots (left

images for top view and right images for cross-sectional view) of representative conformations of

dendrimers on membranes. (A) G5 on H3(T6)2, (B) G7 on H3(T4)2, and (C) G9 on H3(T2)2.

drimers on membranes are influenced by the length of hydrophobic moieties of lipid am-

phiphiles. For dendrimers on membranes consisting of amphiphiles with shorter hydrophobic

tails than DMPC molecule, G3 dendrimer can easily penetrate into membranes due to a small

energy barrier formed by the corresponding amphiphiles. Significant binding structures of

G5 dendrimer onto membranes are observed, which destroys the integrity of membranes and

induce a big hole on membranes. By increasing dendrimer sizes, the dendrimer-filled vesi-

cles (Fig. 7C) are formed, which are suggested to be a possible mechanism for charged den-

drimers removing amphiphiles from membranes in atomic force microscope experiments [95].

While for dendrimers on membranes consisting of amphiphiles with longer hydrophobic moi-

eties than DMPC molecule, small dendrimers exhibit planar conformations on membranes

(Fig. 7A), and large dendrimers induce small cavities on membranes but can neither rupture

membranes nor initiate isolated pores on membranes due to a large energy barrier formed

by hydrophobic moieties of corresponding amphiphiles. An illustrative phase diagram and
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representative binding structures of charged dendrimers on bilayer membranes are shown in

Fig. 7.

C. Heterogeneous structures and dynamics in ionic liquids

Additional CG MD simulations were performed using the CU-ENUF method to address

heterogeneous structures and dynamics in ILs, and how electrostatic interactions among

charged particles affect these properties in IL matrices [8]. Room temperature ILs are fas-

cinating molten salts solely composed of ion species with distinct molecular symmetry and

charge delocalization, having their melting points below 100◦C [96–98]. Recent years have

seen a great enthusiasm for ILs regarding their utilities as facilitating functional materials in

diverse applications including material synthesis and catalysis, micro-lubrication and nan-

otribology, gas adsorption and separation, and electrochemical devices for energy storage

and harvesting [96, 97, 99]. Compared with traditional molten salts, like sodium chloride,

one fascinating feature of ILs is that they exhibit distinct heterogeneous microstructures and

dynamics spanning multiple length and time scales in bulk region and in confined environ-

ments [96, 98–103]. Both experimental and computational characterizations revealed that

mesoscopic liquid organization of ILs is characterized by either sponge-like interpenetrat-

ing polar and apolar networks or segregated polar (apolar) domains within apolar (polar)

framework depending on the relative ratios of polar groups over apolar moieties in ion

species [98, 101, 102, 104–108]. Recent atomistic simulations of ILs demonstrated that both

simulation size and simulation time do matter to get reliable collective structural and dy-

namical quantities of IL ions in IL matrices [109].

As simulations of ILs should be performed over long time scales due to sluggish dy-

namics of ion species in heterogeneous IL matrices, it imposes severe fundamental chal-

lenges for atomistic simulations to accurately predict dynamics and transport properties of

ILs [103, 105, 106, 109]. In this regard, we preformed extensive CG MD simulations with a

modest computational cost to explore the effects of neutral chain length in cations, molec-

ular sizes of anions, and temperatures on microstructural and dynamical quantities of ion

groups in 1-alkyl-3-methylimidazolium tetrafluoroborate ([CnMIM][BF4]) ILs at extended

spatiotemporal scales [8, 110]. It was found that lengthening cation alkyl chains leads to

an aggregation of neutral beads, promotes the formation of spatially heterogeneous apolar
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domains dispersed in ionic channels, and thereafter results in a remarkable transition of

mesoscopic liquid morphologies in model IL systems from dispersed neutral (apolar) beads

in a 3D framework of ion channels to that characterized by bi-continuous interpenetrating

polar and apolar networks in liquid matrices. Such a microstructural evolution in model IL

matrices can be rationalized by a competition of short-range collective interactions between

neutral beads and long-range Coulombic interactions among charged particles in constituent

ions.

For dynamical quantities, translational diffusion of ion groups presents a gradual de-

crease upon lengthening cation alkyl chains and enlarging molecular sizes of anions. The

temperature dependence of diffusion coefficients of all representative groups in ion models is

described by a classical Arrhenius feature. The rotational dynamics of cations in varied IL

matrices are characterized by a bi-exponential structural relaxation behavior. The correla-

tion times for these two rotational modes are significantly temperature dependent, and are

strongly related to cation structures, indicating a rotational heterogeneity of charged and

neutral moieties of cations in heterogeneous ionic environments.

Additional CG MD simulations were carried out on neutral analogues of model [C10MIM][BF4]

IL (Fig. 8A) in which all electrostatic interactions between charged particles were switched

off. The removal of electrostatic interactions between ion models tends to loosen liquid struc-

tures leading to an almost homogeneous and interleaved distribution of neutral “ion” models

resembling a distorted ion lattice in simulation systems [8, 108, 111]. This visual microstruc-

tural change is manifested in detailed characterizations, such as liquid densities, radial dis-

tribution functions, and translational dynamics of representative beads in neutral and ion

models, as clearly shown in Fig. 8. These observations highlight a critical role of electro-

static interactions in describing collective structural and dynamical quantities of model IL

systems.
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FIG. 8. (A) A schematic representation of CG model for [C10MIM][BF4] IL. The blue and cyan

beads are labelled as ring and alkane, respectively, representing charged (imidazolium ring and

two closest methyl groups) and neutral (alkyl units) moieties in cations. Comparison of (B, E)

radial distribution functions and (C, F) mean square displacements of representative groups in

[C10MIM][BF4] IL (upper panels) and its neutral counterpart (lower panels) at 400 K, and (D, G)

representative snapshots of these two model systems.
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V. CONCLUDING REMARKS AND OUTLOOK

Computer simulations provide a unique insight into molecular interactions and struc-

tural and dynamical quantities responsible for many peculiar properties of materials and

biological systems at multiple spatiotemporal scales. The quality of computer simulations is

essentially determined by an accurate description of intra- and intermolecular interactions

in these molecular systems, among which the electrostatic interactions between charged par-

ticles deserve special attention because of these long-ranged interactions play a prominent

role in determining structures and states of simulation systems. The efficient calculations

of electrostatic interactions in model systems subjected to partial or full periodic boundary

conditions have been a daunting task. A wide variety of theoretical approaches, ranging

from quantum mechanical ab initio methods, classic Maxwell theory of electromagnetism,

generalized Born algorithms, to phenomenological modifications of Coulombs law, and com-

putational methods, including particle-mesh based methods, have been developed for elec-

trostatic analysis at different resolution levels [1, 2].

The standard Ewald summation method does a remarkable job in splitting the very

slowly converged Coulomb potential into two parts converging fast exponentially, which

make the calculations of electrostatic interactions in computer simulations feasible, and

therefore this method has been widely used to handle long range electrostatic interactions

in modelling charged simulation systems. However, the standard Ewald summation method

suffers from its computational demanding feature due to the long range nature of electrostatic

interactions. Although plenty of methods have been proposed with different computational

schemes to tackle long range interactions in simulation systems with partial or full periodic

boundary conditions, only a certain subset of them has entered into widely used molecular

dynamics codes for scientific computing with varied computational efficiencies. This fact is

related to the long standing and continuously improved implementations of selected methods

and also the large effort needed to propose and implement new approaches.

As an attractive alternative approach to particle-mesh based schemes which show a linear

scaling feature, we sketched an ENUF method, which has been implemented in particle-

based simulation packages to speedup calculations of electrostatic energies and forces be-

tween charged particles at micro- and mesoscopic levels without resorting to a nonphysical

truncation of the Coulomb potential. The ENUF method and its derivatives conserve both
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energy and momentum to floating point accuracy, capture essential characteristics of elec-

trostatic interactions between charged particles, and exhibit an outstanding computational

complexity of O(N logN) with optimal physical parameters. The ENUF method are further

adopted to investigate the dependence of conformational properties of polyelectrolytes on

charge fraction of polyelectrolyte and counterion valency and concentration of added salts,

and the effect of dendrimer sizes and variation of hydrophobic tails of lipid molecules on the

specific binding structures of dendrimers on amphiphilic membranes.

Taking advantages of GPU and CUDA technology, we have upgraded the GPU version of

NFFT and the ENUF method, which are termed as CU-NFFT and CU-ENUF, respectively,

and are specialized to improve computational efficiencies in computations of electrostatic

energies and forces among charged particles using the GALAMOST package. In addition,

several (hybrid) parallelization strategies based on gridding and NearDistance algorithms

were developed to effectively partition hardware memories and balance computational loads

between CPU and (multi) GPU nodes. In addition, the CU-ENUF and HP-ENUF methods

are developed using C and CUDA C language and are constructed with concise software

architecture, which render them having significant transferabilities to other popular CUDA-

enabled packages, such as GROMACS, LAMMPS, and HOOMD. It is expected that the

ENUF related methods will be used in varied computational communities and updated by

researchers to expand their visibilities and applications in handling electrostatic interactions

between charged particles at extended spatiotemporal scales.
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[93] P. K. Maiti, T. Çaın, G. Wang, and W. A. Goddard, Macromolecules 37, 6236 (2004).

[94] H. Lee and R. G. Larson, Macromolecules 44, 2291 (2011).

[95] A. Mecke, I. Majoros, A. Patri, J. Baker Jr, M. Holl, and B. Orr, Langmuir 21, 10348 (2005).

[96] M. Armand, F. Endres, D. MacFarlane, H. Ohno, and B. Scrosati, Nat. Mater. 8, 621 (2009).

[97] E. W. Castner Jr, C. J. Margulis, M. Maroncelli, and J. F. Wishart, Annu. Rev. Phys. Chem.

62, 85 (2011).

[98] Y.-L. Wang, B. Li, S. Sarman, F. Mocci, Z.-Y. Lu, J. Yuan, A. Laaksonen, and M. D. Fayer,

Chem. Rev. 120 (2020).

[99] R. Hayes, G. G. Warr, and R. Atkin, Chem. Rev. 115, 6357 (2015).

[100] Y.-L. Wang, Z.-Y. Lu, and A. Laaksonen, Phys. Chem. Chem. Phys. 16, 20731 (2014).

[101] Y.-L. Wang, M. Golets, B. Li, S. Sarman, and A. Laaksonen, ACS Appl. Mater. Interfaces

9, 4976 (2017).

[102] Y.-L. Wang, J. Phys. Chem. B 122, 6570 (2018).

[103] Y.-L. Wang, S. Sarman, M. Golets, F. Mocci, Z.-Y. Lu, and A. Laaksonen, Ionic Liquids:

Synthesis, Properties, Technologies and Applications p. 55 (2019).

[104] Y. Wang and G. A. Voth, J. Am. Chem. Soc. 127, 12192 (2005).

[105] Z. Hu and C. J. Margulis, Proc. Natl. Acad. Sci. U. S. A. 103, 831 (2006).

[106] H. Jin, X. Li, and M. Maroncelli, J. Phys. Chem. B 114, 11370 (2010).

[107] Y. Ji, R. Shi, Y. Wang, and G. Saielli, J. Phys. Chem. B 117, 1104 (2013).

[108] S. Kim, S.-W. Park, and Y. Jung, Phys. Chem. Chem. Phys. 18, 6486 (2016).
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