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ABSTRACT

Efficient design and screening of the novel molecules is a major challenge in drug and material
design. This report focuses on a multi-stage pipeline in which several deep neural network (DNN)
models are combined to map discrete molecular representations into continuous vector space to
later generate from it new molecular structures with desired properties. Here the Attention-based
Sequence-to-Sequence model is added to “spellcheck” and correct generated structures while
the oversampling in the continuous space allows generating candidate structures with desired
distribution for properties and molecular descriptors even for small reference datasets. We further
use computer simulation to validate the desired properties in the numerical experiment. With the
focus on the drug design, such pipeline allows generating novel structures with control of SAS
(Synthetic Accessibility Score) and a series of ADME metrics that assess the drug-likeliness.
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1 INTRODUCTION

Designing new materials is often a challenging, resourceful, and time-consuming endeavor (1} 2} 3). In
particular, drug development is a stepwise, iterative process involving certain necessary stages: discovery
and research, development, regulatory approval, only then followed by production and marketing. Typically,
it takes about 10 to 15 years from initial idea to a final approval and commercial distribution (4;15). Such
a timeline is mostly defined by difficulties with finding and evaluating appropriate drug candidates that
will successfully pass clinical studies. The material science discovered just a tiny piece of an exponential
set of potential compounds: it is estimated that only about 10% of small drug-like molecules (€) have
been synthesized so far out of more than 100 possible ones (7). Today synthesis of new candidates
requires increased investments in R&D studies (8) mainly due to increased complexity of the search in this
exponential space.

Lately, we witnessed the number of successful applications of machine learning (ML) in many domains (9).
While most of the interest comes from advances in Deep Neural Networks (DNNs) for speech recognition
and computer vision, the universality of these methods in learning the representations of data allows
sufficiently widen the areas of potential impact, including applications to scientific problems (105 [11).
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In this respect, chemical and pharmaceutical industries reveal a substantial interest in machine learning
approaches aiding on the increase in efficiency of novel materials design (12;13;114). As a new milestone
reached, it is worth mentioning a very recent study by Zhavoronkov et al. (15) reporting an Al-driven
development of inhibitor candidates in just 21 days, which unprecedentedly shortens the pre-clinical phase.

1.1 Machine Learning for material design

The material science operates on different levels of abstraction, from the atomic scale to more coarse-
grained ones such as classical molecular or thermodynamic scales (16). This implies a different set of
computational and theoretical tools being used at each of them (17)). Here, recent advances in ML allow
to efficiently tackle multiple problems from the approximation of complex functions or quantum wave-
functions to the prediction of properties, phase transitions and temporal dynamics (185 19; 20; 215 225 23
24; 25)).

At atomic level DNNs are used to approximate quantum mechanical computations such as
atomic/molecular parameters in all-particle microscopic simulations (18; 26), decomposing cluster
energies or predict next simulation step instead of CPU-costly traditional routines, hence, speeding
up the sampling (27; 285 29;130; 31} 32). Recently, a few simulation packages already incorporated these
approaches into their computational tools (33; 1345 135; 1365 137; 138).

On a physical chemistry level DNNs help to deal with the generalization of more coarse-grained
features (10). Quantitative Structure-Activity/Property Relationship (QSAR) models relate structure
descriptors of compounds with their physical/chemical properties, like solubility in water or organic
solvents, melting point, solvation energies, etc. (39;40; 41)). The latter ability to use machine learning to
link structure to a property is interesting from biophysics and physiology perspectives to address drug-
likeliness of a particular structure. In this case the focus is on a set of ADME (Absorption, Distribution,
Metabolism, Excretion) or ADMET (if Toxicity is also considered) properties, predicting binding affinity,
inhibition activity, biodegradability, and toxicity of compounds (42; 43} 44} 45; 1465 47} 48 1495 1505 51).
A kind of “golden standard” in ADME screening is a so-called the rule of five, suggested by a study of
Lipinski et al. (52), or its close variations (33; 154 555 56), allowing pharma-industry considerably shrink
the screening pool of drug-candidates at the pre-clinical stage.

In ML methods dealing with molecular structures, the crucial step is the efficient representation of the
structural data. The above approaches use different variations of input data: graphs, fingerprints, descriptors,
mixed fingerprint-descriptor models (see, for example, Ref. (46)), one-line notations (like SMILES —
Simplified Molecular Input Line Entry Specification). Treating the latter string representations of molecules
as a stand-alone language can unlock a substantial number of possible applications of NLP methods
to chemistry-related problems, including the generation of new compounds (57; 58). In Refs. (59; 160)
SMILES strings are converted into 2D images and then fed into DNNs. A similar approach to use molecular
2D images as inputs is also exploited in Ref. (61)).

Methods based on graph neural networks (see, for example, recent reviews (62;63) and the references
therein) can directly exploit the graph representation of molecules. Such representation is a natural choice
for studies of molecular structures, interactions, and synthesis (64). In particular, graph convolution
networks are under consideration in Refs. (64;165), where authors use molecular graphs to predict solubility,
toxicity and other properties of compounds. Ref. (66) unites graph representations with adversarial training
and reinforcement learning to guide the process of molecular design towards the outputs with desired
properties. In Ref. (67)) authors utilize graph neural networks for protein interface predictions, the Ref. (68)
suggests a combined approach of graph and relation networks for breast cancer classification problem.
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The study by Zitnik et al. (69) engages graph convolutional networks to model polypharmacy side effects
by examining multirelational drug-drug links. A generative network MolGAN for molecular graphs is
suggested in Ref. (70).

Recent advances of Deep Learning to large extent concern various applications of Generative Adversarial
Networks (GANSs) and other examples of deep generative models able to generate or reconstruct data
from a given distribution (715 [72). In the context of molecular data, this opens a route for the synthesis of
novel structures with given properties (see, for example, a review by Jgrgensen et al (73)). In (61;[74) the
Autoencoder (AE) or Variational Autoencoder (VAE) architectures are used to map discrete SMILES strings
into a continuous space. A scan in such space allows generating unseen structures that can be decoded
back to SMILES strings. In recent studies, a number of other deep generative models were explored in
order to improve the quality of continuous representations, reduce reconstruction errors and assess the
performance of different models (73} [75} [76). A study introducing generative adversarial autoencoder
is reported in Ref. (77) — the authors tested different architectures for structure generation and inverse
QSAR mapping (sampling new structures with applied activity constraints). The detailed discussion on
the problem of “chemical space” and reconstruction from embeddings is presented in a recent study of
Bjerrum and Sattarov (78). A GAN-based model by Guimaraes et al. (79) adversarially learns to output
SMILES strings optimizing them towards chemical metrics.

Note, that despite the continuous nature of the autoencoder latent space and infinite possibilities of
choosing arbitrary latent vectors, not all the vectors correspond to proper SMILES strings. Some of
these vectors might decode to chemically incorrect SMILES strings, while others (even “grammatically”
correct) may correspond to unstable compounds. Hence, an additional post-processing and analysis over
the decoded strings are needed (74).

1.2 Focus of this study.

In the above subsection, we reviewed a current state of ML-assisted approaches in cheminformatics,
making an accent on the importance of latent space representation, the issues with incorrect structures and
property control of synthesized compounds, which are decoded from the points in the latent space. These
issues may become particularly crucial when the reference datasets are small and end-to-end learning of
the full pipeline is not possible.

This paper presents a practical multi-stage pipeline in which several models are trained on specific tasks
and large open datasets. We introduce a number of pre- and postprocessing steps to enhance the quality and
success rate of generated molecules. Importantly, for the generation task, this pipeline allows working with
comparably smaller reference datasets. To this end, such pipeline covers substantial stages of early stage
drug discovery. From proposing new structure to ADMET filtering and confirming properties in numerical
simulation (See Fig.[I)).

First, we use a common Autoencoder architecture allowing to map discrete SMILES strings into
continuous latent space (80; 81). We show that the size of the dataset plays a crucial role in achieving
higher generalization and reconstruction quality. Since datasets with the labeled properties may often be of
limited size, instead of end-to-end learning we train separate models on a number of tasks: reconstruction
of structures, error correction, and prediction of properties.

To increase the number of valid generated structures we introduce an oversampling step allowing to
generate new points in the latent space based on the limited number of the reference ones. An additional
step includes Attention-based Sequence-to-Sequence model to correct errors in generated notations.
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Figure 1. The proposed system covers multiple steps of early-stage drug discovery. Datapoints are
generated directly in continuous space with regards to the reference dataset with immediate assessment of
properties. Once the SMILE is decoded and corrected it passes ADMET filter and finally basis property is
confirmed in molecular dynamics simulation.
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Figure 2. The system architecture consists of the generative part (encoder and decoder), error correction
model (Seqg-to-Seq), set of predictors or properties and the sampler of new datapoints in the embedding
space.

Sampling New
Embeddings

To assess the quality of resulting structures we introduce post-processing step allowing to compute
properties of the generated molecules directly from the structure. These extra steps provide a comparative
analysis over scaffolds, fingerprints, descriptors, and functional groups to assess the quality of the generated
molecules. We confirm that generated unique SMILES have a similar distribution of structural features and
molecular descriptors.

We also went further with such assessment by performing a computer simulation on all-atom level.
This simulation modelled a set of aqueous solutions of one of newly generated compound at different
concentrations. This part of the study is intended to be a computer experiment instead of the real one and
serves as a sanity check of the solubility prediction. The general pipeline is shown in Fig.|l} Below we will
discuss the pipeline in more detail.

1.3 Plan of the report

The remaining part of the report is organized as follows: in Section [2| we discuss the model architecture,
datasets used, and the operating pipeline. Section [2.5] presents the techniques engaged for the error-
correction in decoded structures. Then, in Section [3] we gathered the main results of the study. Finally, the
remarks and discussion conclude the report in Section 4]

2 MATERIALS AND METHODS

In the core of our architecture is the idea of having a continuous space to represent small organic molecules.
In order to create such mapping we use the Autoencoder (AE) network, consisting of two subnets —
Encoder and Decoder, as shown in Fig. 2l The mapped embedding space allows one to continuously change
representation vector in order to sample new candidate molecular structures.

The predictors models take embedding vector as input to predict a set of metrics (further we discuss a
prediction of aqueous solubility). Finally we add an Attention-based Sequence-to-Sequence model with
Long Short-Term Memory cells to “spell-check” possible errors in the generated notations.
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Figure 3. Ascorbic acid as molecular formula, SMILES string, one-hot matrix, and a spatial structure of
a molecule represented by sticks. Carbons in the 3D representation are shown in gray, oxygens — in red,
hydrogens — in white.

2.1 Molecular representations

There exist various chemical representations helping encode spatial molecular structure by compact
one-line notations; most popular among them are SMILES and InChi. Ref. (74) demonstrated that InChi
representations had shown a worse performance, than SMILES-based ones. The SMILES form carries all
the necessary information to calculate most of the ADME metrics (H-bond donors, acceptors, molecular
weight), except lipophilicity logP and aqueous solubililty logS. A SMILES string itself can not be fed into
neural network and needs to be expressed in a numerical form. It is convenient to represent categorical data
(like SMILES elements) via so-called one-hot encoding which in the case of SMILES is a matrix (N by M)
of 0’s and 1’s. N is a size of dictionary of valid SMILES elements (like, C, c, @, O, brackets, etc), while M
runs over a length of a SMILES string. The example of ascorbic acid is illustrated in Fig. [3, where a spatial
representation for this molecule along with its molecular formula, SMILES string, and one-hot matrix are
shown. We consider the SMILES strings not longer than 60 elements applying zero-padding for the shorter
ones. We also limited the dictionary size to only the elements encountered within the train and evaluation
datasets (found 58 unique elements).

2.2 What datasets are available

In this research we use eMolecules database (82) — a set of commercially distributed chemicals — as a
large list of valid SMILES strings to train Autoencoder.

For the property prediction we focus on solubility and compiled our dataset from a series of open sets
published by Huuskonen (83)), Hou et al. (84), Delaney (85)), and Mitchell (86). Additionally, the overall
solubility dataset was extended by transforming SMILES strings to a canonical form, which in total yielded
~4300 solubility labels for SMILES strings of not longer than 60 elements. All solubilities are presented in
the form of the so-called log solubility — logS, which is the 10-based logarithm of the solubility measured
in mol/L.

It is important to keep in mind, that the ADMET prediction is a difficult task, since datasets usually
combine the data generated in different laboratories by different techniques. This might sufficiently limit
the quality of the data as a good training set. Regarding the solubility prediction case it is instructive to
review a solubility challenge and discussion of its results in Refs. (87; 88)).
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2.3 Model design

We decided to utilize a fully deterministic Autoencoder (see APPENDIX and Fig. [l 1] therein for the
detailed architectures). The Encoder, first part of the Autoencoder, consists of four convolution layers,
followed by a fully connected (FC) layer. The output of the Encoder is considered as a latent SMILES
representation. The Decoder, second part of the Autoencoder, is aimed to decode latent representations
back to original SMILES strings. It, symmetrically, consists of a FC layer and four convolutional ones.

The Predictor takes the latent representation as an input and is trained to match it against the aqueous
solubility dataset. The Predictor consists of four residual blocks and four FC layers as shown in Fig.[12]in
APPENDIX. The Predictor’s layers gradually decrease their size and the last one outputs a single number,
which is considered as a solubility prediction.

We used the ADAM optimizer for training both the Autoencoder and Predictor, adjusting only the
learning rate within the range of 10~2 < 107, In the case of the Autoencoder optimization was aimed to
minimize the loss function in the binary cross entropy form. The Predictor’s loss function is formulated as
a mean square error. The Autoencoder is considered to be properly designed and trained if its inputs and
outputs mutually coincide on a high rate, while the Predictor’s aim is to reproduce solubility. It is important
to note, that the above scheme allowed us to build other predictors on top of the existing latent space and
predict other properties along with the solubility.

2.4 Oversampling in the continuous space for the new structures

The particular aim of this study is in the generation of new compounds. The above architecture allows
to operate with discrete SMILES notations in a continuous latent space giving infinite possibilities of
choosing arbitrary vectors in this space. This may lead to either correct chemical structures, or structures
that are chemically incorrect or difficult to synthesize. Keeping this in mind we approach the problem
not by a simple random selection of latent vectors, but using “smarter” linear combinations of vectors
belonging to existing (correct) structures.

Indeed, the random selection of vectors yields almost 100% faulty results. Therefore, we used the
SMOTE (Synthetic Minority Oversampling Technique) approach (89) adopting its implementation from
the Imblearn library (90). In particular, new samples are generated with the algorithm, which selects similar
instances (using a distance measure) and perturbs an instance one attribute at a time by a random delta
within the difference to the neighboring instances.

For the generation purposes we randomly selected a subset of ~190.000 SMILES entities from the
eMolecules set (82)), converted them into corresponding latent vectors and ran the SMOTE algorithm to
produce extra ~95.000 latent vectors. Such a strategy had shown a good outcome and below we discuss
these results in detail.

After the latent vectors for new structures are oversampled from the continuous space, they should be
decoded into SMILES strings. The Decoder outputs are in the one-hot encoding form and are converted
to SMILES strings, however, an additional post-processing is needed over the newly generated strings:
many of them might not be chemically correct. As a harsh recipe one can test SMILES strings against
RDK:it library (91) and drop the incorrect ones. However, to increase the sampling rate we introduced an
error correction scheme, which is discussed in Section Further, the correct and corrected strings are
additionally filtered to avoid overlaps with datasets of known compounds.
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2.5 Error correction for generated SMILES strings

In the experiments by Gémez-Bombarelli ez al. (74) from 70% to less than 1% of the SMILES strings
generated by the Autoencoder correspond to valid molecules. Therefore, one would have to overgenerate in
order to obtain a certain number of valid new molecules. This becomes crucial when a limited number of
molecules with desired properties are at one’s disposal to use as the base for SMOTE. Thus, to efficiently
exploit the earlier described pipeline we need to find a way to increase the number of valid SMILES strings
in the Autoencoder output.

A successful attempt to tackle this issue was made in (58), where the regular VAE is replaced with
the Grammar VAE. The main idea is to convert SMILES strings into parse trees from the predefined
context-free grammar and train the model on them. While this setting substantially increases the number
of valid SMILES strings in the output, it does not spot the errors, which could not be identified without
context (i.e when a ringbond is not opened and closed by the same digit, starting with ‘1" — like in benzene
‘cleccecl’ (58). Ref. (92) extended the idea of SMILES grammar by enriching it with attributes which
add some context awareness to the model. Another on-going research proposes to produce more correct
SMILES strings by actively learning the valid sequences (93).

The problem of incorrect Autoencoder outputs can be decomposed into two subproblems. First, the latent
space learned by the Autoencoder is too sparse and heterogeneous, so that the latent vector chosen for
decoding by either of the methods mentioned in Section [2.4] already represents an invalid SMILES string.
It could be solved by enforcing certain restrictions on the latent space, for example by jointly training a
classifier network, classifying latent vectors into those which would decode into valid molecules and those
which would not. Second subproblem roots in the brittle nature of string representations — one incorrect
symbol could lead to completely different molecule, while one misplaced probability in the output from the
final layer of Decoder would not affect the loss function considerably. We chose to focus on the latter part
which by its essence resembles of a spell-checking task in NLP. Since the conventional spelling correction
algorithm is not applicable in the case of newly generated SMILES strings (there is neither a full vocabulary
of all correct strings, nor a table with the most common errors in generated SMILES strings along with
probabilities, which are required for the conventional spell checking algorithm), we decided to turn to ML
and train a neural network which would be capable of syntactic error corrections in SMILES strings and
could be used as a post-processing to the Autoencoder outputs.

2.6 Error correction model

Error correction in SMILES strings can be framed as a standard sequence-to-sequence learning problem,
which is traditionally solved with attention-based encoder-decoder models (94;93)). In order to exploit the
sequential nature of strings both Encoder and Decoder are build of LSTM (Long Short-Term Memory) (96)
cells with the hidden state of size 512. The Encoder transforms the input SMILES string X into a sequence
of hidden states (h1, ha, ..., b x|), while the Decoder generates one symbol from SMILES characters

dictionary (see Section at a time in the output SMILES string Y. Formally, the model learns transitions
a: X = F12 . P2y

such that a, b = argmin(Y —b(a(X))?, where Y is a target SMILES string. The choice of §; is conditioned
on the previous symbol ;1 and on the compressed X in the form of dynamically created context vector
ct. Itis computed as a weighted sum of the Encoder’s hidden states hy.|x|:
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Figure 4. The architecture of the Attention-based Sequence-to-Sequence error correction model. The
unrolled Encoder is pictured with black rectangles, the unrolled Decoder — with blue.
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whose weights a; are found by an attention mechanism:
ay; = softmaz(et;), er = A(ft-1, $t-1),

where A is an alignment model, implemented as feed-forward neural network of one fully-connected layer,
and s;_1 is the previous hidden state of the Decoder. A is jointly trained with the rest of the model.

Following the best NLP practices, symbols from SMILES strings are converted into embeddings (97)),
learned by the trainable embedding layer in the model. The model is trained by minimizing the negative
log-likelihood between the predicted SMILES string Y and the (correct) target SMILES string Y. The
training process runs for 70 epochs, making use of teacher forcing (98), which suggests using the real
target outputs as each next input during training. The alternative is using the Decoder’s own guess as the
next input. Those two approaches are alternated during the training. Fig. |4 shows the schematic architecture
and training procedure of the error correction model.

It may seem unnecessary to train a separate network for correcting the AE output. However, not only
the model actually increases the number of valid SMILES strings, but also provides noteworthy insights
into working with SMILES as with the specific language and offers some interpretability in the form of
attention maps. Besides, comparing the performance of hidden vectors learned by the AE and by the error
correction model on different tasks could grant us deeper understanding of strengths and weaknesses of
each type of models.

2.7 Error correction data

Since the initial intention was to correct errors, made at the decoding stage, we collected all produced by
the Autoencoder SMILES strings, which were tagged by RDKit library as invalid, and the corresponding
original valid strings. That way we obtained the dataset for the AE error correction, consisting of ~300.000
SMILES pairs. Obviously, the dataset formed in the way described above is biased and incomplete and
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Figure 5. The Autoencoder loss dependence on the train dataset size.

the model trained on it would make very little use for any other SMILES-related task. Inspired by the
successful application of denoising autoencoder (99) to feature extraction, we also experimented with
SMILES strings with added random noise. By random noise we mean operations of replacement, deletion
and insertion of random symbols from the dictionary in the input SMILES string following a predefined
distribution. In that case the model’s input is a SMILES string corrupted with random noise and the model
has to learn how to convert them to the original valid string. That approach encouraged the model to
construct more robust hidden representations of molecules and learn a SMILES language model, which
would be closer to the real one. Thus, filling the gaps in the AE knowledge of the SMILES language model
and correcting errors, caused by them.

To sum up, we developed two models, identical in every aspect except for the nature of errors in SMILES,
on which they were trained. For the sake of brevity, further on we will refer to those two models as AE
noise model and random noise model.

3 RESULTS
3.1 Autoencoder loss convergence

First, we ran a few tests to study how the AE convergence depends on the size of the train dataset. For
this purpose we prepared train datasets consisting of ~10,000, 50,000, 100,000, 200,000, 500,000, and
1,000,000 SMILES strings. The size of the test dataset of 20,000 entities remained unchanged over this
benchmark. The summary plot with the dependence of the losses on the train dataset size is shown in Fig. [5]

The values for 500k and /M cases show a relatively small difference in train-test gap. Hence we further
decided to utilize a train dataset with 500,000 entities. Once the Autoencoder is trained it constitutes the
latent space and we proceed with the generation of new SMILES strings.

3.2 Error correction evaluation

The error correction models were evaluated on three types of input data (all taken from the previously
unseen by models test sets with the size of ~15.000 SMILES pairs): valid SMILES strings — to check how
accurate the model reconstructs the input strings; SMILES strings with AE noise and SMILES strings with
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Table 1. Performance comparison of error correction models.
Random noise model =~ AE noise model

same as valid same as valid
Task target target
[% of SMILES strings in the model output]
reconstruction 87 93 37 58
random errors 66 83 16 36
AE errors 14 44 43 68

random noise — to test the model’s ability to correct errors. The results are expressed by two numbers:

1. how many of output SMILES strings coincide with inputs in case of the reconstruction task or with
original uncorrupted strings in case of error correction task

2. how many of outputted by the model strings are valid as verified by RDKit library.

The performance of models is summarized in Table [T}

The model trained on AE noise seemingly learned the types of AE errors and the easiest way to correct
them — by building direct mappings, not determining the underlying rules which tell how to construct valid
strings. AE errors are deeply incorporated into SMILES’ structure itself and in dependencies between the
symbols, therefore the underlying language model is much skewed. The model trained on AE errors only is
not capable of grasping the real language model from the valid SMILES strings only, since those language
models are too different. As a result, the model outputs are hanging somewhere in between.

3.3 Statistics on generated SMILES strings

There were 95446 SMILES strings generated by the AE and SMOTE (as described in the subsection [2.4]).
Not all of them were grammatically correct. 39.7% (37890) of the generated strings were discarded during
the full chemical parsing using RDKit due to unrealistic aromatic systems or incorrect atomic valences.
60.3% (57556) of the generated strings led to correct molecules.

Chemically incorrect generated SMILES strings were then revised and fixed by the error correction
models (as described in the subsection [2.7). Out of 37890 discarded strings, 12040 (31.8%) were corrected
successfully.

One of the important questions we wanted to answer concerned the novelty of the generated and corrected
molecules. Almost all corrected SMILES strings were unique (99,8% or 12024 out of 12040). Out of 57556
valid molecules generated by the AE, 89.8% (51720) were identical to molecules in the source dataset.
They were excluded from the target data analysis as we are interested only in a novel chemical matter from
the same distribution. As a result, there were 17860 unique novel molecules in total — 5836 from the AE
(generated dataset) and 12024 from the error correction models (corrected dataset).

Unique generated and corrected compounds were compared to known ones in ChEMBL (100) and
PubChem (101)) databases to verify their novelty. About 95% of generated and 98% of corrected structures
were not found in ChEMBL. The search in PubChem yielded a lower but still solid fraction of novel
structures: 72% of generated and 81% of corrected SMILES strings were not encountered in this database.
These numbers demonstrate a high level of uniqueness of the compounds obtained.

Overall, based on the above numbers the application of two error correction models (trained on AE noise
and on random noise) increased by 20% the number of valid SMILES strings generated with SMOTE
technique. However, taking into consideration the fact that out of all correctly generated SMILES strings
10.2%(5836) were unique, 12040 unique corrected strings accounted for 67 % for all newly generated

10
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Table 2. Comparison of substructure features between source, generated and corrected class molecules.

Feature Source,% Generated,% Corrected,%
no rings 1.66 2.65 2.06
1 ring 7.74 7.88 9.04
2 rings 22.35 19.93 24.56
3 rings 32.33 31.6 31.75
4 rings 28.08 29.49 26.27
> 4 rings 7.84 8.45 6.31
spiro rings 2.01 1.99 1.94
heterocycles 80.4 77.9 73.62
no N,0O,S 0.48 0.98 1.0
has N 94.06 92.37 91.74
has O 93.25 92.3 91.51
has S 39.25 37.56 35.95
halogen 38.57 37.32 39.26

samples. So error-correction models do not simply transform all invalid SMILES strings to the closest valid
ones, which were seen by them during training.

It is also worth mentioning that two models do not always correct the same SMILES strings. Therefore,
we can justify the use of two models for error correction, where the first knows how to fix very specific
types of errors while the second is capable of more substantial and “creative” changes in invalid strings.

3.4 Structural similarity and synthetic accessibility

Scaffold analysis. Generated dataset (5836 structures) contained 3945 unique scaffolds (the scaffold is
a part of the molecule after removal of non-ring substituent, for molecules without rings it is the largest
chain). For comparison, the source dataset of 189936 molecules used for SMOTE sampling procedure
contained 58229 scaffolds. The overlap between the generated and the source datasets was 2558 scaffolds
(64.8% of generated scaffolds); the overlap between generated and corrected sets was 742 scaffolds (8.8%
of corrected or 18.8% of generated scaffolds); the overlap between corrected and source datasets was 2594
scaffolds (30.8% of corrected scaffolds). The data illustrate that the protocol generates novel molecules
and corrects erroneous ones within a similar distribution and does not mirror the sampling set too closely.

Substructure features comparison. We calculated the following substructural features for datasets: number
of rings in a molecule, presence of spiro rings, heterocycles, some biogenic elements and halogens. The
strings generated by the AE have the features distribution similar to those of the source class, although
not exactly the same. Also the strings, corrected by Sequence-to-Sequence model, show the distribution
close to the ones of the source and generated datasets, although having some specific differences like
higher amount of structures with one and two rings and lower amount of structures with multiple rings and
heterocycles. Substructure features in dataset percentages are compared in Table [2]

Common functional groups. An algorithm to identify functional groups in organic molecules (102) was
used for comparison of the most common functional groups in datasets. Functional groups were ranged
from the most to least frequent ones and represented as SMILES arbitrary target specification (SMARTS).
SMARTS is a language for specifying substructural patterns in molecules (103). In particular, Fig. [6] shows
the most common substructures in the three datasets: the source, the novel generated, and the corrected
SMILES dataset. Substructures are highlighted in red and presented as parts of novel generated SMILES
strings. These examples are arranged by descending percentages within the dataset of novel generated
molecules. These results indicate that initial strings of the source dataset, generated by the AE and the ones
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corrected by the LSTM have very similar distributions of functional groups, again confirming that both
novel and corrected datasets propagate over the same chemical space.

Common molecular descriptors comparison. Properties of generated, corrected and source data molecules
were compared using common molecular descriptors (molecular weight, atom-based logP (104)) and
topological surface area). Topological polar surface area (TPSA) of a molecule is defined as the surface sum
over all polar atoms including their attached hydrogen atoms. logP is the most commonly used measure
of lipophilicity. This is the partition coefficient of a molecule between an aqueous and lipophilic phases,
usually octanol and water. Results are shown in Fig. [/] It is clearly visible that all datasets have similar
distributions of all the descriptors.

Synthetic accessibility score (SAS) as a number between 1 (easy to make) and 10 (very difficult to
make) was calculated as described in (105). This method uses historical synthetic knowledge obtained by
analyzing information from millions of already synthesized chemicals and considers chemical structure
complexity. The score may be used to rank molecules generated by theoretical approaches for an organic
synthesis. Resulting distributions are presented in Fig.[/] bottom right plot. Mean values of SAS of source,
novel generated and corrected molecules are 2.5, 2.6 and 2.5, respectively, indicating that all they are
relatively easy to synthesize on average.

3.5 Solubility prediction

The quality of Predictor’s solubility reconstruction is visualized in Fig. [§] reflecting how good the
experimental values from train and test datasets are reproduced. Obviously, the perfect reconstruction
is achieved if the predicted logS values fit the function y = z (shown by the red lines). The solubility
reconstruction within the train dataset is close to ideal, as shown on the left plot of the Fig.[§] and the
corresponding coefficient of determination R? (in this case it coincides with the square of the Pearson
correlation coefficient) for logS is equal to 0.99. The reconstruction within the test dataset (right plot)
shows a certain degree of scatter around the ideal case with the coefficient of determination R? = 0.86.
The thickness of the data cloud around y = z roughly estimates the quality of prediction.

The difference between predicted and experimental logS values usually does not exceed unity (see the
bottom plot in Fig. [§), which in plain concentration units corresponds to an error of one order. Partly,
this is due to a relatively small solubility dataset of only 4300 values. On the other hand, t-sne and pca
analysis have shown that close SMILES representations might demonstrate a highly scattered solubilities.
Nevertheless, often even a rough estimate can be helpful to categorize a compound with respect to a degree
of its solubility.

Similar plots comparing experimental vs. predicted logS are also reported in Refs. (46;88). In particular
Ref. (46)) provides a set of coefficients of determination for different regression approaches. Our estimation
of R? = 0.86 is slightly higher than the numbers provided in Ref. (46), however, we want to stress here
that the direct comparison is appropriate only when the datasets are the same in both cases.

3.6 Molecular dynamics simulation as a solubility test

As an additional solubility prediction test we performed a short series of all-atom computer simulations.
According to the [IUPAC definition, solubility is the composition of a saturated solution expressed as
a proportion of a solute in a solvent. In other words, the solubility of a solute defines its maximum
concentration that can be dissolved in a solvent, otherwise a solute starts to aggregate and precipitates.
The solubility in computer simulations is usually measured via free energies calculations either by the
thermodynamic integration or averaging over the path between thermodynamic states (see, for example,
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cne 13.2% 12.9% 11.9% cOC 9.4% 7.0% 8.1%

cCl15.4% 5.4% 5.7% CF 3.6% 3.9% 3.5%

cO 1.5% 3.3% 2.0% cNC(C)=0 3.3% 3.3% 3.0%

A How

H2N %O

CN(O)C 2.9% 2.8% 2.8% csc 3.2% 2.7% 2.8%

cF2.7% 2.5% 2.6% cn(c)C 2.8% 2.3% 2.2%

Figure 6. The most common substructures in datasets. Legend format: substructure SMARTS code,
percentage of occurrences in the source SMILES dataset, percentage of occurrences in the novel generated
SMILES dataset, percentage of occurrences in the corrected SMILES dataset. Substructures are highlighted
in red and presented as parts of novel generated SMILES strings.
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Figure 7. Comparison of probability density functions of molecular descriptors (molecular weight, logP,
TPSA) and synthetic accessibility score for the source dataset, novel generated and corrected molecules.

Refs. (10651075 108))). However, these approaches require intense simulations for numerous intermediate
states and, therefore, are CPU-consuming. So we focused on a more qualitative task aiming to check
whether a particular solvent+solute composition reveals any separation trends with respect to a predicted
solubility limit. Therefore, this part is rather intended to illustrate the change in the solute aggregation
trend, not to find the exact solubility limit.

As a test case we picked one of newly generated compounds, namely COCC(O)C(CC)CO (shown in
Fig.[9). According the Predictor its log-solubility logS is -0.26, corresponding to the concentration of
~ (.55 mol/L.

For this purpose we “cooked” five all-atom mixtures consisting of solvent molecules HoO and molecules
of the solute C7H1603. The water was presented within the SPC/E model (109), while the solute molecules
were constructed within the OPLS-AA forcefield (110). The Lennard-Jones parameters for unlike sites
were calculated using the Lorentz-Berthelot mixing rules. All particles were allowed to move freely across
the cubic unit cell with the periodic boundary conditions applied. The cell sizes L, = L, = L, varied
within the range of 67-93 A, depending on the solution composition.
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Figure 8. logS as reproduced on the train (left) and test (right) solubility datasets. The line y = = marking
the “ideal reconstruction” is plotted to guide the eye. The train dataset is reproduced perfectly, while the
test one shows a certain degree of scatter.

Figure 9. Spatial structure of a molecule COCC(O)C(CC)CO represented by sticks. Carbons are shown in
gray, oxygens — in red, hydrogens — in white.

Table 3. The compositions and corresponding concentrations of the simulated systems.
number of molecules solute concentration

H>O C7H503 [mol/L]
20000 10 0.03
10000 20 0.11
10000 100 0.5
solubility limit 0.55
10000 400 1.7
10000 2000 4.2

The molecular dynamics simulations were performed with the use of DL_POLY package (111)). In all the
simulations we used the NPT ensemble with the pressure of 1 bar and temperature of 298 K controlled
by the Nose-Hoover barostat and thermostat in the Melchionna’s implementation (112). The long-range
Coulomb interactions were treated within the smooth particle mesh Ewald technique, while for the short-
range interactions the cut-off distance of 9 A was introduced. The equations of motion were integrated
within the standard leapfrog scheme with a time step of 0.002 ps.
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Figure 10. The snapshots of the simulation box, showing water HoO (left) and C7H;403 (right) molecules
as wireframes. Carbons are shown in gray, oxygens —in red, hydrogens — in white. The solute concentrations
are 0.11/0.5/1.7/4.2 mol/L from the top to the bottom as denoted below each row. One can see the
aggregation of solute molecules at the solute concentration of 1.7 mol/L and the areas not occupied by
solvent or solute start to appear. This agrees with our solute-solvent separation prediction.

The simulated mixtures differed by the solvent-solute compositions. Namely, the compositions and
corresponding solute concentrations are collected in Table [3] One can see that the concentration of the
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solute gradually increases over the the list of compositions. For the low-concentration compositions (below
the solubility limit of 0.55 mol/L) we expect a “no-separation” regime, contrary to a “separation” regime
for the cases with concentrations above the solubility limit. The compositions with moderate concentrations
close to the threshold logS might show a regime transition.

Below we discuss the instantaneous configurations of the above-defined systems. Each of the results
is presented as two snapshots, separately showing the simulation unit cell with only HoO or C7H;403
molecules. These snapshots except the case of the lowest concentration of the solute (0.03 mol/L) are
shown in Fig. |10l The snapshots in left column show H2O molecules, right snapshot — C7H;603 molecules.

In the case of 0.11 mol/L the solvent (top left snapshot in Fig. and solute (top right snapshot)
molecules are fully distributed over the simulation box, revealing no aggregation of the solute. For the
sake of conciseness we did not show the snapshots for the lowest concentration of 0.03 mol/L, since they
resemble the 0.11 mol/L case.

In the second top row of Fig. [I0] we show the system with the solute concentration of 0.5 mol/L. This
concentration is slightly below the predicted solubility limit of 0.55 mol/L. Again, left figure shows H2O,
right figure — C7H1603 molecules. One can notice that the solute is well distributed over the box and only
begins to aggregate.

In the second last row we show the system with the solute concentration of 1.7 mol/L. This concentration
is above the predicted solubility limit and clearly reveals a separation trend, which agrees with our solubility
estimation.

The case of the highest concentration of the solute (4.2 mol/L) is shown in the bottom row of Fig.
One can clearly see the areas not occupied by H20, as well as the areas not occupied by C7H;403. The
actual composition is way above the solubility limit so the separation here is well manifested.

3.7 Druglikeliness

Druglikeness reflects the ability of an organism to pass a particular compound along the ADME chain
and can be assessed for any molecule, however, it does not evaluate its pharmacological effect. Let us now
check the above compound COCC(O)C(CC)CO for a druglikeness. In the Introduction section we have
mentioned a bunch of bioavailability filters (525 153515451555 156). All of them are based on simple metrics,
like numbers of H-bond donors and acceptors, molecular weight, polar surface area, molar refractivity,
solubility in water logS and octanol logP, fraction of sp® hybridized carbons, and number of rotatable
bonds. Parameterized values for polar surface area, molar refractivity, logP one can obtain via RDKit
library, solubility in water — by neural network, and the rest of metrics are directly defined from molecular
structure. We present these values in Table 4]

The above-mentioned filter rules can be found in the original papers, therefore, we will just briefly
summarize the druglikeness scores against them. So, the filters of Lipinski (52)), Egan (54)), and Veber (56))
report no violations for the compound and claim it to be druglike. The filter by Ghose (53)) does not approve
the compound for two reasons: 1) its molecular weight of 148.2 g/mol does not fit the range of [160:480]
and ii) molar refractivity of 38.75 is beyond the range of [40:130]. To sum up, three filters approved
the compound, the filter by Ghose has two violations, but the failing values are just slightly below the
qualifying ones. The properties predicted here resonate with ADME bioavailability radar, proposed by
Daina et al. (113) in their SwissADME tool.
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Table 4. ADME metrics for the compound COCC(O)C(CC)CO.

Molecular weight 148.20 g/mol
Number of H-bond acceptors 3
Number of H-bond donors 2
Number of heteroatoms 2
Fraction of sp3 hybridized carbons 1.00
Number of rotatable bonds 5
Number of rings 0
Topological polar surface area 49.69 A?
Molar refractivity 38.75
logS -0.26
logP 0.01

4 DISCUSSION

The use of DNN-pipeline to map the discrete molecular representation (i.e. SMILES strings) into continuous
vector space proved to be efficient step for predicting properties from compressed structure representation,
generation of novel structures via varying the representation vector or clustering of known ones directly in
the vector space (615 [74). Trained end-to-end such models result in the efficient structure of the chemical
space where molecules with different properties could effectively belong to different parts of it.

In practice, a known set of small molecules is just a sparse fraction of exponential space of possible ones
(7). As a result, a random vector in a corresponding continuous space may not necessarily represent a
valid chemical structure. This becomes even more severe in case of end-to-end training on limited training
sets of structures along with the given properties. Hence, efficient sampling in a continuous space and
correction of resulting structures becomes as important as a search for an optimal mapping from discrete to
continuous representation.

In this report, we focus on designing a multi-stage pipeline of several neural networks to generate
novel molecular structures with desired properties and a testing pipeline to check the chemical validity of
generated structures. Rather than refining a single end-to-end model our pipeline works with a number of
simple and readily available architectures that complement each other and could be trained separately on
generation, prediction and error correction tasks. Here the generative block uses standard Autoencoder
network that is trained to map generic discrete SMILES into a continuous vector space and reconstruct
structures from the points in that space. Error correction block is built upon Attention-based Sequence to
Sequence model that is trained independently on a set of corrupted SMILES strings. Finally, properties
prediction is done via models trained on continuous representations of a reference datasets. With this
generation of new structures is done via an oversampling in the embedding space of a reference dataset
that contains molecules with particular properties of interest and may be limited in size.

We test our pipeline in a number of experiments and show that it leads to both good generation and
prediction quality for novel structures. We show that the error correction block allows increasing by 67% the
number of unique and valid molecular structures in the output of basic autoencoder model. The prediction
model trained directly on the embeddings of the reference dataset results in the state of the art estimation
of solubility, R? = 0.86 for a coefficient of determination.

In our analysis of structural similarity (i.e. distributions of scaffolds, substructure features, functional
groups, and molecular descriptors) and synthetic accessibility of reference and generated structures, we
showcase that unique structures span the same part of the chemical space. Finally, as a sanity check,
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we performed a molecular dynamics simulation to confirm our predictions for an aqueous solubility of
generated molecules.

To summarize, our pipeline allows generating new valid chemical structures in seconds, predict their
properties without running laboratory tests and examine these compounds against various ADMET filters
to assess their drug-likeness.
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APPENDIX: ARCHITECTURES OF AUTOENCODER AND PREDICTOR

The Autoencoder consists of two sub-networks — Encoder and Decoder (Fig. [IT). Both the Encoder and
Decoder utilize convolution and fully-connected type layers. The dimensions of the layers are chosen to
maintain a constant number of neurons per layer, allowing to apply a residual technique, when a layer
output is mixed with outputs of subsequent layers by skip connections, helping improve the network
convergence. The solid arrows denote the regular weighted connections, the dotted ones show the skip
connections. The outputs after each layer are passed through the ReLU activation functions. The output of
the Encoder is a vector that can be considered as a SMILES latent representation. This vector is further fed
into the Decoder, which then outputs the SMILES string.

The latent vectors are also fed into the structure-to-property Predictor. In our case we trained the Predictor
for an aqueous solubility. The Predictor’s architecture consists of four residual blocks and four FC layers. As
seen in Fig.|12|the residual blocks unite four FC layers each. The regular weighted connections are denoted
by solid arrows. In contrast to the plain FC network, the intermediate vectors are added to subsequent
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Figure 11. The architecture of the Autoencoder. The upper chart presents the Encoder: differentiable
connections between layers are denoted by black solid arrows, while the dotted ones denote non-weighted
addition with the appropriate reshape, followed by the activation function of the ReLU or sigmoid type.
Each convolution layer is characterized by height (h), width (w), and number of channels. The bottom
chart shows the Decoder scheme with the same notation and color conventions.

FC outputs (denoted by dotted arrows). The Predictor outputs a single value, being treated as a solubility
prediction.
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Figure 12. The architecture of the Predictor. The upper chart shows a residual block: differentiable
connections between FC layers are denoted by solid arrows, the dotted arrows denote non-weighted
addition, then followed by activation function of the ReLLU type. The bottom chart presents the general
scheme of the Predictor: four residual blocks are followed by four fully connected layers.
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