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ABSTRACT 
Internal coordinates can be very helpful in modeling large biomacromolecules 
because freezing stiffer degrees of freedom, such as bond lengths, strongly 
reduces the number of variables describing the system. This, however, leads to 
difficulties in treating flexible rings such as the furanose sugars of nucleic acids 
or the proline residues of proteins, for which internal coordinates are an 
overcomplete description. We present here a new, internal coordinate furanose 
model based on the pseudorotational variables phase and amplitude which 
avoids having to solve a ring closure problem. The choice of a two- rather than 
a four-variable description is justified by a detailed analysis of molecular 
dynamic simulations. The efficiency and accuracy of the method are also 
demonstrated using extensive Monte Carlo simulations. This method of ring 
treatment is fast and well adapted to macromolecular simulations. 
John Wiley & Sons, Inc. 
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sugar conformations.' Sugar repuckering can effi- 
ciently drive the B to A tran~ition?~ and sugars 
can often discriminate between the conformational 
substates of both double3t4 and triple he lice^.^ 
The furanose ring description is therefore particu- 
larly important for nucleoside and nucleic acid 
modeling. 

With a constant bond length approximation, an 
N-atom ring presents 2 N  - 6 internal degrees of 

Introduction 

ncreasing attention has been @en to modeling I sugar rings in recent Years. It has 10% been 
known that the key differences between the main 
nucleic acid families, A, B, and Z, reside in their 
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freedom ( 3 N  degrees of freedom for atomic mo- 
tion, minus 6 for rotational/translational move- 
ment of the whole molecule, and minus another N 
to account for the bond constraints). The five-atom 
furanose ring therefore has four degrees of free- 
dom. This can be taken into account in internal 
coordinate modeling by temporarily breaking one 
ring bond leading to a five-variable linear molecule 
(described by three valence angles and two tor- 
sions). The correct four-variable model is then gen- 
erated by adding a distance constraint to reform 
the broken ring bond.6 Furanose geometry is, how- 
ever, commonly described by only two parame- 
ters: pseudorotation phase angle ( P )  and pucker 
amplitude ( v , ) . ~  This is necessarily an approxima- 
tion, and no general method exists for accurately 
obtaining ring atom positions from the pseudoro- 
tational parameters. Approximate solutions have 
been proposed by Merritt and Sundaralingam' and, 
for fixed amplitude v, = 39", by Pearlman and 
Kim? However, the former method only leads to 
approximate ring closure and the latter fails to 
account for amplitude variations, which are impor- 
tant for puckers between the canonical C ,,-endo 
and C,,-endo forms and also for a correct model- 
ing of furanose flexibility." Recently, an exact 
four-variable solution was presented by Marzec 
and but for the case of large nucleic acids, 
which may contain hundreds of sugar rings, it 
would clearly be advantageous to adopt a two- 
variable model if possible. This choice seems to be 
justified by the wide use of the classical pseudoro- 
tational parameters for describing sugar pucker, 
but it can also be justified quantitatively by an 
analysis of sugar ring dynamics, as we will show 
here. Based on this result, we have developed a 
rapid two-variable representation for use within 
internal coordinate modeling algorithms. The rep- 
resentation is tested for nucleosides using Monte 
Carlo (MC) simulations, which are also shown to 
be considerably more efficient than earlier molecu- 
lar dynamics studies." It is expected that this 
efficiency will be maintained in simulations of 
large macromolecular systems in which, in con- 
trast to the situation for Cartesian  variable^,'^ 
internal coordinate models favor Monte Carlo 
techniques- by allowing large sizes and reduced 
dimensions of conformational space. 

Methods 

As mentioned earlier, our basic internal coordi- 
nate furanose model (developed within the CIN- 

FLEX program6) consists of temporarily breaking 
the sugar ring, leading to a five independent vari- 
able system (two torsions, T ~ , ~ ,  and three valence 
angles, O1-,), to which a distance constraint d is 
subsequently added (Fig. 1, Residue 2). The re- 
maining variables of the ring are dependent. When 
this technique is used during energy minimiza- 
tion, ring closure is achieved by the distance con- 
straint on the broken ring bond. It is clear that the 
same approach cannot be used in Monte Carlo 
simulations, where the ring remain closed at every 
step. In addition, as discussed earlier, it would be 
advantageous to use as few variables as possible 
to describe ring flexibility. Therefore, modifica- 
tions to the original method are necessary. 

Because recent versions of our programs l4 in- 
clude constraints which enable sugar ring confor- 
mation to be controlled by imposing either phase 
angle or amplitude as defined in Rao et al.,I5 it has 
been possible to construct a series of adiabatic 
maps for both 2'-deoxynucleosides and ribonucle- 

I 
I Base 

Residue 1 

/ 

I t2 
?3' 
I 
I 

FIGURE 1. Internal coordinate nucleic acid model. 
Residue 1 shows the complete set of independent 
variables used to describe nucleosides in this study. 
Residue 2 shows the internal coordinates and closure 
constraint bond used by the CINFLEX algorithm to 
describe the furanose. 
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osides using the original CINFLEX method.6 Each 
point in these maps is energy minimized [with 
respect to internal relaxation of the sugar, rotation 
about the N-glycosidic bond ( x), the C3t-03, ( E )  

and C,,-C,. ( 7 )  bonds, and, in the case of ribonu- 
cleosides, the C,,-O,. (4) bond] at a fixed value 
of phase and amplitude (Fig. 1, Residue 11, with 
phase varying from 0" to 360" in 10" increments 
and amplitude from 5" to 45" in 2.5" increments. 
Potential energy and structural information was 
extracted from the adiabatic maps to produce 
a series of E ( P ,  v,), Oi(P, u,), and T ~ ( P ,  u,) 
surfaces. 

All energy minimizations were performed using 
our standard FLEX force field,6.16 using the follow- 
ing expression: 

Its terms represent the energy contributions for 
valence and dihedral angle distortions and pair- 
wise van der Waals17 and electrostatic inter- 
actions." Extra Lennard-Jones terms have been 
added to the potential function to account for the 
angular dependence of hydrogen bonding. The tor- 
sional term takes into account anomeric effects 
when calculating torsions that have terminal oxy- 
gens.'' A distance-dependent dielectric damping 
function is included in the electrostatic term to 
model solvent  effect^'^,^^ 

where D is the maximum value of the dielectric at 
long distances and s is the slope of the sigmoidal 
portion of the curve. We used D = 78 and s = 

0.356 in our simulations. A lower slope of 0.16, 
previously used for B-DNA simulations, leads to 
an abnormally high anti to syn transition barrier in 
purine nucleosides, due to insufficiently damped 
short-range repulsion between the N, and 0,. 
atoms. Although this simple dielectric function is 
only a crude model of solvent effects, it has never- 

theless given results in good agreement with 
experiment concerning nucleic acid static 21 and 
dynamic  conformation^^^,^^ and counterion con- 
d e n s a t i ~ n . ~ ~ , ~ ~  Efforts are nevertheless underway 
to replace this simple function with a more exact 
Poisson-Boltzmann electrostatic term.z6 

Within FLEX simulations, bond lengths are kept 
at their crystallographically determined equilib- 
rium values and thus no bond stretching term is 
included in the potential energy function. Because 
bonds fluctuate very little at biological tempera- 
tures, even in the case of the slightly strained 
sugar rings:7 this is a reasonable and widely used 
approximation. Endocyclic valence angles, how- 
ever, show considerable flexibility 27 and must be 
included to model ring flexibility. (Note that within 
CINFLEX, exocyclic valence angles are not fixed 
but also are not independent variables. They are 
initially set to their crystallographically deter- 
mined equilibrium values, but they are then cou- 
pled to the corresponding endocyclic angle to 
maintain a constant position with respect to the 
external bisector of this angle.) All nonring valence 
angles are kept fixed. 

It is important to verify that the FLEX force 
field gives results consistent with experiment. No- 
tably, it is well known that 2'-deoxyribose and 
ribose have two minima with respect to P ,  corre- 
sponding to the C,.-endo and C3.-endo pucker 
families,'' and that these minima are preserved in 
nucle~sides .~~ Specifically, ribose shows a slight 
preference for C3,-endo (P  - 18'1, while the more 
asymmetric 2'-deoxyribose shows a pronounced 
preference for the Cz8-endo (P  - 162") conforma- 
tion. Also, the O,,-endo barrier between these two 
pucker modes is about 3.8 kcal/mol and 1.8 
kcal/mol for ribose and 2'-deoxyribose, respec- 
tively, with a considerably higher barrier in the 
O,,-exo region. Pucker amplitude fluctuates about 
a mean value of 38.6" f 3" ranging from 30" to 46" 
in the furanoside crystal  structure^.'^ These fea- 
tures can be checked by examination of the pseu- 
dorotational potential energy surfaces E( P, urn). 
Figure 2 clearly shows that the correct P and urn 
preferences are reproduced by our force field and 
the associated internal coordinate model. Note that 
in the O,,-exo region, lower u, is favored to avoid 
steric clash between the sugar C5, atom and the 
base. The remaining 2'-deoxynucleosides and ri- 
bonucleosides give nearly identical surfaces,2' and 
are not shown here. This is consistent with previ- 
ous experimentalz7 and modeling results," which 
show that the type of base or even the presence 
of base has little influence on sugar flexibility. 
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(a) 2'-deoxyadenosine (b) Guanosine 

phase phase 

FIGURE 2. Representative 2'-deoxynucleoside and ribonucleoside potential energy surfaces produced by adiabatic 
mapping with respect to pseudorotation phase and pucker amplitude. (a) 2'-Deoxyadenosine. (b) Guanosine. For the 
sake of comparison, absolute energies are scaled to zero. 

E ( P ,  v,) surfaces created using Cartesian coordi- 
nate models and the AMBER force field29 also 
agree well with the surfaces shown?' Variations of 
the five independent internal variables ( 8 ,  - 3  and 
T ~ , ~ )  as a function of P at constant v, are shown in 
Figure 3. The valence angle variations (Fig. 3a) 
concord with results derived by a regression anal- 
ysis of furanoside crystal structures (see Fig 5a, de 
Leeuw et al.27). The torsion angle variations (Fig. 
3b), while similar to the curves expected from the 
pseudorotation equations, are not perfect cosine 
functions, as expected for a ring with unequal 
bond lengths. 

Results and Discussion 

JUSTIFICATION FOR AN INDEPENDENT 
VARIABLE REPRESENTATION OF F'URANOSE 
BASED ON PHASE AND AMPLITUDE IN A 
DYNAMICAL POINT OF VIEW 

Recently, Marzec and proposed a new 
description of a furanose ring that exactly defines 
the geometry of a five-membered ring with fixed 
bond lengths. In common with the CINFLEX algo- 
rithm, it also uses four independent variables to 
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FIGURE 3. Endocyclic valence and torsion angles from CINFLEX at vm = 39". (a) Valence angles, el ,  01, - C,, - C,, 
(solid line), 02, C,, -C2, -C,, (dashed line), and e,, C,, -C3, -C4, (dotted line). (b) Torsion angles, T ~ ,  0,. -C,, - 
C,. - C,. (solid line), and T ~ ,  C,, - C,, - C,. - C,. (dashed line). 

represent the sugar's internal degrees of freedom. 
However, it will be shown, based on molecular 
dynamics simulations, that these variables can be 
divided into two soft and two hard variables ac- 
cording to the formalism of Go and S~heraga.~' 
Hard variables correspond to those undergoing 
rapid oscillations (i.e., with frequencies greater than 
400 cm-I), while soft variables undergo slower 
oscillations. In such cases, it is possible to treat 
hard variables as parameters which are functions 
of the soft variables. This in turn justifies the use 
of a two-variable furanose description within the 
classical rigid model as defined by Go and 
Scheraga3' and already used for the linear parts of 
molecular within the FLEX force field. 

The Marzec and Day furanose description re- 
quires four variables, PCP, 9, r, and S. Their Model 
is based on the definition of a planar pseudoring 
or mean ring of Cremer and Pople?' PCp and 9 
represent, respectively, the phase and maximum 
deformation of the ring atoms, j ,  in the z-direction 
perpendicular to the plane of the pseudoring: 

PCp and q were shown to be related to P and v,, 
respectively. Pcp and P are identical to within 6", 
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and 9 is related to v, by the following equation: 

v, = c*q 
Values for C vary from 102.9 to 98.0"/A depend- 
ing on the data fitted.27,33 r and S represent the 
direction and magnitude of the in-plane deforma- 
tion of the pseudoring. 

We have calculated the variations of PCP, 9, r, 
and S for each conformation obtained during adia- 
batic mapping with respect to P and vm (Fig. 2) 
using the program Breakring of Marzec and Day. 
The results show that Pcp is independent of v, 
and oscillates around the line Pcp = P with a 
frequency of 180" and an amplitude of 3". This is 
compatible with earlier calculations of Harvey and 
Prabhakara11.3~ In contrast, we find a slightly dif- 
ferent functional form for 9 which shows a linear 
dependence with respect to v, (with a slope equal 
to 0.89 X l ow2  A/') and a periodic dependence 
with respect to P with periods of rr and 2rr. 

9 = (0.89 X 10-2)v, 

1 
The r and S values for the structures from the 
adiabatic maps are compatible with those obtained 
from a survey of the X-ray crystallographic coordi- 
nates of 665 furanose rings (see Fig. 5, Marzec and 
Day"). 

We now turn to an analysis of the frequency 
components of furanose motion. A l-ns molecular 
dynamics simulation of 2'-deoxyguanosine was 
taken from Gabb and Harvey" for Fourier analy- 
sis. This simulation was carried out on the free 
nucleoside at 300 K using the AMBER force fieldz9 
and a l-fs integration step. The simulation was 
performed with a constant dielectric of 4. No non- 
bond cutoff was used, and bond lengths were 
unconstrained. The Cartesian coordinates of the 
five ring atoms were output every 20 steps (0.02 
ps). We extracted the Marzec and Day variables 
(PCp, 9, r, S )  from these data using the program 
Breakring to obtain the time series for each param- 
eter. The endocyclic valence and torsion angles 
were also extracted from the coordinates along 
with the values of P and v, (calculated according 
to Rao et al.',). 

We calculated normalized time correlation func- 
tions% for fluctuations in all variables extracted 
from the simulation data. The Fourier transforms 
of the time correlation functions were then calcu- 
lated to provide the frequency spectra of each 

variable. This analysis was made with the Fourier 
program of Mathematica (Wolfram Research Inc.) 
using a total of 32,768 data points. Because coordi- 
nates were output every 0.02 ps during the simula- 
tion, the Fourier transform only gives information 
for vibrations up to frequencies of 834 cm-'. This 
is, however, sufficient for distinguishing between 
hard and soft  variable^.^' The resulting spectra for 
P ,  v,, r, S, and representative valence and torsion 
angles are shown in Figure 4. The spectra of Pcp 
and 9 are not shown because they are nearly 
identical to those of P and v,. Note that the 
valence angle, c4f--O4~---c~~, and the torsion an- 
gle, C3~-C4,-04f-Cl,, are defined here as 8, 
and T ~ ,  respectively. 

The first point to note from these results is the 
high-frequency oscillations observed for r and S 
(Fig. 41, which exceed 400 cm-' in both cases. S 
has a single peak at 542 cm-', while r has three 
main peaks at 414, 485, and 542 cm-'. On the 
other hand, the important oscillations for P and v, 
occur at frequencies below 200 cm-', except for a 
peak at 484 cm-' in the case of v,. In fact, 75% of 
the total signal for urn, after subtraction of noise, is 
centered around a peak at 116 cm-l, and most of 
the signal for P is concentrated at values lower 
than 100 cm-' (the two main peaks occur at 14 
cm-' and 37 cm-'1. 

If we now compare these spectra with those of 
valence and torsion angles, it is apparent that, 
similar to r and S, the valence angles mainly 
exhibit vibrational frequencies higher than 400 
cm-', whereas the torsion angles have most fre- 
quencies below 200 cm-', except for a peak at 484 
cm-', similar to P and v,. Strikingly, the spectra 
of O2 and, to a lesser extent, 0, (not shown) are 
analogous to that of r, except for low-frequency 
components (14 and 116 cm-') that do not appear 
in the r spectrum. These frequencies can, how- 
ever, be found in the spectra of P (14 cm-') and 
v, (116 cm-'1. In the same way, the signals of 8, 
and S are similar and are analogous to those of 0' 
(not shown), which presents, in addition, small 
peaks at 14, 238, and 484 cm-' that are not found 
in the spectra of P and v,. O5 is the only valence 
angle which oscillates at unique frequency, 542 
cm-', also found in the spectra of every other 
valence angle except 03.  Interestingly, this is also 
the unique vibrational frequency of S. This can be 
related to the observation of Marzec and Day" 
that important deformations in S occur primarily 
for r = 90"-namely, along a line from the center 
of the pseudoring towards the oxygen atom. 

Turning to the torsion angles, T~ exhibits the 
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FIGURE 4. Frequency spectra from the Fourier analysis of a 1 -ns molecular dynamics simulation of 2'-deoxyguanosine. 
Left (from top down), pseudorotation phase and amplitude as defined by Altona and Sundaralingam (1972), and the 
variables r and S of Marzec and Day (1993). Right (from top down), two representative dihedral angles, 74 

(C3, - C4, - 0,. - Cl,) and T, (Cir - C2, - C3, - C4,), and two representative valence angles, 6, (Clf - C,. - C3,) 
and e5 (C5t-01r-Cit). 

same vibrational frequencies as P (14 and 37 
cm-'1, and T ~ ,  with the exception of a peak at 14 
cm-l, exhibits signals similar to those of v, (116 
and 484 cm-*). The other dihedral angles give 
spectra which are hybrids of 7* and 75. The peak 
at 484 cm-', the only high-frequency peak for v,, 
appears only in the spectra of T~ and T ~ .  

This spectral analysis of the furanose ring (Fig. 
4) allows us to conclude that the parameters, PCp 
and q of Marzec and Day, and the pseudorota- 
tional parameters, P and v,,, of Rao et al.)5 are 
comparable in a dynamic sense to the torsion angle 

variations. The r and S parameters are clearly 
linked to endocyclic valence angle variations. There 
are, however, low-frequency signals for the va- 
lence angles that do not appear in r and S but do 
appear for P and vm (Fig. 4). Therefore, all of the 
low-frequency motions for the sugar are accounted 
for by P and v,, and the internal movements of 
the ring can indeed be divided into hard (r and S )  
and soft ( P  and urn) variables following Go and 
Scheraga?' It is thus justified to consider r and S 
as parameters of P and v, and to use a two-varia- 
ble model for studying furanose flexibility. 
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EMPIRICAL EQUATIONS FOR THE 
FURANOSE INTERNAL DEGREES OF 
FREEDOM 

Satisfied that a two-variable model will behave 
in a manner consistent with experiment, we set out 
to derive a set of equations describing the valence 
angle and torsional degrees of freedom in terms of 
P and v,. We recall here that the Bi(P, v,) and 
7 i ( P ,  v,) surfaces generated with CINFLEX are all 
similar regardless of the type of base, although the 
2'-deoxynucleoside and ribonucleoside E( P ,  v,) 
surfaces differ. It is thus reasonable to derive a 
general set of equations describing each indepen- 
dent variable as a function of P and v,. We 
examined the shape of the Bl(P, v,) and T ~ ( P ,  v,) 

(a) Angle: theta1 

surfaces (Fig. 5) to determine the functional form 
of the generalized equations. Notice that the Bi(P, 
v,) surfaces (Figs. 5a, 5b, 5c) are quadratic in the 
v, dimension and periodic in the P dimension. 
The same is true for the 7 i ( P ,  v,) surfaces (Figs. 
5d, 5e). The Mathematica package (Wolfram Re- 
search Inc.) was used to fit the averaged data for 
each independent variable to the following com- 
bined quadratic/periodic functional forms: 

Valence angles: (1 + vm + v,)(I + cos P + sin P 

+cos2P + sin2P) 

Torsion angles: (1 + v, + v,)(1 + cos P + sin P )  

(b) Angle: theta2 

phase phase 

FIGURE 5. Representative surfaces for the endocyclic valence and torsion angles produced by adiabatic mapping 
with respect to pseudorotation phase and pucker amplitude. (a) O,, O,, -CIS - C2,. (b) 02, Clf - C2. - c3,. 

(C) 0 3 2  , C I-c3,-c4f. (d) T , ,  0,~-Cl~-~c2~-c3~. (e) 7 2 ,  c 1 ~ - c 2 r - c 3 8 - c 4 "  
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(d) Torsion: tau1 

phase 

FIGURE 5. (Continued) 

phase 

Because the periodicity of the T;( P ,  v,) surfaces in 
the P dimension is only 21r are opposed to m and 
21r for the O;(P, v,) surfaces, a slightly less com- 
plicated functional form suffices. These functions, 
when expanded, give the following cross-terms, 
each with its own coefficient, a,: 

Valence angles: 

Torsion angles: 

a, + a,v, + u3v; + u4cos P + u5vm cos P 

+ u6v,2 cos P + u7 sin P 

+ a,v, sin P + u9v,' sin P 

The coefficients obtained by a least-squares fit to 
the surface data are listed in Table 1. Tests includ- 
ing third- and fourth-order cross-terms were also 
made, but such terms were found to give very 
little increase in accuracy. Also, coefficients smaller 
than 0.001 have virtually no impact on the final 
sugar conformation. They are included for com- 
pleteness. 

One would think intuitively that ribose and 
2'-deoxyribose require two different sets of coeffi- 

a, +a,v ,  +a,v,2+a,cosP+a5v,cosP 

+ u6v: cos P + a7 sin P + a,v, sin P 

+ a, u,' sin P + alo cos 2 P + all v, cos 2 P 

+ a,, v,' cos 2 + a13 sin 2 P + aI4 v, sin 2 P 

+ u15 v,' sin 2 P 
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(e) Torsion: tau2 

phase 

360 

phase 

FIGURE 5. (Continued) 

cients given their structural differences. However, 
when the generalized coefficients are compared to 
the original data for each nucleoside and 2'- 
deoxynucleoside, the average differences between 
the calculated angle values and the actual values 
from the adiabatic maps is always less than 0.8" (in 
most cases less than 0.5"), with the largest errors 
occuring in the high v,/O,,-exo region. If this 
region, which is rarely visited in reality, is ex- 
cluded from the error calculations, the average 
errors fall to less than 0.5". For reasons of space, 
we are unable to include all of the valence and 
torsion angle data. These data are available from 
the authors. 

Using these equations, we first verified that the 
closure bond, d (Fig. 1, Residue 21, does not devi- 
ate significantly from its equilibrium value. In all 
cases, the fitted endocyclic valence and torsion 
angle functions satisfy the ring closure constraint 
to witbin 1% of the equilibrium distance (roughly 
0.01 A). To test the ability of the equations to 
generate a ring with the desired values of P and 
v,, structures were built without minimization 
throughout the range of P (0"-360") and v, 
(00-500). Back-calculating the pseudorotational pa- 
rameters from the Cartesian coordinates using the 
Rao et al.15 equations showed that the empirical 
equations perform well. Nearly all structures were 
0.5" of their P (mean deviation = 0.16" 0.16") 
and vm (mean deviation = 0.15" 0.15") target 
values, with larger errors (1.15" in P and 1.85" in 
vm) only occuring in the 0, ,-ex0 high-amplitude 
region (beyond vm = 45"), which is energetically 
unfavorable. We can thus conclude that our simple 
two-variable model is perfectly compatible with 
the complete internal coordinate model. 

INTERNAL COORDINATE MONTE CARL0 
SIMULATIONS 

We performed extensive Monte Carlo simula- 
tions on both free 2'-deoxynucleosides and ribonu- 
cleosides to test both the efficiency and accuracy of 
our model. Following the standard Monte Carlo 
m e t h ~ d , ~ ~ , ~ ~  a representative Boltzmann ensemble 
of conformations is generated by a series of steps, 
which are accepted or rejected with the following 
probabilities: 

i f A E > O  
i f A E s O  

Probability = 

where A E represents the potential energy differ- 
ence between two states - El). R is the gas 
constant and T the absolute temperature. In all the 
simulations reported here, T equals 300 K. We 
maintain a 50% acceptance rate for each indepen- 
dent variable, and individual variables are moni- 
tored throughout the simulation. Our simulations 
satisfy both the detailed balance and microre- 
versibility conditions: There is an equal probability 
of choosing a trial conformation i + 1 from confor- 
mation i as there is of choosing a trial conforma- 
tion i from conformation i + l; and for any step 
i + i + 1, the reverse step i + 1 + i will exactly 
reproduce i. To improve sampling, multiple simu- 
lations were performed, each starting from a ran- 
domly chosen, minimized conformation. Ten simu- 
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TABLE I. 
Coefficients for the Generalized Endocyclic Valence and Torsion Angle Functions. 

02 5-2 

a1 

a2 

a3 

a4 
a5 

a7 

a8 

a9 
a10 

a11 

a12 

a6 

a13 

a14 

1.9028 
- 0.0065 
-0.1277 

0.0001 
- 0.0077 
- 0.0030 

0.001 0 
0.0036 
0.0295 
0.001 3 

- 0.01 10 
0.0547 

- 0.0010 
0.0106 
0.0676 

1 A621 
- 0.01 57 
- 0.0604 

0.0000 
0.0062 
0.0091 

- 0.001 1 
- 0.0042 
- 0.0367 

- 0.0036 
- 0.0726 
- 0.0007 

0.0004 

0.0067 
0.0042 

1.841 8 
- 0.01 85 
- 0.0770 
- 0.0005 

0.0046 
- 0.0089 
- 0.0002 

0.0088 
- 0.0067 

0.0007 
- 0.0061 
- 0.0471 

0.001 1 
- 0.0087 
- 0.01 74 

0.0001 
0.0003 
0.0029 
0.0004 

- 0.831 0 
0.0095 

- 0.0007 
0.5800 

- 0.01 37 

0.0000 
- 0.0007 

0.0026 
0.0005 
0.9765 
0.0037 
0.0001 
0.0059 

- 0.001 0 

lations of 2 X 10‘ steps (approximately 15 minutes 
computation on a Hewlett-Packard 735 worksta- 
tion) were run for the eight commonly occurring 
2’-deoxynucleosides and ribonucleosides. The re- 
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sults of each set of simulations were averaged 
together to give the free energy or, more correctly, 
the potential of mean force37 for each molecule 
(Figs. 6 and 7). For space considerations, only 
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FIGURE 6. Nucleoside free energy surfaces calculated from Metropolis Monte Carlo simulations at 300 K. (a) 2’-dG, 

(h) rU, E ( P ,  x ) .  The surfaces are shown from 0 to 6 kcal/ mol with 0.5 kcal/ mol per contour. 
€(PI v,). (b) 2’-dG, E ( P ,  x ) .  (c) 2’-dC, E ( P ,  v,). (d) 2’-dC, E ( P ,  x ) .  (e) rG, E ( P ,  v,). (f) rG, E ( P ,  x ) .  (9) rU E ( P ,  
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(e) G 
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FIGURE 6. (Continued) 

selected examples will be discussed here. The re- 
maining data are available from the authors. 

Comparing the free energy and the potential 
energy surfaces as a function of the pseudorota- 
tional parameters shows that the new furanose 
description behaves consistently with experimen- 
tal results and does not distort the shape of the 
surfaces. A comparison of Figures 6a and 6c with 
Figure 2a and of Figures 6e and 6g with Figure 2b 
shows that the minima are in the same positions 
and that their ordering is conserved. It is also seen 
that the 2'-deoxynucleosides can sample lower v,,, 
ranges than the ribonucleotides (Fig. 7) due to the 
absence of repulsions between eclipsed vicinal 
oxygens at the 2' and 3' positions. The present 
results also support previous e~perimental,~ and 
theoretical" evidence showing that the type of 
base has very little influence on sugar flexibility. 
The AG(P, x) surfaces (Figures 6b, 66, 6f, and 6h) 
demonstrate that the force field correctly models 
sugar and base interactions. First, pyrimidines 
rarely transit from anti ( x = - 180" to - 120") to 
syn ( x  = 0" to 60") geometries2798 due to a steric 
clash between the pyrimidine 0, and the sugar C5, 
atoms. Second, both potential and free energy cal- 

culations show that of the two possible pathways 
for the anti to syn glycosidic rotation (see 
Saer~ger~~ 1, the transition occurs preferentially 
through high anti ( x near 0") intermediates, which 
exhibit significantly lower energy barriers than 
high syn'0~39~40 ( x near 120"). The AG(P,  x) sur- 
faces also show that when x is syn, there is a 
distinct preference for the C,,-endo sugar pucker. 
A survey of furanoside crystal structures shows 
the same tenden~y.'~ 

Although we performed extensive simulations 
for the sake of completeness, it was found that a 
single simulation as short as 4 X lo5 steps was in 
fact sufficient to reproduce the significant features 
of Figure 6. We attribute this increased efficiency 
to the larger steps which can be made in our 
internal coordinate model. Average step sizes were 
( A P )  = 15.4" f 4.9", (Av,)  = 5.1" & 0.8", ( A x )  
= 14.2" f 5.5", ( A T )  = 12.3" & 2.2", ( A E )  = 32.2" 
f 3.9", and for ribonucleosides ( A 4 )  = 25.8" .t 
2.3". The results presented here are, encouragingly, 
nearly identical to earlier molecular dynamics sim- 
ulations using the AMBER force field." The latter 
simulations, however, required hours of computa- 
tion, while our protocol needs only minutes. 
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CONCLUSIONS 

A system of semiempirical equations has been 
derived which enable furanose endocyclic valence 
and torsion angles to be calculated from the pseu- 
dorotational parameters P and urn. These equa- 

(a) 2'-deoxyguanosine 

chi eps 

(C) Riboguanosine 

chi eps 

gam ahi 

tions have been derived from energy minimized 
nucleoside conformations using the full internal 
coordinate model of the CINFLEX algorithm. By a 
detailed analysis of molecular dynamic simula- 
tions, it is demonstrated that a two-variable fura- 
nose model is perfectly justifiable. In addition, 
comparisons with experimental dataz7 and previ- 

(b) 2' -deoxycytidine 
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4 
3 
2 
1 

(d) Ribouridhe 

20 ite 10 1 

chi eps 

gam ahi 

FIGURE 7. Pseudorotation phase, amplitude, and torsional data for representative nucleosides constructed from the 
Boltzmann distributions of ten 2.0 x 1 O 6  step Monte Carlo simulations, averaged and normalized to 1. In the radial 
plots, the thin lines not connected to the inner circle indicate areas of very low sampling. (a) 2'-dG. (b) 2'-dC. (c) rG. 
(d) rU. 
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ous molecular modeling” demonstrate that the 
new furanose description accurately models nucle- 
oside behavior. 

This method for treating furanose flexibility is 
also computationally efficient. It avoids costly ring 
closure problems and, by reducing the number of 
independent variables, will lead to considerable 
savings in simulations of large nucleic acid sys- 
tems. Tests on both deoxy- and ribonucleosides 
using internal coordinate Monte Carlo simulations 
indeed demonstrate rapid conformational sam- 
pling with large step sizes in the ring puckering 
variables. Results close to those of all-atom molec- 
ular dynamics are obtained, but with much less 
computational expense. 
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