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Abstract

Three recursive constructions are presented; two deal with em-
beddings of complete graphs and one with embeddings of complete
tripartite graphs. All three facilitate the construction of 2an

2−o(n2)

non-isomorphic face 2-colourable triangulations of Kn and Kn,n,n in
orientable and non-orientable surfaces for values of n lying in certain
residue classes and for appropriate constants a.
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1 Introduction

The existence of a triangular embedding of the complete graph Kn in an
orientable surface for n ≡ 3 or 7 (mod 12) was established by Ringel [7] in the
course of the project to solve the famous Heawood map colouring problem
[8]. For each n ≡ 3 (mod 12) the triangular embedding of Kn described
in [7] happens to be face 2-colourable, while the one for n ≡ 7 (mod 12),
n ≥ 19, is not. Later, Youngs [10] constructed for each n ≡ 7 (mod 12)
a face 2-colourable triangular embedding of Kn, and also a triangulation
of Kn for n ≡ 3 (mod 12), n ≥ 15, which is not face 2-colourable, thereby
complementing the constructions of [7]. For almost the next three full decades
Ringel’s and Youngs’ embeddings were the only two known non-isomorphic
triangulations of Kn in an orientable surface for n ≡ 3 or 7 (mod 12) and
n ≥ 15, except for the triangulations of K19 described in [6].

Face 2-colourability of triangular embeddings of complete graphs is an
extra feature that was not necessary for the solution of the Heawood problem
as given in [8]. Nevertheless, this property is interesting because it provides
a strong link with design theory, thus opening up new research directions.
In a face 2-colourable triangular embedding of Kn the faces in each of the
two colour classes form a Steiner triple system of order n (STS(n)). The
embedding may then be regarded as a simultaneous embedding of the two
STS(n)s. We here recall that an STS(n) may be formally defined as an
ordered pair (V,B), where V is an n-element set (the points) and B is a set
of 3-element subsets of V (the blocks), such that every 2-element subset of
V appears in precisely one block.

In two earlier papers, [3] and [4], a recursive construction was described
which generates a face 2-colourable triangulation of K3n−2 in an orientable
(non-orientable) surface from a face 2-colourable triangulation of Kn in an
orientable (non-orientable) surface. In a subsequent paper [1], the construc-
tion was generalised in a fashion which established the existence of 2an

2−o(n2)

(where a is a constant) non-isomorphic face 2-colourable triangulations of
Kn in orientable and non-orientable surfaces for certain residue classes, in
particular n ≡ 7 or 19 (mod 36).

The current paper presents three further recursive constructions. Two of
these deal with embeddings of complete graphs and one with embeddings of
complete tripartite graphs. One of the former constructions can be viewed
as a further generalisation of the construction given in [3] and [4]. All three
enable us to produce 2an

2−o(n2) non-isomorphic face 2-colourable triangula-
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tions of Kn and Kn,n,n in orientable and non-orientable surfaces for values of
n lying in certain residue classes additional to the classes 7 and 19 modulo
36 covered in [1].

We assume that the reader is familiar with basic facts concerning graph
embeddings in surfaces, in particular with lifts of embeddings by means of
voltage assignments as treated in Chapters 2-4 of [5]. When working with
embedded graphs, we shall use the same notation for the vertices and edges
of the abstract graph as well as for the embedded graph; no confusion will
be likely. For the greater part of this article, surfaces will be orientable; the
non-orientable case is briefly discussed in Section 5. The (orientable) genus
of a graph G or a surface S will be denoted by γ(G) or γ(S). A face 2-
colourable embedding is one which admits a 2-colouring of faces (black and
white) such that no two faces of the same colour share an edge.

An embedding is triangular, or a triangulation, if all faces are bounded
by triangles. We will use the acronym 2to-embedding for a face 2-colourable
triangulation on an orientable surface. Two 2to-embeddings are isomorphic
if there is a bijection between the corresponding vertex sets, preserving all
incidences between vertices, edges and faces; in the case when the face colours
are preserved as well, the isomorphism is said to be colour-preserving. Two
2to-embeddings (which may or may not be isomorphic) of the same graph
are said to be differently labelled if there exists a triangle that bounds a face
in one of the embeddings but not in the other.

A parallel class in a triangulation on 3t vertices is a set of t pairwise
vertex-disjoint triangular faces. In the case n ≡ 3 (mod 12), it is shown in [4]
that there exist 2to-embeddings of Kn in which the associated Steiner triple
systems are isomorphic to those produced by the classical Bose construction
[2]. Consequently these embeddings have a parallel class in each of the two
colour classes.

2 Triangulations of complete tripartite graphs

The focus of the current paper is triangular embeddings of complete graphs.
However, our main constructions for such embeddings make extensive use of
triangulations of complete tripartite graphs. Consequently we start our re-
sults by giving both a direct and a recursive construction for 2to-embeddings
of Kn,n,n. The former ensures the existence of suitable embeddings, and the
latter enables us to produce large numbers of differently labelled embeddings
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of Kn,n,n.

Construction 1 For each positive integer n, there exists a 2to-embedding
of the complete tripartite graph Kn,n,n. Furthermore, if n is odd then the
embedding has a parallel class of triangular faces in each of the two colour
classes and the faces in each of these colour classes are consistently oriented
(i.e. if the tripartition is {xi}, {yi}, {zi}, then the faces of one parallel class
correspond to 3-cycles of the form (xiyjzk) and those of the other to 3-cycles
of the form (xpzqyr)).

Proof. Let ν be the plane embedding of the multigraph L with faces of
length 2 depicted in Figure 1.'

&

$

%

?

u

u
6(0,0) (0,1)(1,0)

b

a

Figure 1. The plane embedding of the graph L.
Figure 1 also shows voltages α on directed edges of L taken in the group

Zn × Zn, where Zn = {0, 1, . . . , n − 1}. The edge with no direction carries
the zero voltage.

The lifted graph Lα is trivalent and has the vertex set {ai,j, bi,j : i, j ∈ Zn}.
The lifted embedding να : Lα → S is orientable and has faces of three types.
Type 1 faces have boundaries of the form (ai,0 bi,1 ai,1 bi,2 ai,2 bi,3 . . . ai,n−1 bi,0),
where i ∈ Zn and subscript arithmetic is modulo n. Type 2 faces have bound-
aries of the form (a0,j b0,j a1,j b1,j a2,j b2,j . . . an−1,j bn−1,j). Type 3 faces have
boundaries of the form (a0,j bn−1,j an−1,j−1 bn−2,j−1 an−2,j−2 bn−3,j−2 . . . a1,j+1

b0,j+1). Altogether να has 2n2 vertices, 3n faces and 3n2 edges.
Now consider the dual of the lifted graph and embedding. This is ori-

entable and has 3n vertices, 2n2 faces and 3n2 edges. The vertices of the dual
are of three Types corresponding to the three Types of faces of να. Since
Lα is trivalent, all the faces of the dual are triangles. Once an appropriate
orientation is selected, it is easy to verify that all the triangular faces of the
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dual corresponding to points ai,j have vertices of Types 1, 2 and 3 (in that
order) and all those corresponding to points bi,j have vertices of Types 1, 3
and 2 (in that order). Any parallel class of triangles in either of the colour
classes will therefore have its triangles consistently oriented. Furthermore,
in the dual, vertices of the same Type are never joined and so the dual is
tripartite.

In the embedding of Lα, every face of Type 1 has an edge in common
with every face of Type 2; a similar observation applies to Types 1 and 3,
and to Types 2 and 3. Consequently the dual has an edge between any two
vertices of different Types. Consequently the dual is a triangular embedding
of Kn,n,n. Since Lα is bipartite (having bipartition {ai,j}, {bi,j}), the dual is
face 2-colourable.

Suppose now that n is odd. Consider all the vertices of Lα which have
the form ai,2i (i ∈ Zn). We claim that no two distinct vertices of this form
appear simultaneously on the boundary of a single face. For ai,2i and aj,2j
to appear on the boundary of a Type 1 face would require i = j. For them
to appear on the boundary of a Type 2 face would require 2i ≡ 2j (mod
n) and hence i = j. For them to appear on the boundary of a Type 3 face
would require 2i − i ≡ 2j − j (mod n) and hence i = j. Thus no pair of
vertices from {ai,2i : i ∈ Zn} appear together on the boundary of a single face
in the embedding of Lα. In the dual embedding, the faces corresponding to
these vertices have no common vertices and therefore form a parallel class of
triangular faces in one of the colour classes. A similar argument applies to
the other colour class.

Remark. The Kn,n,n embedding just described has genus g = (2 − 3n −
2n2 + 3n2)/2 = (n− 1)(n− 2)/2.

Construction 2 Suppose that we have k differently labelled 2to-embeddings
of Km,m,m, all of which have a common parallel class of (consistently oriented)
black triangular faces. Then we can construct kn

2
differently labelled 2to-

embeddings of Kmn,mn,mn for each positive integer n. Furthermore

1. If the Km,m,m embeddings all have the same black triangular faces (i.e.
identically labelled and oriented), then the Kmn,mn,mn embeddings con-
structed also have a common set of black triangular faces.

2. If the Km,m,m embeddings all have the same white triangular faces, then
the Kmn,mn,mn embeddings constructed also have a common set of white
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triangular faces. (Of course (1) and (2) are mutually exclusive if k >
1.)

3. If n is odd then the Kmn,mn,mn embeddings constructed all have a com-
mon parallel class of (consistently oriented) black triangular faces.

4. If n is odd and each Km,m,m embedding has a parallel class of white
triangular faces, then the Kmn,mn,mn embeddings constructed each have
a parallel class of (consistently oriented) white triangular faces.

Proof. Suppose that φ : G → S is a 2to-embedding of G = Kn,n,n; such an
embedding is guaranteed by Construction 1. We assume that G has vertex
partition {aj}, {bj}, {cj}. Take m disjoint copies of the embedding φ : for
each i ∈ Zm let Gi = Ki

n,n,n be the complete tripartite graph with vertex
partition {aij}, {bij}, {cij}, and let φi : Gi → Si be a 2to-embedding such that
the natural mapping f i : G → Gi which assigns the superscript i to each
vertex of G is a colour-preserving and orientation-preserving isomorphism
of the embeddings φ and φi. We assume that the surfaces Si are mutually
disjoint and we note that S, and consequently each Si, has n2 triangular
faces in each of the two colour classes.

Suppose next that ψ : F → R is any one of the given k 2to-embeddings
of F = Km,m,m having a parallel class of consistently oriented black trian-
gular faces. Let a, b, c be vertices of G forming the vertices of a fixed white
triangular face T of φ. We may, without loss of generality, assume that the
clockwise orientation of S induces the cyclic permutation (abc) of vertices
on the boundary cycle C of T . For this particular T we take a copy of ψ,
say ψT : F T → RT which embeds the complete tripartite graph F T having
vertex partition {aiT}, {biT}, {ciT} and a parallel class of (clockwise) oriented
black triangular faces with boundary cycles (aiT c

i
T b

i
T ) for i ∈ Zm. Note the

difference between the cyclic permutations (abc) on S and (aiT c
i
T b

i
T ) on RT .

We also assume that RT is disjoint from all the surfaces Si.
Now, for each i ∈ Zm, remove from the embedding φi the open triangular

face T i = f i(T ). We thereby create in each Si a hole with boundary cycle
Ci, where Ci corresponds to the 3-cycle (aibici) in φi. To match these holes
we also remove from ψT the m open triangular faces corresponding to the
parallel class, i.e. the faces with boundary curves Ci

T corresponding to the
cycles (aiT c

i
T b

i
T ). Finally, for i ∈ Zm, we identify the closed curve Ci in the

embedding φi with the curve Ci
T in the embedding ψT , in such a way that

ai ≡ aiT , b
i ≡ biT and ci ≡ ciT .
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Applying the above procedure successively to each of the n2 white triangu-
lar faces T of S, possibly using a different one of the k embeddings of Km,m,m

as the embedding ψ in generating ψT for each T , and assuming that all the
embeddings ψT used are mutually disjoint, we obtain from {Si : i ∈ Zm} a
new connected oriented triangulated surface which we denote by Ŝ. Roughly
speaking, Ŝ is obtained from {Si : i ∈ Zm} by adding n2 Km,m,m “bridges”
raised (for each T ) above the white triangular faces T i, (i ∈ Zm). The surface
Ŝ inherits the clockwise orientation from the embeddings φi and ψT as well
as a proper 2-colouring of the triangular faces.

Let H be the graph that triangulates Ŝ. Clearly H has vertex set
{aij, bij, cij : i ∈ Zm, j ∈ Zn}. The graph G contains all edges of the forms
ajbk, bjck, cjak for j, k ∈ Zn. Each of these edges is incident with a white tri-
angular face of S and, consequently, each gives rise tom2 edges aijb

l
k, b

i
jc
l
k, c

i
ja
l
k,

(i, l ∈ Zm) of H. The bridging operation results in m2n2 triangular faces in
each colour class of Ŝ and consequently there are precisely 3m2n2 edges in H.
It follows that H can have no edges aija

l
k, b

i
jb
l
k, c

i
jc
l
k, and so H ∼= Kmn,mn,mn

with vertex partition {aij}, {bij}, {cij}. As an additional check we indepen-

dently determine the genus of the surface Ŝ. We have γ(Ŝ) = mγ(Kn,n,n) +
n2[γ(Km,m,m) + m − 1] − (m − 1) which reduces to (mn − 1)(mn − 2)/2 =
γ(Kmn,mn,mn), as expected.

The foregoing argument applies to any selection of the embedding ψT for
each of the n2 triangles T . Since there are k choices for ψ, we may obtain a
total of kn

2
embeddings of H by this construction. Two different choices of

ψT , say ψ1 and ψ2, having a common parallel class {(aiT ciT biT )} and applied
to a single F T , give differently labelled surfaces RT , i.e. surfaces having
different triangular faces. The resulting embeddings of H corresponding to
ψ1 and ψ2 will have (some) different triangular faces from one another. Thus
the construction gives kn

2
differently labelled 2to-embeddings of Kmn,mn,mn.

1. Let us now suppose that the Km,m,m embeddings all have the same
black triangular faces. The black triangular faces in the embeddings of
Kmn,mn,mn produced by the construction come from two sources:

(a) the black triangular faces in the embeddings φi, and

(b) the black triangular faces in each of the Km,m,m embeddings ψT
(with the parallel class {Ci

T : i ∈ Zm} deleted).

The triangles from (a) are common to all the Kmn,mn,mn embeddings
produced and, by assumption, those from (b) do not depend on the
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choices of the embeddings ψT . Consequently, all the Kmn,mn,mn em-
beddings produced have the same black triangular faces.

2. Suppose next that the Km,m,m embeddings all have the same white
triangular faces. The white triangular faces in the embeddings of
Kmn,mn,mn produced by the construction all come from the white trian-
gular faces in each of the Km,m,m embeddings ψT . By assumption, these
do not depend on the choices of the embeddings ψT . Consequently, all
the Kmn,mn,mn embeddings produced have the same white triangular
faces.

3. Let us now assume that n is odd. Then by Construction 1, the em-
bedding φ may be taken to have a (consistently oriented) parallel class
in each of the two colour classes. Let Pb and Pw denote these parallel
classes, black and white respectively, and let P i

b , P
i
w be the correspond-

ing parallel classes in the embedding φi (i ∈ Zm). Then
⋃
i∈Zm P

i
b will

form a (consistently oriented) parallel class of black triangular faces in
each of the Kmn,mn,mn embeddings produced by the construction.

4. If n is odd and each of the Km,m,m embeddings used to bridge the white
triangles T i ∈ P i

w (with P i
w etc. as in the previous paragraph) has itself

got a parallel class of white triangular faces, say QT , then
⋃
T∈Pw QT

will form a parallel class of white triangular faces in any embeddings
of Kmn,mn,mn produced by the construction. Furthermore, as each QT

is consistently oriented, the parallel class in the Kmn,mn,mn embedding
will also be consistently oriented.

Remark. We may use the construction with m = 3 and k = 2 by making use
of the two differently labelled K3,3,3 embeddings given in [1]. This gives 2n

2

differently labelled 2to-embeddings of K3n,3n,3n. Writing w for 3n, we may
express this by saying that there are (at least) 2w

2/9 differently labelled 2to-
embeddings of Kw,w,w for w ≡ 0 (mod 3). Since the two K3,3,3 embeddings
from [1] have the same black triangles, all the resulting Kw,w,w embeddings
may be taken to have the same black triangles. Furthermore, if n is odd
(equivalently w ≡ 3 (mod 6)) then each of the Kw,w,w embeddings may be
taken to have a common (consistently oriented) parallel class of triangular
faces in black.

For our subsequent constructions it is useful to have a large supply of dif-
ferently labelled 2to-embeddings of Kn,n,n, all having a common (consistently
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oriented) parallel class of triangular faces in one of the two colour classes.
The previous Remark shows that Construction 2 achieves this for n ≡ 3 (mod
6). An alternative approach for odd n is to take a single 2to-embedding of
Kn,n,n having a consistently oriented parallel class of triangular faces in a
colour class. We apply to this all permutations which fix this parallel class
(including its orientation) and which preserve the tripartition. There are 3n!
such permutations. Suppose that π is one of these permutations and that
π fixes a particular realisation of the original embedding of Kn,n,n. Since π
preserves the orientation, the parallel class and the tripartition, π is deter-
mined by the image of any single vertex. Consequently, there are at most 3n
such permutations π. It follows that there are at least 3n!/3n = (n− 1)! dif-
ferently labelled 2to-embeddings of Kn,n,n all having a common (consistently
oriented) parallel class of triangular faces in one of the two colour classes.
In fact, for n = 9, 15, 21 and 27, this estimate exceeds that given by 2n

2/9.
We can combine these estimates with Construction 2 itself in the manner
indicated by way of example in the following Corollary.

Corollary 2.1 If w ≡ 0 (mod 9) then there are at least 2aw
2

differently
labelled 2to-embeddings of Kw,w,w, where a = log2(40320)/81 ≈ 0.188879.

Proof. In Construction 2, take m = 9 and k = 8! = 40320. This yields
40320n

2
differently labelled 2to-embeddings of K9n,9n,9n, for each positive

integer n. Putting w = 9n gives the result.

A further observation concerns Construction 2 itself. It is not necessary
for the embeddings φi described in the first part of the proof to be copies of
the same embedding φ. All that is needed is that these embeddings should
each have the “same” white triangular faces with the “same” orientations. By
the term “same” here (and subsequently) we mean that there is a mapping
from the vertices of each embedding onto those of each of the other embed-
dings which preserves the white triangular faces and their orientations. From
the Remark following the proof of Construction 2, we have 2n

2/9 differently
labelled 2to-embeddings of Kn,n,n for n ≡ 0 (mod 3), and all of these have
the same black triangles. If we reverse the colours, we have a plentiful supply
of embeddings φi to which we may reapply the construction. We state the
result as Construction 3.

Construction 3 Suppose that we have k differently labelled 2to-embeddings
of Km,m,m, all of which have a common parallel class of (consistently oriented)
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black triangular faces. Suppose also that we have N differently labelled 2to-
embeddings of Kn,n,n, all having the same white triangular faces. Then we
can construct Nmkn

2
differently labelled 2to-embeddings of Kmn,mn,mn.

Proof. The proof is very similar to that of the first part of Construction 2.
We leave the reader to make the appropriate modifications. The factor Nm

reflects the N possible choices for each of the embeddings φi, i ∈ Zm.

Clearly, Constructions 2 and 3 permit estimates of the form 2cn
2

for the
number of differently labelled 2to-embeddings of Kn,n,n to be made for a
variety of residue classes for n.

Our final comment in this Section concerns the number of non-isomorphic
2to-embeddings of Kn,n,n. An isomorphism class can contain at most 6n!
different realisations of such an embedding on a fixed point set with a fixed
tripartition. Thus, for example, in the case n ≡ 0 (mod 3), the number of
non-isomorphic embeddings is at least 2n

2/9/6n! and estimating the factorial
gives 2n

2/9−O(n logn).

3 Triangulations of complete graphs (I)

We start this Section by recalling from our Introduction that two of the
principal ingredients for our next Construction, namely 2to-embeddings of
Kn and K2m+1, are known to exist for n ≡ 3 or 7 (mod 12) and m ≡ 1 or 3
(mod 6).

Construction 4 Suppose that n ≡ 3 or 7 (mod 12) and that m ≡ 1 or
3 (mod 6). Then, from a 2to-embedding of Kn we may construct a 2to-
embedding of Km(n−1)+1.

Proof. Suppose initially that m and n− 1 are coprime. We shall point out
where this assumption is used and, subsequently, how it may be dropped.

Let η be a 2to-embedding of Kn with faces properly coloured black and
white, and let a fixed orientation of the surface be chosen (say, clockwise).
Fix a vertex z of Kn and remove from η the vertex z, together with all open
arcs and open triangular faces originally incident with z. We obtain a face
2-coloured triangular embedding φ of G = Kn \ {z} ∼= Kn−1 in a bordered
surface S; note that the boundary of the hole in S (i.e. the border of S)
forms a Hamiltonian cycle D in G.
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We now take m disjoint copies of the embedding φ (including the proper 2-
colouring of triangular faces inherited from η). Denote these by φi : Gi → Si

(0 ≤ i ≤ m− 1), where the surfaces Si are mutually disjoint and the natural
mapping f i : G→ Gi which assigns the superscript i to each vertex of G is a
colour-preserving and orientation-preserving isomorphism of the embeddings
φ and φi.

In the embedding φ we have t = (n− 1)(n− 3)/6 white triangular faces;
let T be the set of these faces and let T i = f i(T ) be the corresponding set of
all white triangular faces in the embedding φi for i = 0, 1, . . . ,m−1. We now
focus attention on an individual white triangular face T of φ. Denote the
vertices of this face by a, b, c, so that the cyclic permutation (abc) corresponds
to the clockwise orientation of the boundary cycle C of the face T . Next take
a 2to-embedding ψT of the complete tripartite graph Km,m,m in a surface
ST disjoint from each Si and whose three vertex-parts are {aiT}, {biT} and
{ciT}. By Construction 1, we may select ψT to have a parallel class of black
triangular faces {aiT , biT , ciT} and we may choose the orientation of ψT to
ensure that it induces the cyclic permutations (aiT c

i
T b

i
T ) of the boundary

cycles Ci
T of these faces. Note the difference between the cyclic permutations

(abc) on S and (aiT c
i
T b

i
T ) on ST .

Now, for each i ∈ Zm, remove from the embedding φi the open triangular
face T i = f i(T ), thereby creating in each Si a new hole with boundary curve
Ci = f i(C) corresponding to the 3-cycle (aibici) in φi. Similarly remove from
ψT the open triangular faces {aiT , biT , ciT} for i ∈ Zm. Then, for i ∈ Zm, we
identify the closed curve Ci in the embedding φi with the curve Ci

T in the
embedding ψT in such a way that ai ≡ aiT , bi ≡ biT , and ci ≡ ciT .

As in Construction 2, we apply the above procedure successively to each
white triangular face T ∈ T (assuming that the corresponding embeddings
ψT are mutually disjoint), and we thereby obtain from the surfaces Si a new
connected triangulated surface with a boundary. Denote this surface by Ŝ.
Roughly speaking, Ŝ is obtained from the surfaces Si by adding |T | “bridges”.
Clearly, Ŝ has m holes, and their (disjoint) boundary curves correspond to
the Hamiltonian cycles Di = f i(D) in the graphs Gi. Also, it is easy to
see that the chosen orientations of φi and ψT guarantee that the bordered
surface Ŝ is orientable, inheriting the clockwise orientation from φi and ψT .
Note that Ŝ also inherits the proper 2-colouring of triangular faces from these
embeddings. Since we have t = (n − 1)(n − 3)/6 black triangles in S (and
hence in each Si), and for each of the t white triangles T in S we added, in
ψT , another (2m2 −m) triangles, the total number of triangular faces on Ŝ
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is equal to mt + (2m2 − m)t = m2(n − 1)(n − 3)/3. For each collection of
(2m2−m) triangles added, m2 are white and (m2−m) are black; hence it is
easy to check that exactly half of the triangles on Ŝ are black, as expected.

Let H be the graph that triangulates the bordered surface Ŝ; we need
a precise description of H. Let D = (u1u2 . . . un−1) be our Hamiltonian
cycle in G = Kn \ {z} (thus, V (G) = {uj : 1 ≤ j ≤ n − 1}). Since

n is odd, every other edge of D is incident to a white triangle on Ŝ; let
these edges be u2u3, u4u5,...,un−1u1. From the above construction it may
be seen that the graph H is obtained as follows. For 1 ≤ j 6= j′ ≤ n − 1,
each vertex uj of G gives rise to m vertices uij (0 ≤ i ≤ m − 1) of H,
and each edge ujuj′ of G incident to a white triangle gives rise to m2 edges
uiju

i′
j′ (i, i′ ∈ Zm) of H. Since each edge of G except the (n − 1)/2 edges

u1u2, u3u4,..., un−2un−1 is incident to exactly one white triangle, the total
number of edges of the graph H is m2(|E(G)| − (n − 1)/2) + m(n − 1)/2
= m(n − 1)(m(n − 3) + 1)/2. To see its structure, note that for each edge
ujuj′ of G ∼= Kn−1 (except when {uj, uj′} = {ul, ul+1}, l = 1, 3, 5, . . . , n− 2),
H contains all edges of the form uiju

i′
j′ , i, i

′ ∈ Zm. However, if {uj, uj′} =

{ul, ul+1} for some l = 1, 3, . . . , n − 2 then H contains no edge uiju
i′
j′ with

i 6= i′, although it does contain the edges uiju
i
j′ . Also, H contains no edge

of the form uiju
i′
j , i, i′ ∈ Zm. We see that, abstractly, H is isomorphic to

Km(n−1) minus (n− 1)/2 pairwise disjoint copies of (K2m minus a 1-factor),
one on each of the sets {u0

l , u
1
l , . . . , u

m−1
l , u0

l+1u
1
l+1, . . . , u

m−1
l+1 } with missing

1-factor {{uil, uil+1} : i = 0, 1, . . . ,m− 1}, for l = 1, 3, 5, . . . , n− 2.

Let ω : H → Ŝ be the embedding just constructed. We recall that the
boundary curves of the m holes in Ŝ are Di, the images of our Hamilto-
nian cycle D under the isomorphisms f i, i ∈ Zm. In order to complete the
construction to obtain a 2to-embedding of Km(n−1)+1 we build an auxiliary

triangulated bordered surface S∗ and paste it to Ŝ so that the m holes of Ŝ
will be capped. The construction of S∗ commences with voltage assignments.

Let µ be the plane embedding of the multigraph M as depicted in Figure
2.
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Figure 2. The plane embedding of the graph M .

Figure 2 also shows voltages α on directed edges of M , taken in the group
Zm. Edges with no direction assigned carry the zero voltage.

The lifted graph Mα has the vertex set {uij : 1 ≤ j ≤ n−1, i ∈ Zm}. (We
are deliberately using the same letters for vertices of Mα as for vertices of
the graphs Gi, but assume that these graphs are disjoint; such notation will
be of advantage later.) The lifted embedding µα : Mα → R is orientable and
has the following face boundaries.

(a) (n−1)/2 faces whose boundaries correspond to (2m)-cycles of the form
(u0

2j−1u
0
2ju

m−1
2j−1u

m−1
2j . . . u1

2j) for 1 ≤ j ≤ (n− 1)/2.

14



(b) m faces whose boundaries correspond to (n − 1)-cycles of the form
(uin−1u

i
n−2 . . . u

i
1) for i ∈ Zm.

(c) One face whose boundary corresponds to a single (m(n − 1))-cycle
(u0

1u
1
2u

1
3u

2
4u

2
5u

3
6 . . . u

0
n−1). (Note: It is here that use is made of the

assumption that m and n−1 are coprime; if this were not the case then
a multiplicity of faces with shorter boundary cycles would be obtained.)

We now remove all the open faces of type (a) from the surface R, leaving
an orientable surface R1 with (n− 1)/2 vertex-disjoint boundaries (u0

2j−1u
0
2j

um−1
2j−1u

m−1
2j . . . u1

2j), 1 ≤ j ≤ (n−1)/2. We cap each of these in turn by taking,
for each j, a 2to-embedding of K2m+1 with colour classes black and white
on the points {∞j, u

0
2ju

0
2j−1u

1
2ju

1
2j−1 . . . u

m−1
2j−1}, in which the rotation at ∞j

is the cycle (u0
2ju

0
2j−1u

1
2ju

1
2j−1 . . . u

m−1
2j−1) and in which the face corresponding

to the 3-cycle (∞ju
0
2ju

0
2j−1) is coloured black. Here also for convenience

we are using the same letters for the vertices of our K2m+1 embeddings as
for the vertices of Mα, but we assume that the corresponding surfaces are
disjoint. From each embedding of K2m+1 we remove the point ∞j, all open
edges incident with∞j, and all open triangular faces incident with∞j. This
results in a face 2-colourable embedding of K2m in an orientable surface Rj

with a boundary cycle (u0
2ju

0
2j−1u

1
2ju

1
2j−1 . . . u

m−1
2j−1). We then glue the surface

Rj to the surface R1, identifying points carrying the same labels on each
of the two surfaces. This procedure is repeated successively for each of the
(n − 1)/2 faces of R of type (a). Let µ′ : M ′ → R′ denote the embedding
eventually obtained. It is easy to check that |E(M ′)| = m2(n− 1).

We next remove fromR′ all the open faces of type (b) leaving an orientable
surface S∗ with m vertex-disjoint boundaries (uin−1u

i
n−2 . . . u

i
1), i ∈ Zm.

Let M∗ be the graph obtained from M ′ by adding a new vertex ∞ and
joining it to each vertex of M ′ (and keeping all other edges in M ′ unchanged).
We construct an embedding µ∗ : M∗ → S∗ from the embedding of M ′ in
S∗ by inserting the vertex ∞ in the centre of the face F bounded by the
(m(n − 1))-gon and joining this point by open arcs (within F ) to every
vertex on the boundary of F (that is, to every vertex of Mα). Instead of
the face F we now have m(n − 1) new triangular faces on S∗. These new
triangular faces have boundary cycles of the forms (∞ukjuk+1

j+1) (j odd) and
(∞ukjukj+1) (j even). We colour these new triangular faces as follows.

The edge u0
1u

1
2 already lies in a black triangular face of µ′ because

(∞1u
0
1u

1
2) corresponds to a white triangular face of the K2m+1 embedding

15



employed in the construction of µ′. We therefore colour white the face of µ∗

which is bounded by the 3-cycle (∞u0
1u

1
2). It is easy to see that, by an ex-

tension of this argument we must colour white those alternate triangles with
boundary cycles (∞ukjuk+1

j+1) for j odd. The remaining alternate triangles,
those with boundary cycles of the form (∞ukjukj+1) for j even, do not share
an edge with any existing triangular face of µ′ and these are coloured black.

By this process, the triangular faces of µ∗ are properly 2-coloured, and
the number of such faces is

(n− 1)

2

2m(2m− 2)

3
+m(n− 1) =

m(2m+ 1)(n− 1)

3
,

exactly half of which are coloured black.
We are ready for the final step of the construction. Our method of con-

structing the orientable surface Ŝ guarantees that a chosen orientation of Ŝ
induces consistent orientations of the boundary cycles of the m holes of Ŝ;
we may assume that the orientation induces the cyclic ordering of the cycles
Di in the form that was used before, namely, Di = f i(D) = (ui1u

i
2 . . . u

i
n−1),

i ∈ Zm. The bordered surface S∗ has m holes as well, and again, the method
of construction implies that an orientation of S∗ can be chosen so that the
boundary cycles of the holes are oriented in the form D∗i = (uin−1 . . . u

i
2u

i
1),

i ∈ Zm. It remains to do the obvious – namely, for each i to paste together the
boundary cycles Di and D∗i so that corresponding vertices uij get identified.
As the result, we obtain an orientable surface S̄ and a triangular embedding
σ : K → S̄ of some graph K. We claim that K ∼= Km(n−1)+1 and that the
triangulation is face 2-colourable.

Obviously, |V (K)| = m(n − 1) + 1. A straightforward edge count shows
that

|E(K)| = |E(H)|+ |E(M∗)| −m|E(D)|

=
m(n− 1)(m(n− 3) + 1)

2
+ (n− 1)(m2 +m)−m(n− 1)

=
m(n− 1)(m(n− 1) + 1)

2
= |E(Km(n−1)+1)|.

It is easy to check that, except for edges incident with∞ and edges contained
in the m (n−1)-cycles D∗i, the graph M∗ contains exactly those edges which
are missing in H. This shows that there are no repeated edges or loops in
K, and thus K ∼= Km(n−1)+1. As regards the face 2-colouring, we just have

16



to see what happens along the identified (n − 1)-cycles Di and D∗i (since
both triangulations of Ŝ and S∗ are already known to be face 2-colourable).
But according to the construction, if l = 1, 3, 5, . . . , n − 2, a triangular face
on Ŝ that contains the edge uilu

i
l+1 is black, while the face on S∗ containing

this edge is white because the embeddings of K2m+1 employed had the faces
with boundary cycles (∞ju

i
2ju

i
2j−1) coloured black.

As an additional check we independently determine the genus of the sur-
face S̄. We have

γ(H) = mγ(Kn) + |T |[γ(Km,m,m) +m− 1]− (m− 1)

=
m(n− 3)(n− 4)

12
+

(n− 1)(n− 3)

6

[
(m− 1)(m− 2)

2
+m− 1

]
−(m− 1).

From Euler’s formula we obtain

2γ(Mα) =

[
2 +

3m(n− 1)

2
− (n− 1)

2
−m− 1−m(n− 1)

]

and we also have

γ(M∗) = γ(Mα) +
(n− 1)

2
γ(K2m+1).

Finally, we have γ(S̄) = γ(K) = γ(H) + γ(M∗) + m − 1 and this reduces
to (m2n2 − 2m2n+m2 − 5mn+ 5m+ 6)/12, which equals γ(Km(n−1)+1), as
expected. This completes the proof of the construction in the case in which
m and n− 1 are coprime.

To deal with the case when m and n − 1 are not coprime, we return to
Figure 2 and make a generalisation to the construction. The voltages shown
as 1 may be replaced respectively by voltages x1, x2, . . . , x(n−1)/2 provided
that

(a) each xi is coprime with m, and

(b)
∑(n−1)/2
i=1 xi is coprime with m.

Condition (a) ensures that µα has (n − 1)/2 faces with boundary cycles of
length 2m on each of the sets of points {u0

2j−1, u
0
2j, u

1
2j−1, u

1
2j, . . . , u

m−1
2j−1, u

m−1
2j },

while condition (b) ensures that µα has a single face with boundary cycle of
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length m(n − 1). In effect, condition (b) replaces the condition that m and
n − 1 should be coprime. The subsequent steps in the proof then proceed
as before with the obvious changes. We leave readers to verify the details
for themselves. If we select x1 = x3 = x5 = . . . = x(n−1)/2 = 1 and x2 =
x4 = . . . = x(n−3)/2 = m − 1, then condition (a) is trivially satisfied and∑(n−1)/2
i=1 xi = 1 (mod m), thereby ensuring that (b) is also satisfied.

It is possible to generalise the previous Construction in a number of ways.
Firstly, it is not necessary to use the same Km,m,m embedding ψ to form
ψT for each of the (n − 1)(n − 3)/6 white triangles T ∈ T . If we have k
differently labelled 2to-embeddings of Km,m,m, all of which have a common
parallel class of (consistently oriented) black triangular faces, then we have
k choices for ψT for each T ∈ T . Similarly to Construction 2, this enables
us to produce a large number (here k(n−1)(n−3)/6) of differently labelled 2to-
embeddings of Km(n−1)+1. In fact, this number may be increased by a further
factor reflecting the choice of currents xi assigned in the generalised version
of Figure 2 and the available choice of K2m+1 embeddings. With these latter
variables held fixed, if the k embeddings of Km,m,m all have the same black
triangles, then the resulting embeddings of Km(n−1)+1 also all have the same
black triangles and the same rotation at the point ∞. By reversing the
colours, this provides a plentiful supply of embeddings to motivate our second
generalisation.

It is not necessary for the embeddings φi, described in the first section of
the proof, to be copies of the same embedding φ. All that the Construction
requires is that these embeddings have the “same” white triangular faces
and the “same” cycle of n− 1 points around the border, all with the “same”
orientations.

We can combine our generalisations as follows.

Construction 5 Suppose that n ≡ 3 or 7 (mod 12) and that m ≡ 1 or 3
(mod 6). Suppose also that we have k differently labelled 2to-embeddings of
Km,m,m, all of which have a common parallel class of (consistently oriented)
black triangular faces. Then we may construct k(n−1)(n−3)/6 differently labelled
2to-embeddings of Km(n−1)+1. Furthermore

1. If the k embeddings of Km,m,m all have the same black triangular faces
then the resulting embeddings of Km(n−1)+1 also all have the same black
triangular faces and the same rotation about the point ∞.
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2. If we have N differently labelled 2to-embeddings of Kn, all having the
same white triangular faces and a common rotation about a particu-
lar point z, then the number of differently labelled 2to-embeddings of
Km(n−1)+1 may be increased to Nmk(n−1)(n−3)/6.

Proof. The proof is a generalisation of that of the previous Construction,
with additional features as discussed informally above. We leave the reader
to complete the details.

In applying Construction 5 we can make use of our earlier results con-
cerning embeddings of Km,m,m. For m ≡ 3 (mod 6) we can take k to be
either (m − 1)! or 2m

2/9, and for m ≡ 1 (mod 6) we can take k = (m − 1)!.
The case m = 3 is investigated in [1] where it is shown, inter-alia, that there
are at least 2n

2/54−O(n) non-isomorphic 2to-embeddings of Kn for n ≡ 7 or 19
(mod 36), and at least 22n2/81−O(n) for n ≡ 19 or 55 (mod 108). The latter
estimate is achieved by a second application of the Construction, making use
of aspects (1) and (2).

By way of fresh and explicit applications, we here consider the casesm = 7
and m = 9. For m = 7, using the value k = 6! = 720, we may construct
720(n−1)(n−3)/6 differently labelled 2to-embeddings of K7n−6 for n ≡ 3 or 7
(mod 12). There are therefore at least 720(n−1)(n−3)/6/(7n− 6)! isomorphism
classes. Putting w = 7n − 6 and estimating the factorial term, we may
express this as follows.

Corollary 5.1 If w ≡ 15 or 43 (mod 84) then there are at least
2aw

2−O(w logw) non-isomorphic 2to-embeddings of Kw, where
a = log2(720)/294 ≈ 0.032285.

Note that the residue classes 15 and 43, modulo 84, cover additional
values to those dealt with in [1]. In the case m = 9, using k = 8! = 40320
and applying a similar argument gives the following.

Corollary 5.2 If w ≡ 19 or 55 (mod 108) then there are at least
2bw

2−O(w logw) non-isomorphic 2to-embeddings of Kw, where
b = log2(40320)/486 ≈ 0.031480.

Note that b > 2/81 ≈ 0.024691, the latter being the corresponding con-
stant for these residue classes which appears in [1]. It is clear that we can
obtain many other similar estimates.
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4 Triangulations of complete graphs (II)

We start this Section by recalling from our Introduction that one of the
principal ingredients for our next Construction, namely a 2to-embedding of
Kn having a parallel class of triangular faces in one of the two colour classes,
is known to exist for n ≡ 3 (mod 12). Indeed, we can assume the existence
of parallel classes in each of the two colour classes.

Construction 6 Suppose that n ≡ 3 (mod 12) and that m ≡ 1 (mod 4).
Then, from a 2to-embedding of Kn with a parallel class of triangular faces in
one colour class we may construct a 2to-embedding of Kmn.

Proof. Let η be a 2to-embedding of Kn with faces properly coloured black
and white, and let a fixed orientation of the surface be chosen (say, clockwise).
We may assume that η has a parallel class P of white triangular faces.

Take m disjoint copies of the embedding η (including the proper 2-
colouring of triangular faces). Denote these by ηi : Ki

m → Si (0 ≤ i ≤
m− 1), where the surfaces Si are mutually disjoint and the natural mapping
f i : Km → Ki

m which assigns the superscript i to each vertex of Km is a
colour-preserving and orientation-preserving isomorphism of the embeddings
η and ηi.

In the embedding η we have t = n(n−1)/6 white triangular faces of which
n/3 lie in the parallel class P and the remaining n(n−3)/6 lie outside P . Let
T be the set of these remaining faces. Denote by P i and T i the corresponding
sets of white triangular faces in the embedding ηi for i = 0, 1, . . . ,m− 1.

We firstly focus attention on an individual white triangular face T ∈ T .
Denote the vertices of this face by a, b, c, so that the cyclic permutation
(abc) corresponds to the clockwise orientation of the boundary cycle C of
the face T . Next take a 2to-embedding ψT of the complete tripartite graph
Km,m,m in a surface ST disjoint from each Si and whose three vertex-parts
are {aiT}, {biT} and {ciT}. By Construction 1, we may select ψT to have a
parallel class of black triangular faces {aiT , biT , ciT} and we may choose the
orientation of ψT to ensure that it induces the cyclic permutations (aiT c

i
T b

i
T )

of the boundary cycles Ci
T of these faces. Note the difference between the

cyclic permutations (abc) on S and (aiT c
i
T b

i
T ) on ST .

Now, for each i ∈ Zm, remove from the embedding ηi the open triangular
face T i = f i(T ), thereby creating in each Si a hole with boundary curve
Ci = f i(C) corresponding to the 3-cycle (aibici) in ηi. Similarly remove from
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ψT the open triangular faces {aiT , biT , ciT} for i ∈ Zm. Then, for i ∈ Zm, we
identify the closed curve Ci in the embedding ηi with the curve Ci

T in the
embedding ψT in such a way that ai ≡ aiT , bi ≡ biT , and ci ≡ ciT .

As in Constructions 2 and 4, we apply the above procedure successively
to each white triangular face T ∈ T (assuming that the corresponding em-
beddings ψT are mutually disjoint), and we thereby obtain from the surfaces
Si a new connected triangulated surface Ŝ. Roughly speaking, Ŝ is obtained
from the surfaces Si by adding |T | “bridges”. It is easy to see that the
chosen orientations of ηi and ψT guarantee that the surface Ŝ is orientable,
inheriting the clockwise orientation from ηi and ψT . Note that Ŝ also inher-
its the proper 2-colouring of triangular faces from these embeddings. Since
we have t = n(n − 1)/6 black triangles in S and n/3 white triangles in P ,
and for each of the t− n/3 white triangles T ∈ T we added, in ψT , another
(2m2 − m) triangles, the total number of triangular faces on Ŝ is equal to
mt + mn/3 + (2m2 − m)(t − n/3) = mn(mn − 3m + 2)/3, exactly half of
which are black.

Let Ĥ be the graph that triangulates the surface Ŝ and η̂ : Ĥ → Ŝ
the corresponding embedding. We need a precise description of Ĥ. Let
{(u3j+1u3j+2u3j+3) : 0 ≤ j ≤ n/3 − 1} be the set of clockwise boundary
cycles of the parallel class P in Kn (thus, V (Kn) = {uj : 1 ≤ j ≤ n}). Then

V (Ĥ) = {uij : 1 ≤ j ≤ n, 0 ≤ i ≤ m − 1}. If ujuj′ (j 6= j′) is an edge

of a triangle in P , then E(Ĥ) contains the edges uiju
i
j′ , but no edges uiju

i′
j′

with i 6= i′. On the other hand, if ujuj′ (j 6= j′) is an edge of a triangle in

T then E(Ĥ) contains all edges uiju
i′
j′ (both for i 6= i′ and i = i′). Finally,

E(Ĥ) contains no edges uiju
i′
j . The total number of edges of the graph Ĥ

is mn(mn − 3m + 2)/2. Abstractly, Ĥ is isomorphic to Kmn minus n/3
pairwise disjoint copies of (K3m minus a parallel class of triangles), one on
each of the sets {ui3j+1, u

i
3j+2, u

i
3j+3 : i ∈ Zm} with missing parallel class

{{ui3j+1, u
i
3j+2, u

i
3j+3} : i ∈ Zm}, for j = 0, 1, . . . , n/3− 1.

We now focus attention on an individual white triangular face Tj ∈ P
with boundary cycle Dj = (u3j+1u3j+2u3j+3). For ease of notation we refer
to Tj and Dj simply as T and D. Next take a 2to-embedding φT of the

complete graph K3m in a surface S ′T disjoint from Ŝ and having a parallel
class of black triangular faces. We may assume that the vertices of this
embedding are labelled {vi3j+1, v

i
3j+2, v

i
3j+3 : i ∈ Zm} and that the orientation

of φT induces the cyclic permutations (vi3j+1v
i
3j+3v

i
3j+2) of the boundary cycles

Di
T of the parallel class. Note the difference between the cyclic permutations
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(u3j+1u3j+2u3j+3) on S and (vi3j+1v
i
3j+3v

i
3j+2) on S ′T .

Now, for each i ∈ Zm, remove from the embedding η̂ the open triangular
face T i = f i(T ), thereby creating m holes in Ŝ with boundary curves Di =
f i(D) corresponding to the 3-cycles (ui3j+1u

i
3j+2u

i
3j+3). Similarly remove from

φT the open triangular faces {vi3j+1, v
i
3j+2, v

i
3j+3} for i ∈ Zm. Finally, for

i ∈ Zm, we identify the closed curve Di in the embedding η̂ with the curve
Di
T in the embedding φT in such a way that ui3j+k ≡ vi3j+k for k = 1, 2, 3.

Applying the above procedure successively to each white triangular face
T ∈ P (and assuming that the corresponding embeddings φT are mutually
disjoint), we obtain from the surface Ŝ a new connected triangulated surface
S̄. It is easy to see that the chosen orientations of η̂ and φT guarantee that
the surface S̄ is orientable, inheriting the clockwise orientation from η̂ and
φT . Note that S̄ also inherits the proper 2-colouring of triangular faces from
these embeddings. The total number of triangular faces on S̄ is equal to

mn(mn− 3m+ 2)

3
+
n

3
· 3m(3m− 1)

3
− 2mn

3
=
mn(mn− 1)

3
,

exactly half of which are black.
Let H̄ be the graph that triangulates the surface S̄ and η̄ : H̄ → S̄

the corresponding embedding. Each embedding φT (for T = Tj) adds to

E(Ĥ) the edges uiku
i′
k′ for i 6= i′ and k, k′ ∈ {3j + 1, 3j + 2, 3j + 3}. Thus

|E(H̄)| = |E(Ĥ)|+(n/3) ·
(
m
2

)
·9 = mn(mn−1)/2. It follows that H̄ ∼= Kmn,

so that η̄ is a 2to-embedding of Kmn.
As a final check we independently determine the genus of the surface S̄.

We have

γ(S̄) = mγ(Kn) +
n

3
[γ(K3m) +m− 1] +

n(n− 3)

6
[γ(Km,m,m) +m− 1]

−(m− 1)

=
(mn− 3)(mn− 4)

12
= γ(Kmn),

as expected.

We now make some observations and generalisations concerning the pre-
ceding Construction. If the embedding of Kn has a parallel class of triangular
faces in each of the colour classes then the resulting Kmn embedding will have
a parallel class in black. If the K3m bridges each have a parallel class in white
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(as well as in black) then the resulting Kmn embedding will have a parallel
class in white. These observations show that the Construction may be ap-
plied recursively.

It is not necessary to use the same Km,m,m embedding ψ to form ψT
for each of the n(n − 3)/6 white triangles T ∈ T . If we have k differently
labelled 2to-embeddings of Km,m,m, all of which have a common parallel
class of (consistently oriented) black triangular faces, then we have k choices
for ψT for each T ∈ T . Similarly to Constructions 2 and 5, this enables
us to produce a large number (here kn(n−3)/6) of differently labelled 2to-
embeddings of Kmn. In fact, this number may be increased by a further factor
reflecting the available choice of K3m embeddings. With this latter variable
held fixed, if the k embeddings of Km,m,m all have the same black triangles,
then the resulting embeddings of Kmn also all have the same black triangles.
By reversing the colours, this provides a plentiful supply of embeddings to
motivate the following further generalisation.

It is not necessary for the embeddings ηi, described in the first section of
the proof, to be copies of the same embedding η. All that the Construction
requires is that these embeddings have the “same” white triangular faces
(including a common parallel class), all with the “same” orientations.

We can combine our generalisations as follows.

Construction 7 Suppose that n ≡ 3 (mod 12) and that m ≡ 1 (mod 4).
Suppose also that we have k differently labelled 2to-embeddings of Km,m,m,
all of which have a common parallel class of (consistently oriented) black
triangular faces. Then we may construct kn(n−3)/6 differently labelled 2to-
embeddings of Kmn all having a common parallel class in black. Furthermore

1. If the k embeddings of Km,m,m all have the same black triangular faces
then the resulting embeddings of Kmn also all have the same black tri-
angular faces.

2. If we have N differently labelled 2to-embeddings of Kn, all having the
same white triangular faces and a common parallel class in white, then
the number of differently labelled 2to-embeddings of Kmn may be in-
creased to Nmkn(n−3)/6.

Proof. The proof is a generalisation of that of the previous Construction,
with additional features as discussed informally above. We leave the reader
to complete the details.
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In applying Construction 7 we can make use of our earlier results concern-
ing embeddings of Km,m,m. For m ≡ 9 (mod 12) we can take k to be either
(m− 1)! or 2m

2/9, and for m ≡ 1 or 5 (mod 12) we can take k = (m− 1)!.
As an explicit application, we here consider the cases m = 5 and m =

9. For m = 5, using the value k = 4! = 24, we may construct 24n(n−3)/6

differently labelled 2to-embeddings of K5n for n ≡ 3 (mod 12). There are
therefore at least 24n(n−3)/6/(5n)! isomorphism classes. Putting w = 5n and
estimating the factorial term, we may express this as follows.

Corollary 7.1 If w ≡ 15 (mod 60) then there are at least 2aw
2−O(w logw)

non-isomorphic 2to-embeddings of Kw, where a = log2(24)/150 ≈ 0.030566.

In the case m = 9, using k = 8! = 40320 and applying a similar argument
gives the following.

Corollary 7.2 If w ≡ 27 (mod 108) then there are at least 2bw
2−O(w logw)

non-isomorphic 2to-embeddings of Kw, where b = log2(40320)/486 ≈
0.031480.

It is clear that we can obtain many other similar estimates.

5 Concluding Remarks

Our estimates for the number of isomorphism classes for Kn embeddings ob-
tained from the constructions in Sections 3 and 4 have the form 2an

2−O(n logn).
In [1] the corresponding estimates have the form 2an

2−O(n). By using a similar
technique to that described in [1], it should be possible, at least in the case of
the constructions of Section 3, to reduce the O(n log n) term to O(n). Also in
[1], it was shown that conclusions could be drawn about the automorphism
groups of some of the embeddings, in particular some of the embeddings
were shown to have only the trivial automorphism group. Again with partic-
ular reference to the constructions of Section 3, it seems feasible that similar
results could be obtained by similar methods.

The current results, together with those of [1] establish (for various values
of a) the existence of 2an

2−o(n2) non-isomorphic 2to-embeddings of Kn for
n ≡ 7 or 19 (mod 36), n ≡ 15 (mod 60), n ≡ 15 or 43 (mod 84), n ≡ 27
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(mod 108), and for many other residue classes. We conjecture that similar
results in fact hold for all values of n ≡ 3 or 7 (mod 12).

In [3] it is remarked that the main construction given there is a “topol-
ogised” version of a familiar n → 3n − 2 construction for Steiner triple
systems. Our Construction 4 may be viewed as a topologised version of an
n → m(n − 1) + 1 construction for Steiner triple systems. There are many
recursive constructions for Steiner triple systems and it is possible that some
more of these also possess topological counterparts. Further research in this
area may facilitate a fuller coverage of the residue classes 3 and 7 modulo 12.

Another important question concerns the true order of growth of the
number of isomorphism classes for 2to-embeddings of Kn. The number of
differently labelled Steiner triple systems of order n is bounded above by
(e−1/2n)n

2/6 (see [9]). An easy argument given in [1] then shows that the
number of non-isomorphic 2to-embeddings of Kn is bounded above by nn

2/3.
There is a large gap between our estimates, essentially 2an

2
, and this upper

bound. It would be of considerable interest to see this gap narrowed.
Finally we observe that the constructions of Sections 3 and 4 may be

applied to the non-orientable case. If we start Constructions 4 and 6 with
a non-orientable face 2-colourable triangulation of Kn, then these Construc-
tions produce non-orientable face 2-colourable triangulations of Km(n−1)+1

and Kmn respectively. The results of Constructions 5 and 7 extend in a
similar way.
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