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an edge), then G is hamiltonian-connected. Also, examples will be des-
cribed that determine a finite family of graphs L such that if a 3-connected
graph being claw-free and L-free implies G is hamiltonian-connected,
then L 2 L. � 2002 Wiley Periodicals, Inc. J Graph Theory 40: 104–119, 2002
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1. INTRODUCTION

We use Bondy and Murty [2] for terminology and notation not defined here and
consider finite simple graphs only. A graph G with n � 3 vertices is hamiltonian
if G contains a cycle of length n, and it is hamiltonian-connected if between each
pair of vertices of G there is a Hamilton path, i.e., a path on n vertices. If H is a
given graph, then a graph G is called H-free if G contains no induced subgraph
isomorphic to H. The graph H is said to be a forbidden subgraph.

We first describe some graphs that will be frequently used as forbidden sub-
graphs. Specifically, we denote by Pk and Ck the path and the cycle on k vertices,
by C the claw K1;3, by B the bull, by D the deer, by H the hourglass, by N the net,
by W the wounded, by Zk the graph obtained by identifying a vertex of K3 with an
endvertex of Pkþ1, and by Hk the graph obtained by joining two vertex disjoint
triangles by a path of length k (see Fig. 1).

The next result was obtained in Shepherd [7], and the following one in Faudree
and Gould [6]. Note that in both cases, 3-connectedness is assumed. This is
natural, since the forbidden subgraph conditions, being local conditions, do not
imply 3-connectedness, and any hamiltonian-connected graph (except K1;K2;K3)
must be 3-connected.

Theorem 1 [7]. If a 3-connected graph G is claw-free and N-free, then G is

hamiltonian-connected.

FIGURE 1. Frequently used forbidden subgraphs.
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Theorem 2 [6]. If a 3-connected graph G is claw-free and Z2-free, then G is
hamiltonian-connected.

Recently Chen and Gould [4] extended this collection of pairs of forbidden
graphs ensuring hamiltonian-connectedness of 3-connected graphs by proving the
following result, which gives three new independent forbidden pairs.

Theorem 3 [5]. If G is a 3-connected claw-free graph, then G is hamiltonian-
connected if any of the following holds.

(a) G is Z3-free,
(b) G is P6-free,
(c) G is W-free.

The cases (a) and (b) of the above result were independently proved in [3]. In
Section 2, we extend the collection of forbidden pairs by proving the following
result.

Theorem 4. If G is a 3-connected claw-free H1-free graph, then G is hamilto-

nian-connected.
In Bedrossian [1], all forbidden pairs of connected graphs ensuring that a graph

is hamiltonian are characterized, and the same was done for pancyclicity. The same
type of characterization was done for other hamiltonian properties in Faudree and
Gould [6]. A survey of results of this kind can be found in Faudree [5].

Combining their results with previous results, Chen and Gould [4] conclude
that if fS;Tg is a pair of graphs such that every 2-connected fS; Tg-free graph is
hamiltonian then every 3-connected fS;Tg-free graph is hamiltonian-connected.
Theorem 4 gives a pair of forbidden graphs that implies a graph is hamiltonian-
connected in the presence of 3-connectedness but does not imply a graph is
hamiltonian in the presence of 2-connectedness.

Also, in [6] the following theorem was proved. It gives some context to the
previous results on pairs of forbidden graphs ensuring hamiltonian-connectedness
of 3-connected graphs.

Theorem 5 [6]. Let X and Y be connected graphs with X;Y 6¼ P3 , and let G be

a 3-connected graph. If G being X-free and Y-free implies G is hamiltonian-
connected, then, up to symmetry, X ¼ K1;3 , and Y satisfies each of the following

conditions.

(a) �ðYÞ � 3,
(b) A longest induced path in Y has at most 12 vertices,
(c) Y contains no cycles of length at least 4 ,
(d) All triangles in Y are vertex disjoint,
(e) Y is claw-free.

One implication of Theorem 5 is that there are only a finite number of forbidden
pairs of graphs implying hamiltonian-connected of 3-connected graphs. However,
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the gap between Theorem 5 and the positive results in Theorems 1, 2, 3, and 4 is
still substantial. The following result will reduce, but not eliminate, that gap
somewhat. The proof is postponed to Section 3.

Theorem 6. Let X and Y be connected graphs with X;Y 6¼ P3 , and let G be a

3-connected graph. If G being X-free and Y-free implies G is hamiltonian-
connected, then X ¼ K1;3 , and Y satisfies each of the following conditions.

(a) �ðYÞ � 3,
(b) The longest induced path in Y has at most 9 vertices,

(c) Y contains no cycles of length at least 4 ,
(d) The distance between two distinct triangles in Y is either 1 or at least 3,
(e) There are at most two triangles in Y,
(f ) Y is claw-free.

2. THE PROOF OF THEOREM 4

In what follows, an ðx; yÞ-path P is said to be maximal if there is no ðx; yÞ-path Q

such that VðPÞ is a proper subset of VðQÞ.
The set up of the proof in this section will be to consider a maximal ðx; yÞ-path

P that is not a Hamilton path, between some pair of vertices x and y, and then
show that P can be extended, contradicting the maximality of P. The following
lemma will be useful in selecting such maximal paths.

Lemma 7. For any pair of vertices x and y in a 3-connected claw-free graph G,
there is a maximal ðx; yÞ-path P such that NðxÞ � VðPÞ.

Proof. Let P ¼ x1x2 � � � xm with x ¼ x1 and y ¼ xm be a maximal ðx; yÞ-path
with the property that it contains a maximum number of vertices of NðxÞ. If
NðxÞ � VðPÞ, then we are done. Hence, we may assume there is a vertex z 2
NðxÞ n VðPÞ. We will exhibit an ðx; yÞ-path Q that contains ðNðxÞ \ VðPÞÞ [ fzg.
This will give a contradiction, since any maximal path ðx; yÞ-path Q0 that contains
the vertices of Q would have more vertices in NðxÞ than P.

Since G is 3-connected, there exist three vertex disjoint ðz;PÞ-paths, which will
be denoted by Q1, Q2, and Q3. We may assume that Q1 has endvertex x1. Let xr
and xs (with 1 < r < s) be the endvertices of Q2 and Q3, respectively. If z has
more than three adjacencies on P, then select xr and xs to be the last two
adjacencies of z on P. Let S be the set of vertices in NðxÞ \ VðPÞ that are not
adjacent to z. Note that to avoid an induced claw centered at x, the vertices in S
form a complete graph. Also note that NðxÞ \ NðzÞ \ VðPÞ � x1

!
Pxr [ fxsg.

If S \ xrþ1
!
Pxs�1 ¼ ;, then Q ¼ x1

!
Pxr
 
Q2z
!
Q3xs
!
Pxm is the required path, since

this path contains z as well as NðxÞ \ VðPÞ.
If S \ xrþ1

!
Pxs�1 6¼ ;, then select i and j such that xi is the smallest index-

ed vertex in S \ xrþ1
!
Pxs�1 and xj is the largest. It is possible that i ¼ j. By the
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maximality of P and since G is claw-free, x2xi 2 EðGÞ. Then Q ¼ x1xj
 
Pxix2!

Pxr
 
Q2z
!
Q3xs
!
Pxm is the required path. &

In the next proof, we start with a graph G that is 3-connected and claw-free,
and for which there is no Hamilton path between some pair of vertices x and y of
G. By Lemma 7, we can select a maximal ðx; yÞ-path P ¼ x1x2 � � � xm with x ¼ x1

and y ¼ xm such that NðxÞ � VðPÞ. Since P is not a Hamilton path, there is a
vertex z not on P. Since G is 3-connected, there exist three vertex disjoint ðz;PÞ-
paths, and at least two of these paths will terminate in interior vertices of P. Let
xi, xj, and xk (with 1 < i < j < k � m) be the endvertices on P of these paths and
denote the paths by Qi, Qj, and Qk, respectively. We can choose z and the paths
Qi;Qj;Qk in such a way that

(i) jEðQiÞj ¼ 1,
(ii) jEðQjÞj is minimum subject to (i),

(iii) jEðQkÞj is minimum subject to (i) and (ii).

For ‘ ¼ i; j; k, the path Q‘ will be denoted by zv‘ � � � u‘x‘ realizing of course that
the path might be just an edge. For shortness, we will use Q to denote the path
xi
 
Qiz
!
Qjxj. By the way the paths are chosen, we conclude that Q is an induced

path except possibly for the edge xixj.
The maximality of P and G being claw-free implies that xi�1xiþ1 2 EðGÞ, for

otherwise there would be an induced claw centered at xi. Likewise, xj�1xjþ1 2
EðGÞ. Note that j� i � 4, for otherwise the path P could be extended; e.g., if
j� i ¼ 3, then x1

!
Pxi�1xiþ1xi

!
Qxjxj�1xjþ1

!
Pxm is such a path. Also, observe that

xixj�2 62 EðGÞ, for otherwise the path P can be extended to the path x1
!
Pxi�1xiþ1!

Pxj�2xi
!
Qxjxj�1xjþ1

!
Pxm:

Select the smallest r1 with i < r1 < j such that xixr1
2 EðGÞ, but xixr1þ1 62

EðGÞ. By the previous remarks, such an r1 exists. Likewise, select the smallest
s1 with j < s1 < k such that xjxs1

2 EðGÞ, but xjxs1þ1 62 EðGÞ. There are no edges
between xi

!
Pxr1þ1 and xj

!
Pxs1þ1, except possibly for xixj: the existence of any of

the edges gives an extension of P; e.g., if xr1þ1xs1þ1 2 EðGÞ, then P can be
extended to the path x1

!
Pxi�1xiþ1

!
Pxr1

xi
!
Qxjxs1

 
Pxjþ1xj�1

 
Pxr1þ1xs1þ1

!
Pxm. In the

same way, select a largest r2 with i < r2 < j such that xjxr2
2 EðGÞ, but xjxr2�1 62

EðGÞ. By symmetry and the previous remarks, such an r2 exists. Also, if xk 6¼ xm,
in the same way an s2 associated with the vertex xk can be defined. Also, by
a symmetry argument, we know that there are no edges between xr2�1

!
Pxj and

xs2�1
!
Pxk except possibly for xjxk.

We are now ready to present the proof of Theorem 4.
Assume that G is a 3-connected, claw-free graph, and there is no Hamilton

path between some pair of vertices x and y of G. We will show that G must
contain an induced copy of H1. We choose a maximal ðx; yÞ-path P ¼ x1x2 � � � xm
with x ¼ x1 and y ¼ xm subject to the condition that NðxÞ � VðPÞ. We choose a
vertex z 2 VðGÞ n VðPÞ and three vertex disjoint ðz;PÞ-paths as in the general
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discussion. All of the notation and observations of the general discussion are
assumed.

We claim that we can choose z in such a way that jEðQjÞj ¼ 1, and that
jEðQkÞj ¼ 1 if xk 6¼ xm. Suppose jEðQjÞj � 2, and consider z and the successor vj
of z on Qj. By the choice of z, xivj 62 EðGÞ. Since G is 3-connected, claw-free, and
zvþj 62 EðGÞ, there exists a triangle T containing z and vj or there exists a triangle
T containing vj and vþj . We distinguish a number of cases.

Case a.1. z; vj, and a vertex of Qk are in a common triangle. Let t 2 VðQkÞnfzg
be the third vertex of T . By the choice of Qk, we have t ¼ vk. If vk 6¼ xk, then
G½fxi�1; xiþ1; xi; z; vj; vkg� ffi H1, since xivj 62 EðGÞ (otherwise vj contradicts the
choice of z) and xit 62 EðGÞ (otherwise t contradicts the choice of z). Hence
vk ¼ xk.

To avoid G½fxi�1; xiþ1; xi; z; vj; xkg� ffi H1, we must have at least one of xkxi�1,
xkxi and xiþ1xk in EðGÞ. Then, since xi�1xk 62 EðGÞ (otherwise to avoid G½fxk;
xi�1; z; xk�1g� ffi K1;3, we have xi�1xk�1 2 EðGÞ yielding a path x1

!
Pxi�1xk�1 

Pxizxk
!
Pxm which contradicts the choice of P) and xixk 62 EðGÞ (otherwise to

avoid G½fxk; xi; vj; xk�1g� ffi K1;3, we have xixk�1 2 EðGÞ, also yielding a path
which contradicts the choice of P), we get xiþ1xk 2 EðGÞ, implying also xiþ1

xk�1 2 EðGÞ.
If vjxj 2 EðGÞ (i.e., jEðQjÞj ¼ 2), then to avoid G½fxj�1; xjþ1; xj; vj; z; xkg� ffi

H1, we similarly have that xjþ1xk 2 EðGÞ, and get a contradiction since G½fxk;
xiþ1; xjþ1; zg� ffi K1;3. Hence we may assume vjxj 62 EðGÞ and thus vþj 62 VðPÞ
(where vþj is the successor of vj on Qj). Since vjv

þþ
j 62 EðGÞ, there exists a

triangle T 0 containing vj and vþj or there exists a triangle T 0 containing vþj and
vþþj . Note that vþj xk 62 EðGÞ (otherwise G½fxk; z; vþj ; xk�1g� ffi K1;3).

(i) Suppose vj and vþj are in a common triangle T 0 with some vertex t0. Then
t0 62 fxi; xj; xk; zg, while also t0 62 VðPÞ n fxi; xj; xmg; otherwise if t0 2
x1
!
Pxi�1, then vj contradicts the choice of z, if t0 2 xiþ1

!
Pxj�1, then the path

zvjt
0 contradicts the choice of Qj, and if t0 2 xkþ1

!
Pxm, then the paths zxk

and zvjt
0 contradict the choice of Qj and Qk. Hence t0 62 VðPÞ [ fzg.

To avoid G½fxiþ1; xk�1; xk; vj; v
þ
j ; t
0g� ffi H1, we have xkt

0 2 EðGÞ, and to
avoid G½fxk; xk�1; z; t

0g� ffi K1;3, we have zt0 2 EðGÞ. But then G½fxi�1;
xiþ1; xi; z; t

0; vjg� ffi H1, since xit
0 62 EðGÞ; otherwise t0 contradicts the

choice of z.
(ii) If vþj is not in a common triangle with vj, then there exists a triangle T 0

containing vþj and vþþj . Again let t0 be the third vertex of T 0. If t0 ¼ xk,
then G½fxk; z; vþj ; xk�1g� ffi K1;3. Hence t0 6¼ xk and also t0 62 fxi; zg. If
t0 2 x1

!
Pxi�1 or t0 2 xkþ1

!
Pxm, we easily get contradictions with the chosen

path system. If t0 2 xiþ1
!
Pxj�1, then also vþþj ¼ xj, giving a contradiction,

since vþj contradicts the choice of z. Hence t0 62 VðPÞ [ fzg. Now G½ft0;
vþþj ; vþj ; vj; z; xkg� ffi H1, unless vþþj xk 2 EðGÞ and vþþj ¼ xj. But then
G½fxk; xiþ1; xj; vjg� ffi K1;3.
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Case a.2. z, vj are in a common triangle T with some vertex t, and Case a.1 does
not apply. Then, by the choice of z, VðTÞ \ VðPÞ ¼ ;. To avoid G½fxi�1; xiþ1;
xi; z; vj; tg� ffi H1, we have xit 2 EðGÞ. To avoid G½fz; xi; vj; vkg� ffi K1;3 (with pos-
sibly vk ¼ xk), we have xivk 2 EðGÞ, since vjvk 62 EðGÞ; otherwise we would be
in Case a.1. To avoid G½fxi; xi�1; t; vkg� ffi K1;3, we have tvk 2 EðGÞ. If vjxj 2
EðGÞ, then G½fxj�1; xjþ1; xj; vj; z; tg� ffi H1. Hence vþj 6¼ xj. We use that vþj is in a
triangle with vj or with vþþj .

(i) Suppose vþj and vj are in a common triangle T 0 with some vertex t0.

Clearly, t0 6¼ z; xi. We easily see that t0 62 x1
!
Pxk�1. Now suppose t0 ¼ xk.

Then G½fxk; xk�1; v
þ
j ; ukg� ffi K1;3, unless vþj uk 2 EðGÞ and uk 6¼ z; vk. To

avoid G½fxk; xk�1;vj; ukg� ffi K1;3, we have vjuk 2 EðGÞ. Then G½fxi; vk; t;
vj; uk; xkg� ffi H1, unless vkuk 2 EðGÞ. But then G½fz; t; vk; uk; vþj ; xkg�
ffi H1. Hence t0 6¼ xk. If t0 2 xkþ1

!
Pxm, then to avoid G½fxi; vk; t; vj; vþj ;

t0g� ffi H1, we have vkt
0 2 EðGÞ. But then vk ¼ xk or vkxk 2 EðGÞ. In both

cases, we easily obtain path systems contradicting the chosen path
system. Hence t0 62 VðPÞ.

Consider G½fvþj ; t0; vj; t; xi; vkg� (with possibly vk ¼ xk). If t0 62 VðQkÞ,
then to avoid an induced H1, we have tt0 2 EðGÞ. But then G½fxi�1; xiþ1;
xi; t; vj; t

0g� ffi H1. Hence t0 2 VðQkÞ n fz; vkg. Then to avoid an H1, we
have t0 ¼ vþk . Then vþk 6¼ xk; otherwise G½fxk; xk�1; vk; v

þ
j g� ffi K1;3.

Considering G½fvþk ; vk; vþþk ; vjg�, we get that vjv
þþ
k 2 EðGÞ. To avoid

G½fvþk ; vk; vþþk ; vþj g� ffi K1;3, we have vþj v
þþ
k 2 EðGÞ. But then G½fxi; vk;

t; vj; v
þ
j ; v

þþ
k g� ffi H1.

(ii) If vþj is not in a common triangle with vj, then considering a triangle
T with VðTÞ ¼ fvþj ; vþþj ; t0g, we easily obtain that G½fz; t; vj; vþj ; vþþj ;
t0g� ffi H1.

Case b. z and vj are not in a common triangle. Hence vj and vþj are in a triangle
T with some vertex t. Note that to avoid G½fz; xi; vj; vkg� ffi K1;3, we have xivk 2
EðGÞ with possibly vk ¼ xk.

(i) First suppose t 62 VðPÞ. Using that no induced claw is centered at xi and
that zvþj 62 EðGÞ, we obtain G½fxi; vk; z; vj; vþj ; tg� ffi H1 unless t ¼ vþk . If
t ¼ vþk , then vþk 6¼ xk; otherwise G½fxk; xk�1; vj; vkg� ffi K1;3 (using vjvk 62
EðGÞ). Considering G½fvþk ; vk; vþþk ; vþj g�, with possibly xk ¼ vþþk , we get
vþj v

þþ
k 2 EðGÞ. Now G½fxi; z; vk; vþk ; vþj ; vþþk g� ffi H1, unless vþj ¼ xj and

xixj 2 EðGÞ. But then G½fxi; xiþ1; z; xjg� ffi K1;3.
(ii) Now suppose t 2 VðPÞ. If t ¼ xk, then vk 6¼ xk (since z and vj are not in a

common triangle). No induced claw centered at xk gives that G½fxi; vk;
z; vj; v

þ
j ; xkg� ffi H1, unless vþj ¼ xj and xixj 2 EðGÞ; in the latter case

G½fz; vk; xi; xj; xj�1; xjþ1g� ffi H1. Hence t 6¼ xk. If t 2 x1
!
Pxk�1, then vj

contradicts the choice of z. If t 2 xkþ1
!
Pxm (assuming xk 6¼ xm), and
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vþþj 6¼ xj, then to avoid G½fxi; vk; z; vj; vþj ; tg� ffi H1, we have vkt 2 EðGÞ.
But then G½ft; t�; vk; vjg� ffi K1;3. If t 2 xkþ1

!
Pxm (assuming xk 6¼ xm), and

vþþj ¼ xj, then to avoid G½fxi; vk; z; vj; xj; tg� ffi H1 we have xixj 2 EðGÞ or
xit 2 EðGÞ, both giving an induced claw as contradiction, or vkt 2 EðGÞ.
In the latter case, G½ft; t�; vk; vjg� ffi K1;3.

We now show that jEðQkÞj ¼ 1, if xk 6¼ xm. This is not difficult if xixj 62 EðGÞ:
consider any neighbor z0 of z in VðGÞ n VðPÞ. Then, considering G½fz; z0; xi; xjg�,
to avoid an induced claw, we get that one of z0xi and z0xj is an edge. But then
considering G½fxj�1; xjþ1; xj; z; z

0; xig� or G½fxi�1; xiþ1; xi; z; z
0; xjg�, we obtain both

edges. This implies all vertices in the component of G� VðPÞ containing z have
xi and xj as neighbors. Hence, we can choose a vertex z with three neighbors on P.

Now assume xixj 2 EðGÞ, and assume xk 6¼ xm and jEðQkÞj � 2. Then z has no
third neighbor on P. Let p denote the successor of z on Qk. Since � � 3, p is in a
triangle by claw-freeness. If pxi or pxj is an edge, then both edges are in;
otherwise we obtain a claw induced by fxi; p; xiþ1; xjg or fxj; p; xjþ1; xig. But then
we contradict the choice of z. Hence pxi; pxj 62 EðGÞ. We distinguish four
subcases.

(i) p and z are in a common triangle with a vertex t 62 VðPÞ. Clearly, by the
choice of Qk, t 62 VðQkÞ. To avoid G½fp; t; z; xi; xiþ1; xi�1g� ffi H1, we have
txi 2 EðGÞ, and similarly txj 2 EðGÞ. Suppose first that xk ¼ pþ. To avoid
G½fz; t; p; xk; xk�1; xkþ1g� ffi H1, we have txk 2 EðGÞ (note that zxk 62 EðGÞ
by the choice of z). But then t contradicts the choice of z (since txi; txj;
txk 2 EðGÞ). Hence we may assume pþ 6¼ xk. We use that pþ is in a com-
mon triangle with p or pþþ.

(a) p and pþ are in a common triangle with some vertex t0. Similar argu-
ments as for p show pþxi; p

þxj 62 EðGÞ. If t0 62 VðPÞ, then the choice
of z implies t0xi; t

0xj 62 EðGÞ and t0z 62 EðGÞ; if t0 2 VðPÞ, then also
t0z 62 EðGÞ. Now to avoid G½ft0; pþ; p; z; xi; xjg� ffi H1, we conclude
that t0 2 VðPÞ and that t0 is adjacent to xi or xj. Both cases yield a claw
induced by fxi; z; t0; xiþ1g or fxj; z; t0; xjþ1g, a contradiction.

(b) p and pþ are not in a common triangle. Hence pþ and pþþ are in a
common triangle with some vertex t0. Using the choice of z and Qk, to
avoid G½fz; t; p; pþ; pþþ; t0g� ffi H1, we have t0t 2 EðGÞ, hence t0 62
VðPÞ. To avoid G½ft; t0; p; xig� ffi K1;3, we conclude that xit

0 2 EðGÞ,
and similarly xjt

0 2 EðGÞ, contradicting the choice of z.

(ii) p and z are in a common triangle with a vertex t 2 VðPÞ. Together with
pxi; pxj 62 EðGÞ, we contradict the assumption that z has no third neighbor
on P.

(iii) p and z are not in a common triangle, but p and pþ are in a common
triangle with a vertex t 62 VðPÞ. Clearly, the assumption implies tz 62
EðGÞ, and by the choice of Qk, zp

þ 62 EðGÞ. Hence also txi; txj 62 EðGÞ.
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As before pxi; pxj 62 EðGÞ and similarly pþxi; p
þxj 62 EðGÞ, unless pþ ¼

xk. To avoid G½ft; pþ; p; z; xi; xjg� ffi H1, we conclude pþ ¼ xk and xkxi
or xkxj is an edge. This yields a claw induced by fxi; xiþ1; xk; zg or
fxj; xjþ1; xk; zg.

(iv) p and z are not in a triangle, and p and pþ are not in a triangle with some
vertex of VðGÞ n VðPÞ. Hence p and pþ are in a common triangle with
some vertex t 2 VðPÞ. Since pxi; pxj 62 EðGÞ, the choice of Qk implies
pþ 2 VðPÞ. Consider G½fxi; xj; z; p; xk; tg�. If xixk 2 EðGÞ, then G½fxk; p;
xj; xj�1g� ffi K1;3. By similar arguments, to avoid an H1, we conclude
t ¼ xm and txi or txj is an edge. If txi 2 EðGÞ, we obtain G½fxi�1; xiþ1;
xi; t; p; xkg� ffi H1; the case txj 2 EðGÞ is similar.

Case 1. xixj 62 EðGÞ. Suppose first that xk ¼ xm and zxk 62 EðGÞ. Then con-
sider any neighbor z0 of z in VðQkÞ n VðPÞ and G½fz; z0; xi; xjg�. To avoid an
induced claw, we get that one of z0xi and z0xj is an edge. But then consider-
ing G½fxj�1; xjþ1; xj; z; z

0; xig� or G½fxi�1; xiþ1; xi; z; z
0; xjg�, we obtain both edges.

This contradicts the choice of z. Hence, we may assume zxi; zxj; zxk 2 EðGÞ.
Since by assumption xixj 62 EðGÞ, claw-freeness implies xixk 2 EðGÞ or xjxk 2
EðGÞ.

First assume xixk 2 EðGÞ. If also xjxk 2 EðGÞ, then to avoid G½fxk; xi;
xj; xk�1g� ffi K1;3, we have xixk�1 2 EðGÞ or xjxk�1 2 EðGÞ, both contradicting the
choice of P. So xjxk 62 EðGÞ. If xkxj�1 2 EðGÞ, then also xk�1xj�1 2 EðGÞ, con-
tradicting the choice of P. Hence xkxj; xkxj�1 62 EðGÞ. To avoid G½fxi; xk; z;
xj; xj�1; xjþ1g� ffi H1, we have xkxjþ1 2 EðGÞ, and hence also xk�1xjþ1 2 EðGÞ.
Since xi�1xk�1 62 EðGÞ, we have xi�1xk 62 EðGÞ. Since xi�1xk 62 EðGÞ, we have
xi�1xjþ1 62 EðGÞ (otherwise G½fxjþ1; xi�1; xj; xkg� ffi K1;3). If xiþ1xk�1 2 EðGÞ, then
x1
!
Pxizxj

 
Pxiþ1xk�1

 
Pxjþ1xk

!
Pxm contradicts the choice of P. Hence xiþ1xk�1 62

EðGÞ. To avoid G½fxi�1; xiþ1; xi; xk; xk�1; xjþ1g� ffi H1, we have xiþ1xk 2 EðGÞ.
But then G½fxk; xiþ1; z; xk�1g� ffi K1;3, a contradiction. We conclude that xixk 62
EðGÞ and xjxk 2 EðGÞ.

To avoid G½fxi�1; xiþ1; xi; z; xj; xkg� ffi H1, we have xiþ1xk 2 EðGÞ, and hence
also xiþ1xk�1 2 EðGÞ. This also implies xk ¼ xm. By the choice of P, we have
xixiþ2 62 EðGÞ. To avoid G½fxiþ1; xi; xiþ2; xkg� ffi K1;3, we have xiþ2xk 2 EðGÞ
and to avoid G½fxiþ1; xi; xiþ2; xk�1g� ffi K1;3, we have xiþ2xk�1 2 EðGÞ. If xkxjþ1 2
EðGÞ, then G½fxk; xiþ1; xjþ1; zg� ffi K1;3. If xiþ1xj�1 2 EðGÞ, then x1

!
Pxiþ1xj�1 

Pxiþ2xk�1
 
Pxjzxk contradicts the choice of P. To avoid G½fxiþ1; xiþ2; xk; xj; xj�1;

xjþ1g� ffi H1, we have xiþ2xj�1 2 EðGÞ n EðPÞ (i.e., xiþ3 6¼ xj�1). If xiþ1xiþ3 2
EðGÞ, then x1

!
Pxizxj

!
Pxk�1xiþ2xj�1

 
Pxiþ3xiþ1xk contradicts the choice of P. Hence

xiþ1xiþ3 62 EðGÞ, implying xiþ3xj�1 2 EðGÞ (otherwise G½fxiþ2; xiþ1; xiþ3; xj�1g�
ffi K1;3). If xixiþ3 2 EðGÞ, then x1

!
Pxi�1xiþ1xixiþ3

!
Pxj�1xiþ2xk�1

 
Pxjzxk contradicts

the choice of P, and if xi�1xiþ3 2 EðGÞ so does x1
!
Pxi�1xiþ3

!
Pxk�1 xiþ2xiþ1xizxk. If

xi�1xiþ2 2 EðGÞ, then, to avoid G½fxiþ2; xi�1; xiþ3; xk�1g� ffi K1;3, we have
xiþ3xk�1 2 EðGÞ and x1

!
Pxiþ2xj�1

 
Pxiþ3xk�1

 
Pxjzxk contradicts the choice of P.

Hence G½fxi�1; xiþ1; xi; xiþ2; xiþ3; xj�1g� ffi K1;3.
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Case 2. xixj 2 EðGÞ. To avoid G½fxi�1; xiþ1; xi; xj; xj�1; xjþ1g� ffi H1, we have
either xi�1xjþ1 2 EðGÞ or xiþ1xj�1 2 EðGÞ, since the other edges are not present
by standard arguments.

Case 2.1. xi�1xjþ1 2 EðGÞ. To avoid G½fxjþ1; xj; xjþ2; xi�1g� ffi K1;3, we have
xi�1xjþ2 2 EðGÞ, since xi�1xj 62 EðGÞ (standard) and xjxjþ2 62 EðGÞ (otherwise
x
!
Pxi�1xjþ1xj�1

 
Pxizxjxjþ2

!
Py contradicts the choice of P).

We first show zxk 2 EðGÞ. Assuming the contrary we have vk 6¼ xk. Since
� � 3 and G is claw-free, vk belongs to a triangle.

Case a. There exists a triangle T containing vk and z. Let q be the third vertex of T .

Case a.1. q 62 VðPÞ. If xivk 2 EðGÞ, then, to avoid G½fxi; xiþ1; xj; vkg� ffi K1;3,
also xjvk 2 EðGÞ, which contradicts the choice of z (vk would have been a better
choice). Hence, to avoid G½fxi�1; xiþ1; xi; z; vk; qg� ffi H1, we have xiq 2 EðGÞ.
But then G½fxjþ1; xjþ2; xi�1; xi; z; qg� ffi H1.

Case a.2. q 2 VðPÞ. By the way xk was chosen, we have q ¼ xi or q ¼ xj. If
q ¼ xi, then G½fxjþ1; xjþ2; xi�1; xi; z; vkg� ffi H1. If q ¼ xj, then, to avoid G½fxj; xi;
vk; xjþ1g� ffi K1;3, we have xivk 2 EðGÞ, giving the same H1 as a contradiction.

Case b. Every triangle T containing vk does not contain z. Let q1 and q2 be the
two other vertices of T . If q1; q2 62 VðPÞ, then G½fxi; xj; z; vk; q1; q2g� ffi H1;
otherwise, if for example q1z 2 EðGÞ, there would be a triangle T containing
vk and z, and if q1xi 2 EðGÞ, then G½fxi; z; q1; xiþ1g� ffi K1;3. Also, if q1 2 VðPÞ
(and/or q2 2 VðPÞ), then G½fxi; xj; z; vk; q1; q2g� ffi H1; otherwise, if for example
q1xj 2 EðGÞ, then G½fq1; xj; vk; q

�
1 g� ffi K1;3.

Case 2.1.1. x1 6¼ xi�1. To avoid G½fxi�1; xi�2; xi; xiþ1g� ffi K1;3, we have xi�2xjþ1

2 EðGÞ, and to avoid G½fxi�1; xi�2; xi; xiþ2g� ffi K1;3, we have xi�2xjþ2 2 EðGÞ.
But then G½fxi; z; xj; xjþ1; xjþ2; xi�2g� ffi H1.

Case 2.1.2. x1 ¼ xi�1.

Case 2.1.2.1. xk 6¼ xm. To avoid G½fxi; xj; z; xk; xk�1; xkþ1g� ffi H1, we have
xixk 2 EðGÞ or xjxk 2 EðGÞ. First assume xjxk 2 EðGÞ. To avoid G½fxj�1; xjþ1; xj;
xk; xk�1; xkþ1g� ffi H1, we have xj�1xkþ1 2 EðGÞ or xjþ1xk�1 2 EðGÞ. However,
if xjþ1xk�1 2 EðGÞ, then x1xjþ2

!
Pxk�1xjþ1

 
Pxizxkxkþ1

!
Pxm contradicts the choice

of P; if xj�1xkþ1 2 EðGÞ, so does x1xjþ1
!
Pxkzxjxi

!
Pxj�1xkþ1

!
Pxm. Hence xixk 2

EðGÞ. To avoid G½fxi�1; xiþ1; xi; xk; xk�1; xkþ1g� ffi H1, we have xiþ1xk�1 2 EðGÞ
or xi�1xkþ1 2 EðGÞ. However, if xiþ1xk�1 2 EðGÞ, then x1xjþ1

!
Pxk�1xiþ1

!
Pxjxizxk!

Pxm contradicts the choice of P; if xi�1xkþ1 2 EðGÞ, then G½fx1; xi; xjþ1;
xkþ1g� ffi K1;3.

Case 2.1.2.2. xk ¼ xm. We distinguish between the cases that xjxk 2 EðGÞ and
xjxk 62 EðGÞ.
Case 2.1.2.2.a. xjxm 2 EðGÞ. To avoid G½fx1; xjþ2; xjþ1; xj; z; xmg� ffi H1, we
have xjþ2xm 2 EðGÞ, since x1xm 62 EðGÞ (standard) and xjþ1xm 62 EðGÞ (otherwise
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also xjþ1xm�1 2 EðGÞ, giving a path x1xjþ2
!
Pxm�1xjþ1

 
Pxizy which contradicts

the choice of P) while the other possible edges are not present by standard
arguments.

First assume xjþ3 6¼ xm�1. To avoid G½fxm; xm�1; xjþ2; zg� ffi K1;3, we have
xjþ2xm�1 2 EðGÞ, and to avoid G½fxjþ2; x1; xjþ3; xm�1g� ffi K1;3, we have xjþ3xm�1

2 EðGÞ. But then G½fxiþ1; xi; x1; xjþ2; xjþ3; xm�1g� ffi H1, since x1xjþ3 62 EðGÞ
(otherwise x1xjþ3

!
Pxm�1xjþ2

 
Pxizxm contradicts the choice of P), xixjþ3 62 EðGÞ

(otherwise x1xjþ2xm�1
 
Pxjþ3xi

!
Pxj�1xjþ1xjzxm contradicts the choice of P), xiþ1xjþ3

62 EðGÞ (otherwise x1xjþ1xjþ2xm�1
 
Pxjþ3xiþ1

!
Pxjxizxm contradicts the choice of P),

and xiþ1xm�1 62 EðGÞ (otherwise x1xjþ1
!
Pxm�1xiþ1

!
Pxj xizxm contradicts the choice

of P), while the other possible edges are not present by standard arguments.
Hence we may assume that xjþ3 ¼ xm�1. Let p 2 VðGÞ n fxjþ2; xmg be a

neighbor of xjþ3. We first show that we can choose p on P. Suppose there does not
exist such a vertex p on P and let T be a triangle containing p and containing
a maximum number of vertices of P. Let q1 and q2 be the other vertices of T .
To avoid G½fxjþ3; xjþ2; xm; pg� ffi K1;3, we have xjþ2y 2 EðGÞ.

If VðTÞ \ VðPÞ ¼ ;, then G½fq1; q2; p; xjþ3; xjþ2; xmg� ffi H1.
If jVðTÞ \ VðPÞj ¼ 2, then q1 6¼ xjþ3 (since q2 is a neighbor of q1, it would

have been possible to choose p on P) and q2 6¼ xjþ3 (similar). But then p con-
tradicts the choice of z.

If jVðTÞ \ VðPÞj ¼ 1, let q1 be the vertex not on P and let q2 be the vertex on P.
One easily shows that q2 62 fx1; xi; xiþ1; xj�1; xj; xjþ1; xjþ2; yg by obtaining ðx; yÞ-
paths contradicting the choice of P. If q2 ¼ xjþ3, then G½fx1; xjþ1; xjþ2; q2;
q1; pg� ffi H1. If q2 2 xiþ2

!
Pxj�2, then to avoid G½fq2; q

�
2 ; q

þ
2 ; q1g� ffi K1;3, we have

q�2 q
þ
2 2 EðGÞ. However, then G½fq2; q1; p; xjþ3; xjþ2; xmg� ffi H1, since q2xjþ2 62

EðGÞ (otherwise x1
!
Pq�2 q

þ
2

!
Pxjþ2q2 pxjþ3xm contradicts the choice of P), q2xjþ3 62

EðGÞ by assumption and q2xm 62 EðGÞ (otherwise also q2xjþ3 62 EðGÞ by a
standard observation).

Hence we may assume that we can choose p on P, and one easily shows that
p 2 xiþ2

!
Pxj�2. To avoid G½fp; p�; pþ; xjþ3g� ffi K1;3, we have p�pþ 2 EðGÞ, since

p�xjþ3 62 EðGÞ (otherwise x1xjþ2
 
Ppxjþ3p

� Pxizxm contradicts the choice of P) and
pþxjþ3 62 EðGÞ (similar). We may assume that pxjþ2 62 EðGÞ (otherwise by con-
sidering the path x1

!
Pp�pþ

!
Pxjþ2pxjþ3xm we are back in the case that xjþ3 6¼ xm�1)

and pxm 62 EðGÞ (similar). Hence, to avoid G½fxjþ3; p; xjþ2; xmg� ffi K1;3, we
have xjþ2xm 2 EðGÞ. However, then G½fp�; pþ; p; xjþ3; xjþ2; xmg� ffi H1, since
p�xjþ2 62 EðGÞ (otherwise x1xjþ1

 
Ppxjþ3xjþ2p

� Pxizxm contradicts the choice of
P), p�xm 62 EðGÞ (otherwise also p�xjþ3 2 EðGÞ), pþxjþ2 62 EðGÞ (otherwise
x1xjþ1xjþ2p

þ!Pxjzxi
!
Ppxjþ3xm contradicts the choice of P), and pþxm 62 EðGÞ

(otherwise also pþxjþ3 2 EðGÞ).

Case 2.1.2.2.b. xjxm 62 EðGÞ. Let p 2 VðGÞ n fz; xm�1g be a neighbor of xm. We
first show that we can choose p on P. Suppose there does not exist such a vertex
p onP. To avoidG½fxm; xm�1; z; pg� ffi K1;3, we have pz 2 EðGÞ. If pxi 2 EðGÞ, then
G½fp; z; xi; xi�1; xjþ1; xjþ2g� ffi H1. Hence we have pxi 62 EðGÞ. Since xi�1xk�1 62
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EðGÞ, also xi�1xk 62 EðGÞ, and since xiþ1xk�1 62 EðGÞ, also xiþ1xk 62 EðGÞ.
To avoid G½fxi�1; xiþ1; xi; z; p; xkg� ffi H1, we have xixk 2 EðGÞ. However, then
G½fxm; xi; xm�1; pg� ffi K1;3.

Hence, we may assume that we can choose p on P. If xixm 2 EðGÞ, then to
avoid G½fxi; xiþ1; xj; xmg� ffi K1;3, we have xiþ1xm 2 EðGÞ, and hence also xm�1

xiþ1 2 EðGÞ, yielding a path x1xjþ1
!
Pxm�1xiþ1

!
Pxjxizxm, contradicting the choice

of P. Hence xixm; xiþ1xm 62 EðGÞ. If xi�1xm 2 EðGÞ, then also xi�1xm�1 2 EðGÞ, a
contradiction. Hence xi�1xm 62 EðGÞ, and similarly xj�1xm 62 EðGÞ. If xjþ1xm 2
EðGÞ, then also xjþ1xm�1 2 EðGÞ, yielding a contradicting path x1xjþ2

!
Pxm�1xjþ1 

Pxizxm. The above observations leave two cases for the location of p.

(i) p 2 xiþ2
!
Pxj�2. We choose p 2 NðxkÞ as close to xj�1 as possible. To avoid

G½fxm; p; z; xm�1g� ffi K1;3, we have pxm�1 2 EðGÞ. To avoid G½fxi; xj; z;
xm; xm�1; pg� ffi H1, we have pxi 2 EðGÞ or pxj 2 EðGÞ. If pxi 2 EðGÞ, then
also px1 2 EðGÞ (otherwise G½fxi; x1; p; zg� ffi K1;3Þ. Since pxm�1 2 EðGÞ,
the choice of P implies pþx1 62 EðGÞ. To avoid G½fp; x1; p

þ; xmg� ffi K1;3,
we have pþxm 2 EðGÞ, contradicting the choice of P. Next assume pxj 2
EðGÞ. Then pþ 6¼ xj�1. To avoid G½fp; pþ; xj; xmg� ffi K1;3, we have pþxj 2
EðGÞ, and to avoid G ½fxj; p; z; xjþ1g� ffi K1;3, we have pþxjþ1 2 EðGÞ. How-

ever, then x1
!
Ppxm�1

 
Pxjþ1p

þ!Pxjzxm contradicts the choice of P.

(ii) p 2 xjþ2
!
Pxk�2. We choose p 2 NðxkÞ as close to xjþ1 as possible. We again

have pxm�1 2 EðGÞ and pxi 2 EðGÞ or pxj 2 EðGÞ. If pxi 2 EðGÞ, then
to avoid G½fp; xi; p�; xmg� ffi K1;3, we have p�xi 2 EðGÞ and p 6¼ xjþ2. To
avoid G½fxi; z; xiþ1; p

�g� ffi K1;3, we have xiþ1p
� 2 EðGÞ. But then x1xjþ1!

Pp�xiþ1
!
Pxjzxip

!
Pxm contradicts the choice of P.

If pxj 2 EðGÞ, then also pxj�1; pxjþ1 2 EðGÞ. If p� ¼ xjþ1, then x1xjþ1

xjzxi
!
Pxj�1p

!
Pxm contradicts the choice of P. If p� 6¼ xjþ1, then to avoid

G½fp; xj; p�; xmg� ffi K1;3, we have p�xj 2 EðGÞ, and to avoid G½fxj; xj�1;
z; p�g� ffi K1;3, also p�xj�1 2 EðGÞ. But then x1xjþ1

!
Pp�xj�1

 
Pxizxjp

!
Pxk

contradicts the choice of P.

Case 2.2. xi�1xjþ1 62 EðGÞ (hence xiþ1xj�1 2 EðGÞ).
Case 2.2.1. j� i � 5. To avoid G½fxiþ1; xi; xiþ2; xj�1g� ffi K1;3, we have xiþ2

xj�1 2 EðGÞ, since xixiþ2 62 EðGÞ (contradicting path: x1
!
Pxi�1xiþ1xj�1

 
Pxiþ2 xizxj!

Pxm). By symmetry, we also have xiþ1xj�2 2 EðGÞ. To avoid G½fxiþ1; xi; xiþ2;
xj�2g� ffi K1;3, we have xiþ2xj�2 2 EðGÞ. However, then G½fxi; z; xj; xj�1; xj�2;
xiþ2g� ffi H1.

Case 2.2.2. j� i ¼ 4. We use that xiþ2 has a neighbor p 62 fxi�1; xi; xiþ1; xiþ2;
xj�1; xj; xjþ1g.

We first show we can choose p 2 VðPÞ. Supposing this is not the case consider
a triangle T containing p. Let q1 and q2 be the other vertices of T . First suppose
VðTÞ \ VðPÞ ¼ ;. If q1xiþ2 2 EðGÞ, then G½fxi�1; xi; xiþ1; xiþ2; p; q1g� ffi H1.
Hence q1xiþ2; q2xiþ2 62 EðGÞ. But then G½fq1; q2; p; xiþ2; xiþ1; xj�1g� ffi H1. Hence
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jVðTÞ \ VðPÞj � 1. Let q1 denote a neighbor of p in ðVðPÞ \ VðTÞÞnfxiþ2g. Then
xiþ2q1 62 EðGÞ by assumption. If xj�1q 2 EðGÞ, then also xj�1q

�
1 2 EðGÞ (other-

wise G½fq1; q
�
1 ; xj�1; pg� ffi K1;3), and we easily find a path contradicting the

choice of P. A similar observation shows xiþ1q1 62 EðGÞ. But then G½fxiþ1; xj�1;
xiþ2; p; q1; q2g� ffi H1.

Hence, we can choose p 2 VðPÞ. If xiþ2 has two successive neighbors on P, it
is obvious that we can find a path contradicting the choice of P. Hence, if p� and
pþ exist, we get that p�pþ 2 EðGÞ. We deal with the cases that p 2 fx1; xmg later.

To avoid G½fxiþ1; xj�1; xiþ2; p; p
�; pþg� ffi H1, we have xiþ1p 2 EðGÞ or xj�1

p 2 EðGÞ. If xiþ1p 2 EðGÞ and p 2 xjþ1
!
Pxm�1, then by considering the path

x1
!
Pxiþ1pxiþ2

!
Pp�pþ

!
Pxm, we are back in Case 2.2.1. But then G½fxiþ1; xj�1; xiþ2;

p; p�; pþg� ffi H1.
Now suppose p ¼ xm. Then xm 6¼ xk, since otherwise G½fxm; xiþ2; z; xm�1g� ffi

K1;3. Note that xk 6¼ xm�1 (otherwise x
!
Pxi�1xiþ1xizxk

 
Pxiþ2xm contradicts the

choice of P). To avoid G½fxi; xj; z; xk; xk�1; xkþ1g� ffi H1, we have xixk 2 EðGÞ or
xjxk 2 EðGÞ. First assume xjxk 2 EðGÞ. Like in the beginning of Case 2, we have
xj�1xkþ1 2 EðGÞ or xjþ1xk�1 2 EðGÞ. If xj�1xkþ1 2 EðGÞ, also xj�2xkþ1 2 EðGÞ.
However, since xj�2 ¼ xiþ2 this contradicts the fact that xk 6¼ xm�1. If xjþ1xk�1 2
EðGÞ, then like in the beginning of this case, we have k � j ¼ 4. To avoid
G½fxiþ1; xiþ2; xj�1; xjþ1; xjþ2; xjþ3g� ffi H1, we have xiþ1xjþ3 2 EðGÞ. But then
G½fxi�1; xi; xiþ1; xjþ3; xjþ1; xjþ2g� ffi H1. Hence we may assume that xjxk 62 EðGÞ
and xixk 2 EðGÞ. But then G½fxi; xi�1; xj; xkg� ffi K1;3.

For the final subcase suppose fx1g ¼ Nðxiþ2Þ n fxiþ1; xj�1g. By the choice of P,
Nðx1Þ � VðPÞ and x2 6¼ xi�1. All neighbors of x1, except for possibly xiþ1; xiþ2;
xj�1, are also neighbors of x2, otherwise we obtain an induced claw centered at x1.
If x1xi 2 EðGÞ, then x2xi 2 EðGÞ and to avoid G½fxi; x2; z; xiþ1g� ffi K1;3, we have
x2xiþ1 2 EðGÞ, contradicting the choice of P. Hence x1xi 62 EðGÞ and similarly
x1xj 62 EðGÞ.

If x1xiþ1 2 EðGÞ, then G½fx1; xiþ1; xiþ2; xi; z; xjg� ffi H1; if x1xj�1 2 EðGÞ,
then G½fx1; xiþ2; xj�1; xj; xi; zg� ffi H1. Now assume x1xiþ1; x1; xj�1 62 EðGÞ. Hence
x1 has some neighbor q 6¼ xi; xiþ1; xiþ2; xj�1; xj which is also a neighbor of x2. To
avoid G½fq; x2; x1; xiþ2; xiþ1; xj�1g� ffi H1, we have qxiþ1 2 EðGÞ or qxj�1 2 EðGÞ.

First suppose q 2 x3
!
Pxi�1 and qxiþ1 2 EðGÞ. Then to avoid G½fxiþ1; q; xi;

xiþ2g� ffi K1;3, we have qxi 2 EðGÞ. To avoid G½fx1; x2; q; xi; z; xjg� ffi H1, we have
qxj 2 EðGÞ. But then G½fq; x2; xiþ1; xjg� ffi K1;3. Next, suppose q 2 x3

!
Pxi�1 and

qxiþ1 62 EðGÞ. Then qxj�1 2 EðGÞ and to avoid G½fxj�1; q; xiþ2; xjg� ffi K1;3, we
have qxj 2 EðGÞ. To avoid G½fx1; x2; q; xj; z; xig� ffi H1, we have qxi 2 EðGÞ. But
then G½fq; x2; xi; xj�1g� ffi K1;3.

We now may assume q 62 x3
!
Pxi�1, hence q 2 xjþ1

!
Pxm. We choose q as close to

xm as possible, and deal with the subcase qxj�1 2 EðGÞ first.
If q ¼ xm, then, as before, we can repeat the previous cases with xj; xk instead

of xi; xj, and obtain an induced H1, unless xk ¼ xm; but in the latter case G½fxm;
x2; uk; xj�1g� ffi K1;3. Hence q 6¼ xm. To avoid G½fx1; x2; q; xj�1; xj; xjþ1g� ffi H1, we
have qxj 2 EðGÞ or qxjþ1 2 EðGÞ, both implying qxjþ1 2 EðGÞ. To avoid G½fq;
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x1; xjþ1; q
þg� ffi K1;3, we have xjþ1q

þ 2 EðGÞ, yielding x1xiþ2xj�1xjzxixiþ1xi�1 
Px2q
!
Pxjþ1q

þ!Pxm, a contradiction. For the remaining case, we assume qxj�1 62
EðGÞ; hence qxiþ1 2 EðGÞ. By similar arguments as before, we may assume
q 6¼ xm. To avoid G½fq; qþ; x1; xiþ1g� ffi K1;3, we have xiþ1q

þ 2 EðGÞ. If qþ ¼ xm,
then by similar arguments as before xm ¼ xk and x1xiþ2

!
Pxk�1x2

!
Pxi�1xiþ1xizQkxk

gives a contradiction. In the final case, the path P0 ¼ x1xiþ2
!
Pqx2
!
Pxiþ1q

þ!Pxm has
the same properties as P, also with respect to the choice of z. But z has two
internal vertices xi0 and xj0 of P0 with j0 � i0 � 5 as neighbors, so repeating the
above arguments with respect to P0; xi0 ; xj0 we will obtain an induced H1. This com-
pletes the proof of Theorem 4. &

3. POSSIBLE FORBIDDEN PAIRS AND
HAMILTONIAN-CONNECTEDNESS

We start by defining eight graphs which are 3-connected but not hamiltonian-
connected. Let m � 4 be an integer, Mi be a Km in which three vertices xi, yi, and
zi are marked and M ¼ [8

i¼1Mi.

� G1 ¼ Km;m,
� G2 is obtained from a cycle C ¼ x1x2 � � � x2m, by adding the edges xixmþi

(i ¼ 1; . . . ;m),
� G3 is an arbitrary 3-connected C4-free bipartite graph,
� G4 is obtained from M1 by adding two vertices a and b and all (six) edges

between a; b and x1; y1; z1,
� G5 is obtained from a cycle C ¼ x1x2 � � � x6m by adding the edges x3i�2x3i

(i ¼ 1; . . . ; 2m) and the edges x3i�1x3mþ3i�1 (i ¼ 1; . . . ;m),
� G6 is obtained from a cycle C ¼ x1x2 � � � x4m by adding the edges x2i�1x2iþ1

(i ¼ 1; . . . ; 2m� 1), x4m�1x1, and x2ix2mþ2i (i ¼ 1; . . . ;m),
� G7 is obtained from G5 by replacing every triangle x3i�2x3i�1x3i

(i ¼ 1; . . . ; 2m) by the graph G0 of Fig. 2,

FIGURE 2. The graph G’.
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� G8 is obtained from M by identifying each vertex xi with yiþ1 (i ¼ 1; . . . ; 7),
x8 with y1 and each vertex zi with ziþ4 (i ¼ 1; . . . ; 4).

Since the graphs G1; . . . ;G8 are not hamiltonian-connected, each of them must
contain an induced copy of either X or Y. The graphs G1;G2;G3;G4 all contain a
claw, but the last four graphs G5;G6;G7;G8 are all claw-free.

We will first show that one of the graphs X or Y must be K1;3. Assume that this
is not true. Assume, without loss of generality, that X 	 G1. Then X must either
contain an induced C4 or it must be a generalized claw K1;r for r � 4. First
consider the case when C4 	 X. Then Y must be an induced subgraph of both G3

and G4, since neither of these graphs contains an induced C4. However, the only
induced subgraph common to both G3 and G4 is the claw K1;3. If X ¼ K1;r for
r � 4, then Y must be an induced subgraph of both G2 and G4, since neither of
these graphs has an induced K1;4. Again, the only induced subgraph common to
both G2 and G4 is the claw K1;3. Therefore, without loss of generality, we can
assume that X ¼ K1;3.

Since G5;G6;G7;G8 are all claw-free, Y must be an induced subgraph of each of
these graphs. Since G5 is claw-free and �ðG5Þ ¼ 3, Y must satisfy both (a) and (f).
There is no induced P10 in G8, so (b) is satisfied. The shortest induced cycle in G5

besides C3 is a C8, the longest induced cycle in G8 is a C8, and G6 contains no
induced C8. Thus (c) is satisfied. In G5, the distance between distinct triangles is
either one or at least three. This implies that (d) is satisfied. The graph G7 does not
contain an induced copy of the graph S obtained from a P5 by placing a triangle on
the first and third edge (S is an H1 with an edge attached to a vertex of degree two).
Therefore, if Y contains three triangles, then each pair of triangles would have to be
at distance at least three. This would imply an induced P10, which is not true. Thus
(e) is satisfied. This completes the proof of Theorem 6. &

4. OPEN QUESTION

The obvious question is the following.

Question A. What is the characterization of those pairs of connected graphs
X and Y such that being X-free and Y-free implies that a 3-connected graph is
hamiltonian-connected?

A simpler question, but one that is critical to answering Question A is the following.

Question B. What is the largest k such that a 3-connected claw-free and Pk-free
graph is hamiltonian-connected?
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