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an edge), then G is hamiltonian-connected. Also, examples will be des-
cribed that determine a finite family of graphs £ such that if a 3-connected
graph being claw-free and L[-free implies G is hamiltonian-connected,
then L € £. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 104—119, 2002
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1. INTRODUCTION

We use Bondy and Murty [2] for terminology and notation not defined here and
consider finite simple graphs only. A graph G with n > 3 vertices is hamiltonian
if G contains a cycle of length n, and it is hamiltonian-connected if between each
pair of vertices of G there is a Hamilton path, i.e., a path on n vertices. If H is a
given graph, then a graph G is called H-free if G contains no induced subgraph
isomorphic to H. The graph H is said to be a forbidden subgraph.

We first describe some graphs that will be frequently used as forbidden sub-
graphs. Specifically, we denote by P, and C; the path and the cycle on k vertices,
by C the claw K 3, by B the bull, by D the deer, by H the hourglass, by N the net,
by W the wounded, by Z; the graph obtained by identifying a vertex of K3 with an
endvertex of Py, and by H the graph obtained by joining two vertex disjoint
triangles by a path of length k (see Fig. 1).

The next result was obtained in Shepherd [7], and the following one in Faudree
and Gould [6]. Note that in both cases, 3-connectedness is assumed. This is
natural, since the forbidden subgraph conditions, being local conditions, do not
imply 3-connectedness, and any hamiltonian-connected graph (except K, K>, K3)
must be 3-connected.

Theorem 1 [7]. If a 3-connected graph G is claw-free and N-free, then G is
hamiltonian-connected.

Vog U A

The claw K73 The bull B The deer D The hourglass H The net N

AL LX)

The wounded W Z;

FIGURE 1. Frequently used forbidden subgraphs.
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Theorem 2 [6]. If a 3-connected graph G is claw-free and Z)-free, then G is
hamiltonian-connected.

Recently Chen and Gould [4] extended this collection of pairs of forbidden
graphs ensuring hamiltonian-connectedness of 3-connected graphs by proving the
following result, which gives three new independent forbidden pairs.

Theorem 3 [5]. If G is a 3-connected claw-free graph, then G is hamiltonian-
connected if any of the following holds.

(a) G is Zs-free,
(b) G is Pg-free,
(c) G is W-free.

The cases (a) and (b) of the above result were independently proved in [3]. In
Section 2, we extend the collection of forbidden pairs by proving the following
result.

Theorem 4. If G is a 3-connected claw-free H\-free graph, then G is hamilto-
nian-connected.

In Bedrossian [1], all forbidden pairs of connected graphs ensuring that a graph
is hamiltonian are characterized, and the same was done for pancyclicity. The same
type of characterization was done for other hamiltonian properties in Faudree and
Gould [6]. A survey of results of this kind can be found in Faudree [5].

Combining their results with previous results, Chen and Gould [4] conclude
that if {S, T'} is a pair of graphs such that every 2-connected {S, T'}-free graph is
hamiltonian then every 3-connected {S, T }-free graph is hamiltonian-connected.
Theorem 4 gives a pair of forbidden graphs that implies a graph is hamiltonian-
connected in the presence of 3-connectedness but does not imply a graph is
hamiltonian in the presence of 2-connectedness.

Also, in [6] the following theorem was proved. It gives some context to the
previous results on pairs of forbidden graphs ensuring hamiltonian-connectedness
of 3-connected graphs.

Theorem 5 [6]. Let X and Y be connected graphs with X, Y # P3, and let G be
a 3-connected graph. If G being X-free and Y-free implies G is hamiltonian-
connected, then, up to symmetry, X = K, 3, and Y satisfies each of the following
conditions.

@ A(Y) <3,

(b) A longest induced path in Y has at most 12 vertices,
(c) Y contains no cycles of length at least 4,

(d) All triangles in Y are vertex disjoint,

(e) Y is claw-free.

One implication of Theorem 5 is that there are only a finite number of forbidden
pairs of graphs implying hamiltonian-connected of 3-connected graphs. However,
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the gap between Theorem 5 and the positive results in Theorems 1, 2, 3, and 4 is
still substantial. The following result will reduce, but not eliminate, that gap
somewhat. The proof is postponed to Section 3.

Theorem 6. Let X and Y be connected graphs with X,Y # P, and let G be a
3-connected graph. If G being X-free and Y-free implies G is hamiltonian-
connected, then X = Ky 3, and Y satisfies each of the following conditions.

(@ AY) <3,
(b) The longest induced path in Y has at most 9 vertices,

(c) Y contains no cycles of length at least 4,

(d) The distance between two distinct triangles in Y is either 1 or at least 3,

(e) There are at most two triangles in Y,
(f) Y is claw-free.

2. THE PROOF OF THEOREM 4

In what follows, an (x,y)-path P is said to be maximal if there is no (x,y)-path Q
such that V(P) is a proper subset of V(Q).

The set up of the proof in this section will be to consider a maximal (x, y)-path
P that is not a Hamilton path, between some pair of vertices x and y, and then
show that P can be extended, contradicting the maximality of P. The following
lemma will be useful in selecting such maximal paths.

Lemma 7. For any pair of vertices x and y in a 3-connected claw-free graph G,
there is a maximal (x,y)-path P such that N(x) C V(P).

Proof. Let P = x1x; - x,, with x = x; and y = x,, be a maximal (x,y)-path
with the property that it contains a maximum number of vertices of N(x). If
N(x) C V(P), then we are done. Hence, we may assume there is a vertex z €
N(x) \ V(P). We will exhibit an (x, y)-path Q that contains (N(x) N V(P)) U {z}.
This will give a contradiction, since any maximal path (x, y)-path Q' that contains
the vertices of Q would have more vertices in N(x) than P.

Since G is 3-connected, there exist three vertex disjoint (z, P)-paths, which will
be denoted by Qi, 0>, and Q3. We may assume that Q; has endvertex x;. Let x,
and x; (with 1 < r < s) be the endvertices of O, and Qs, respectively. If z has
more than three adjacencies on P, then select x, and x; to be the last two
adjacencies of z on P. Let S be the set of vertices in N(x) N V(P) that are not
adjacent to z. Note that to avoid an induced claw centered at x, the vertices in §
form a complete graph. Also note that N (x ) NN(z ) NV(P) C x Px, U {x}.

IfSnN ersz 1 =0, then O = x; er sz Q3x5 me is the required path, since
this path contains z as well as N (x)NV(P).

Ifs ﬂx,Hsz 1 75 (), then select i and j such that x; is the smallest index-
ed vertex in SN x,HPxS 1 and x; is the largest. It is possible that i = j. By the
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maxnnahty of P and since G is claw-free, x,x; € E(G). Then Q :xlxj(inxz
er sz Q3x5 me is the required path. u

In the next proof, we start with a graph G that is 3-connected and claw-free,
and for which there is no Hamilton path between some pair of vertices x and y of
G. By Lemma 7, we can select a maximal (x, y)-path P = x1x; - - - x,,, With x = x;
and y = x,,, such that N(x) C V(P). Since P is not a Hamilton path, there is a
vertex z not on P. Since G is 3-connected, there exist three vertex disjoint (z, P)-
paths, and at least two of these paths will terminate in interior vertices of P. Let
x;, xj, and x; (with 1 < i <j < k < m) be the endvertices on P of these paths and
denote the paths by Q;, Q;, and O, respectively. We can choose z and the paths
0i, Q;, Ok in such a way that

A |EQ)] =1,
(i) |E(Q;)| is minimum subject to (i),
(iii) |E(Qx)| is minimum subject to (i) and (ii).

For ¢ = i,j, k, the path Q, will be denoted by zwy - - - usx, realizing of course that
the path might be just an edge. For shortness, we w111 use Q to denote the path
X; leQij By the way the paths are chosen, we conclude that Q is an induced
path except possibly for the edge x;x;.

The maximality of P and G being claw-free implies that x;_1x;1; € E(G), for
otherwise there would be an induced claw centered at x;. Likewise, xj_1xj11 €
E(G). Note that ] —i >4, for otherw1se the path P could be extended; e.g., if
j—i=73, then lex, lx,+1x,§xjx/ liHme is such a path. Also, observe that
XiXj2 ¢ _Ig (G), for 0therw1se the path P can be extended to the path x; Px, 1Xit1
Px;_ox; Oxjx; 1xj+1me

Select the smallest r; with i < r; <j such that x;x,, € E(G), but xx,, 11 ¢
E(G). By the previous remarks, such an r; exists. Likewise, select the smallest
s1 with j < sy < k such that x;x;, € E(G), but xjxs, 11 € E(G). There are no edges
between x; Px, 1 and x;Px, 1, except possibly for x;x;: the existence of any of
the edges gives an extensmn of P e.g. if Xp 1%, 41 € E(G), then P can be
extended to the path x; Px, 1x,+1Px,1x, Qx]xblPx]Hx] 1 x,]HxMHme In the
same way, select a largest r, with i < r, < j such that x;x,, € E(G), but xjx,,_ &
E(G). By symmetry and the previous remarks, such an r, exists. Also, if x; # X,
in the same way an s, associated with the vertex x; can be defined. Also by
a symmetry argument, we know that there are no edges between x,,_ 1Px] and
Xgp— 1ka except possibly for xjx;.

We are now ready to present the proof of Theorem 4.

Assume that G is a 3-connected, claw-free graph, and there is no Hamilton
path between some pair of vertices x and y of G. We will show that G must
contain an induced copy of H;. We choose a maximal (x,y)-path P = x1x - « - Xy,
with x = x; and y = x,, subject to the condition that N(x) C V(P). We choose a
vertex z € V(G) \ V(P) and three vertex disjoint (z, P)-paths as in the general
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discussion. All of the notation and observations of the general discussion are
assumed.

We claim that we can choose z in such a way that |E(Q;)| =1, and that
|E(Qx)| = 1if xx # x,,. Suppose |[E(Q;)| > 2, and consider z and the successor v;
of zon Q;. By the choice of z, x;v; € E (G). Since G is 3-connected, claw-free, and
zv+ ¢ E(G), there exists a triangle T containing z and v; or there exists a triangle
T contammg vj and v . We distinguish a number of cases.

Case a.1. z,v;, and a vertex of Qy are in a common triangle. Let r € V(Qx)\{z}
be the third vertex of T. By the choice of Oy, we have t = . If vy # xi, then
G{xi—1,Xit1,X:5 2, vj, v }] = Hy, since x;v; ¢ E(G) (otherwise v; contradicts the
choice of z) and x;t ¢ E(G) (otherwise ¢ contradicts the choice of z). Hence
Vi = Xk.

To avoid G[{x;_1,Xi+1,%i; 2, vj, X }] = H), we must have at least one of xxx;_j,
xex; and x;11x; in E(G). Then, since x;_1x; & E(G) (otherwise to avo&i Gl{x;
Xio1,%, ﬂg,l}] K3, we have x;_jx;_; € E(G) yielding a path xj Px;_ x|
Px; i2xx Px,, which contradicts the choice of P) and xyx; € E(G) (otherwise to
avoid G[{xx;x;, vj,xx—1}] = K13, we have xyx,_; € E(G), also yielding a path
which contradicts the choice of P), we get x;11x; € E(G), implying also x;,4
Xp—1 €EE (G)

If ViXj € E(G) G.e., |E(Qj)| = 2), then to avoid G[{xj717xj+1’xj; vj, Z, xk}] =
H,, we similarly have that x;1x; € E(G), and get a contradiction since Gl{xx;
Xiy1,Xj+1,2}] = K; 3. Hence we may assume vx; ¢E( ) and thus v & V(P)
(where v+ is the successor of vj on Q)). Since v] * ¢ E(G), there ex1sts a
triangle T’ contammg v; and v or there exists a trlangle T’ containing v and

v, Note that v x; ¢ E(G) (0therw1se Gl{x; 2,07, a1 }] =2 K 3).

@) Suppose vj and vj’ are in a common triangle 7’ with some vertex 7. Then
/¢ {x,,x],xk, z}, while also 7 € V(P)\ {x,,xj,xm}'_)otherwise if e
X1 le 1, then v; contradicts the choice of z, if ! € xi1 Px;_1, then the path
zvjt contradicts the choice of Q;, and if ¢ € xi Px,,, then the paths zx;
and zv;7 contradict the choice of Q; and Q. Hence ¢ ¢ V(P) U {z}.
To avoid G[{xiy1,X—1,%; vj, v, 7'}] = Hy, we have x7’ € E(G), and to
avoid G[{xx;xx_1,2,1'}] = K, 3, we have zt' € E(G). But then G[{x;_i,
Xit1,Xi;2, 0, vj}] =& H,, since x;t’ ¢ E(G); otherwise ¢ contradicts the
choice of z.

@) If v is not 1n a common triangle with v;, then there exists a trlangle T’
contalnmg v and er+ Again let ¢ be the third vertex of T". If ¢ = x;,
then G[{xk,z, U X 1}] Ky3. Hence ¢ # x; and also 7 & {x;,z}. If
Y €x Px, port € xpyq ﬂxm, we easily get contradlctlons with the chosen
path system. If # € x;41 Px;_i, then also v ¥ = x;, giving a contradiction,
since v;~ contradicts the choice of z. Hence #' ¢ V(P) U {z}. Now G[{7,
vj*ﬂ fuf; v, 2, % }] = H), unless vjﬂxk € E(G) and v++ = x;. But then
G[{Xk;xi+1, X, ’Uj}] = Kis.
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Case a.2. z, v are in a common triangle 7 with some vertex ¢, and Case a.1 does
not apply. Then, by the choice of z, V(T) N V(P) = (). To avoid G[{x;—1,Xi+1,
Xi;2, v, t}] = Hy, we have x;t € E(G). To avoid G[{z; x;, v;, v }] = K 3 (with pos-
sibly v, = xi), we have x;u; € E(G), since vjv € E(G); otherwise we would be
in Case a.l. To avoid G[{x;;xi_1,t, v }] = K3, we have rv; € E(G). If vjxj €
E(G), then G[{x;_1,Xj11,%}; v, 2, 1}] = Hy. Hence v;" # x;. We use that v} is in a
triangle with v; or with v;*

(i) Suppose vj* and v; are in a common triangle 7’ with some vertex 7'.

Clearly, ¢ # z, x;. We easily see that ' ¢ x1 Px_. Now suppose ' = xi.
Then G[{x; xc_1, v; uk}] K 3, unless v;“uk € E(G) and uy # z, v. To
avoid G[{xx; xx_1, v]7 uk}] =~ K 3, we have vjux € E(G). Then G[{x;, v, 1;
v, Ug, Xk }] =2 Hy, unless vy € E(_();) But then G[{z,t, v; u, vj*, Xy H
=~ H,. Hence 7 # x;. If ¢ € X441 Px, then to avoid G[{x;, w,1; vj, vj?L,
'}] = Hy, we have v’ € E(G). But then v = x; or yxx € E(G). In both
cases, we easily obtain path systems contradicting the chosen path
system. Hence ¢’ ¢ V(P).

Consider G[{vj*,t’, vj; 1, X, U }] (with possibly vy = x). If ¢ & V(Qx),
then to avoid an induced H,, we have #' € E(G). But then G[{x;_1, xi11,
Xist, vj,t’}] H;. Hence ¢ € V(Qx) \ {z, v}. Then to avoid an H;, we
have 7 =wl. Then v #x:; otherwise G[{xi;xi—1, v, v} }] = K 3.
Considering G[{v]"; v, v{ 7, vj}], we get that vjv ™ € E(G) To avoid

Gl{v; S Y v, +}] K 3, we have vyt € E(G) But then G[{x;, v,

v, v '7 }]

(ii) If v is not in a common triangle with v;, then considering a triangle
T with V(T) = {v/, v ", 7'}, we easily obtain that G[{z,1, v;; v}, v/,
'} =H

Case b. zand v; are not in a common triangle. Hence v; and v;’ are in a triangle
T with some vertex . Note that to avoid G[{z;x;, vj, i }] = K 3, we have x;y €
E(G) with possibly vy = xy.

(i) First suppose ¢ ¢ V(P). Using that no induced claw is centered at x; and

that zv+ ¢ E(G ) we obtain G[{x;, v, z; vj, v;",1}] = H, unless t = v If

t = v, then v} # xi; otherwise G[{x;Xk_1, vj, v }] = K13 (using vjv &

( ). Considering G[{v]"; vk, v} +, N ] with possibly x; = v, t, we get

v vy € E(G). Now G[{x;,z,u; v, v, v " }] = H), unless v = x; and
xixj € E(G). But then G[{x;;xi41,2,xj}] = K173

(ii) Now suppose t € V(P). If t = xi, then v # x; (since z and v are not in a

common triangle). No induced claw centered at x; gives that G[{x;, v,

20, v, %k} = Hi, unless v/ =x; and xx; € E(G); in the latter case

Gl{z, vk, X3 %7, xj_1, Xj41 }] = H1 Hence t;éxk If t € x, Py, then o

contradicts the choice of z. If r € kame (assuming x; # x,,), and
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v # xj, then to avoid G[{x;, v, z; v, v}, t}] = H,, we have v € E(G).
But then G[{t;1, v, vj}] = K 3. If t € X441 Px,, (assuming x; # x,,), and
v = xj, then to avoid G[{x;, w, z; v}, %;, }] = Hy we have x;x; € E(G) or
x;it € E(G), both giving an induced claw as contradiction, or vt € E(G).
In the latter case, G[{f;1™, v, v;}] = K 3.

We now show that |E(Qyx)| = 1, if xx # x,,. This is not difficult if xx; ¢ E(G):
consider any neighbor z' of z in V(G) \ V(P). Then, considering G[{z;Z’, x;, x;}],
to avoid an induced claw, we get that one of z'x; and z'x; is an edge. But then
considering G[{xj_1,Xj11,%;; 2,2, % }] or G[{xi_1,Xi+1,%;; 2,2, x; }], we obtain both
edges. This implies all vertices in the component of G — V(P) containing z have
x; and x; as neighbors. Hence, we can choose a vertex z with three neighbors on P.

Now assume x;x; € E(G), and assume x; # x,, and |[E(Qy)| > 2. Then z has no
third neighbor on P. Let p denote the successor of z on Q. Since § > 3, pisin a
triangle by claw-freeness. If px; or px; is an edge, then both edges are in;
otherwise we obtain a claw induced by {x;; p, xi41,x;} or {x;; p, xj+1,x;}. But then
we contradict the choice of z. Hence px;,px; ¢ E(G). We distinguish four
subcases.

(i) p and z are in a common triangle with a vertex ¢t ¢ V(P). Clearly, by the
choice of Oy, t & V(Qx). To avoid G[{p, t, z; xi, Xi+1,%i—1 }] = H;, we have
tx; € E(G), and similarly x; € E(G). Suppose first that x; = p™. To avoid
G[{z,t,p; Xk, Xk—1, Xk+1}] = Hy, we have tx; € E(G) (note that zx; & E(G)
by the choice of z). But then ¢ contradicts the choice of z (since #x;, 1x;,
1x;. € E(G)). Hence we may assume pt # x;. We use that p™ is in a com-
mon triangle with p or p*™.

(a) p and p* are in a common triangle with some vertex 7. Similar argu-
ments as for p show pTx;, ptx; ¢ E(G). If ' ¢ V(P), then the choice
of z implies 7'x;,¢'x; ¢ E(G) and 'z ¢ E(G); if ¥ € V(P), then also
'z ¢ E(G). Now to avoid G[{¢',p",p;z,x;,x;}] = H;, we conclude
that /' € V(P) and that ¢’ is adjacent to x; or x;. Both cases yield a claw
induced by {x;;z,7,x;11} or {x;;z,7, x4}, a contradiction.

(b) p and p* are not in a common triangle. Hence p™ and p*™ are in a
common triangle with some vertex 7. Using the choice of z and Q, to
avoid G[{z,t,p;p",p**,¢}] = H,, we have 't € E(G), hence 1 ¢
V(P). To avoid G[{r;?,p,x;}| = K, 3, we conclude that x;' € E(G),
and similarly x;#' € E(G), contradicting the choice of z.

(ii) p and z are in a common triangle with a vertex ¢t € V(P). Together with
px;,pxj & E(G), we contradict the assumption that z has no third neighbor
on P.

(iii) p and z are not in a common triangle, but p and p™ are in a common
triangle with a vertex t ¢ V(P). Clearly, the assumption implies #z ¢
E(G), and by the choice of Ok, zp* & E(G). Hence also tx;,tx; ¢ E(G).
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As before px;,px; ¢ E(G) and similarly p*x;, p*x; & E(G), unless p* =
x¢. To avoid G[{t,p*,p;z,x;,x;}] = Hy, we conclude pt = x; and xx;
or x;x; is an edge. This yields a claw induced by {x;;xi+1,xk, 2} or
15 2501, Xk, 23

(iv) p and z are not in a triangle, and p and p™ are not in a triangle with some
vertex of V(G) \ V(P). Hence p and p* are in a common triangle with
some vertex ¢ € V(P). Since px;,px; ¢ E(G), the choice of Q implies
pT € V(P). Consider G[{x;,xj,z;p, xk, t}]. If xixx € E(G), then G[{x;p,
xj,x]-,l}] = K 3. By similar arguments, to avoid an H;, we conclude
t =x, and tx; or 1x; is an edge. If 1x; € E(G), we obtain G[{x;_1,xi41,
xi;1,p, X} = Hy; the case tx; € E(G) is similar.

Case 1. xx; ¢ E(G). Suppose first that x; = x,, and zx; ¢ E(G). Then con-
sider any neighbor ' of z in V(Qx) \ V(P) and G[{z;Z,x;,x;}]. To avoid an
induced claw, we get that one of z'x; and z'x; is an edge. But then consider-
ing G[{xj_1,xj+1,%};2,Z,x:}] or G[{x;_1,xi+1,X:;2,2,x;}], we obtain both edges.
This contradicts the choice of z. Hence, we may assume zx;, zx;, zxx € E(G).
Since by assumption xx; & E(G), claw-freeness implies xx; € E(G) or xjx; €
E(G).

First assume xx; € E(G). If also xjx; € E(G), then to avoid G[{x;x;,
Xj, x—1}] = K 3, we have xpx,_; € E(G) or xjxx—1 € E(G), both contradicting the
choice of P. So xjx; ¢ E(G). If xxxj—1 € E(G), then also x_1x;_1 € E(G), con-
tradicting the choice of P. Hence xixj,xixj—1 € E(G). To avoid G[{x;,xx,z;
Xj,Xj—1,Xj+1}] = Hi, we have xx;1 € E(G), and hence also x;_ixj;1 € E(G).
Since x;_1x—1 € E(G), we have x;_1x; & E(G). Since x;_1x;x € E(G), we have
Xi_ lx/+1¢E( ) (otherwise G[{xj+1,x, 1, X, X H =2 Ky 3). If X 1x1 € E(G), then
X1 Px,zxj Px,+1xk 1 xJ+1kaxm contradicts the choice of P. Hence x; x| &
E(G). To avoid G[{xi—1,Xit1,Xi; Xk, Xk—1,Xj4+1}] = Hi, we have x;1x € E(G).
But then G[{xk,xit1,2,%—1}] = K) 3, a contradiction. We conclude that xx; ¢
E(G) and xjx; € E(G).

To avoid G[{x;_1,Xi1,%i;2, %, X }] = Hy, we have x;;1x; € E(G), and hence
also x;;1x,—1 € E(G). This also implies x; = x,,. By the choice of P, we have
xixiso € E(G). To avoid G[{xii1;xi, X2, % }] = Ky 3, we have xix; € E(G)
and to avoid G[{xi+1;xi, Xit2, Xk—1}] = K1 3, we have x;ox,—1 € E(G). Ifjkx]q,] €
(E_(G), then G[{xk,xl+1,x]+1 Z}] K13 If Xit1Xj— 1€E(G), then lelex] 1
Pxiox;_ 1Px]zxk contradicts the choice of P. To avoid G[{xXiy1,Xi12,Xk; X}, Xj_1,
Xjy1}) &2 H,, we have Xig2Xj—1 EE( Y\E(P) (ie., xip3 #x-1). If xipixi43 €
E(G), then x| Px;zx; ka 1Xi 42X~ 1le+3xl+1xk contradicts the choice of P. Hence
Xiy1Xi03 & E(G), implying x;43x;— 1€ E(G) (0therw1se G[{x,Jr%_le,lerg, Xj_1}]
=~ K 3). If xixi13 € E(G), then x; Px, 1x,+1x,xl+313c] 1% 42X 1 Pxjzx; contradicts
the choice of P, and if x;_1x;13 € E(G) so does x; Px;_1x;13 ka 1 XitoXip1xizxg. If
Xi—1Xit2 € E(G), then, to aV01c<1_ G[{xl+2,xl 1, X3, X—1}] =2 K13, we have
Xi3X—1 € E(G) and x; Px,+2xj 1 Pxiaxp— 1ijzxk contradicts the choice of P.
Hence G[{xi,l y Xit 1, Xiy Xig2, Xi43, Xj—1 }] K173
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Case 2. xuxj € E(G). To avoid G[{xi—1,Xi+1,X:; X, Xj—1,%j+1}] = H,, we have
either x;_1x;11 € E(G) or x;11xj_1 € E(G), since the other edges are not present
by standard arguments.

Case 2.1. x,_1xj1 € E(G). To avoid G[{xj;1;xj,%j42,%i—1}] = K; 3, we have
Xi_)Xj2 € E(G(L since x;_1X; ¢ E(G) (standard) and xx;.» ¢ E(G) (otherwise
XPx;_1xj11xj—1 Px;zxjxj» Py contradicts the choice of P).

We first show zx; € E(G). Assuming the contrary we have vy # x;. Since
6 > 3 and G is claw-free, v; belongs to a triangle.

Casea. There exists a triangle T containing v, and z. Let g be the third vertex of T

Case a.1. g & V(P). If x;u, € E(G), then, to avoid G[{x; Xi1,%}, v }] =2 K 3,
also xju, € E(G), which contradicts the choice of z (v would have been a better
choice). Hence, to avoid G[{x;_1,Xi+1,X:;2, v, q}] = Hy, we have x;q € E(G).
But then G[{Xj+1 3 Xj12, Xi—13 X5 Z, q}] =~ H,.

Case a.2. g € V(P). By the way x; was chosen, we have g = x; or ¢ = x;. If
q = x;, then G[{xj;1,Xj12, Xi—1;%;, 2, v }) = Hy. If ¢ = x;j, then, to avoid G[{x;;x;,
Uk, Xj+1}] =2 Ky 3, we have x;u, € E(G), giving the same H; as a contradiction.

Case b. Every triangle T containing v, does not contain z. Let g¢; and g, be the
two other vertices of T. If qi,q> & V(P), then G[{xi,x},2; v, q1,92}] = Hy;
otherwise, if for example ¢,z € E(G), there would be a triangle 7 containing
v and z, and if ¢1x; € E(G), then G[{x;;z,q1,xi11}] = K 3. Also, if g; € V(P)
(and/or ¢, € V(P)), then G[{x;,xj,2; vk, q1,q>}] = Hy; otherwise, if for example
q1%; € E(G), then G[{q1;x, v, q; }] = Ky 3.

Case 2.1.1. X1 75 x;i_1. To avoid G[{xi_l;xi_z,xi,xi+1}] = K173, we have Xi—2Xj+1
€ E(G), and to avoid G[{x;_1;x;_2, xi,xi12}] = K| 3, we have x;_»xj12 € E(G).
But then G[{x;, z, xj; Xj11,Xj12, Xi—2 }] = H|.

Case 2.1.2. x; = x;_;.

Case 2.1.2.1. x; # x,,. To avoid G[{x;,xj,z; Xk, X—1,%k+1}] = H;, we have
xix; € E(G) or xjx; € E(G). First assume x;x;, € E(G). To avoid G[{xj_1,Xj+1,Xj;
X, Xk—1,Xk+1 ] = Hy, we have Xjm1Xer1 € E(G) Or Xj11X—1 € E(G). However,
if xj 101 € E(G), then xlx]Hka lx,HPx,zxkaL) Px,, contradlcts the choice
of P; if xj_1xxq1 € E(G), so does xxjy1 Pxgzxx; Pxj_ 1xk+1me Hence x;x; €
E(G) To avoid G[{xi,l,xlﬂ,x,,xk,xk,l,xkﬂ}] Hy, we havgx,ka,l_E) E(G)
OI' Xi—1Xk+1 € E(G) However, if x; x| € E(G), then xlXj+1ka,1xi+1 ijx,-zxk
me contradicts the choice of P; if x;_jxep1 € E(G), then G[{x;x;,x41,
Xei1}] 2 Ko

Case 2.1.2.2. x; = x,,. We distinguish between the cases that x;x; € E(G) and
xxi € E(G).

Case 2.1.2.2.a. xx, € E(G). To avoid G[{x1,Xj12,Xj:+1;X,2,Xn}] = H;, we
have x; ox,, € E(G), since x1x,, ¢ E(G) (standard) and xj,x,, € E(G) (otherwise
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also xj11x,—1 € E(G), giving a path xlxj+2ﬁcm_1xj+1$x,-zy which contradicts
the choice of P) while the other possible edges are not present by standard
arguments.

First assume X3 # X,,—1. To avoid G[{x;Xnu_1,%j42,2}] = K; 3, we have
Xjt2Xm—1 € E(G), and to avoid G[{xj12; X1, X3, Xm—1}] = K; 3, We have xj,3x,,_;
S E(G) But then G[{xlﬂ,xl,xl,xj+2,xj+g,xm 1}] H,, since X1Xj43 € E( )
(otherwise xlx]+3me 1x]+2Px,zxm contradicts the choice of P), xixji3 & E(G)
(otherwise x1Xj42X;,—1 Px]+gxl Px] 14112 C contradicts the choice of P), x;;1xj13
¢ E(G) (otherwise X Xj1Xj42Xm—1 Px]+3xl+1 ijx,zﬁ,1 contradicts the choice of P),
and x;;1x,-1 € E(G) (otherwise xlxjHme 1Xi+1Px;j x;zx,, contradicts the choice
of P), while the other possible edges are not present by standard arguments.

Hence we may assume that xj3 =x,_1. Let p € V(G) \ {xj12,x,} be a
neighbor of x;,3. We first show that we can choose p on P. Suppose there does not
exist such a vertex p on P and let T be a triangle containing p and containing
a maximum number of vertices of P. Let ¢; and ¢, be the other vertices of 7.
To avoid G[{x;;3;Xj42, %, p}| = K, 3, we have xj,y € E(G).

If V(T) N V(P) = (), then G[{ql,qz,p;xj+3,xj+2,xm}] ~ H,.

If |V(T)NV(P)| =2, then g; # x;43 (since g, is a neighbor of g, it would
have been possible to choose p on P) and g, # xj,3 (similar). But then p con-
tradicts the choice of z.

If [V(T) N V(P)| = 1, let g; be the vertex not on P and let g, be the vertex on P.
One easily shows that ¢» & {x1,x;, i1, Xj-1,Xj, Xj1,Xj42,y} by obtaining (x,y)-
paths contradicting the choice of P. If ¢, = x5, then Gl{x1, X541, %142, 2,
ql,p}] H . If g € x,+2ij 2, then to avoid G[{¢2; 45 , 45 , q1}] = K1 3, we have
9,95 € E(G). Howgver then G[{q2,q1,p;xj+3,%j12,Xm}] = Hy, since grxj» &

E(G) (otherwise x| Pq; g, ij+2q2 PXj 3%y, contradicts the choice of P), ¢oxj.3 &
E(G) by assumption and g¢»x,, € E(G) (otherwise also ¢xj;3 &€ E(G) by a
standard observation).

Hence we may assume that we can choose p on P, and one easﬂy shows that
pE x,+2Px, 2. To avoid G[{p;p~ ,p ,Xj43}] =2 K 3, we have p~p* € E(G), since
p x]+3 ¢ E(G) (otherwise x;x;2 pr]+3p x;2X,, contradicts the choice of P) and
pTxii3 € E(G) (similar). We may assume that px; > ¢ E(G) (otherwise by con-
sidering the path x; Pp~p™ PXxjopxj 13X, we are back in the case that xj 3 # X,—1)
and px,, ¢ E(G) (similar). Hence, to avoid G[{xj+3,p,x,+2,xm}] ~ K3, we
have xji,x, € E(G). However, then Gl{p~, p \ D3 Xj43, X420, X ] &2 Hy, since
P Xj12 & E(G) (otherwise xlx]Hpr]Htzp Pxizx,, contradicts the choice of
P), p x, & E( ) (0therw1se also p~xjy3 € E(G)), p*x12 & E(G) (otherwise
X1Xj41Xj 42D ijle pr]Jrgxm contradicts the choice of P), and p*x, & E(G)
(otherwise also pTxj3 € E(G)).

Case 2.1.2.2.b. xx,, € E(G). Let p € V(G) \ {z,x,,—1} be a neighbor of x,,. We
first show that we can choose p on P. Suppose there does not exist such a vertex
pon P.Toavoid G[{xu; Xm—1,2,p}| = K13, wehave pz € E(G).If px; € E(G), then
Gl{p,z, xi;Xi—1,Xj11,%j+2}] = Hy. Hence we have px; € E(G). Since x;_jx_; &
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E(G), also xi_1xx € E(G), and since xi 1x—1 € E(G), also xi1x; € E(G).
To avoid G[{xi_1,Xit1,Xi;2,p, X }] = Hy, we have x;x; € E(G). However, then
G[{xm,xi,xm_l,p}] = K173.

Hence, we may assume that we can choose p on P. If x;x,, € E(G), then to
avoid G[{x;,Xit1,%j, %, }] = K| 3, we_)have Xi1Xm € E(G), and hence also x,,_
Xiy1 € E(G), yielding a path xxj41 Px,,— 1xl+1Px]xlzxm, contradicting the choice
of P. Hence XX, Xi+ 1% & E(G). If x;_1x,, € E(G), then also x;_1x,_; € E(G), a
contradiction. Hence x;_x,, ¢ E(G), and similarly x;_ix,, ¢ E(G). If E Xj1Xm €
<E_(G), then also xj;x,,—1 € E(G), yielding a contradicting path x;xj» me 1Xj41
Px;zx,,. The above observations leave two cases for the location of p.

(1) pe xi+2F)>cj,2. We choose p € N(x;) as close to x;_; as possible. To avoid
Gl{xm;p, 2, xm-1}] = K, 3, we have px,_; € E(G). To avoid G[{x;,xj,z;
Xmy Xm—1,P}] = Hy, we have px; € E(G) or px; € E(G). If px; € E(G), then
also px; € E(G) (otherwise G[{x;;x1,p,z}] = K;3). Since px,_; € E(G),
the choice of P implies p*x; € E(G). To avoid G[{p;x1,p",xn}] = K13,
we have p*x,, € E(G), contradicting the choice of P. Next assume px; €
E(G). Then p* # x;_;. To avoid G[{p; p*, xj, xn}] = K, 3, we have pTx; €
E(G), and to avoid G [{xj,p, z,X11}] = Ky 3, we have p*x;y1 € E(G). How-
ever, then xIF})xm lPle p ﬁ))cjzxm contradicts the choice of P.

(i) p € xj12 ka 2. We choose p € N(x;) as close to Xj+1 as possible. We again
have px,_; € E(G) and px; € E(G) or px; € E(G). If px; € E(G), then
to avoid G[{p;xi,p~,xn}] = K, 3, we have p~x; € E(G) and p # xj;,. To
aV01d G[{xl,z it~ } = K, 3, we have x;y1p~ € E(G). But then x;x;
Pp Xit1 Px]zx,prm contradicts the choice of P.

If pY € E(G) then also px;_1,pxjy1 € E(G). If p~ = xj;1, then x1xj4,
X;ZX; Px/ 1 prm contradicts the choice of P. If p~ # x;,, then to avoid

G{p;xj,p~,xn}] =2 K, 3, we have p~x; € E(G), and 1o avoid G[{xj,xj 1
z,p” }] 2 K3, also p~xj_; € E(G). But then xliHPp Xj_i lezxijxk
contradicts the choice of P.

Case 2.2. x;_1xj41 € E(G) (hence x;y1xj—1 € E(G)).

Case 2.2.1. j—i>5. To avoid G[{xit1;x;,Xit2,Xj— 1}] K3, we have xii,
X1 € E(G), since x;x;12 ¢ E(G) (contradicting path: x; Px, 1Xip 11X 1le+2 XiZX;
Px,,). By symmetry, we also have x;;1x;_» € E(G). To avoid G[{xit1; X1, Xit2,
Xj,g}] = K1’3, we have Xit2Xj—2 € E(G) However, then G[{X,‘,Z,Xj;xj;l,xj;z,
)Ci+2}] ~ H,.
Case 2.2.2. j—i=4. We use that x;;, has a neighbor p & {x;_1,x;, Xi11, Xi12,
Xj—1 ,xj,xj+1}.

We first show we can choose p € V(P). Supposing this is not the case consider
a triangle 7" containing p. Let ¢; and g, be the other vertices of T'. First suppose
V(T) N V(P) = (Z) If qiXit2 € E(G), then G[{xi_l,xi,xi+1;xi+2,p,ql}] = Hl.
Hence q1xi12, g2Xi12 ¢ E(G). But then G[{q1, ¢2, P; Xi12, Xiy1,%j—1}] = H;. Hence
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|V(T) N V(P)| > 1. Let g; denote a neighbor of p in (V(P) N V(T))\{xi+2}. Then
xis2q1 € E(G) by assumption. If x;_q € E(G), then also x;_1q; € E(G) (other-
wise G[{q1;q7,xj-1,p}] = K;3), and we easily find a path contradicting the
choice of P. A similar observation shows x;;1¢g; ¢ E(G). But then G[{x;41,xj_1,
Xiy2; D5 q1, 92} = H

Hence, we can choose p € V(P). If x;;» has two successive neighbors on P, it
is obvious that we can find a path contradicting the choice of P. Hence, if p~— and
p* exist, we get that p~p* € E(G). We deal with the cases that p € {x1,x,,} later.

To avoid G[{xit1,%j_1,Xi12;P, P~ ,p+}] H,, we have x;.1p € E(G) or xj_,
pE E(G) If xlﬂp € E(G) and p ExJHme 1, then by considering the path
X1 Px,+1px,+2Pp p me, we are back in Case 2.2.1. But then G[{x;:1,xj_1, Xi12;
p.p P} =

Now suppose p = x,,. Then x,, # xi, smce otherwise G[{xm,lerz, 2y Xm—1}] =2
K;3. Note that x; # x,,_; (otherwise xle 1Xip1XiZ Xk Px,+2xm contradicts the
choice of P). To avoid G[{x;,X;, z; Xk, Xk—1, Xk+1}] = Hy, we have xyx; € E(G) or
xpxx € E(G). First assume xjx; € E(G). Like in the beginning of Case 2, we have
Xj—1Xk+1 € E(G) Or Xjt1Xk—1 € E(G) If Xj—1Xk+1 € E(G), also Xj—2Xk+1 € E(G)
However, since xj_ = x;;» this contradicts the fact that x; # x,,—1. If xj 1101 €
E(G), then like in the beginning of this case, we have k —j =4. To avoid
G[{Xp,.l,XH_z,Xj_l;Xj+1,Xj+2,Xj+3}] >~ H,, we have Xit+1Xj43 € E(G) But then
G[{Xi_l ,xi,x,-H;xj+3,xj+1,xj+2}] =~ H,. Hence we may assume that XXy ¢ E(G)
and x;x; € E(G) But then G[{xi;xi_l,xj,xk}] &~ K173.

For the final subcase suppose {x; } = N(x;12) \ {xi11,%j_1}. By the choice of P,
N(x;) € V(P) and x; # x;_;. All neighbors of x;, except for possibly x;i1, Xii2,
X;j_1, are also neighbors of x,, otherwise we obtain an induced claw centered at x;.
If x;x; € E(G), then x,x; € E(G) and to avoid G[{x;;x2, z, xi1}] = K 3, we have
x2xi+1 € E(G), contradicting the choice of P. Hence xix; ¢ E(G) and similarly
X1Xj ¢ E(G)

If xixi41 € E(G), then G[{xy,xit1,Xi12;%,2,%5}] = Hy; if xx_; € E(G),
then G[{x1, Xiy2,Xj—1; %}, %;, 2}] = Hy. Now assume x1x;.1,x1, X1 € E(G). Hence
x; has some neighbor g # x;, xi;1, Xi42, Xj—1,x; which is also a neighbor of x,. To
avoid G[{q,xz,xl;x,urz,x,»_tl,x,-_l}] =~ H,, we have gx;| € E(G) or gxj_; € E(G).

First suppose ¢ € x3Px;—; and gx;y; € E(G). Then to avoid G[{x;:1;q,x;,
Xit2}] = K 3, we have qx; € E(G). To avoid G[{x1,x2, q; xi, 2, X }] = Hy, we have
gx; € E(G). But then G[{g;x2,x;+1,x;}] = K 3. Next, suppose g € x3 Px;_; and
gxi+1 € E(G). Then gxj_; € E(G) and to avoid G[{xj_1;¢,Xi12,X;}] = K3, we
have gx; € E(G). To avoid G[{x,x2,¢;X;,z,x;}] = H;, we have qx; € E(G). But
then G[{q;x2,x;,xj_1}] 2 K, 3

We now may assume g & x3 Px, 1, hence g € xj1; me We choose g as close to
X, as possible, and deal with the subcase gxj_; € E(G) first.

If g = x,,, then, as before, we can repeat the previous cases with x;, x; instead
of x;,x;, and obtain an induced Hj, unless x; = x,,; but in the latter case G[{x;
X2, Uy, Xj—1 }] = K, 3. Hence g # x,,. To avoid G[{x1,x2, ¢; xj—1, %}, X1 }] = Hy, we
have gx; € E(G) or gxj;1 € E(G), both implying gx;;; € E(G). To avoid G[{g;
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X1, %41, 9 1 _}Kl 3, we have xj11g" € E(G), yielding xx;oXj_ 1 XZXiXi 1Xi—1
szqu]Hq Px,,, a contradiction. For the remaining case, we assume gx;_; ¢

E(G); hence gx;;1 € E(G) By similar arguments as before, we may assume
g # xp. To avoid G[{q; ¢",x1,x;11}] = K, 3, we have x;y g1 € E(G) If gt = x,
then by similar arguments as before x,, = x; and xlx,+2F)>ck 1x2Px, 1Xi 0 1X:2QkXk
gives a contradiction. In the final case, the path P’ = xlx,HFZ]xz Pxi1q" ﬁ;cm has
the same properties as P, also with respect to the choice of z. But z has two
internal vertices x; and x; of P’ with j/ —i' > 5 as neighbors, so repeating the
above arguments with respect to P’, x;, x; we will obtain an induced H;. This com-
pletes the proof of Theorem 4. ]

3. POSSIBLE FORBIDDEN PAIRS AND
HAMILTONIAN-CONNECTEDNESS

We start by defining eight graphs which are 3-connected but not hamiltonian-
connected. Let m > 4 be an integer, M; be a K,,, in which three vertices x;, y;, and
z; are marked and M = U}_| M.

L4 Gl mm,
e G, is obtained from a cycle C = xx, - - - xp,,, by adding the edges x;x,,;
(i=1,...,m),

e (3 is an arbitrary 3-connected Cy-free bipartite graph,

e G, is obtained from M, by adding two vertices a and b and all (six) edges
between a, b and xy,y1, z1,

e G5 is obtained from a cycle C = x1x; - - - xg,, by adding the edges x3;_»x3;

(i=1,...,2m) and the edges x3;_1X3p13i-1 (= 1,...,m),
e Gg is obtained from a cycle C = xx; - - - x4, by adding the edges xp;_1X2;11
(l = 1, Ceey 2m — 1), Xam—1X1, and X2iXom+2i (l = 1, N ,M),

e G; is obtained from Gs by replacing every triangle x3;_px3;_1X3;
(i=1,...,2m) by the graph G’ of Fig. 2,

351 Z3i-2

T3;

FIGURE 2. The graph G
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e Gy is obtained from M by identifying each vertex x; withy; . i =1,...,7),
xg with y; and each vertex z; with ;.4 (i =1,...,4).

Since the graphs Gy, ..., Gg are not hamiltonian-connected, each of them must
contain an induced copy of either X or Y. The graphs G, G, G3, G4 all contain a
claw, but the last four graphs Gs, Gg, G7, Gg are all claw-free.

We will first show that one of the graphs X or ¥ must be K| 3. Assume that this
is not true. Assume, without loss of generality, that X C Gy. Then X must either
contain an induced Cj or it must be a generalized claw K, for r > 4. First
consider the case when C4 C X. Then Y must be an induced subgraph of both G3
and Gy, since neither of these graphs contains an induced C4. However, the only
induced subgraph common to both G3 and Gy is the claw K;3. If X = K, for
r > 4, then Y must be an induced subgraph of both G, and G4, since neither of
these graphs has an induced K 4. Again, the only induced subgraph common to
both G, and Gj is the claw K 3. Therefore, without loss of generality, we can
assume that X = K 3.

Since Gs, Gg, G7, Gy are all claw-free, Y must be an induced subgraph of each of
these graphs. Since Gs is claw-free and A(Gs) = 3, Y must satisfy both (a) and (f).
There is no induced Py in Gg, so (b) is satisfied. The shortest induced cycle in Gs
besides Cs is a Cg, the longest induced cycle in Gg is a Cg, and Gg contains no
induced Cs. Thus (c) is satisfied. In Gs, the distance between distinct triangles is
either one or at least three. This implies that (d) is satisfied. The graph G7 does not
contain an induced copy of the graph S obtained from a Ps by placing a triangle on
the first and third edge (S is an H; with an edge attached to a vertex of degree two).
Therefore, if Y contains three triangles, then each pair of triangles would have to be
at distance at least three. This would imply an induced Py, which is not true. Thus
(e) is satisfied. This completes the proof of Theorem 6. ]

4. OPEN QUESTION

The obvious question is the following.

Question A. What is the characterization of those pairs of connected graphs
X and Y such that being X-free and Y-free implies that a 3-connected graph is
hamiltonian-connected?

A simpler question, but one that is critical to answering Question A is the following.

Question B. What is the largest k such that a 3-connected claw-free and Py-free
graph is hamiltonian-connected?
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