Forbidden Subgraphs that Imply Hamiltonian-Connectedness Hajo Broersma, 1* Ralph J. Faudree, 2 Andreas Huck, 3 Huib Trommel, 1 and Henk Jan Veldman 1 ¹FACULTY OF MATHEMATICAL SCIENCES UNIVERSITY OF TWENTE P.O. BOX 217, 7500 AE ENSCHEDE THE NETHERLANDS E-mail: broersma@math.utwente.nl ²DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF MEMPHIS MEMPHIS, TN 38152 E-mail: rfaudree@memphis.edu ³INSTITUT FÜR MATHEMATIK UNIVERSITÄT HANNOVER HANNOVER, GERMANY E-mail: huck@math.uni-hanover.de Received February 8, 2000; Revised January 7, 2002 DOI 10.1002/jgt.10034 **Abstract:** It is proven that if G is a 3-connected claw-free graph which is also H_1 -free (where H_1 consists of two disjoint triangles connected by E-mail: h.j.broersma@math.utwente.nl The first four authors dedicate this paper to Henk Jan Veldman, a valued colleague and beloved friend who died October 12, 1998. Contract grant sponsor: ONR; Contract grant number (for R.F.): N00014-94-J-1085. *Correspondence to: H. J. Broersma, Faculty of Mathematical Sciences, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. ^{© 2002} Wiley Periodicals, Sons, Inc. an edge), then G is hamiltonian-connected. Also, examples will be described that determine a finite family of graphs \mathcal{L} such that if a 3-connected graph being claw-free and L-free implies G is hamiltonian-connected, then $L \in \mathcal{L}$. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 104–119, 2002 Keywords: hamiltonian-connected; forbidden subgraph; claw-free graph ## INTRODUCTION We use Bondy and Murty [2] for terminology and notation not defined here and consider finite simple graphs only. A graph G with $n \ge 3$ vertices is hamiltonian if G contains a cycle of length n, and it is hamiltonian-connected if between each pair of vertices of G there is a Hamilton path, i.e., a path on n vertices. If H is a given graph, then a graph G is called H-free if G contains no induced subgraph isomorphic to H. The graph H is said to be a *forbidden* subgraph. We first describe some graphs that will be frequently used as forbidden subgraphs. Specifically, we denote by P_k and C_k the path and the cycle on k vertices, by C the claw $K_{1,3}$, by B the bull, by D the deer, by H the hourglass, by N the net, by W the wounded, by Z_k the graph obtained by identifying a vertex of K_3 with an endvertex of P_{k+1} , and by H_k the graph obtained by joining two vertex disjoint triangles by a path of length k (see Fig. 1). The next result was obtained in Shepherd [7], and the following one in Faudree and Gould [6]. Note that in both cases, 3-connectedness is assumed. This is natural, since the forbidden subgraph conditions, being local conditions, do not imply 3-connectedness, and any hamiltonian-connected graph (except K_1, K_2, K_3) must be 3-connected. **Theorem 1** [7]. If a 3-connected graph G is claw-free and N-free, then G is hamiltonian-connected. FIGURE 1. Frequently used forbidden subgraphs. **Theorem 2** [6]. If a 3-connected graph G is claw-free and Z_2 -free, then G is hamiltonian-connected. Recently Chen and Gould [4] extended this collection of pairs of forbidden graphs ensuring hamiltonian-connectedness of 3-connected graphs by proving the following result, which gives three new independent forbidden pairs. **Theorem 3** [5]. *If G is a 3-connected claw-free graph, then G is hamiltonian-connected if any of the following holds.* - (a) G is Z_3 -free, - (b) G is P_6 -free, - (c) G is W-free. The cases (a) and (b) of the above result were independently proved in [3]. In Section 2, we extend the collection of forbidden pairs by proving the following result. **Theorem 4.** If G is a 3-connected claw-free H_1 -free graph, then G is hamiltonian-connected. In Bedrossian [1], all forbidden pairs of connected graphs ensuring that a graph is hamiltonian are characterized, and the same was done for pancyclicity. The same type of characterization was done for other hamiltonian properties in Faudree and Gould [6]. A survey of results of this kind can be found in Faudree [5]. Combining their results with previous results, Chen and Gould [4] conclude that if $\{S, T\}$ is a pair of graphs such that every 2-connected $\{S, T\}$ -free graph is hamiltonian then every 3-connected $\{S, T\}$ -free graph is hamiltonian-connected. Theorem 4 gives a pair of forbidden graphs that implies a graph is hamiltonian-connected in the presence of 3-connectedness but does not imply a graph is hamiltonian in the presence of 2-connectedness. Also, in [6] the following theorem was proved. It gives some context to the previous results on pairs of forbidden graphs ensuring hamiltonian-connectedness of 3-connected graphs. **Theorem 5** [6]. Let X and Y be connected graphs with $X, Y \neq P_3$, and let G be a 3-connected graph. If G being X-free and Y-free implies G is hamiltonian-connected, then, up to symmetry, $X = K_{1,3}$, and Y satisfies each of the following conditions. - (a) $\Delta(Y) \leq 3$, - (b) A longest induced path in Y has at most 12 vertices, - (c) Y contains no cycles of length at least 4, - (d) All triangles in Y are vertex disjoint, - (e) Y is claw-free. One implication of Theorem 5 is that there are only a finite number of forbidden pairs of graphs implying hamiltonian-connected of 3-connected graphs. However, the gap between Theorem 5 and the positive results in Theorems 1, 2, 3, and 4 is still substantial. The following result will reduce, but not eliminate, that gap somewhat. The proof is postponed to Section 3. **Theorem 6.** Let X and Y be connected graphs with $X, Y \neq P_3$, and let G be a 3-connected graph. If G being X-free and Y-free implies G is hamiltonianconnected, then $X = K_{1,3}$, and Y satisfies each of the following conditions. - (a) $\Delta(Y) \leq 3$, - (b) The longest induced path in Y has at most 9 vertices, - (c) Y contains no cycles of length at least 4, - (d) The distance between two distinct triangles in Y is either 1 or at least 3, - (e) There are at most two triangles in Y, - (f) Y is claw-free. ### 2. THE PROOF OF THEOREM 4 In what follows, an (x, y)-path P is said to be maximal if there is no (x, y)-path Q such that V(P) is a proper subset of V(Q). The set up of the proof in this section will be to consider a maximal (x, y)-path P that is not a Hamilton path, between some pair of vertices x and y, and then show that P can be extended, contradicting the maximality of P. The following lemma will be useful in selecting such maximal paths. **Lemma 7.** For any pair of vertices x and y in a 3-connected claw-free graph G, there is a maximal (x, y)-path P such that $N(x) \subseteq V(P)$. **Proof.** Let $P = x_1 x_2 \cdots x_m$ with $x = x_1$ and $y = x_m$ be a maximal (x, y)-path with the property that it contains a maximum number of vertices of N(x). If $N(x) \subseteq V(P)$, then we are done. Hence, we may assume there is a vertex $z \in$ $N(x) \setminus V(P)$. We will exhibit an (x, y)-path Q that contains $(N(x) \cap V(P)) \cup \{z\}$. This will give a contradiction, since any maximal path (x, y)-path Q' that contains the vertices of Q would have more vertices in N(x) than P. Since G is 3-connected, there exist three vertex disjoint (z, P)-paths, which will be denoted by Q_1 , Q_2 , and Q_3 . We may assume that Q_1 has endvertex x_1 . Let x_r and x_s (with 1 < r < s) be the endvertices of Q_2 and Q_3 , respectively. If z has more than three adjacencies on P, then select x_r and x_s to be the last two adjacencies of z on P. Let S be the set of vertices in $N(x) \cap V(P)$ that are not adjacent to z. Note that to avoid an induced claw centered at x, the vertices in S form a complete graph. Also note that $N(x) \cap N(z) \cap V(P) \subseteq x_1 P'_{x_r} \cup \{x_s\}$. If $S \cap x_{r+1} \overrightarrow{P} x_{s-1} = \emptyset$, then $Q = x_1 \overrightarrow{P} x_r \overrightarrow{Q}_2 z \overrightarrow{Q}_3 x_s \overrightarrow{P} x_m$ is the required path, since this path contains z as well as $N(x) \cap V(P)$. If $S \cap x_{r+1} \overrightarrow{P} x_{s-1} \neq \emptyset$, then select i and j such that x_i is the smallest indexed vertex in $S \cap x_{r+1} \overline{Px_{s-1}}$ and x_i is the largest. It is possible that i = j. By the maximality of P and since G is claw-free, $x_2x_i \in E(G)$. Then $Q = x_1x_j \overleftarrow{P}x_ix_2$ $\overrightarrow{P}x_r \overleftarrow{Q}_2 z \overrightarrow{Q}_3 x_s \overrightarrow{P}x_m$ is the required path. In the next proof, we start with a graph G that is 3-connected and claw-free, and for which there is no Hamilton path between some pair of vertices x and y of G. By Lemma 7, we can select a maximal (x,y)-path $P = x_1x_2\cdots x_m$ with $x = x_1$ and $y = x_m$ such that $N(x) \subseteq V(P)$. Since P is not a Hamilton path, there is a vertex z not on P. Since G is 3-connected, there exist three vertex disjoint (z,P)-paths, and at least two of these paths will terminate in interior vertices of P. Let x_i, x_j , and x_k (with $1 < i < j < k \le m$) be the endvertices on P of these paths and denote the paths by Q_i, Q_j , and Q_k , respectively. We can choose z and the paths Q_i, Q_j, Q_k in such a way that - (i) $|E(Q_i)| = 1$, - (ii) $|E(Q_i)|$ is minimum subject to (i), - (iii) $|E(Q_k)|$ is minimum subject to (i) and (ii). For $\ell = i, j, k$, the path Q_ℓ will be denoted by $zv_\ell \cdots u_\ell x_\ell$ realizing of course that the path might be just an edge. For shortness, we will use Q to denote the path $x_i \overleftarrow{Q}_i z \overrightarrow{Q}_j x_j$. By the way the paths are chosen, we conclude that Q is an induced path except possibly for the edge $x_i x_j$. The maximality of P and G being claw-free implies that $x_{i-1}x_{i+1} \in E(G)$, for otherwise there would be an induced claw centered at x_i . Likewise, $x_{j-1}x_{j+1} \in E(G)$. Note that $j-i \geq 4$, for otherwise the path P could be extended; e.g., if j-i=3, then $x_1\overrightarrow{P}x_{i-1}x_{i+1}x_i\overrightarrow{Q}x_jx_{j-1}x_{j+1}\overrightarrow{P}x_m$ is such a path. Also, observe that $x_ix_{j-2} \notin E(G)$, for otherwise the path P can be extended to the path $x_1\overrightarrow{P}x_{i-1}x_{i+1}$ $\overrightarrow{P}x_{i-2}x_i\overrightarrow{Q}x_jx_{i-1}x_{j+1}$ $\overrightarrow{P}x_m$. Select the smallest r_1 with $i < r_1 < j$ such that $x_i x_{r_1} \in E(G)$, but $x_i x_{r_1+1} \notin E(G)$. By the previous remarks, such an r_1 exists. Likewise, select the smallest s_1 with $j < s_1 < k$ such that $x_j x_{s_1} \in E(G)$, but $x_j x_{s_1+1} \notin E(G)$. There are no edges between $x_i \overrightarrow{P} x_{r_1+1}$ and $x_j \overrightarrow{P} x_{s_1+1}$, except possibly for $x_i x_j$: the existence of any of the edges gives an extension of P; e.g., if $x_{r_1+1} x_{s_1+1} \in E(G)$, then P can be extended to the path $x_1 \overrightarrow{P} x_{i-1} x_{i+1} \overrightarrow{P} x_{r_1} x_i \overrightarrow{Q} x_j x_{s_1} \overrightarrow{P} x_{j+1} x_{j-1} \overrightarrow{P} x_{r_1+1} x_{s_1+1} \overrightarrow{P} x_m$. In the same way, select a largest r_2 with $i < r_2 < j$ such that $x_j x_{r_2} \in E(G)$, but $x_j x_{r_2-1} \notin E(G)$. By symmetry and the previous remarks, such an r_2 exists. Also, if $x_k \neq x_m$, in the same way an s_2 associated with the vertex s_k can be defined. Also, by a symmetry argument, we know that there are no edges between $s_{r_2-1} \overrightarrow{P} x_j$ and $s_{s_2-1} \overrightarrow{P} x_k$ except possibly for $s_j x_k$. We are now ready to present the proof of Theorem 4. Assume that G is a 3-connected, claw-free graph, and there is no Hamilton path between some pair of vertices x and y of G. We will show that G must contain an induced copy of H_1 . We choose a maximal (x,y)-path $P = x_1x_2 \cdots x_m$ with $x = x_1$ and $y = x_m$ subject to the condition that $N(x) \subseteq V(P)$. We choose a vertex $z \in V(G) \setminus V(P)$ and three vertex disjoint (z,P)-paths as in the general discussion. All of the notation and observations of the general discussion are assumed. We claim that we can choose z in such a way that $|E(Q_j)| = 1$, and that $|E(Q_k)| = 1$ if $x_k \neq x_m$. Suppose $|E(Q_j)| \geq 2$, and consider z and the successor v_j of z on Q_j . By the choice of z, $x_iv_j \notin E(G)$. Since G is 3-connected, claw-free, and $zv_j^+ \notin E(G)$, there exists a triangle T containing z and v_j or there exists a triangle T containing v_j and v_j^+ . We distinguish a number of cases. To avoid $G[\{x_{i-1}, x_{i+1}, x_i; z, v_j, x_k\}] \cong H_1$, we must have at least one of $x_k x_{i-1}$, $x_k x_i$ and $x_{i+1} x_k$ in E(G). Then, since $x_{i-1} x_k \notin E(G)$ (otherwise to avoid $G[\{x_k; x_{i-1}, z, x_{k-1}\}] \cong K_{1,3}$, we have $x_{i-1} x_{k-1} \in E(G)$ yielding a path $x_1 \overrightarrow{P} x_{i-1} x_{k-1}$ $\overrightarrow{P} x_i z x_k \overrightarrow{P} x_m$ which contradicts the choice of P) and $x_i x_k \notin E(G)$ (otherwise to avoid $G[\{x_k; x_i, v_j, x_{k-1}\}] \cong K_{1,3}$, we have $x_i x_{k-1} \in E(G)$, also yielding a path which contradicts the choice of P), we get $x_{i+1} x_k \in E(G)$, implying also $x_{i+1} x_{k-1} \in E(G)$. If $v_jx_j \in E(G)$ (i.e., $|E(Q_j)| = 2$), then to avoid $G[\{x_{j-1}, x_{j+1}, x_j; v_j, z, x_k\}] \cong H_1$, we similarly have that $x_{j+1}x_k \in E(G)$, and get a contradiction since $G[\{x_k; x_{i+1}, x_{j+1}, z\}] \cong K_{1,3}$. Hence we may assume $v_jx_j \notin E(G)$ and thus $v_j^+ \notin V(P)$ (where v_j^+ is the successor of v_j on Q_j). Since $v_jv_j^{++} \notin E(G)$, there exists a triangle T' containing v_j and v_j^+ or there exists a triangle T' containing v_j^+ and v_j^{++} . Note that $v_j^+x_k \notin E(G)$ (otherwise $G[\{x_k; z, v_j^+, x_{k-1}\}] \cong K_{1,3}$). - (i) Suppose v_j and v_j^+ are in a common triangle T' with some vertex t'. Then $t' \notin \{x_i, x_j, x_k, z\}$, while also $t' \notin V(P) \setminus \{x_i, x_j, x_m\}$; otherwise if $t' \in x_1 \overrightarrow{P} x_{i-1}$, then v_j contradicts the choice of z, if $t' \in x_{i+1} \overrightarrow{P} x_{j-1}$, then the path zv_jt' contradicts the choice of Q_j , and if $t' \in x_{k+1} \overrightarrow{P} x_m$, then the paths zx_k and zv_jt' contradict the choice of Q_j and Q_k . Hence $t' \notin V(P) \cup \{z\}$. To avoid $G[\{x_{i+1}, x_{k-1}, x_k; v_j, v_j^+, t'\}] \cong H_1$, we have $x_kt' \in E(G)$, and to avoid $G[\{x_k; x_{k-1}, z, t'\}] \cong K_{1,3}$, we have $zt' \in E(G)$. But then $G[\{x_{i-1}, x_{i+1}, x_i; z, t', v_j\}] \cong H_1$, since $x_it' \notin E(G)$; otherwise t' contradicts the choice of z. - (ii) If v_j^+ is not in a common triangle with v_j , then there exists a triangle T' containing v_j^+ and v_j^{++} . Again let t' be the third vertex of T'. If $t' = x_k$, then $G[\{x_k; z, v_j^+, x_{k-1}\}] \cong K_{1,3}$. Hence $t' \neq x_k$ and also $t' \notin \{x_i, z\}$. If $t' \in x_1 \overrightarrow{Px}_{i-1}$ or $t' \in x_{k+1} \overrightarrow{Px}_m$, we easily get contradictions with the chosen path system. If $t' \in x_{i+1} \overrightarrow{Px}_{j-1}$, then also $v_j^{++} = x_j$, giving a contradiction, since v_j^+ contradicts the choice of z. Hence $t' \notin V(P) \cup \{z\}$. Now $G[\{t', v_j^{++}, v_j^+; v_j, z, x_k\}] \cong H_1$, unless $v_j^{++} x_k \in E(G)$ and $v_j^{++} = x_j$. But then $G[\{x_k; x_{i+1}, x_j, v_j\}] \cong K_{1,3}$. Case a.2. z, v_j are in a common triangle T with some vertex t, and Case a.1 does not apply. Then, by the choice of z, $V(T) \cap V(P) = \emptyset$. To avoid $G[\{x_{i-1}, x_{i+1}, x_i; z, v_j, t\}] \cong H_1$, we have $x_i t \in E(G)$. To avoid $G[\{z; x_i, v_j, v_k\}] \cong K_{1,3}$ (with possibly $v_k = x_k$), we have $x_i v_k \in E(G)$, since $v_j v_k \notin E(G)$; otherwise we would be in Case a.1. To avoid $G[\{x_i; x_{i-1}, t, v_k\}] \cong K_{1,3}$, we have $t v_k \in E(G)$. If $v_j x_j \in E(G)$, then $G[\{x_{j-1}, x_{j+1}, x_j; v_j, z, t\}] \cong H_1$. Hence $v_j^+ \neq x_j$. We use that v_j^+ is in a triangle with v_j or with v_j^{++} . (i) Suppose v_i^+ and v_j are in a common triangle T' with some vertex t'. Clearly, $t' \neq z, x_i$. We easily see that $t' \notin x_1 \overrightarrow{P}x_{k-1}$. Now suppose $t' = x_k$. Then $G[\{x_k; x_{k-1}, v_j^+, u_k\}] \cong K_{1,3}$, unless $v_j^+ u_k \in E(G)$ and $u_k \neq z, v_k$. To avoid $G[\{x_k; x_{k-1}, v_j, u_k\}] \cong K_{1,3}$, we have $v_j u_k \in E(G)$. Then $G[\{x_i, v_k, t; v_j, u_k, x_k\}] \cong H_1$, unless $v_k u_k \in E(G)$. But then $G[\{z, t, v_k; u_k, v_j^+, x_k\}] \cong H_1$. Hence $t' \neq x_k$. If $t' \in x_{k+1} \overrightarrow{P}x_m$, then to avoid $G[\{x_i, v_k, t; v_j, v_j^+, t'\}] \cong H_1$, we have $v_k t' \in E(G)$. But then $v_k = x_k$ or $v_k x_k \in E(G)$. In both cases, we easily obtain path systems contradicting the chosen path system. Hence $t' \notin V(P)$. Consider $G[\{v_j^+, t', v_j; t, x_i, v_k\}]$ (with possibly $v_k = x_k$). If $t' \notin V(Q_k)$, then to avoid an induced H_1 , we have $tt' \in E(G)$. But then $G[\{x_{i-1}, x_{i+1}, x_i; t, v_j, t'\}] \cong H_1$. Hence $t' \in V(Q_k) \setminus \{z, v_k\}$. Then to avoid an H_1 , we have $t' = v_k^+$. Then $v_k^+ \neq x_k$; otherwise $G[\{x_k; x_{k-1}, v_k, v_j^+\}] \cong K_{1,3}$. Considering $G[\{v_k^+; v_k, v_k^{++}, v_j^+\}]$, we get that $v_j v_k^{++} \in E(G)$. To avoid $G[\{v_k^+; v_k, v_k^{++}, v_j^+\}] \cong K_{1,3}$, we have $v_j^+ v_k^{++} \in E(G)$. But then $G[\{x_i, v_k, t; v_j, v_j^+, v_k^{++}, v_j^+\}] \cong H_1$. (ii) If v_j^+ is not in a common triangle with v_j , then considering a triangle T with $V(T) = \{v_j^+, v_j^{++}, t'\}$, we easily obtain that $G[\{z, t, v_j; v_j^+, v_j^{++}, t'\}] \cong H_1$. **Case b.** z and v_j are not in a common triangle. Hence v_j and v_j^+ are in a triangle T with some vertex t. Note that to avoid $G[\{z; x_i, v_j, v_k\}] \cong K_{1,3}$, we have $x_i v_k \in E(G)$ with possibly $v_k = x_k$. - (i) First suppose $t \notin V(P)$. Using that no induced claw is centered at x_i and that $zv_j^+ \notin E(G)$, we obtain $G[\{x_i, v_k, z; v_j, v_j^+, t\}] \cong H_1$ unless $t = v_k^+$. If $t = v_k^+$, then $v_k^+ \neq x_k$; otherwise $G[\{x_k; x_{k-1}, v_j, v_k\}] \cong K_{1,3}$ (using $v_j v_k \notin E(G)$). Considering $G[\{v_k^+; v_k, v_k^{++}, v_j^+\}]$, with possibly $x_k = v_k^{++}$, we get $v_j^+ v_k^{++} \in E(G)$. Now $G[\{x_i, z, v_k; v_k^+, v_j^+, v_k^{++}\}] \cong H_1$, unless $v_j^+ = x_j$ and $x_i x_j \in E(G)$. But then $G[\{x_i; x_{i+1}, z, x_j\}] \cong K_{1,3}$. - (ii) Now suppose $t \in V(P)$. If $t = x_k$, then $v_k \neq x_k$ (since z and v_j are not in a common triangle). No induced claw centered at x_k gives that $G[\{x_i, v_k, z; v_j, v_j^+, x_k\}] \cong H_1$, unless $v_j^+ = x_j$ and $x_i x_j \in E(G)$; in the latter case $G[\{z, v_k, x_i; x_j, x_{j-1}, x_{j+1}\}] \cong H_1$. Hence $t \neq x_k$. If $t \in x_1 \overrightarrow{P} x_{k-1}$, then v_j contradicts the choice of z. If $t \in x_{k+1} \overrightarrow{P} x_m$ (assuming $x_k \neq x_m$), and $v_i^{++} \neq x_i$, then to avoid $G[\{x_i, v_k, z; v_i, v_i^+, t\}] \cong H_1$, we have $v_k t \in E(G)$. But then $G[\{t; t^-, v_k, v_i\}] \cong K_{1,3}$. If $t \in x_{k+1} \overrightarrow{P} x_m$ (assuming $x_k \neq x_m$), and $v_i^{++} = x_j$, then to avoid $G[\{x_i, v_k, z; v_j, x_j, t\}] \cong H_1$ we have $x_i x_j \in E(G)$ or $x_i t \in E(G)$, both giving an induced claw as contradiction, or $v_k t \in E(G)$. In the latter case, $G[\{t; t^-, v_k, v_i\}] \cong K_{1,3}$. We now show that $|E(Q_k)| = 1$, if $x_k \neq x_m$. This is not difficult if $x_i x_j \notin E(G)$: consider any neighbor z' of z in $V(G) \setminus V(P)$. Then, considering $G[\{z; z', x_i, x_j\}]$, to avoid an induced claw, we get that one of $z'x_i$ and $z'x_i$ is an edge. But then considering $G[\{x_{j-1}, x_{j+1}, x_j; z, z', x_i\}]$ or $G[\{x_{i-1}, x_{i+1}, x_i; z, z', x_j\}]$, we obtain both edges. This implies all vertices in the component of G - V(P) containing z have x_i and x_i as neighbors. Hence, we can choose a vertex z with three neighbors on P. Now assume $x_i x_j \in E(G)$, and assume $x_k \neq x_m$ and $|E(Q_k)| \geq 2$. Then z has no third neighbor on P. Let p denote the successor of z on Q_k . Since $\delta \geq 3$, p is in a triangle by claw-freeness. If px_i or px_i is an edge, then both edges are in; otherwise we obtain a claw induced by $\{x_i; p, x_{i+1}, x_i\}$ or $\{x_i; p, x_{i+1}, x_i\}$. But then we contradict the choice of z. Hence $px_i, px_i \notin E(G)$. We distinguish four subcases. - (i) p and z are in a common triangle with a vertex $t \notin V(P)$. Clearly, by the choice of Q_k , $t \notin V(Q_k)$. To avoid $G[\{p, t, z; x_i, x_{i+1}, x_{i-1}\}] \cong H_1$, we have $tx_i \in E(G)$, and similarly $tx_i \in E(G)$. Suppose first that $x_k = p^+$. To avoid $G[\{z,t,p;x_k,x_{k-1},x_{k+1}\}] \cong H_1$, we have $tx_k \in E(G)$ (note that $zx_k \notin E(G)$ by the choice of z). But then t contradicts the choice of z (since tx_i, tx_j , $tx_k \in E(G)$). Hence we may assume $p^+ \neq x_k$. We use that p^+ is in a common triangle with p or p^{++} . - (a) p and p^+ are in a common triangle with some vertex t'. Similar arguments as for p show $p^+x_i, p^+x_i \notin E(G)$. If $t' \notin V(P)$, then the choice of z implies $t'x_i, t'x_i \notin E(G)$ and $t'z \notin E(G)$; if $t' \in V(P)$, then also $t'z \notin E(G)$. Now to avoid $G[\{t', p^+, p; z, x_i, x_i\}] \cong H_1$, we conclude that $t' \in V(P)$ and that t' is adjacent to x_i or x_i . Both cases yield a claw induced by $\{x_i; z, t', x_{i+1}\}\$ or $\{x_j; z, t', x_{j+1}\}\$, a contradiction. - (b) p and p^+ are not in a common triangle. Hence p^+ and p^{++} are in a common triangle with some vertex t'. Using the choice of z and Q_k , to avoid $G[\{z,t,p;p^+,p^{++},t'\}] \cong H_1$, we have $t't \in E(G)$, hence $t' \notin F(G)$ V(P). To avoid $G[\{t;t',p,x_i\}] \cong K_{1,3}$, we conclude that $x_it' \in E(G)$, and similarly $x_i t' \in E(G)$, contradicting the choice of z. - (ii) p and z are in a common triangle with a vertex $t \in V(P)$. Together with $px_i, px_i \notin E(G)$, we contradict the assumption that z has no third neighbor - (iii) p and z are not in a common triangle, but p and p^+ are in a common triangle with a vertex $t \notin V(P)$. Clearly, the assumption implies $tz \notin$ E(G), and by the choice of Q_k , $zp^+ \notin E(G)$. Hence also $tx_i, tx_i \notin E(G)$. (iv) p and z are not in a triangle, and p and p^+ are not in a triangle with some vertex of $V(G) \setminus V(P)$. Hence p and p^+ are in a common triangle with some vertex $t \in V(P)$. Since $px_i, px_j \notin E(G)$, the choice of Q_k implies $p^+ \in V(P)$. Consider $G[\{x_i, x_j, z; p, x_k, t\}]$. If $x_i x_k \in E(G)$, then $G[\{x_k; p, x_j, x_{j-1}\}] \cong K_{1,3}$. By similar arguments, to avoid an H_1 , we conclude $t = x_m$ and tx_i or tx_j is an edge. If $tx_i \in E(G)$, we obtain $G[\{x_{i-1}, x_{i+1}, x_i; t, p, x_k\}] \cong H_1$; the case $tx_j \in E(G)$ is similar. Case 1. $x_i x_j \notin E(G)$. Suppose first that $x_k = x_m$ and $z x_k \notin E(G)$. Then consider any neighbor z' of z in $V(Q_k) \setminus V(P)$ and $G[\{z; z', x_i, x_j\}]$. To avoid an induced claw, we get that one of $z' x_i$ and $z' x_j$ is an edge. But then considering $G[\{x_{j-1}, x_{j+1}, x_j; z, z', x_i\}]$ or $G[\{x_{i-1}, x_{i+1}, x_i; z, z', x_j\}]$, we obtain both edges. This contradicts the choice of z. Hence, we may assume $z x_i, z x_j, z x_k \in E(G)$. Since by assumption $x_i x_j \notin E(G)$, claw-freeness implies $x_i x_k \in E(G)$ or $x_j x_k \in E(G)$. First assume $x_ix_k \in E(G)$. If also $x_jx_k \in E(G)$, then to avoid $G[\{x_k; x_i, x_j, x_{k-1}\}] \cong K_{1,3}$, we have $x_ix_{k-1} \in E(G)$ or $x_jx_{k-1} \in E(G)$, both contradicting the choice of P. So $x_jx_k \notin E(G)$. If $x_kx_{j-1} \in E(G)$, then also $x_{k-1}x_{j-1} \in E(G)$, contradicting the choice of P. Hence $x_kx_j, x_kx_{j-1} \notin E(G)$. To avoid $G[\{x_i, x_k, z; x_j, x_{j-1}, x_{j+1}\}] \cong H_1$, we have $x_kx_{j+1} \in E(G)$, and hence also $x_{k-1}x_{j+1} \in E(G)$. Since $x_{i-1}x_{k-1} \notin E(G)$, we have $x_{i-1}x_k \notin E(G)$. Since $x_{i-1}x_k \notin E(G)$, we have $x_{i-1}x_{j+1} \notin E(G)$ (otherwise $G[\{x_{j+1}, x_{i-1}, x_j, x_k\}] \cong K_{1,3}$). If $x_{i+1}x_{k-1} \in E(G)$, then $x_1 \overrightarrow{P} x_i z x_j \overleftarrow{P} x_{i+1} x_{k-1} \overleftarrow{P} x_{j+1} x_k \overrightarrow{P} x_m$ contradicts the choice of P. Hence $x_{i+1}x_{k-1} \notin E(G)$. But then $G[\{x_k, x_{i+1}, z, x_{k-1}\}] \cong K_{1,3}$, a contradiction. We conclude that $x_i x_k \notin E(G)$ and $x_i x_k \in E(G)$. To avoid $G[\{x_{i-1}, x_{i+1}, x_i; z, x_j, x_k\}] \cong H_1$, we have $x_{i+1}x_k \in E(G)$, and hence also $x_{i+1}x_{k-1} \in E(G)$. This also implies $x_k = x_m$. By the choice of P, we have $x_ix_{i+2} \notin E(G)$. To avoid $G[\{x_{i+1}; x_i, x_{i+2}, x_k\}] \cong K_{1,3}$, we have $x_{i+2}x_k \in E(G)$ and to avoid $G[\{x_{i+1}; x_i, x_{i+2}, x_{k-1}\}] \cong K_{1,3}$, we have $x_{i+2}x_{k-1} \in E(G)$. If $x_kx_{j+1} \in E(G)$, then $G[\{x_k; x_{i+1}, x_{j+1}, z\}] \cong K_{1,3}$. If $x_{i+1}x_{j-1} \in E(G)$, then $x_1 \overrightarrow{P} x_{i+1}x_{j-1}$ $P(x_{i+2}x_{k-1}) = F(x_{i+2}x_{k-1}) F(x_{i+2}x_{i+1}x_{i+3}) = F(x_{i+2}x_{i+1}x_{i+3} = F(G)$, then $x_1 \overrightarrow{P} x_{i+2}x_{j-1} = F(G) F($ - **Case 2.** $x_i x_j \in E(G)$. To avoid $G[\{x_{i-1}, x_{i+1}, x_i; x_j, x_{j-1}, x_{j+1}\}] \cong H_1$, we have either $x_{i-1}x_{i+1} \in E(G)$ or $x_{i+1}x_{i-1} \in E(G)$, since the other edges are not present by standard arguments. - **Case 2.1.** $x_{i-1}x_{j+1} \in E(G)$. To avoid $G[\{x_{i+1}; x_i, x_{i+2}, x_{i-1}\}] \cong K_{1,3}$, we have $x_{i-1}x_{j+2} \in E(G)$, since $x_{i-1}x_i \notin E(G)$ (standard) and $x_ix_{j+2} \notin E(G)$ (otherwise $x\overrightarrow{P}x_{i-1}x_{i+1}x_{i-1}\overrightarrow{P}x_izx_ix_{i+2}\overrightarrow{P}y$ contradicts the choice of P). We first show $zx_k \in E(G)$. Assuming the contrary we have $v_k \neq x_k$. Since $\delta \geq 3$ and G is claw-free, v_k belongs to a triangle. - **Case a.** There exists a triangle T containing v_k and z. Let q be the third vertex of T. - **Case a.1.** $q \notin V(P)$. If $x_i v_k \in E(G)$, then, to avoid $G[\{x_i; x_{i+1}, x_j, v_k\}] \cong K_{1,3}$, also $x_i v_k \in E(G)$, which contradicts the choice of z (v_k would have been a better choice). Hence, to avoid $G[\{x_{i-1}, x_{i+1}, x_i; z, v_k, q\}] \cong H_1$, we have $x_i q \in E(G)$. But then $G[\{x_{i+1}, x_{i+2}, x_{i-1}; x_i, z, q\}] \cong H_1$. - Case a.2. $q \in V(P)$. By the way x_k was chosen, we have $q = x_i$ or $q = x_j$. If $q = x_i$, then $G[\{x_{i+1}, x_{i+2}, x_{i-1}; x_i, z, v_k\}] \cong H_1$. If $q = x_i$, then, to avoid $G[\{x_i; x_i, v_k\}]$ $v_k, x_{i+1}\} \cong K_{1,3}$, we have $x_i v_k \in E(G)$, giving the same H_1 as a contradiction. - **Case b.** Every triangle T containing v_k does not contain z. Let q_1 and q_2 be the two other vertices of T. If $q_1, q_2 \notin V(P)$, then $G[\{x_i, x_j, z; v_k, q_1, q_2\}] \cong H_1$; otherwise, if for example $q_1z \in E(G)$, there would be a triangle T containing v_k and z, and if $q_1x_i \in E(G)$, then $G[\{x_i; z, q_1, x_{i+1}\}] \cong K_{1,3}$. Also, if $q_1 \in V(P)$ (and/or $q_2 \in V(P)$), then $G[\{x_i, x_j, z; v_k, q_1, q_2\}] \cong H_1$; otherwise, if for example $q_1x_i \in E(G)$, then $G[\{q_1; x_i, v_k, q_1^-\}] \cong K_{1,3}$. - **Case 2.1.1.** $x_1 \neq x_{i-1}$. To avoid $G[\{x_{i-1}; x_{i-2}, x_i, x_{i+1}\}] \cong K_{1,3}$, we have $x_{i-2}x_{j+1}$ $\in E(G)$, and to avoid $G[\{x_{i-1}; x_{i-2}, x_i, x_{i+2}\}] \cong K_{1,3}$, we have $x_{i-2}x_{i+2} \in E(G)$. But then $G[\{x_i, z, x_i; x_{i+1}, x_{i+2}, x_{i-2}\}] \cong H_1$. - Case 2.1.2. $x_1 = x_{i-1}$. - **Case 2.1.2.1.** $x_k \neq x_m$. To avoid $G[\{x_i, x_j, z; x_k, x_{k-1}, x_{k+1}\}] \cong H_1$, we have $x_i x_k \in E(G)$ or $x_j x_k \in E(G)$. First assume $x_j x_k \in E(G)$. To avoid $G[\{x_{j-1}, x_{j+1}, x_j; \}]$ $x_k, x_{k-1}, x_{k+1}\}] \cong H_1$, we have $x_{j-1}x_{k+1} \in E(G)$ or $x_{j+1}x_{k-1} \in E(G)$. However, if $x_{j+1}x_{k-1} \in E(G)$, then $x_1x_{j+2}\overrightarrow{P}x_{k-1}x_{j+1}\overrightarrow{P}x_izx_kx_{k+1}\overrightarrow{P}x_m$ contradicts the choice of P; if $x_{j-1}x_{k+1} \in E(G)$, so does $x_1x_{j+1}\overrightarrow{P}x_kzx_jx_i\overrightarrow{P}x_{j-1}x_{k+1}\overrightarrow{P}x_m$. Hence $x_ix_k \in$ E(G). To avoid $G[\{x_{i-1}, x_{i+1}, x_i; x_k, x_{k-1}, x_{k+1}\}] \cong H_1$, we have $x_{i+1}x_{k-1} \in E(G)$ or $x_{i-1}x_{k+1} \in E(G)$. However, if $x_{i+1}x_{k-1} \in E(G)$, then $x_1x_{j+1}Px_{k-1}x_{i+1}Px_{j}x_{i}zx_{k}$ \overrightarrow{Px}_m contradicts the choice of P; if $x_{i-1}x_{k+1} \in E(G)$, then $G[\{x_1; x_i, x_{i+1}, x_{i+1$ $x_{k+1}\}] \cong K_{1,3}.$ - Case 2.1.2.2. $x_k = x_m$. We distinguish between the cases that $x_i x_k \in E(G)$ and $x_i x_k \not\in E(G)$. - **Case 2.1.2.2.a.** $x_j x_m \in E(G)$. To avoid $G[\{x_1, x_{j+2}, x_{j+1}; x_j, z, x_m\}] \cong H_1$, we have $x_{j+2}x_m \in E(G)$, since $x_1x_m \notin E(G)$ (standard) and $x_{j+1}x_m \notin E(G)$ (otherwise also $x_{j+1}x_{m-1} \in E(G)$, giving a path $x_1x_{j+2}\overrightarrow{P}x_{m-1}x_{j+1}\overleftarrow{P}x_izy$ which contradicts the choice of P) while the other possible edges are not present by standard arguments. First assume $x_{j+3} \neq x_{m-1}$. To avoid $G[\{x_m; x_{m-1}, x_{j+2}, z\}] \cong K_{1,3}$, we have $x_{j+2}x_{m-1} \in E(G)$, and to avoid $G[\{x_{j+2}; x_1, x_{j+3}, x_{m-1}\}] \cong K_{1,3}$, we have $x_{j+3}x_{m-1} \in E(G)$. But then $G[\{x_{i+1}, x_i, x_1; x_{j+2}, x_{j+3}, x_{m-1}\}] \cong H_1$, since $x_1x_{j+3} \notin E(G)$ (otherwise $x_1x_{j+3}\overrightarrow{P}x_{m-1}x_{j+2}\overrightarrow{P}x_izx_m$ contradicts the choice of P), $x_ix_{j+3} \notin E(G)$ (otherwise $x_1x_{j+2}x_{m-1}\overrightarrow{P}x_{j+3}x_i\overrightarrow{P}x_{j-1}x_{j+1}x_{j}zx_m$ contradicts the choice of P), $x_{i+1}x_{j+3} \notin E(G)$ (otherwise $x_1x_{j+1}x_{j+2}x_{m-1}\overrightarrow{P}x_{j+3}x_{i+1}\overrightarrow{P}x_jx_izx_m$ contradicts the choice of P), and $x_{i+1}x_{m-1} \notin E(G)$ (otherwise $x_1x_{j+1}\overrightarrow{P}x_{m-1}x_{i+1}\overrightarrow{P}x_jx_izx_m$ contradicts the choice of P), while the other possible edges are not present by standard arguments. Hence we may assume that $x_{j+3} = x_{m-1}$. Let $p \in V(G) \setminus \{x_{j+2}, x_m\}$ be a neighbor of x_{j+3} . We first show that we can choose p on P. Suppose there does not exist such a vertex p on P and let T be a triangle containing p and containing a maximum number of vertices of P. Let q_1 and q_2 be the other vertices of T. To avoid $G[\{x_{j+3}, x_{j+2}, x_m, p\}] \cong K_{1,3}$, we have $x_{j+2}y \in E(G)$. If $V(T) \cap V(P) = \emptyset$, then $G[\{q_1, q_2, p; x_{j+3}, x_{j+2}, x_m\}] \cong H_1$. If $|V(T) \cap V(P)| = 2$, then $q_1 \neq x_{j+3}$ (since q_2 is a neighbor of q_1 , it would have been possible to choose p on P) and $q_2 \neq x_{j+3}$ (similar). But then p contradicts the choice of z. If $|V(T) \cap V(P)| = 1$, let q_1 be the vertex not on P and let q_2 be the vertex on P. One easily shows that $q_2 \notin \{x_1, x_i, x_{i+1}, x_{j-1}, x_j, x_{j+1}, x_{j+2}, y\}$ by obtaining (x, y)-paths contradicting the choice of P. If $q_2 = x_{j+3}$, then $G[\{x_1, x_{j+1}, x_{j+2}; q_2, q_1, p\}] \cong H_1$. If $q_2 \in x_{i+2} \overrightarrow{P} x_{j-2}$, then to avoid $G[\{q_2; q_2^-, q_2^+, q_1\}] \cong K_{1,3}$, we have $q_2^-q_2^+ \in E(G)$. However, then $G[\{q_2, q_1, p; x_{j+3}, x_{j+2}, x_m\}] \cong H_1$, since $q_2x_{j+2} \notin E(G)$ (otherwise $x_1 \overrightarrow{P} q_2^- q_2^+ \overrightarrow{P} x_{j+2} q_2 p x_{j+3} x_m$ contradicts the choice of P), $q_2x_{j+3} \notin E(G)$ by assumption and $q_2x_m \notin E(G)$ (otherwise also $q_2x_{j+3} \notin E(G)$ by a standard observation). Hence we may assume that we can choose p on P, and one easily shows that $p \in x_{i+2}\overrightarrow{P}x_{j-2}$. To avoid $G[\{p;p^-,p^+,x_{j+3}\}] \cong K_{1,3}$, we have $p^-p^+ \in E(G)$, since $p^-x_{j+3} \notin E(G)$ (otherwise $x_1x_{j+2}\overrightarrow{P}px_{j+3}p^-\overrightarrow{P}x_izx_m$ contradicts the choice of P) and $p^+x_{j+3} \notin E(G)$ (similar). We may assume that $px_{j+2} \notin E(G)$ (otherwise by considering the path $x_1\overrightarrow{P}p^-p^+\overrightarrow{P}x_{j+2}px_{j+3}x_m$ we are back in the case that $x_{j+3} \notin x_{m-1}$) and $px_m \notin E(G)$ (similar). Hence, to avoid $G[\{x_{j+3};p,x_{j+2},x_m\}] \cong K_{1,3}$, we have $x_{j+2}x_m \in E(G)$. However, then $G[\{p^-,p^+,p;x_{j+3},x_{j+2},x_m\}] \cong H_1$, since $p^-x_{j+2} \notin E(G)$ (otherwise $x_1x_{j+1}\overrightarrow{P}px_{j+3}x_{j+2}p^-\overrightarrow{P}x_izx_m$ contradicts the choice of P), $p^-x_m \notin E(G)$ (otherwise also $p^-x_{j+3} \in E(G)$), $p^+x_{j+2} \notin E(G)$ (otherwise $x_1x_{j+1}x_{j+2}p^+\overrightarrow{P}x_jzx_i\overrightarrow{P}px_{j+3}x_m$ contradicts the choice of P), and $p^+x_m \notin E(G)$ (otherwise also $p^+x_{j+3} \in E(G)$). **Case 2.1.2.2.b.** $x_j x_m \notin E(G)$. Let $p \in V(G) \setminus \{z, x_{m-1}\}$ be a neighbor of x_m . We first show that we can choose p on P. Suppose there does not exist such a vertex p on P. To avoid $G[\{x_m; x_{m-1}, z, p\}] \cong K_{1,3}$, we have $pz \in E(G)$. If $px_i \in E(G)$, then $G[\{p, z, x_i; x_{i-1}, x_{j+1}, x_{j+2}\}] \cong H_1$. Hence we have $px_i \notin E(G)$. Since $x_{i-1}x_{k-1} \notin E(G)$. E(G), also $x_{i-1}x_k \notin E(G)$, and since $x_{i+1}x_{k-1} \notin E(G)$, also $x_{i+1}x_k \notin E(G)$. To avoid $G[\{x_{i-1}, x_{i+1}, x_i; z, p, x_k\}] \cong H_1$, we have $x_i x_k \in E(G)$. However, then $G[\{x_m, x_i, x_{m-1}, p\}] \cong K_{1,3}.$ Hence, we may assume that we can choose p on P. If $x_i x_m \in E(G)$, then to avoid $G[\{x_i, x_{i+1}, x_j, x_m\}] \cong K_{1,3}$, we have $x_{i+1}x_m \in E(G)$, and hence also x_{m-1} $x_{i+1} \in E(G)$, yielding a path $x_1x_{j+1}\overrightarrow{P}x_{m-1}x_{i+1}\overrightarrow{P}x_jx_izx_m$, contradicting the choice of P. Hence $x_i x_m, x_{i+1} x_m \notin E(G)$. If $x_{i-1} x_m \in E(G)$, then also $x_{i-1} x_{m-1} \in E(G)$, a contradiction. Hence $x_{i-1}x_m \notin E(G)$, and similarly $x_{i-1}x_m \notin E(G)$. If $x_{i+1}x_m \in$ E(G), then also $x_{i+1}x_{m-1} \in E(G)$, yielding a contradicting path x_1x_{i+2} $Px_{m-1}x_{i+1}$ Px_izx_m . The above observations leave two cases for the location of p. - (i) $p \in x_{i+2} P x_{i-2}$. We choose $p \in N(x_k)$ as close to x_{j-1} as possible. To avoid $G[\{x_m; p, z, x_{m-1}\}] \cong K_{1,3}$, we have $px_{m-1} \in E(G)$. To avoid $G[\{x_i, x_i, z; x_i\}]$ $\{x_m, x_{m-1}, p\}\} \cong H_1$, we have $px_i \in E(G)$ or $px_i \in E(G)$. If $px_i \in E(G)$, then also $px_1 \in E(G)$ (otherwise $G[\{x_i; x_1, p, z\}] \cong K_{1,3}$). Since $px_{m-1} \in E(G)$, the choice of P implies $p^+x_1 \notin E(G)$. To avoid $G[\{p; x_1, p^+, x_m\}] \cong K_{1,3}$, we have $p^+x_m \in E(G)$, contradicting the choice of P. Next assume $px_i \in$ E(G). Then $p^+ \neq x_{j-1}$. To avoid $G[\{p; p^+, x_j, x_m\}] \cong K_{1,3}$, we have $p^+x_j \in$ E(G), and to avoid $G[\{x_i, p, z, x_{i+1}\}] \cong K_{1,3}$, we have $p^+x_{i+1} \in E(G)$. However, then $x_1 \overrightarrow{P}px_{m-1} \overleftarrow{P}x_{i+1}p^+ \overrightarrow{P}x_izx_m$ contradicts the choice of P. - (ii) $p \in x_{i+2} \overline{P} x_{k-2}$. We choose $p \in N(x_k)$ as close to x_{i+1} as possible. We again have $px_{m-1} \in E(G)$ and $px_i \in E(G)$ or $px_i \in E(G)$. If $px_i \in E(G)$, then to avoid $G[\{p; x_i, p^-, x_m\}] \cong K_{1,3}$, we have $p^-x_i \in E(G)$ and $p \neq x_{j+2}$. To avoid $G[\{x_i; z, x_{i+1}, p^-\}] \cong K_{1,3}$, we have $x_{i+1}p^- \in E(G)$. But then x_1x_{i+1} $\overrightarrow{Pp}^-x_{i+1}\overrightarrow{Px}_izx_ip\overrightarrow{Px}_m$ contradicts the choice of P. If $px_i \in E(G)$, then also $px_{i-1}, px_{i+1} \in E(G)$. If $p^- = x_{i+1}$, then x_1x_{i+1} $x_jzx_i \ \overrightarrow{P}x_{j-1}p\overrightarrow{P}x_m$ contradicts the choice of P. If $p^- \neq x_{j+1}$, then to avoid $G[\{p; x_j, p^-, x_m\}] \cong K_{1,3}$, we have $p^-x_j \in E(G)$, and to avoid $G[\{x_j; x_{j-1}, y_{j-1}\}]$ $[z,p^-]$] $\cong K_{1,3}$, also $p^-x_{j-1} \in E(G)$. But then $x_1x_{j+1}\overrightarrow{P}p^-x_{j-1}$ $\overleftarrow{P}x_izx_ip\overrightarrow{P}x_k$ contradicts the choice of P. ### Case 2.2. $x_{i-1}x_{j+1} \notin E(G)$ (hence $x_{i+1}x_{i-1} \in E(G)$). **Case 2.2.1.** $j-i \ge 5$. To avoid $G[\{x_{i+1}; x_i, x_{i+2}, x_{j-1}\}] \cong K_{1,3}$, we have x_{i+2} $x_{j-1} \in E(G)$, since $x_i x_{i+2} \notin E(G)$ (contradicting path: $x_1 \overrightarrow{P} x_{i-1} x_{i+1} x_{j-1} \overrightarrow{P} x_{i+2} x_i z x_j$ Px_m). By symmetry, we also have $x_{i+1}x_{i-2} \in E(G)$. To avoid $G[\{x_{i+1}; x_i, x_{i+2}, x_i\}]$ $\{x_{i-2}\}\}\cong K_{1,3}$, we have $x_{i+2}x_{j-2}\in E(G)$. However, then $G[\{x_i,z,x_j;x_{j-1},x_{j-2},x_{j-2}\}]$ $x_{i+2}\}] \cong H_1.$ **Case 2.2.2.** j-i=4. We use that x_{i+2} has a neighbor $p \notin \{x_{i-1}, x_i, x_{i+1}, x_{i+2}, \dots, x_{i+1}, x_{i+2}, \dots, x_{i+1}, x_{$ x_{i-1}, x_i, x_{i+1} }. We first show we can choose $p \in V(P)$. Supposing this is not the case consider a triangle T containing p. Let q_1 and q_2 be the other vertices of T. First suppose $V(T) \cap V(P) = \emptyset$. If $q_1 x_{i+2} \in E(G)$, then $G[\{x_{i-1}, x_i, x_{i+1}; x_{i+2}, p, q_1\}] \cong H_1$. Hence $q_1x_{i+2}, q_2x_{i+2} \notin E(G)$. But then $G[\{q_1, q_2, p; x_{i+2}, x_{i+1}, x_{i-1}\}] \cong H_1$. Hence $|V(T) \cap V(P)| \ge 1$. Let q_1 denote a neighbor of p in $(V(P) \cap V(T)) \setminus \{x_{i+2}\}$. Then $x_{i+2}q_1 \notin E(G)$ by assumption. If $x_{j-1}q \in E(G)$, then also $x_{j-1}q_1^- \in E(G)$ (otherwise $G[\{q_1; q_1^-, x_{j-1}, p\}] \cong K_{1,3}$), and we easily find a path contradicting the choice of P. A similar observation shows $x_{i+1}q_1 \notin E(G)$. But then $G[\{x_{i+1}, x_{j-1}, x_{i+2}; p, q_1, q_2\}] \cong H_1$. Hence, we can choose $p \in V(P)$. If x_{i+2} has two successive neighbors on P, it is obvious that we can find a path contradicting the choice of P. Hence, if p^- and p^+ exist, we get that $p^-p^+ \in E(G)$. We deal with the cases that $p \in \{x_1, x_m\}$ later. To avoid $G[\{x_{i+1}, x_{j-1}, x_{i+2}; p, p^-, p^+\}] \cong H_1$, we have $x_{i+1}p \in E(G)$ or $x_{j-1}p \in E(G)$. If $x_{i+1}p \in E(G)$ and $p \in x_{j+1}\overrightarrow{P}x_{m-1}$, then by considering the path $x_1\overrightarrow{P}x_{i+1}px_{i+2}\overrightarrow{P}p^-p^+\overrightarrow{P}x_m$, we are back in Case 2.2.1. But then $G[\{x_{i+1}, x_{j-1}, x_{i+2}; p, p^-, p^+\}] \cong H_1$. Now suppose $p = x_m$. Then $x_m \neq x_k$, since otherwise $G[\{x_m; x_{i+2}, z, x_{m-1}\}] \cong K_{1,3}$. Note that $x_k \neq x_{m-1}$ (otherwise $x \overrightarrow{P} x_{i-1} x_{i+1} x_i z x_k \overrightarrow{P} x_{i+2} x_m$ contradicts the choice of P). To avoid $G[\{x_i, x_j, z; x_k, x_{k-1}, x_{k+1}\}] \cong H_1$, we have $x_i x_k \in E(G)$ or $x_j x_k \in E(G)$. Like in the beginning of Case 2, we have $x_{j-1} x_{k+1} \in E(G)$ or $x_{j+1} x_{k-1} \in E(G)$. If $x_{j-1} x_{k+1} \in E(G)$, also $x_{j-2} x_{k+1} \in E(G)$. However, since $x_{j-2} = x_{i+2}$ this contradicts the fact that $x_k \neq x_{m-1}$. If $x_{j+1} x_{k-1} \in E(G)$, then like in the beginning of this case, we have k-j=4. To avoid $G[\{x_{i+1}, x_{i+2}, x_{j-1}; x_{j+1}, x_{j+2}, x_{j+3}\}] \cong H_1$, we have $x_{i+1} x_{j+3} \in E(G)$. But then $G[\{x_{i-1}, x_i, x_{i+1}; x_{j+3}, x_{j+1}, x_{j+2}\}] \cong H_1$. Hence we may assume that $x_j x_k \notin E(G)$ and $x_i x_k \in E(G)$. But then $G[\{x_i; x_{i-1}, x_j, x_k\}] \cong K_{1,3}$. For the final subcase suppose $\{x_1\} = N(x_{i+2}) \setminus \{x_{i+1}, x_{j-1}\}$. By the choice of P, $N(x_1) \subseteq V(P)$ and $x_2 \neq x_{i-1}$. All neighbors of x_1 , except for possibly $x_{i+1}, x_{i+2}, x_{j-1}$, are also neighbors of x_2 , otherwise we obtain an induced claw centered at x_1 . If $x_1x_i \in E(G)$, then $x_2x_i \in E(G)$ and to avoid $G[\{x_i; x_2, z, x_{i+1}\}] \cong K_{1,3}$, we have $x_2x_{i+1} \in E(G)$, contradicting the choice of P. Hence $x_1x_i \notin E(G)$ and similarly $x_1x_i \notin E(G)$. If $x_1x_{i+1} \in E(G)$, then $G[\{x_1, x_{i+1}, x_{i+2}; x_i, z, x_j\}] \cong H_1$; if $x_1x_{j-1} \in E(G)$, then $G[\{x_1, x_{i+2}, x_{j-1}; x_j, x_i, z\}] \cong H_1$. Now assume $x_1x_{i+1}, x_1, x_{j-1} \notin E(G)$. Hence x_1 has some neighbor $q \neq x_i, x_{i+1}, x_{i+2}, x_{j-1}, x_j$ which is also a neighbor of x_2 . To avoid $G[\{q, x_2, x_1; x_{i+2}, x_{i+1}, x_{j-1}\}] \cong H_1$, we have $qx_{i+1} \in E(G)$ or $qx_{j-1} \in E(G)$. First suppose $q \in x_3 Px_{i-1}$ and $qx_{i+1} \in E(G)$. Then to avoid $G[\{x_{i+1}; q, x_i, x_{i+2}\}] \cong K_{1,3}$, we have $qx_i \in E(G)$. To avoid $G[\{x_1, x_2, q; x_i, z, x_j\}] \cong H_1$, we have $qx_j \in E(G)$. But then $G[\{q; x_2, x_{i+1}, x_j\}] \cong K_{1,3}$. Next, suppose $q \in x_3 Px_{i-1}$ and $qx_{i+1} \notin E(G)$. Then $qx_{j-1} \in E(G)$ and to avoid $G[\{x_{j-1}; q, x_{i+2}, x_j\}] \cong K_{1,3}$, we have $qx_j \in E(G)$. To avoid $G[\{x_1, x_2, q; x_j, z, x_i\}] \cong H_1$, we have $qx_i \in E(G)$. But then $G[\{q; x_2, x_i, x_{j-1}\}] \cong K_{1,3}$. We now may assume $q \notin x_3 \overrightarrow{P}x_{i-1}$, hence $q \in x_{j+1} \overrightarrow{P}x_m$. We choose q as close to x_m as possible, and deal with the subcase $qx_{j-1} \in E(G)$ first. If $q = x_m$, then, as before, we can repeat the previous cases with x_j, x_k instead of x_i, x_j , and obtain an induced H_1 , unless $x_k = x_m$; but in the latter case $G[\{x_m; x_2, u_k, x_{j-1}\}] \cong K_{1,3}$. Hence $q \neq x_m$. To avoid $G[\{x_1, x_2, q; x_{j-1}, x_j, x_{j+1}\}] \cong H_1$, we have $qx_j \in E(G)$ or $qx_{j+1} \in E(G)$, both implying $qx_{j+1} \in E(G)$. To avoid $G[\{q; x_j, x_j, x_j, x_j\}] \cong H_1$, we $[x_1, x_{j+1}, q^+] \cong K_{1,3}$, we have $x_{j+1}q^+ \in E(G)$, yielding $x_1x_{i+2}x_{j-1}x_jz_ix_ix_{i+1}x_{i-1}$ $\overline{P}x_2q\overline{P}x_{i+1}q^+\overline{P}x_m$, a contradiction. For the remaining case, we assume $qx_{i-1} \notin$ E(G); hence $qx_{i+1} \in E(G)$. By similar arguments as before, we may assume $q \neq x_m$. To avoid $G[\{q; q^+, x_1, x_{i+1}\}] \cong K_{1,3}$, we have $x_{i+1}q^+ \in E(G)$. If $q^+ = x_m$, then by similar arguments as before $x_m = x_k$ and $x_1 x_{i+2} \overrightarrow{P} x_{k-1} x_2 \overrightarrow{P} x_{i-1} x_{i+1} x_i z Q_k x_k$ gives a contradiction. In the final case, the path $P' = x_1 x_{i+2} \overrightarrow{P} q x_2 \overrightarrow{P} x_{i+1} q^+ \overrightarrow{P} x_m$ has the same properties as P, also with respect to the choice of z. But z has two internal vertices $x_{i'}$ and $x_{i'}$ of P' with $j' - i' \ge 5$ as neighbors, so repeating the above arguments with respect to $P', x_{i'}, x_{i'}$ we will obtain an induced H_1 . This completes the proof of Theorem 4. ### 3. POSSIBLE FORBIDDEN PAIRS AND HAMILTONIAN-CONNECTEDNESS We start by defining eight graphs which are 3-connected but not hamiltonianconnected. Let $m \ge 4$ be an integer, M_i be a K_m in which three vertices x_i , y_i , and z_i are marked and $M = \bigcup_{i=1}^8 M_i$. - $G_1 = K_{m,m}$, - G_2 is obtained from a cycle $C = x_1x_2 \cdots x_{2m}$, by adding the edges x_ix_{m+i} $(i=1,\ldots,m),$ - G_3 is an arbitrary 3-connected C_4 -free bipartite graph, - G_4 is obtained from M_1 by adding two vertices a and b and all (six) edges between a, b and x_1, y_1, z_1 , - G_5 is obtained from a cycle $C = x_1x_2 \cdots x_{6m}$ by adding the edges $x_{3i-2}x_{3i}$ (i = 1, ..., 2m) and the edges $x_{3i-1}x_{3m+3i-1}$ (i = 1, ..., m), - G_6 is obtained from a cycle $C = x_1 x_2 \cdots x_{4m}$ by adding the edges $x_{2i-1} x_{2i+1}$ $(i = 1, ..., 2m - 1), x_{4m-1}x_1, \text{ and } x_{2i}x_{2m+2i} \ (i = 1, ..., m),$ - G_7 is obtained from G_5 by replacing every triangle $x_{3i-2}x_{3i-1}x_{3i}$ $(i = 1, \dots, 2m)$ by the graph G' of Fig. 2, FIGURE 2. The graph G'. • G_8 is obtained from M by identifying each vertex x_i with y_{i+1} (i = 1, ..., 7), x_8 with y_1 and each vertex z_i with z_{i+4} (i = 1, ..., 4). Since the graphs G_1, \ldots, G_8 are not hamiltonian-connected, each of them must contain an induced copy of either X or Y. The graphs G_1, G_2, G_3, G_4 all contain a claw, but the last four graphs G_5, G_6, G_7, G_8 are all claw-free. We will first show that one of the graphs X or Y must be $K_{1,3}$. Assume that this is not true. Assume, without loss of generality, that $X \subset G_1$. Then X must either contain an induced C_4 or it must be a generalized claw $K_{1,r}$ for $r \geq 4$. First consider the case when $C_4 \subset X$. Then Y must be an induced subgraph of both G_3 and G_4 , since neither of these graphs contains an induced C_4 . However, the only induced subgraph common to both G_3 and G_4 is the claw $K_{1,3}$. If $X = K_{1,r}$ for $r \geq 4$, then Y must be an induced subgraph of both G_2 and G_4 , since neither of these graphs has an induced $K_{1,4}$. Again, the only induced subgraph common to both G_2 and G_4 is the claw $K_{1,3}$. Therefore, without loss of generality, we can assume that $X = K_{1,3}$. Since G_5 , G_6 , G_7 , G_8 are all claw-free, Y must be an induced subgraph of each of these graphs. Since G_5 is claw-free and $\Delta(G_5) = 3$, Y must satisfy both (a) and (f). There is no induced P_{10} in G_8 , so (b) is satisfied. The shortest induced cycle in G_5 besides G_3 is a G_8 , the longest induced cycle in G_8 is a G_8 , and G_6 contains no induced G_8 . Thus (c) is satisfied. In G_5 , the distance between distinct triangles is either one or at least three. This implies that (d) is satisfied. The graph G_7 does not contain an induced copy of the graph G_8 obtained from a G_8 by placing a triangle on the first and third edge (G_8 is an G_8 in an edge attached to a vertex of degree two). Therefore, if G_8 contains three triangles, then each pair of triangles would have to be at distance at least three. This would imply an induced G_8 0, which is not true. Thus (e) is satisfied. This completes the proof of Theorem 6. # 4. OPEN QUESTION The obvious question is the following. **Question A.** What is the characterization of those pairs of connected graphs *X* and *Y* such that being *X*-free and *Y*-free implies that a 3-connected graph is hamiltonian-connected? A simpler question, but one that is critical to answering Question A is the following. **Question B.** What is the largest k such that a 3-connected claw-free and P_k -free graph is hamiltonian-connected? # **REFERENCES** [1] P. Bedrossian, Forbidden Subgraph and Minimum Degree Conditions for Hamiltonicity, Ph.D. Thesis, Memphis State University, 1991. - [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976. - [3] H. J. Broersma, R. J. Faudree, A. Huck, H. Trommel, and H. J. Veldman, Forbidden subgraphs that imply hamiltonian-connectedness. Memorandum no. 1481, Faculty of Mathematical Sciences, University of Twente, Enschede, The Netherlands, 1999. - [4] G. Chen and R. J. Gould, Hamiltonian connected graphs involving forbidden subgraphs, preprint, 1999. - [5] R. J. Faudree, Forbidden graphs and hamiltonian properties—A survey, Surveys in graph theory (San Francisco, CA, 1995). Congr Numer 116 (1996), 33-52. - [6] R. J. Faudree and R. J. Gould, Characterizing forbidden pairs for hamiltonian properties, Discrete Math 173 (1997), 45-60. - [7] F. B. Shepherd, Hamiltonicity in claw-free graphs, J Combin Theory (B) 53 (1991), 173–194.