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Abstract

The book with n pages Bn is the graph consisting of n triangles sharing an edge.
The book Ramsey number r(Bm, Bn) is the smallest integer r such that either Bm ⊂ G

or Bn ⊂ G for every graph G of order r. We prove that there exists a positive constant
c such that r(Bm, Bn) = 2n+ 3 for all n ≥ cm.

1 Introduction

The graph Bn = K1 + K1,n, consisting of n triangles sharing a common edge, is known as

the book with n pages. The book Ramsey number r(Bm, Bn) is the smallest integer r such

that either Bm ⊂ G or Bn ⊂ G for every graph G of order r. The study of Ramsey numbers

for books was initiated in [7] and continued in [5]. The following results are known.

Theorem 1 (Rousseau, Sheehan). For all n > 1, r(B1, Bn) = 2n+ 3.

Theorem 2 (Parsons, Rousseau, Sheehan). If 2(m + n + 1) > (n − m)3/3 then

r(Bm, Bn) ≤ 2(m+ n+ 1). More generally,

r(Bm, Bn) ≤ m+ n + 2 +
⌊

2
3

√

3(m2 +mn+ n2)
⌋

. (1)

If 4n+1 is a prime power, then r(Bn, Bn) = 4n+2. If m ≡ 0 (mod 3) then r(Bm, Bm+2) ≤

4m+ 5.
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The more general upper bound (1) was noted by Parsons in [6]. In looking for cases

where equality holds in (1) or in other cases covered by Theorem 1, it is natural to consider

the class of strongly regular graphs. A (v, k, λ, µ) strongly regular graph (SRG) is a graph

with v vertices that is regular of degree k in which any two distinct vertices have λ common

neighbors if they are adjacent and µ common neighbors if they are nonadjacent. Thus if a

(v, k, λ, µ) graph exists then

r(Bλ+1, Bv−2k+µ−1) ≥ v + 1.

Inspection of a table known strongly regular graphs [4] yields a number of exact values for

book Ramsey numbers.

Corollary 1. In addition those cases where 4n + 1 is a prime power and r(Bn, Bn) =

4n+ 2 (n = 1, 2, 3, 4, 6, . . . , 69), Theorem 2 gives the following exact values for r(Bm, Bn) in

which the lower bound comes from a strongly regular graph of order at most 280.

(m,n) r(Bm, Bn) (v, k, λ, µ)

(2,5) 16 (15,6,1,3)
(3,5) 17 (16,6,2,2)
(4,6) 22 (21,10,3,6)
(7,10) 36 (35,16,6,8)
(11,11) 46 (45,22,10,11)
(14,17) 64 (63,30,13,15)
(23,26) 100 (99,48,22,24)
(22,37) 120 (119,54,21,27)
(29,38) 136 (135,64,28,32)
(34,37) 144 (143,70,33,35)
(47,50) 196 (195,96,46,48)
(46,58) 210 (209,100,45,50)
(56,56) 226 (225,112,55,56)
(38,82) 244 (243,110,37,60)
(62,65) 256 (255,126,61,63)
(69,71) 281 (280,135,70,60)

The starting point for this paper is Theorem 1 together with the following pair of results

from [5].
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Theorem 3 (Faudree, Rousseau, Sheehan).

r(B2, Bn) ≤



















2n+ 6, 2 ≤ n ≤ 11,

2n+ 5, 12 ≤ n ≤ 22,

2n+ 4, 23 ≤ n ≤ 37,

2n+ 3, n ≥ 38.

Theorem 4 (Faudree, Rousseau, Sheehan). If m > 1 and

n ≥ (m− 1)(16m3 + 16m2 − 24m− 10) + 1,

then r(Bm, Bn) = 2n+ 3.

From these results, we see that for each m there exists a smallest positive integer f(m)

such that r(Bm, Bn) = 2n + 3 for all n ≥ f(m). Moreover f(1) = 2 and f(2) ≤ 38. Our

main purpose here is to prove the following strengthening of Theorem 4.

Theorem 5. There exists a positive constant c such that r(Bm, Bn) = 2n+3 for all n ≥ cm.

2 Proofs

For standard terminology and notation, see [2]. For v ∈ V (G) we denote the neighborhood

of v by N(v) and the degree of v by deg(v). If needed, we shall use a subscript to identify

the graph in question; for example, NG(v) denotes the neighborhood of v in G. Given two

disjoint sets U,W ⊂ V (G), let e(U,W ) = |{uw ∈ E(G)| u ∈ U, w ∈ W}|. The subgraph

of G induced by X ⊂ V (G) will be denoted by G[X ]. Given graphs G and H , let MG(H)

denote the number of induced subgraphs of G that are isomorphic to H . The number of

pages in the largest book contained in G will be called the book size of G and this will be

denoted by bs(G). It is convenient to identify the graph and its complement in terms of edge

colorings of a complete graph. In this framework, r(Bm, Bn) is the smallest r such that in

every (R,B) = (red, blue) coloring of E(Kr), either bs(R) ≥ m or bs(B) ≥ n. Theorem 5

clearly follows from the following fact.

Theorem 6. Suppose m and n are positive integers satisfying n ≥ 106m. If (R,B) is any

two-coloring of E(Kn) then either bs(R) > m or bs(B) ≥ n/2− 2.

In view of the case R = K(⌊n/2⌋, ⌈n/2⌉) the conclusion bs(B) ≥ n/2−2 is best possible.

The proof of Theorem 6 uses the following counting result.
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Lemma 1. Let G be a graph with p vertices and q edges that satisfies bs(G) ≤ m. For

0 < λ < 1 suppose that δ(G) ≥ λp so q ≥ λp2/2. If p > 5(2λ+ 1)/λ2 then

MG(C4) >

(

λ3p2

5
−

m2

2

)

q.

Proof. For distinct vertices u, v ∈ V (G) let c(u, v) = |NG(u) ∩NG(v)|. Then

∑

{u,v}

(

c(u, v)

2

)

= 2MG(C4) + 6MG(K4) + 2MG(B2) and

∑

uv∈E

(

c(u, v)

2

)

= 6MG(K4) +MG(B2),

from which we get

MG(C4) =
1

2

∑

{u,v}

(

c(u, v)

2

)

−
∑

uv∈E

(

c(u, v)

2

)

+ 3MG(K4). (2)

Since bs(G) ≤ m,
∑

uv∈E

(

c(u, v)

2

)

≤ q

(

m

2

)

<
qm2

2
.

Note that
∑

{u,v}

c(u, v) =
∑

v∈V (G)

(

degG(v)

2

)

≥ p

(

2q/p

2

)

= q(2q/p− 1) ≥ q(λp− 1) := x,

so by convexity,
∑

{u,v}

(

c(u, v)

2

)

≥

(

p

2

)(

x/
(

p
2

)

2

)

=
x

2

(

x
(

p
2

) − 1

)

.

Since
x
(

p
2

) >
2x

p2
=

2q(λp− 1)

p2
≥ λ(λp− 1),

we have
∑

{u,v}

(

c(u, v)

2

)

>
q(λp− 1)(λ(λp− 1)− 1)

2
>

2λ3p2q

5
.

Note. The last inequality is clear if λ2p − 10λ − 5 ≥ 0, and hence it holds since we have

required p ≥ 5(2λ+ 1)/λ2. In view of (2) we have

MG(C4) >

(

λ3p2

5
−

m2

2

)

q,

as claimed.
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Proof of Theorem 6. Suppose n ≥ 106m and that (R,B) is a two-coloring of E(Kn) such

that bs(R) ≤ m. We shall prove that bs(B) ≥ n/2− 2. Let H = C4 ∪K1.

Claim 1. If bs(B) ≤ n/2− 2 then MR(H) ≤ 4mMR(C4).

Note. The hypothesis bs(G) ≤ n/2 − 2 rather than, as one might naturally expect,

bs(G) < n/2− 2, is made for convenience.

Proof. Suppose MR(H) > 4mMR(C4). Then there exists an induced C4 = (u, v, w, z) such

that

|NB(u) ∩NB(v) ∩NB(w) ∩NB(z)| ≥ 4m+ 1.

Since bs(B) ≤ n/2− 2 we have

|NB(u) ∩NB(w)| ≤ n/2− 2 and |NB(v) ∩NB(z)| ≤ n/2− 2.

It then follows that there are at least 4m+1 vertices outside of {u, v, w, z} that are adjacent

in R to at least one of u, w and at least one of v, z. This gives m+ 1 or more red triangles

on at least one of the four edges uv, vw, wz, zu, and thus the desired contradiction.

It is known that for any graph G of order n,

MG(C4) ≤

(

⌊n/2⌋

2

)(

⌈n/2⌉

2

)

<
n4

64
.

See [3] for a proof of the more general result

MG(Km,m) ≤

(

⌊n/2⌋

m

)(

⌈n/2⌉

m

)

.

Hence by Claim 1,

MR(H) <
mn4

16

or else bs(B) > n/2− 2.

Claim 2. If bs(B) ≤ n/2− 2 then R has at most n/20 vertices of degree 9n/20 or less.

Proof. Let v be any vertex of degree 9n/20 or less in R and let X = NB(v). Then B[X ] has

maximum degree at most n/2− 2 so G = G(v) = R[X ] has minimum degree δ satisfying

δ ≥ |X| − 1−
n

2
+ 2 ≥ n− 1−

9n

20
− 1−

n

2
+ 2 =

n

20
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and (since |X|+ 1 ≥ 11n/20)

δ ≥ |X|+ 1−
n

2
≥ |X|+ 1−

1

2

(

20(|X|+ 1)

11

)

=
|X|+ 1

11
.

Let us check that Lemma 1 applies to G. Take λ = 1/11 and p = |X| ≥ 11n/20. Then

p > 5(2λ+1)/λ2 holds provided n ≥ 1302. This is certainly the case since n ≥ 106m. Using

m ≤ n/106, Lemma 1 gives

MG(C4) >

(

1

5
·

1

113

(

11n

20

)2

−
1

2

( n

106

)2
)

1

2

(

11n

20

)

( n

20

)

≈
n4

640, 000
.

Suppose more than n/20 vertices in R have degree 9n/20 or less. Then

mn4

16
> MR(H) =

∑

v

MG(v)(C4) >
∑

deg(v)≤9n/20

MG(v)(C4) >
n

20
·

n4

640, 000
,

so n < 8 · 105m, a contradiction.

Let S = {v| degR(v) > 9n/20}. From Lemma 3 we know that |S| > 19n/20, so the

minimum degree of R[S] satisfies

δ ≥
9n

20
− (n− |S|) >

2n

5
≥

2|S|

5
.

Now we use the following result of Andrásfai, Erdős and Sós [1].

Theorem 7 (Andrásfai, Erdős, Sós). Suppose r ≥ 3. For any graph G of order n, at

most two of the following properties can hold:

(i) Kr 6⊆ G, (ii) δ(G) >
3r − 7

3r − 4
n, (iii) χ(G) ≥ r.

Note. In particular, a triangle-free graph G with δ(G) > 2|V (G)|/5 is bipartite.

Now we are prepared to complete the proof of Theorem 6. It is easy to see that R[S] has

no triangle. If T = {u, v, w} is a triangle in R[S] and U is the set of n − 3 vertices outside

T , then

3(9n/20− 2) < eR(T, U) ≤ 3(m− 1) · 2 + (n− 3(m− 1)) = n+ 3(m− 1),

or 7n/20 < 3m + 3, which is false. Hence R[S] is bipartite by Theorem 7. Let S1 and S2

denote the two color classes of R[S]. Put v ∈ T1 if v is adjacent in B to every vertex of S1.
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Then for the remaining vertices put v ∈ T2 if v is adjacent in B to every vertex of S2. Let

W1 = S1 ∪ T1,W2 = S2 ∪ T2, and let X denote the set of vertices in neither W1 nor W2. If

X = ∅ then we may assume that |W1| ≥ n/2. In this case it is clear that bs(B) ≥ n/2− 2.

We are left to consider the case X 6= ∅. For u ∈ S let Z(u) = NB(u) ∩X . For distinct

vertices u, v ∈ S1, consideration of the blue book on uv shows that

bs(B) ≥ |S1| − 2 + |T1|+ |Z(u) ∩ Z(v)|

≥ |S1| − 2 + |T1|+ |Z(u)|+ |Z(v)| − |X|.

Summing over all pairs u, v ∈ S1 and computing the average, we find

bs(B) ≥ |S1| − 2 + |T1|+
2(|S1||X| − eR(S1, X))

|S1|
− |X|

= |S1|+ |T1|+ |X| − 2−
2eR(S1, X)

|S1|
.

Similarly,

bs(B) ≥ |S2|+ |T2|+ |X| − 2−
2eR(S2, X)

|S2|
.

Note that |S1| < n/2 or else we are done at the outset; similarly |S2| < n/2. Hence

|S1| = |S| − |S2| >
19n

20
−

n

2
=

9n

20
,

and likewise |S2| > 9n/20. Consequently

bs(B) > |S1|+ |T1|+ |X| − 2−
40eR(S1, X)

9n
,

bs(B) > |S2|+ |T2|+ |X| − 2−
40eR(S2, X)

9n
.

Addition then gives

2 bs(B) > n− 4 + |X| −
40eR(S,X)

9n
.

Hence eR(S,X) > 9n|X|/40 or else the proof is complete.

Thus we assume eR(S,X) > 9n|X|/40 and now seek a companion bound on eR(S,X).

For each x ∈ X there is at least one v ∈ S1 such that xv ∈ R. Since |NR(v) ∩ S2| ≥ 2|S|/5,
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consideration of the red book on xv shows that

bs(R) ≥ |NR(x) ∩NR(v) ∩ S2|

= |NR(x) ∩ S2|+ |NR(v) ∩ S2| − |S2|

≥ |NR(x) ∩ S2|+
2|S|

5
− |S2|.

Taking the average over x ∈ X , we obtain

bs(R) ≥
eR(S2, X)

|X|
+

2|S|

5
− |S2|.

In exactly the same way,

bs(R) ≥
eR(S1, X)

|X|
+

2|S|

5
− |S1|.

Hence

2m ≥ 2bs(R) ≥
eR(S,X)

|X|
−

|S|

5
.

Thus

eR(S,X) ≥ 2m|X|+
|S||X|

5
.

From the two bounds for eR(S,X), we obtain

9n|X|

40
< eR(S,X) ≤

|S||X|

5
+ 2m|X| <

n|X|

5
+ 2m|X|.

By assumption |X| > 0, so
9n

40
<

n

5
+ 2m,

which is false.

3 Concluding Remarks

The determination of the best constant c in Theorem 5 is open, as are other basic problems

on book Ramsey numbers stated in [5]. In particular, it is unknown whether or not there

exists a constant C such that r(Bm, Bn) ≤ 2(m+ n) + C for all m,n.
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