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Abstract. This work has two aims: First, we introduce a powerful technique
for proving clique divergence when the graph satisfies a certain symmetry
condition. Second, we prove that each closed surface admits a clique divergent
triangulation. By definition, a graph is clique divergent if the orders of its
iterated clique graphs tend to infinity, and the clique graph of a graph is the
intersection graph of its maximal complete subgraphs.

1. Introduction
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All our graphs are simple, non-empty, finite and connected. We identify induced
subgraphs and vertex-sets. The clique graph K(G) of a graph G is the intersection
graph of the family of all its cliques (maximal complete subgraphs). The iterated
clique graphs Kn(G) are given by Kn+1(G) = K(Kn(G)). We refer to [12, 5, 15]
for the literature on iterated clique graphs. We study the dynamical behaviour of
graphs under the iterates of the clique operator K. There are two main types of
K-behaviour: G is clique convergent if Kn(G) ∼= Km(G) for some pair n < m;
in other words, G is clique convergent iff G is, in the obvious sense, eventually
clique periodic. On the other hand, G is clique divergent if |V (Kn(G))| tends to
infinity with n or, equivalently, if this sequence of orders is unbounded. With this
terminology, a graph is clique divergent iff it is not clique convergent.

To prove directly that a graph is clique divergent one all but needs to know
explicitly all its iterated clique graphs. This has only been possible for a handful of
cases: octahedra [9], locally C6 graphs [4] and clockwork graphs [5]. Indirect meth-
ods are scarce but more fruitful: For instance, any graph with a clique divergent
retract is clique divergent [9]. Also, in any finite triangular covering map [4], the
cover and the base have the same K-behaviour (see 4.2 below). Another indirect
approach is to prove something stronger than clique divergence: expansivity in [10],
rank divergence in this work.

The method developed in §2 can be sketched as follows: A coaffine graph has
a fixed symmetry: an automorphism σ which sends each vertex far away from it.
The rank of such a graph is the maximum possible number of σ-invariant subgraphs
which are mutually disjoint but close to each other. If the rank of Kn(G) tends
to infinity with n, then G is rank divergent and hence clique divergent. A graph
relation from one graph to another is a relation between their vertex-sets such
that the image of any complete subgraph is complete. Then we have Theorem
2.6: Given a symmetry-preserving graph relation between coaffine graphs, if the
domain is rank divergent then so is the codomain. Our §2 generalizes, strengthens
and simplifies some of the results outlined mostly without proofs in [9, 10]. The
major new features are the use of graph relations, the coaffinity indexes and the
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notion of rank divergence. It is noteworthy that in this context it is easier to work
with graph relations than with homomorphisms of graphs.

Iterated clique graphs are particularly interesting for graphs that triangulate
some closed surface. More restrictively, a Whitney triangulation [6] is an embed-
ding of a graph in a closed surface in such a way that the faces of the embedding are
precisely the cliques (necessarily triangles) of the graph; in other words, each face
is a triangle, each triangle is a face and the graph is not K4. Equivalently, one has
a simplicial complex k, the geometric realization |k| is the surface, the graph is the
1-skeleton k1 and each clique of the graph is a (maximal) simplex of k. Whitney
triangulations abundantly exist: the barycentric subdivision of any surface trian-
gulation is Whitney. For these triangulations, the complex is uniquely determined
by the graph, so we use the same name for the graph and the complex. Call a
graph locally cyclic if the open neighborhood of each vertex is a cycle. Then the
graph G defines some Whitney triangulation if and only if G is locally cyclic and
its minimum degree satisfies δ(G) > 3 (but note that the only locally cyclic G with
δ(G) ≤ 3 is K4). With other names, Whitney triangulations have been studied also
by Tutte in [13] and by Hartsfield and Ringel in [3]. In 1931, Whitney [14] proved
that any Whitney triangulation of the sphere is Hamiltonian.

The K-behaviour of regular Whitney triangulations is known and completely
determined by the topology: If the Whitney triangulation G is a regular graph,
then it is clique convergent if and only if its Euler characteristic is negative. If G is
r-regular, this simply means that r ≥ 7. Despite its simple statement, this result
for the regular case took a long time in coming and its whole proof is contained in
5 papers, see [6].

In the non-regular case the K-behaviour is not completely determined by the
topology: On the one hand, it is known [7] that all closed surfaces with negative
Euler characteristic admit a clique convergent Whitney triangulation, and even [6]
that all Whitney triangulations with δ(G) ≥ 7 are clique convergent. On the other
hand, we shall prove in §4 that each closed surface admits infinitely many clique
divergent Whitney triangulations (see Theorem 4.3). However, as will be seen in
§5, we conjecture that at least in some non-regular cases the topology still does
determine the K-behaviour.

Theorem 4.3 is a strong result which will illustrate the power of our methods in
§2, but in order to apply Theorem 2.6 to the proof of Theorem 4.3 we will need to
have some rank divergent graphs. These shall be constructed in §3 using results on
clockwork graphs from [5].

2. Relations, Coaffinity and Rank Divergent Graphs

If G is a graph, for a vertex x ∈ V (G) we usually write just x ∈ G. If x, y ∈ G,
we denote the distance from x to y by dG(x, y) or just d(x, y); also, we will write
x ' y when x and y are either adjacent or equal, i.e. when d(x, y) ≤ 1.

Recall that, for sets A and B, a relation f : A → B is any subset f of the
cartesian product A × B. A relation f is known once we know the sets A and B
and, for all a ∈ A, the image set f(a) = {b ∈ B : (a, b) ∈ f}. If f(a) = {b} we can
also write f(a) = b so as to regain the usual notation when f is a function. The
image of X ⊆ A is, of course, f(X) =

⋃
x∈X f(x). If f : A→ B and g : B → C are

relations, their composite g ◦ f : A→ C is given by [g ◦ f ](a) = g(f(a)).
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For graphs A and B, a graph relation f : A→ B is a relation f : V (A) → V (B)
where f(X) is complete in B whenever X is so in A. In other words, we have that
f(a) 6= ∅ for all a ∈ A and also a ' a′ implies b ' b′ for all b ∈ f(a) and b′ ∈ f(a′).
Any composite of graph relations is a graph relation. It is also clear that ordinary
morphisms of graphs are graph relations. Note that if (x1, ..., xs) is a path in A
and yi ∈ f(xi), then (y1, . . . , ys) is a walk in B, so we have:

Lemma 2.1. Let f : A → B be a graph relation, and a, a′ ∈ A, a 6= a′. Then, if
b ∈ f(a) and b′ ∈ f(a′), we have dB(b, b′) ≤ dA(a, a′). 2

Any graph relation f : A → B induces a graph relation fK : K(A) → K(B)
given by fK(Q) = {P ∈ K(B) : f(Q) ⊆ P} for each Q ∈ K(A). This fK is indeed
a graph relation: If Q ' Q′ in K(A), take P ∈ fK(Q) and P ′ ∈ fK(Q′); then
P ∩ P ′ ⊇ f(Q) ∩ f(Q′) ⊇ f(Q ∩Q′) 6= ∅, so P ' P ′ in K(B).

In general fK needs not to be a function even if f is so but, when f : A→ B is
an isomorphism, then fK : K(A) → K(B) is also an isomorphism: Indeed, f(Q) is
already a clique of B whenever Q is a clique of A, so fK is univalued. In a similar
way, if f : A → B is a local isomorphism then fK : K(A) → K(B) is also a local
isomorphism (see 4.2 below).

An automorphic graph A is a pair A = (A,α) where A is a graph and α is an
automorphism of A. Given two automorphic graphs A = (A,α) and B = (B, β), an
admissible relation f : A → B is a graph relation f : A→ B satisfying f ◦α = β ◦f .
In other words, an admissible relation f : A → B is just a symmetry-preserving
graph relation. Any composite of admissible relations is also admissible.

For any automorphic graph A = (A,α) we define K(A) = (K(A), αK). As
previously noted, αK is an automorphism, so K(A) is also automorphic.

Proposition 2.2. Let f : A → B be an admissible relation between automorphic
graphs. Then fK : K(A) → K(B) is also an admissible relation.

Proof. Let A = (A,α), B = (B, β). We already know that fK : K(A) → K(B) is a
graph relation. We prove that fK is admissible. If Q ∈ K(A), we have:

fK(αK(Q)) = fK(α(Q)) = {P ′ ∈ K(B) : f(α(Q)) ⊆ P ′}
= {P ′ ∈ K(B) : β(f(Q)) ⊆ P ′}
= {β(P ) ∈ K(B) : β(f(Q)) ⊆ β(P )}
= {β(P ) ∈ K(B) : f(Q) ⊆ P}
= βK({P ∈ K(B) : f(Q) ⊆ P})
= βK(fK(Q)).

Therefore, fK ◦ αK = βK ◦ fK and thus fK is admissible. 2

Let A = (A,α) be automorphic and r ≥ 2 an integer. We say that A is r-
coaffine (and that α is an r-coaffination) if d(x, α(x)) ≥ r for every x ∈ A. In
order to show that K(A) is also r-coaffine we need to calculate distances in K(G).
If Q,Q′ ∈ K(G), denote by DG(Q,Q′) the set {dG(x, x′) : x ∈ Q, x′ ∈ Q′}. The
following result from [11] is quite useful:

Proposition 2.3. Let G be a graph and Q,Q′ ∈ K(G) with Q 6= Q′. Then:
dK(G)(Q,Q′) = minDG(Q,Q′) + 1. 2

Proposition 2.4. If A = (A,α) is an r-coaffine graph then so is K(A).
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Proof. We know already that K(A) is automorphic. Let Q ∈ K(A) and let x ∈ Q
and y ∈ αK(Q) be such that dA(x, y) = minDA(Q,αK(Q)). Since α(x) ' y and
d(x, α(x)) ≥ r, we have d(x, y) ≥ r − 1. Since r ≥ 2, Q 6= αK(Q). By 2.3 we get
that dK(A)(Q,αK(Q)) ≥ r, so K(A) is r-coaffine. 2

Fix r ≥ 2 and let A = (A,α) be r-coaffine. The rank of A is the greatest n such
that there exist non-empty, pairwise disjoint, α-invariant sets A1, . . . , An ⊆ V (A)
such that dA(ai, aj) < r whenever ai ∈ Ai, aj ∈ Aj and i 6= j. The same concept
is obtained if we ask the sets Ai to be α-orbits.

Theorem 2.5. Let f : A → B be an admissible relation between r-coaffine graphs.
Then rank(A) ≤ rank(B).

Proof. Let A = (A,α), B = (B, β), rank(A) = n. Take A1, . . . , An ⊆ V (A) as
above. Since β(f(Ai)) = f(α(Ai)) = f(Ai), f(Ai) is β-invariant. If f(Ai)∩f(Aj) 6=
∅ with i 6= j, take z, β(z) ∈ f(Ai) ∩ f(Aj) and x ∈ Ai, y ∈ Aj with z ∈ f(x),
β(z) ∈ f(y). By 2.1, dB(z, β(z)) ≤ dA(x, y) < r, contradicting that B is r-coaffine.
Also by 2.1, we have that dB(zi, zj) < r for every zi ∈ f(Ai), zj ∈ f(Aj), i 6= j.
Since the f(Ai) are non-empty, they satisfy the definition of rank (save perhaps for
the maximality of n) so rank(A) = n ≤ rank(B). 2

Let A = (A,α) be r-coaffine. We say that A is rank divergent if the sequence
{rank(Kn(A))}n=1,2,... is not bounded. Since rank(A) < |V (A)|, it follows that
every rank divergent graph is clique divergent. Note that if some Kn(A) is rank
divergent, then A itself is rank divergent.

Theorem 2.6. Let f : A → B be an admissible relation between r-coaffine graphs.
Then, if A is rank divergent, so is B.

Proof. This follows using iteratively 2.2, 2.4 and 2.5. 2

3. Examples of Rank Divergent Graphs

In order to use Theorem 2.6, one needs to know some rank divergent graph. Here
we construct some examples. Using the theory of clockwork graphs [5], we will be
able to describe explicitly all their iterated clique graphs. In fact, our examples
constitute the simplest and more symmetric kind of clockwork graphs.

For m ≥ 2 and n ≥ 0, we shall define a graph Rn
2m. The integer 2m is called the

number of segments, and it is convenient to consider it fixed while n varies. Fig. 1
depicts Rn

2m for m = 2 and n = 0, 1, 2. For clarity, some vertices (white dots) and
some edges (dashed lines) have been drawn twice. These drawing conventions are
also used in the other figures of this paper.

Our clockwork graph Rn
2m is composed of two parts: the crown and the core.

The crown is a cylindrical ladder with 2m squares; it is induced by the vertices
with lower indices 0 and 1. This crown is common to all the graphs Rn

2m with the
same fixed m. The complement of the crown is the core, which is the n-th power
of the cycle with 2m(n + 1) vertices; in Fig. 1 it is induced by the vertices with
lower indices from 2 to n + 2. The vertices of the core are partitioned into 2m
segments of n+1 consecutive vertices each, and each segment lies inside of a square
of the crown, in the sense that each vertex of the segment is a neighbour of the four
vertices of the square. A more concise description is the following:

For m ≥ 2 and n ≥ 0 define the graph Rn
2m (see Fig. 1) by:
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Figure 1. From top to bottom: R0
4, R1

4 and R2
4

V (Rn
2m) = {xu

l : u ∈ Z2m and l ∈ {0, 1, . . . , n+ 2}} and

{xu
l , x

u′

l′ } ∈ E(Rn
2m) if

 u = u′ and l 6= l′, or
u′ = u+ 1, l ∈ {0, 1} and l′ = l, or
u′ = u+ 1, l /∈ {0, 1} and l′ < l.

It follows from [5] (see also the short version in [8]) that there is an isomor-
phism ψn : K(Rn

2m) −→ Rn+1
2m , but for the reader’s convenience we shall ex-

plicitly describe the cliques of Rn
2m and the isomorphism ψn. For each vertex

v = xu
l ∈ Rn

2m there is a clique Qu
l which starts at this vertex: If l ∈ {0, 1}, the

vertex v lies in the crown and the clique contains the crown’s edge e = {xu
l , x

u+1
l }

starting at v and the core’s segment in the square containing e, that is, Qu
l =

{xu
l , x

u+1
l , xu

2 , x
u
3 , ..., x

u
n+2}. If l ∈ {2, ..., n + 2}, the vertex v lies in the core, and

the clique contains the step of the ladder that lies ahead and the core’s clique start-
ing at v : Qu

l = {xu+1
0 , xu+1

1 , xu
l , ..., x

u
n+2, x

u+1
2 , ..., xu+1

l−1 }. We also have, for each
step {xu

0 , x
u
1} of the ladder, a new clique Q(u) containing that step and the next
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segment of the core: Q(u) = {xu
0 , x

u
1 , x

u
2 , ..., x

u
n+2}. If we rename the vertices of

Rn+1
2m as V (Rn+1

2m ) = {yu
l : u ∈ Z2m and l ∈ {0, 1, . . . , n + 3}}, the isomorphism

ψn : K(Rn
2m) → Rn+1

2m is given by ψn(Qu
l ) = yu

l and ψn(Q(u)) = yu−1
n+3.

The graph Rn
2m has a natural antipodal symmetry which sends everything m

segments ahead and then interchanges the two borders (lower indices 0 and 1) of
the crown. In other words, we define the function ρn

2m : V (Rn
2m) → V (Rn

2m) by:

ρn
2m(xu

l ) =


xu+m

1 if l = 0
xu+m

0 if l = 1
xu+m

l otherwise.

It is quite clear that ρn
2m is an automorphism of Rn

2m, so we have an automorphic
graph Rn

2m = (Rn
2m, ρ

n
2m). It is also easy to see that ψn ◦ (ρn

2m)
K

= ρn+1
2m ◦ ψn, so

ψn : K(Rn
2m) → Rn+1

2m is an admissible isomorphism. We conclude that there is an
admissible isomorphism Ks(Rn

2m) ∼= Rn+s
2m for each s ≥ 1.

Theorem 3.1. Rn
2m is an (m+ 1)-coaffine rank divergent graph.

Proof. Consider the segments Su = {xu
0 , x

u
1 , x

u
2} of R0

2m and note that in R0
2m there

are only two kind of edges: those joining vertices in the same Su and those joining
vertices in consecutive segments Su and Su+1. Since any shortest path between xu

l

and ρ0
2m(xu

l ) = xu+m
l′ must pass through at least m + 1 segments (including both

ends) and must also use at least two vertices from at least one of these segments,
it follows that d(xu

l , ρ
0
2m(xu

l )) ≥ m + 1. Therefore R0
2m is (m + 1)-coaffine. Using

2.4 repeatedly we get that Rn
2m

∼= Kn(R0
2m) is (m+ 1)-coaffine for all n.

To prove rank divergence, let At = {x0
2+mt, x

m
2+mt} for t = 0, 1, . . . , b n

mc. These
sets are clearly non-empty, ρn

2m-invariant, and pairwise disjoint. Now, assuming
that t′ < t, the following explicit paths:

(x0
2+mt, x

1
2+mt−1, . . . , x

m−1
2+m(t−1)+1, x

m
2+mt′)

(xm
2+mt, x

m+1
2+mt−1, . . . , x

2m−1
2+m(t−1)+1, x

0
2+mt′)

show us that d(at, at′) ≤ m for at ∈ At, at′ ∈ At′ and t 6= t′. Therefore, we have
rank(Rn

2m) ≥ b n
mc+1. From Ks(Rn

2m) ∼= Rn+s
2m , we get that Rn

2m is rank divergent.2

Theorems 2.6 and 3.1 immediately yield huge families of rank divergent graphs:
just take any of these coaffine graphs R = (R, ρ) = Rn

2m and add any number of
vertices and edges with the sole restriction of preserving the symmetry and the
(m+1)-coaffinity. For instance, a very simple construction always works: Take any
vertex x ∈ R, attach some graph to it and then do exactly the same to ρ(x); now
extend ρ in the obvious way. This can clearly be iterated.

Many more familiar examples can also be readily seen to be rank divergent:
Among them, Fig. 2 depicts the stellated cube and the barycentric subdivision of
the octahedron. Here by stellating we mean replacing faces by wheels. In both cases,
an admissible subgraph isomorphic to some R0

2m is highlighted. The icosahedron
and the stellated dodecahedron depicted in Fig. 3 are also rank divergent: This
time we found an admissible embedding of some R0

2m into their clique graphs. In
all these four examples the antipodal map was used as coaffination.

A more systematic approach will presently yield the abundant existence of clique
divergent triangulations for all surfaces.
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a

c

b

a

c

a a

b b

b

Figure 2. Stellated cube and barycentric subdivision of the octahedron.

4. Clique Divergent Surface Triangulations

For auxiliary purposes, we will need to speak also of Whitney triangulations of
compact surfaces, not only of closed surfaces. It is clear that the graphs involved in
this more general setting are such that each open neighbourhood is either a cycle
of length at least 4 or a non-trivial path.

Theorem 4.1. Let S be an orientable closed surface and fix an integer r ≥ 3. Then
there are infinitely many Whitney triangulations T of S admitting an automorphism
σ : T → T such that:

1. σ2 = 1T ,
2. σ is orientation-reversing and
3. T = (T, σ) is r-coaffine rank divergent.
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a

b

c

d d

c

b

a

a

bb

a

x3
2

x0
0 x1

0 x2
0

x1
2

x2
2

x2
1x1

1x0
1 x3

1

x3
0x0

2

Figure 3. Icosahedron and stellated dodecahedron.

Proof. We proceed by induction on the genus g of S. Start with the Whitney
triangulation R = R0

2(r−1) of the cylinder. There are many ways to extend it to a
triangulation of the sphere as required. For instance, take an odd number n > r/2
of copies of R and glue them together to form a long hose. Now close this to a
sphere by attaching a wheel at each mouth. The middle copy of R yields the result
for g = 0 by Theorems 2.6 and 3.1.

Observe now that, given two r-coaffine triangulations with involutive coaffina-
tions as in (1), we can glue them together to obtain a new r-coaffine triangulation:
First identify a diamond (= K4 − e) in one of the triangulations with a diamond
in the other and remove the diagonal. Now do the same to the coaffine images of
the original diamonds. The natural induced involution in the resulting surface tri-
angulation is r-coaffine because the distance between symmetric diamonds in each
surface is at least r − 2. Note also that, when both triangulations are orientable
and their coaffinations reverse the orientations, the resulting triangulation is also
orientable and its coaffination is also orientation-reversing.

Suppose the theorem valid for some orientable surface S of genus g and fix some
r ≥ 3. Take any triangulation T of S as in the statement and any of the above
constructed triangulations S of the sphere. Apply the preceding construction to
T and S, just taking care that the diagonals to be removed in S do not lie in the
central copy of R. The resulting triangulation T′ still admissibly contains R, so it
is rank divergent. Clearly T′ has genus g + 1. 2
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For the non-orientable case, we shall use some concepts and results form [4]:
Let A and B be graphs. A triangular covering map from A to B is any local
isomorphism p : A→ B, i.e. a function p : V (A) → V (B) such that the restriction
p| : N [a] → N [p(a)] is a graph isomorphism for all a ∈ A. Here N [a] is the closed
neighbourhood. In particular, if one of A and B is a Whitney triangulation so is
the other. All fibers p−1(b) have the same cardinality: the number of sheets of p.
Galois triangular covers constitute an important particular case: If Γ is a group of
automorphisms of A and d(a, γ(a)) ≥ 4 holds for every a ∈ A and γ ∈ Γ\{1}, we
can take the quotient graph A/Γ and then the natural projection p : A→ A/Γ is
a triangular covering map ([4], Lemma 3.1). Note that every non-trivial element in
Γ is a 4-coaffination of A. We will also use Proposition 2.2 from [4]:

Proposition 4.2. If p : A→ B is a triangular covering map, pK : K(A) → K(B)
is also a triangular covering map with the same number of sheets as p. In particular,
if p is finite-to-one, A and B have the same K-behaviour. 2

Theorem 4.3. Each closed surface admits infinitely many clique divergent Whitney
triangulations.

Proof. For orientable surfaces we use 4.1. Fix a non-orientable closed surface S,
and call χ = χ(S) its Euler characteristic. Let T be the orientable closed surface
with χ(T ) = 2χ. Fix r ≥ 4 and take any triangulation T = (T, σ) of T as in 4.1.
Putting Γ = {1, σ}, consider S = T /Γ and the Galois cover p : T → S. Then S is a
Whitney triangulation of some surface S ′, and χ(S ′) = χ because p is two-sheeted.
Since σ is orientation-reversing, S ′ is non-orientable, so it is homeomorphic to S.
Therefore S is a Whitney triangulation of S, and it is clique divergent by 4.2. 2

5. Open problems

It was proved in [7] that almost every surface admits a clique convergent Whitney
triangulation. The possible exceptions are those with non-negative Euler charac-
teristic: the sphere, the projective plane, the torus and the Klein bottle.

The following problem immediately arises:

Problem 1. [7] Determine if there are clique convergent Whitney triangulations
for the sphere, the projective plane, the torus and the Klein bottle.

This is intriguingly connected to an older conjecture: We have a lot of exper-
imental evidence suggesting that the sphere might not have such a triangulation
(see for instance [8]).

Conjecture 1. [6] Every Whitney triangulation of the sphere is clique divergent.

However, it seems that just the opposite happens if we simply remove one edge
from such a triangulation of the sphere. More generally, we have:

Conjecture 2. [6] Every Whitney triangulation T of the disk is clique null (i.e.
Kn(T ) is the trivial graph for some n).

Conjecture 1 can be very challenging even for small particular cases. We have
not been able to determine the K-behaviour of the snub disphenoid depicted in
Fig. 4 (this graph is also known as the siamese dodecahedron, the 12-faced convex
deltahedron and the 84th Johnson solid: J84). The orders of its first iterated clique
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graphs are 8, 12, 20, 56 and 1076. We know for sure that the 5th iterated clique graph
has more than 7.37 billion vertices. An analysis of the binary subtree which was
explored during 30 days by the algorithm of Bron and Kerbosch [1] (implemented in
GAP [2]) allows us to suspect that the order of this 5th clique graph is likely around
1022. Determining the K-behaviour of this graph will almost certainly require the
development of novel techniques.

a

b b

a

Figure 4. A graph with unknown K-behaviour

Note that Conjecture 1 would imply, by Theorem 4.2, that also every Whitney
triangulation of the projective plane is clique divergent.

As regards Conjecture 2, we point out that a special case is solved:

Theorem 5.1. [7] Let G be a Whitney triangulation of the disk such that every
interior vertex has degree ≥ 6. Then G is clique null.
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