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Abstract. We find a lower bound for the proportion of face boundaries of an
embedded graph that are nearly–light (that is, they have bounded length and at
most one vertex of large degree). As an application, we show that every sufficiently
large k–crossing–critical graph has crossing number at most 2k + 23.

1. Introduction

It is quite natural to inquire about the existence of light subgraphs in a given family
G of graphs. Recall that if H is a subgraph of G, then the weight w(H) of H in G
is the sum of the valences in G of the vertices in H. If there is an integer w such
that every graph G in G that contains a subgraph isomorphic to H contains one
such subgraph with weight at most w in G, then H is light in G. Most research on
light subgraphs has focused on the case in which G is a family of graphs embedded
in some compact surface (see for instance [1, 2, 4, 5, 6, 7, 9, 10]).

Although under certain conditions one can guarantee the existence of light cycles
in embedded graphs (see [3]), this is not always the case: every cycle in a wheel either
contains a hub vertex (which can have arbitrarily high degree), or is arbitrarily long
(as long as the degree of the hub).

In view of this, a natural way to proceed in this context is to inquire about the
existence of “nearly–light” cycles. Let `, ∆ be positive numbers. A cycle C in a
graph G is (`, ∆)–nearly–light if the length of C is at most `, and at most one vertex
of C has degree greater than ∆. If G is embedded, we define an (`, ∆)–nearly–light
face boundary similarly, with the observation that an edge that is traversed twice in
the boundary walk of a face contributes in two to the length of that face boundary.

In [11], Richter and Thomassen investigated the existence of nearly–light cycles,
and proved that every planar graph has at least one (5, 11)–nearly–light face bound-
ary. One of the aims in this work is to refine this statement, and show that plane
(moreover, embedded) graphs have not one but many nearly–light face boundaries.
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Theorem 1. Let 0 < ε < 1/6, and let G be a simple connected graph with minimum
degree at least 3, embedded in a surface of Euler characteristic χ. Let F (G) denote
the set of faces of G. Then G contains at least (2χ − 1) +

(
1
4
− 3ε

2

)
|F (G)| face

boundaries that are (6, 2/ε)–nearly–light.

The problem of the existence of nearly–light cycles is raised and attacked in [11]
in the context of crossing–critical graphs. We recall that the crossing number cr(G)
of a graph G is the minimum number of pairwise crossings of edges in a drawing of
G in the plane. A graph G is k–crossing–critical if its crossing number is at least k,
but cr(G− e) < k for every edge e of G.

In [11], the existence of a nearly–light cycle is used to prove that every k–crossing–
critical graph has crossing number at most 2.5k+16. As we show below, Theorem 1
implies the following statement on the crossing numbers of sufficiently large crossing–
critical graphs.

Theorem 2. For each k > 0 there is an n(k) with the following property. If G
is a k–crossing–critical graph with at least n(k) vertices of degree greater than two,
then cr(G) ≤ 2k + 23.

We note that the condition in this statement on the degrees of the vertices (greater
than two) is unavoidable, since subdivisions of edges change neither the crossing
number of a graph nor its criticality.

Besides the natural interest in crossing–critical graphs (no edge in a crossing–
critical graph is superfluous from the crossing number point of view), upper bounds
for the crossing number of crossing–critical graphs also have an important applica-
tion. Indeed, as Richter and Thomassen observed, their bound cr(G) ≤ 2.5k+16 for
k–crossing–critical graphs implies that if H is an arbitrary graph with cr(H) = k,
then there is an edge e in H such that cr(H − e) ≥ (2k − 37)/5. Along the same
lines, it is readily checked that our Theorem 2 implies the following.

Corollary 3. For each k > 0 there is an n(k) with the following property. If H has
at least n(k) vertices of degree greater than two, and cr(H) = k, then H has an edge
e such that cr(H − e) ≥ (k − 26)/2. �

We prove Theorems 1 and 2 in Sections 2 and 3, respectively.

2. Nearly–light face boundaries in embedded graphs

In this section we show that the technique used in the proof of Theorem 1 in [11]
can be refined to give a proof of Theorem 1. For an embedded graph G, we let
V (G), E(G), and F (G) denote the sets of vertices, edges, and faces of G, respectively.

Proof of Theorem 1. As in [11], for each face f of G let the weight w(f) be the sum∑
v∼f (1/d(v)), where d(v) denotes the degree of vertex v and v ∼ f means that v
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is incident with f . Thus, for each face f , w(f) ≤ l(f)/3, where l(f) denotes the
length of the boundary of f .

As in the proof of Theorem 1 in [11], we note that
∑

f∈F (G) w(f) = |V (G)|, and∑
f∈F (G) l(f) = 2|E(G)|. Thus, Euler’s formula implies that

∑
f{w(f) − l(f)/2 +

1} ≥ χ.
Let us say that a face f is good if w(f)− l(f)/2 + 1 > −1/6 + ε.
We complete the proof by showing that the following statements hold.

(1) For each good face f , the face boundary of f is (6, 2/ε)–nearly–light.
(2) There are at least (2χ− 1) +

(
1/4− 3ε/2

)
|F (G)| good faces.

Let f be a good face, and suppose that l(f) > 6 . Since −1/6 + ε < w(f) −
l(f)/2 + 1, and w(f) ≤ l(f)/3, then −1/6 + ε < −l(f)/6 + 1 ≤ −7/6 + 1 = −1/6,
contradicting the assumption ε > 0. Thus l(f) ≤ 6. Now suppose that at least
two vertices v incident with f have d(v) > 2/ε. Therefore w(f) < (l(f) − 2)/3 +
2(ε/2) = (l(f) − 2)/3 + ε. Since −1/6 + ε < w(f) − l(f)/2 + 1, it follows that
−1/6 + ε < l(f)/3 − 2/3 + ε − l(f)/2 + 1 = −l(f)/6 + 1/3 + ε. Hence l(f) < 3,
contradicting the assumption that G is simple. Hence at most one vertex incident
with f has degree greater than 2/ε. This proves (1).

Let D(G) denote the set of good faces. Now
∑

f∈D(G){w(f) − l(f)/2 + 1} +∑
f∈(F (G)\D(G)){w(f) − l(f)/2 + 1} ≥ χ. By definition, each f ∈ (F (G) \ D(G))

satisfies w(f) − l(f)/2 + 1 ≤ −1/6 + ε. On the other hand, every face f has
w(f) − l(f)/2 + 1 ≤ 1/2. Thus |D(G)|/2 + (|F (G)| − |D(G)|)(−1/6 + ε) ≥ χ. An

easy manipulation then yields that |D(G)| >
( (1/6)−ε

(2/3)−ε

)
|F (G)|+ χ/(2/3− ε). Hence

|D(G)| >
(
1/4− 3ε/2

)
|F (G)|+ χ/(2/3− ε).

We finally note that 0 < ε < 1/6 implies that, if χ ≤ 0, then χ/(2/3 − ε) ≥
2χ > 2χ − 1. On the other hand, if χ > 0 then χ = 1 or 2, and so χ > 0 implies
χ/(2/3−ε) > 2χ−1. It follows that regardless of the sign of χ, χ/(2/3−ε) > 2χ−1.
Therefore |D(G)| >

(
1/4− 3ε/2

)
|F (G)|+ (2χ− 1). This proves (2). �

3. Crossing–critical graphs

In this section we prove Theorem 2. The proof has two main ingredients. First we
show (Lemma 4) that large crossing–critical graphs have (6, 12)–nearly–light cycles.
Then we invoke a result (Lemma 5) whose proof is implicit in the proof of Theorem 3
in [11], namely that the existence of a nearly–light cycle in a crossing–critical graph
yields an upper bound for the crossing number of the graph.

Lemma 4. For each integer k > 0, there is an n(k) with the following property. Let
G be a simple k–crossing–critical graph with minimum degree at least 3. Suppose
that |V (G)| ≥ n(k). Then G contains a (6, 12)–nearly–light cycle.
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Proof. First we observe that if G is k–crossing–critical, then G can be embedded in
the orientable surface Σk of genus k (that is, Euler characteristic χ = 2− 2k) . This
follows since G contains a set of at most k edges whose deletion leaves G planar.

We show that this embedding has a (6, 12)–nearly–light face boundary. This
completes the proof, as this face boundary contains the required (6, 12)–nearly–light
cycle.

Apply Theorem 1 to G embedded in Σk, with ε = 4/25. This yields the existence of
at least (2χ−1)+(1/4−6/25)|F (G)| = (3−4k)+(1/4−6/25)|F (G)| face boundaries
that are (6, 12)–nearly–light (note that a (6, 12.5)–nearly–light face boundary is
(6, 12)–nearly–light).

We finally note that if |V (G)| is sufficiently large (compared to k), then (by Euler’s
formula) so is |F (G)|, and this in turn guarantees that (3−4k)+(1/4−6/25)|F (G)| ≥
1. Therefore, if |V (G)| is sufficiently large, then there is a (6, 12)–nearly–light face
boundary. �

The proof of the first inequality in the following lemma is implicit in the proof of
Theorem 3 in [11]. The second inequality follows from the first inequality and the
definition of an (`, ∆)–nearly–light cycle.

Lemma 5. Let G be a k–crossing–critical graph, and let s > 0. Suppose that G has
a cycle C with a vertex v such that

∑
u∈C\{v}(d(u)− 2) ≤ s. Then

cr(G) ≤ 2(k − 1) + s/2.

Thus, if G has an (`, ∆)–nearly–light cycle, then

cr(G) ≤ 2(k − 1) +
(∆− 2)(`− 1)

2
.

�

Proof of Theorem 2. Let G be a k–crossing–critical graph. By supressing vertices of
degree two if necessary (this affects neither the crossing number nor the criticality)
we may assume that G has no vertices of degree two or less. Now suppose that
|V (G) ≥ n(k), where n(k) is as in Lemma 4. As in the proof of Theorem 3 in [11],
we can assume that G is simple, as otherwise cr(G) ≤ 2(k−1), in which case we are
done. Lemma 4 then applies, and yields the existence of a (6, 12)–nearly–light cycle
in G. By applying Lemma 5 we obtain cr(G) ≤ 2(k− 1) + (10)(5)/2 = 2k + 23. �

4. Concluding Remarks

It is natural to inquire about the tightness of the bound in Theorem 1. How
much can the coefficient of |F (G)| be improved by allowing larger values of ` and
∆? Consider the following construction. Let H0 be a graph isomorphic to K4 − e,
and let u, v denote the degree 2 vertices of H0. Now let Gn be obtained by taking
n copies of H0, and identifying them along u and v. Thus Gn has two vertices of
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degree 2n, and 2n vertices of degree 3. Moreover, every planar embedding of Gn has
n faces (of size four) incident with both u and v, and 2n faces (of size three) incident
with two degree 3 vertices and exactly one copy of H0. Thus, for every fixed ∆, if n
is sufficiently large then exactly two thirds of the faces of any embedding of Gn are
(`, ∆)–nearly–light. This shows that the coefficient of |F (G)| in Theorem 1 cannot
be improved to a value greater than 2/3, regardless of the size of ∆.

On the other hand, the upper bound 2/3 on the coefficient of |F (G)| can be almost
attained as a lower bound, as the following statement claims.

Theorem 6. For each α > 0 and integer χ ≤ 2 there exist `(α, χ), ∆(α, χ), N(α, χ),
f(α, χ) with the following property. Let G be a simple connected graph with minimum
degree at least 3, embedded in a surface with Euler characteristic χ, such that
|V (G)| ≥ N(α, χ). Let F (G) denote the set of faces of G. Then G contains at least(

2
3
− α

)
|F (G)|+ f(α, χ) face boundaries that are (`(α, χ), ∆(α, χ))–nearly–light.

This result can be proved by direct geometrical methods. Unfortunately, these
arguments are not nearly as neat and elegant as the powerful technique, introduced
by Lebesgue in [8], that we used in the proof of Theorem 1.
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