NEARLY-LIGHT CYCLES IN EMBEDDED GRAPHS AND CROSSING-CRITICAL GRAPHS

GELASIO SALAZAR

Abstract

We find a lower bound for the proportion of face boundaries of an embedded graph that are nearly-light (that is, they have bounded length and at most one vertex of large degree). As an application, we show that every sufficiently large k-crossing-critical graph has crossing number at most $2 k+23$.

1. Introduction

It is quite natural to inquire about the existence of light subgraphs in a given family \mathcal{G} of graphs. Recall that if H is a subgraph of G, then the weight $w(H)$ of H in G is the sum of the valences in G of the vertices in H. If there is an integer w such that every graph G in \mathcal{G} that contains a subgraph isomorphic to H contains one such subgraph with weight at most w in G, then H is light in \mathcal{G}. Most research on light subgraphs has focused on the case in which \mathcal{G} is a family of graphs embedded in some compact surface (see for instance $[1,2,4,5,6,7,9,10]$).

Although under certain conditions one can guarantee the existence of light cycles in embedded graphs (see [3]), this is not always the case: every cycle in a wheel either contains a hub vertex (which can have arbitrarily high degree), or is arbitrarily long (as long as the degree of the hub).

In view of this, a natural way to proceed in this context is to inquire about the existence of "nearly-light" cycles. Let ℓ, Δ be positive numbers. A cycle C in a graph G is (ℓ, Δ)-nearly-light if the length of C is at most ℓ, and at most one vertex of C has degree greater than Δ. If G is embedded, we define an (ℓ, Δ)-nearly-light face boundary similarly, with the observation that an edge that is traversed twice in the boundary walk of a face contributes in two to the length of that face boundary.

In [11], Richter and Thomassen investigated the existence of nearly-light cycles, and proved that every planar graph has at least one $(5,11)$-nearly-light face boundary. One of the aims in this work is to refine this statement, and show that plane (moreover, embedded) graphs have not one but many nearly-light face boundaries.

[^0]Theorem 1. Let $0<\varepsilon<1 / 6$, and let G be a simple connected graph with minimum degree at least 3, embedded in a surface of Euler characteristic χ. Let $F(G)$ denote the set of faces of G. Then G contains at least $(2 \chi-1)+\left(\frac{1}{4}-\frac{3 \varepsilon}{2}\right)|F(G)|$ face boundaries that are ($6,2 / \varepsilon$)-nearly-light.

The problem of the existence of nearly-light cycles is raised and attacked in [11] in the context of crossing-critical graphs. We recall that the crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of pairwise crossings of edges in a drawing of G in the plane. A graph G is k-crossing-critical if its crossing number is at least k, but $\operatorname{cr}(G-e)<k$ for every edge e of G.

In [11], the existence of a nearly-light cycle is used to prove that every k-crossingcritical graph has crossing number at most $2.5 k+16$. As we show below, Theorem 1 implies the following statement on the crossing numbers of sufficiently large crossingcritical graphs.

Theorem 2. For each $k>0$ there is an $n(k)$ with the following property. If G is a k-crossing-critical graph with at least $n(k)$ vertices of degree greater than two, then $\operatorname{cr}(G) \leq 2 k+23$.

We note that the condition in this statement on the degrees of the vertices (greater than two) is unavoidable, since subdivisions of edges change neither the crossing number of a graph nor its criticality.

Besides the natural interest in crossing-critical graphs (no edge in a crossingcritical graph is superfluous from the crossing number point of view), upper bounds for the crossing number of crossing-critical graphs also have an important application. Indeed, as Richter and Thomassen observed, their bound $\operatorname{cr}(G) \leq 2.5 k+16$ for k-crossing-critical graphs implies that if H is an arbitrary graph with $\operatorname{cr}(H)=k$, then there is an edge e in H such that $\operatorname{cr}(H-e) \geq(2 k-37) / 5$. Along the same lines, it is readily checked that our Theorem 2 implies the following.

Corollary 3. For each $k>0$ there is an $n(k)$ with the following property. If H has at least $n(k)$ vertices of degree greater than two, and $\operatorname{cr}(H)=k$, then H has an edge e such that $\operatorname{cr}(H-e) \geq(k-26) / 2$.

We prove Theorems 1 and 2 in Sections 2 and 3, respectively.

2. Nearly-Light face boundaries in embedded graphs

In this section we show that the technique used in the proof of Theorem 1 in [11] can be refined to give a proof of Theorem 1. For an embedded graph G, we let $V(G), E(G)$, and $F(G)$ denote the sets of vertices, edges, and faces of G, respectively.

Proof of Theorem 1. As in [11], for each face f of G let the weight $w(f)$ be the sum $\sum_{v \sim f}(1 / d(v))$, where $d(v)$ denotes the degree of vertex v and $v \sim f$ means that v
is incident with f. Thus, for each face $f, w(f) \leq l(f) / 3$, where $l(f)$ denotes the length of the boundary of f.

As in the proof of Theorem 1 in [11], we note that $\sum_{f \in F(G)} w(f)=|V(G)|$, and $\sum_{f \in F(G)} l(f)=2|E(G)|$. Thus, Euler's formula implies that $\sum_{f}\{w(f)-l(f) / 2+$ $1\} \geq \chi$.

Let us say that a face f is good if $w(f)-l(f) / 2+1>-1 / 6+\varepsilon$.
We complete the proof by showing that the following statements hold.
(1) For each good face f, the face boundary of f is $(6,2 / \varepsilon)$-nearly-light.
(2) There are at least $(2 \chi-1)+(1 / 4-3 \varepsilon / 2)|F(G)|$ good faces.

Let f be a good face, and suppose that $l(f)>6$. Since $-1 / 6+\varepsilon<w(f)-$ $l(f) / 2+1$, and $w(f) \leq l(f) / 3$, then $-1 / 6+\varepsilon<-l(f) / 6+1 \leq-7 / 6+1=-1 / 6$, contradicting the assumption $\varepsilon>0$. Thus $l(f) \leq 6$. Now suppose that at least two vertices v incident with f have $d(v)>2 / \varepsilon$. Therefore $w(f)<(l(f)-2) / 3+$ $2(\varepsilon / 2)=(l(f)-2) / 3+\varepsilon$. Since $-1 / 6+\varepsilon<w(f)-l(f) / 2+1$, it follows that $-1 / 6+\varepsilon<l(f) / 3-2 / 3+\varepsilon-l(f) / 2+1=-l(f) / 6+1 / 3+\varepsilon$. Hence $l(f)<3$, contradicting the assumption that G is simple. Hence at most one vertex incident with f has degree greater than $2 / \varepsilon$. This proves (1).

Let $D(G)$ denote the set of good faces. Now $\sum_{f \in D(G)}\{w(f)-l(f) / 2+1\}+$ $\sum_{f \in(F(G) \backslash D(G))}\{w(f)-l(f) / 2+1\} \geq \chi$. By definition, each $f \in(F(G) \backslash D(G))$ satisfies $w(f)-l(f) / 2+1 \leq-1 / 6+\varepsilon$. On the other hand, every face f has $w(f)-l(f) / 2+1 \leq 1 / 2$. Thus $|D(G)| / 2+(|F(G)|-|D(G)|)(-1 / 6+\varepsilon) \geq \chi$. An easy manipulation then yields that $|D(G)|>\left(\frac{(1 / 6)-\varepsilon}{(2 / 3)-\varepsilon}\right)|F(G)|+\chi /(2 / 3-\varepsilon)$. Hence $|D(G)|>(1 / 4-3 \varepsilon / 2)|F(G)|+\chi /(2 / 3-\varepsilon)$.

We finally note that $0<\varepsilon<1 / 6$ implies that, if $\chi \leq 0$, then $\chi /(2 / 3-\varepsilon) \geq$ $2 \chi>2 \chi-1$. On the other hand, if $\chi>0$ then $\chi=1$ or 2 , and so $\chi>0$ implies $\chi /(2 / 3-\varepsilon)>2 \chi-1$. It follows that regardless of the sign of $\chi, \chi /(2 / 3-\varepsilon)>2 \chi-1$. Therefore $|D(G)|>(1 / 4-3 \varepsilon / 2)|F(G)|+(2 \chi-1)$. This proves (2).

3. Crossing-CRITICAL GRAPHS

In this section we prove Theorem 2. The proof has two main ingredients. First we show (Lemma 4) that large crossing-critical graphs have $(6,12)$-nearly-light cycles. Then we invoke a result (Lemma 5) whose proof is implicit in the proof of Theorem 3 in [11], namely that the existence of a nearly-light cycle in a crossing-critical graph yields an upper bound for the crossing number of the graph.

Lemma 4. For each integer $k>0$, there is an $n(k)$ with the following property. Let G be a simple k-crossing-critical graph with minimum degree at least 3. Suppose that $|V(G)| \geq n(k)$. Then G contains a $(6,12)$-nearly-light cycle.

Proof. First we observe that if G is k-crossing-critical, then G can be embedded in the orientable surface Σ_{k} of genus k (that is, Euler characteristic $\chi=2-2 k$). This follows since G contains a set of at most k edges whose deletion leaves G planar.

We show that this embedding has a $(6,12)$-nearly-light face boundary. This completes the proof, as this face boundary contains the required $(6,12)$-nearly-light cycle.

Apply Theorem 1 to G embedded in Σ_{k}, with $\varepsilon=4 / 25$. This yields the existence of at least $(2 \chi-1)+(1 / 4-6 / 25)|F(G)|=(3-4 k)+(1 / 4-6 / 25)|F(G)|$ face boundaries that are $(6,12)$-nearly-light (note that a $(6,12.5)$-nearly-light face boundary is $(6,12)$-nearly-light).

We finally note that if $|V(G)|$ is sufficiently large (compared to k), then (by Euler's formula) so is $|F(G)|$, and this in turn guarantees that $(3-4 k)+(1 / 4-6 / 25)|F(G)| \geq$ 1. Therefore, if $|V(G)|$ is sufficiently large, then there is a $(6,12)$-nearly-light face boundary.

The proof of the first inequality in the following lemma is implicit in the proof of Theorem 3 in [11]. The second inequality follows from the first inequality and the definition of an (ℓ, Δ)-nearly-light cycle.

Lemma 5. Let G be a k-crossing-critical graph, and let $s>0$. Suppose that G has a cycle C with a vertex v such that $\sum_{u \in C \backslash\{v\}}(d(u)-2) \leq s$. Then

$$
\operatorname{cr}(G) \leq 2(k-1)+s / 2
$$

Thus, if G has an (ℓ, Δ)-nearly-light cycle, then

$$
\operatorname{cr}(G) \leq 2(k-1)+\frac{(\Delta-2)(\ell-1)}{2}
$$

Proof of Theorem 2. Let G be a k-crossing-critical graph. By supressing vertices of degree two if necessary (this affects neither the crossing number nor the criticality) we may assume that G has no vertices of degree two or less. Now suppose that $\mid V(G) \geq n(k)$, where $n(k)$ is as in Lemma 4. As in the proof of Theorem 3 in [11], we can assume that G is simple, as otherwise $\operatorname{cr}(G) \leq 2(k-1)$, in which case we are done. Lemma 4 then applies, and yields the existence of a $(6,12)$-nearly-light cycle in G. By applying Lemma 5 we obtain $\operatorname{cr}(G) \leq 2(k-1)+(10)(5) / 2=2 k+23$.

4. Concluding Remarks

It is natural to inquire about the tightness of the bound in Theorem 1. How much can the coefficient of $|F(G)|$ be improved by allowing larger values of ℓ and Δ ? Consider the following construction. Let H_{0} be a graph isomorphic to $K_{4}-e$, and let u, v denote the degree 2 vertices of H_{0}. Now let G_{n} be obtained by taking n copies of H_{0}, and identifying them along u and v. Thus G_{n} has two vertices of
degree $2 n$, and $2 n$ vertices of degree 3. Moreover, every planar embedding of G_{n} has n faces (of size four) incident with both u and v, and $2 n$ faces (of size three) incident with two degree 3 vertices and exactly one copy of H_{0}. Thus, for every fixed Δ, if n is sufficiently large then exactly two thirds of the faces of any embedding of G_{n} are (ℓ, Δ)-nearly-light. This shows that the coefficient of $|F(G)|$ in Theorem 1 cannot be improved to a value greater than $2 / 3$, regardless of the size of Δ.

On the other hand, the upper bound $2 / 3$ on the coefficient of $|F(G)|$ can be almost attained as a lower bound, as the following statement claims.

Theorem 6. For each $\alpha>0$ and integer $\chi \leq 2$ there exist $\ell(\alpha, \chi), \Delta(\alpha, \chi), N(\alpha, \chi)$, $f(\alpha, \chi)$ with the following property. Let G be a simple connected graph with minimum degree at least 3, embedded in a surface with Euler characteristic χ, such that $|V(G)| \geq N(\alpha, \chi)$. Let $F(G)$ denote the set of faces of G. Then G contains at least $\left(\frac{2}{3}-\alpha\right)|F(G)|+f(\alpha, \chi)$ face boundaries that are $(\ell(\alpha, \chi), \Delta(\alpha, \chi))$-nearly-light.

This result can be proved by direct geometrical methods. Unfortunately, these arguments are not nearly as neat and elegant as the powerful technique, introduced by Lebesgue in [8], that we used in the proof of Theorem 1.

References

[1] I. Fabrici, On vertex-degree restricted subgraphs in polyhedral graphs, Discrete Math. 256 (2002), no. 1-2, 105-114.
[2] I. Fabrici, E. Hexel, S. Jendrol', and H. Walther, On vertex-degree restricted paths in polyhedral graphs, Discrete Math. 212 (2000), no. 1-2, 61-73.
[3] S. Jendrol', T. Madaras, R. Sotak, and Z. Tuza, On light cycles in plane triangulations, Discrete Math. 197/198 (1999), 453-467.
[4] S. Jendrol' and P.J. Owens, On light graphs in 3-connected plane graphs without triangular or quadrangular faces. Graphs. Combin. 17 (2001), no. 4, 659-680.
[5] S. Jendrol' and H.-J. Voss, Light paths with an odd number of vertices in large polyhedral maps, Ann. Comb. 2 (1998), No. 4, 313-324.
[6] S. Jendrol' and H.-J. Voss, Subgraphs with restricted degrees of their vertices in polyhedral maps on compact 2-manifolds. Ann. Comb. 5 (2001), no. 2., 211-226.
[7] S. Jendrol' and H.-J. Voss, Light paths in large polyhedral maps with prescribed minimum degree, Australas. J. Combin. 25 (2002), 79-102.
[8] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. 19 (1940), 27-43.
[9] B. Mohar, Light paths in 4-connected graphs in the plane and other surfaces, J. Graph Theory 34 (2000), No. 2, 170-179.
[10] B. Mohar, R. Škrekovski, H.-J. Voss, Light subgraphs in planar graphs of minimum degree 4 and edge-degree 9, J. Graph Theory 44 (2003), No. 4, 261-295.
[11] R. B. Richter and C. Thomassen, Minimal graphs with crossing number at least k, J. Combin. Theory Ser B 58, No. 2 (1993), 217-224.

IICO-UASLP, Av. Karakorum 1470, Lomas 4ta. Seccion. San Luis Potosi, SLP. Mexico 78210

E-mail address: gsalazar@cactus.iico.uaslp.mx
URL: http://cactus.iico.uaslp.mx/~gsalazar

[^0]: Date: October 14, 2004.
 1991 Mathematics Subject Classification. 05C10, 05C62.
 Key words and phrases. Light subgraph, nearly-light subgraph, graph embedding, crossing number, crossing-critical.

 Supported by FAI-UASLP and by CONACYT through Grant J32168E..

