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Abstract. Laman’s characterization of minimally rigid 2-dimensional generic

frameworks gives a matroid structure on the edge set of the underlying graph,
as was first pointed out and exploited by L. Lovász and Y. Yemini. Global

rigidity has only recently been characterized by a combination of two results

due to T. Jordán and the first named author, and R. Connelly, respectively. We
use these characterizations to investigate how graph theoretic properties such

as transitivity, connectivity and regularity influence (2-dimensional generic)

rigidity and global rigidity and apply some of these results to reveal rigidity
properties of random graphs. In particular, we characterize the globally rigid

vertex transitive graphs, and show that a random d-regular graph is asymp-

totically almost surely globally rigid for all d ≥ 4.

1. Introduction

We will use the term graph to denote a finite, undirected graph without loops or
multiple edges. We use the term multigraph if loops and multiple edges are allowed.
A (2-dimensional) framework (G, p) is a pair (G, p), where G = (V,E) is a graph
and p is a map from V to R2. We consider the framework to be a straight line
embedding of the graph G in R2. A framework (G, p) is generic if the coordinates
of all the points p(v), v ∈ V , are algebraically independent. Two frameworks (G, p)
and (G, q) are equivalent if ||p(u)− p(v)|| = ||q(u)− q(v)|| for all uv ∈ E. They are
congruent if ||p(u)− p(v)|| = ||q(u)− q(v)|| for all u, v ∈ V . The graph G is globally
rigid if every framework (G, q) which is equivalent to a generic framework (G, p),
is in fact congruent to (G, p). The graph G is rigid if there exists an ε > 0 such
that every framework (G, q) which is equivalent to a generic framework (G, p) and
satisfies ||p(u) − q(u)|| < ε for all u ∈ V , is congruent to (G, p). We say that G is
minimally rigid if G is rigid, and G − e is not rigid for all e ∈ E. Minimally rigid
graphs were characterized by G. Laman in 1970.

Theorem 1.1. [10] A graph G = (V,E) is minimally rigid if and only if
(a) |E| = 2|V | − 3;
(b) |F | ≤ 2|V (F )| − 3 for all non-empty subsets F of E (where V (F ) denotes the
support of F , i.e. the collection of all end points of the edges in F ).

One may interpret condition (a) as requiring that E contain enough edges to
be rigid and condition (b) as requiring that none of these edges be “wasted” by
packing too many between the vertices of any subset of V .

It can be seen that the edge sets satisfying conditions (a) and (b) satisfy the
base axioms for a matroid on the edge set of the complete graph on the vertex set
V , whose independent sets are the edge sets satisfying condition (b), see [6, 18].
The rigidity matroid of a graph G is the restriction of this matroid to the edge set

1



2 B. JACKSON, B. SERVATIUS, AND H. SERVATIUS

of G. We will denote the rigidity matroid of G by M(G) and its rank by r(G).
Thus G = (V,E) is rigid if and only if r(G) = 2|V | − 3. We call the maximal
rigid subgraphs of G the rigid components of G. It is known that the edge sets of
the rigid components of G partition E and that M(G) is the direct sum over its
restrictions on the rigid components of G.

Theorem 1.1 was used by L. Lovasz and Y. Yemini [12] in 1982 to determine
the rank function of the rigidity martoid of a graph. In particular they obtain the
following characterisation of when a graph is rigid.

Theorem 1.2. [12] Let G = (V,E) be a graph. Then G is rigid if and only if for
all families of induced subgraphs {Gi = (Vi, Ei)}m

i=1 such that E = ∪m
i=1Ei we have∑m

i=1(2|Vi| − 3) ≥ 2|V | − 3.

Let k be a positive integer. A graph G = (V,E) is k-connected if for all pairs
of subgraphs G1, G2 of G such that G = G1 ∪ G2, |V (G1) − V (G2)| ≥ 1 and
|V (G2)− V (G1)| ≥ 1, we have |V (G1) ∩ V (G2)| ≥ k.

A graph G = (V,E) is redundantly rigid if G − e is rigid for all e ∈ E, i.e. the
removal of a single edge e from the rigid graph G does not destroy rigidity. Redun-
dant rigidity also, just like rigidity, induces an equivalence relation on the edge set,
whose equivalence classes are either maximal redundantly rigid subgraphs, or are
singleton edges, called the redundantly rigid components. Again M(G) is the direct
sum over its restrictions on the redundantly rigid components of G. Hendrickson
[7] showed that redundant rigidity and 3-connectivity are necessary conditions for
a graph to be globally rigid and conjectured that they are also sufficient. This
conjecture was recently solved by R. Connelly, [3], T. Jordán and the first named
author, [8].

Theorem 1.3. [8] A graph G is globally rigid if and only if G is a complete graph
on at most three vertices, or G is both 3-connected and redundantly rigid.

T
vu

Cv

u
v

u

Figure 1. Finding an equivalent framework.

Figure 1 indicates the major difficulty with rigid but not globally rigid graphs:
The edge lengths of such a framework do not uniquely determine the framework up
to congruence, since the removal of a non-redundant edge uv yields a mechanism,
that is, a non-rigid framework with one degree of freedom. If we hold a rigid
subgraph containing u fixed (to mod out the isometries of the plane), the other
endpoint v of the removed edge can move on a trajectory T which intersects a circle
C centered at u whose radius is the length of uv at least twice. Such situations
pose computational difficulties in applied problems such as CAD or robotics. Global
rigidity is the highly preferred property for these geometric applications and we will
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show that the troublesome rigid but not globally rigid graphs are rare exceptions
in the family of vertex transitive graphs.

Lovász and Yemini [12] used Theorem 1.2 to show that every 6-connected graph
G is rigid, and note that their proof technique will show that G − {e1, e2, e3} is
rigid for all e1, e2, e3 ∈ E, and hence that G is redundantly rigid. This result was
combined with Thoerem 1.3 in [8] to deduce

Theorem 1.4. [8] Every 6-connected graph is globally rigid.

We use Theorems 1.2 and 1.3 to investigate how other graph theoretic properties
such as transitivity, cyclic connectivity and regularity influence rigidity and global
rigidity of graphs. We apply some of these results to reveal rigidity properties of
random graphs. In particular, we characterize the globally rigid vertex transitive
graphs, and show that a random d-regular graph is asymptotically almost surely
globally rigid for all d ≥ 4.

We close this section with a rather technical lemma which we will use in appli-
cations of Theorem 1.2.

Lemma 1.5. Let (a1, a2, . . . , at) be a non-increasing sequence of integers such that
t ≥ 2, and at ≥ 2. Let d =

∑t
i=1(ai − 1) and

g(a1, a2, . . . , at) :=
t∑

i=1

(2− 3
ai

).

Then g is an increasing function of a1. Furthermore:
(a) g(a1, a2, a3, . . . , at−1, at) ≥ g(a1 + 1, a2, a3, . . . , at−1, at − 1),
(b) g(a1, a2, a3, . . . , at−1, 2) ≥ g(a1 + 1, a2, a3, . . . , at−1),
(c) if d ≥ 4 and (a1, a2, . . . , at) 6∈ {(5, 2), (4, 2)} then g(a1, a2, . . . , at) ≥ 2.

Proof. The proofs of (a) and (b) are straightforward. Using (a) and (b) we have
g(a1, a2, . . . , at) ≥ g(d, 2) = 2− 3

d + 1
2 . Thus g(a1, a2, . . . , at) ≥ 2 when d ≥ 6. If d =

5 and (a1, a2, . . . , at) 6= (5, 2) then g(a1, a2, . . . , at) ≥ min{g(4, 3), g(4, 2, 2)} = 9
4 . If

d = 4 and (a1, a2, . . . , at) 6= (4, 2) then g(a1, a2, . . . , at) ≥ min{g(3, 3), g(3, 2, 2)} =
2. �

2. Vertex transitive graphs

We will characterize when vertex transitive graphs are rigid and globally rigid.
Our characterization uses the following concept. A k-factor in a graph G is a
spanning k-regular subgraph. It also uses the following result which was obtained
independently by W. Mader and M.E. Watkins.

Theorem 2.1. [14, 17] Let G be a connected k-regular vertex transitive graph.
Then the connectivity of G is at least d 2k

3 e.

Theorem 2.2. Let G = (V,E) be a connected k-regular vertex transitive graph on
n vertices. Then G is not globally rigid if and only if:
(a) k = 2 and n ≥ 4.
(b) k = 3 and n ≥ 6.
(c) k = 4 and G has a 3-factor F consisting of s disjoint copies of K4 where s ≥ 3.
(d) k = 5 and G has a 4-factor F consisting of s disjoint copies of K5 where s ≥ 6.
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Proof. We first suppose G satisfies (a), (b), (c) or (d). Choose an edge e ∈ E such
that e 6∈ E(F ) in cases (c) and (d). Then we may use Theorem 1.2 to deduce that
G− e is not rigid. (In cases (a) and (b) we take the partition of E− e consisting of
copies of K2, in case (c) we take the partition of G − e consisting of the copies of
K4 in F and the remaining copies of K2, in case (d) we take the partition of G− e
consisting of the copies of K5 in F and the remaining copies of K2.) Thus G is not
redundantly rigid and hence not globally rigid by Theorem 1.3.

Suppose G is not globally rigid. Then G is not complete and hence if k ≤ 3 we
have (a) or (b). Thus we may assume k ≥ 4. Using Theorem 2.1, we may deduce
that G is 4-connected. Since G is not globally rigid, it follows from Theorem 1.3
that G is not redundantly rigid. Let Gi = (Vi, Ei), 1 ≤ i ≤ m be the redundantly
rigid components of G.

Claim 2.3. ∑
v∈V

∑
Vi3v

(2− 3
|Vi|

) ≤ 2n− 3.

Proof Since each Gi is rigid we have r(Gi) = 2|Vi|− 3. Since M(G) = ⊕m
i=1M(Gi),

we have∑
v∈V

∑
Vi3v

(2− 3
|Vi|

) =
m∑

i=1

∑
v∈Vi

(2− 3
|Vi|

) =
m∑

i=1

|Vi|(2−
3
|Vi|

)

=
m∑

i=1

(2|Vi| − 3) = r(G) ≤ 2n− 3. �

For v ∈ V , let the type of v be the non-increasing sequence of integers given
by the sizes of the redundantly rigid components which contain v. Since G is
vertex transitive each vertex of G has the same type, say (a1, a2, . . . , at). We shall
refer to this sequence as the type of G. Since G is connected and has at least two
redundantly rigid components, some vertex belongs to at least two redundantly
rigid components so t ≥ 2.

Claim 2.4. G has type (4, 2) or (5, 2).

Proof: Suppose G has type (a1, a2, . . . , at) 6∈ {(4, 2), (5, 2)}. We have ai ≥ 2 and
4 ≤ k ≤ d =

∑t
i=1(ai−1). Lemma 1.5 now implies that

∑
Vi3v(2− 3

|Vi| ) ≥ 2. Thus∑
v∈V

∑
Vi3v(2− 3

|Vi| ) ≥ 2n. This contradicts Claim 2.3. �
We first suppose G has type (4, 2). Then each vertex of G belongs to exactly

two redundantly rigid components with four and two vertices, respectively. Since
k ≥ 4, these components must be isomorphic to K4 and K2, respectively. Thus
k = 4 and G has a factor F consisting of s disjoint copies of K4. Furthermore,
G has s redundantly rigid components isomorphic to K4 and 2s redundantly rigid
components isomorphic to K2. Since n = 4s, we can now use the inequality 2n−3 ≥
r(G) =

∑m
i=1 r(Gi) to deduce that s ≥ 3. Thus (c) holds for G.

Finally we consider the case when G has type (5, 2). Then each vertex of G
belongs to exactly two redundantly rigid components with five and two vertices,
respectively. Let H be a rigid component of G with five vertices. Since G is k-
regular, H is (k− 1)-regular. The fact that k ≥ 4 and |V (F )| = 5 now implies that
k = 5 and H is isomorphic to K5. Thus k = 5 and G has a factor F consisting of s
disjoint copies of K5. We can now deduce that s ≥ 6 by again using the inequality
2n− 3 ≥ r(G) =

∑m
i=1 r(Gi). Thus (d) holds for G. �
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Corollary 2.5. Let G = (V,E) be a connected k-regular vertex transitive graph on
n vertices. Then G is not rigid if and only if:
(a) k = 2 and n ≥ 4.
(b) k = 3 and n ≥ 8.
(c) k = 4 and G has a factor F consisting of s disjoint copies of K4 where s ≥ 4.
(d) k = 5 and G has a factor F consisting of s disjoint copies of K5 where s ≥ 8.

Proof. If G belongs to the families described in (a), (b), (c) and (d), then we can
use use Theorem 1.2 to show that G is not rigid.

To prove the reverse implication we suppose that G is not rigid. Then G is not
complete so n ≥ 4 if k = 2 and n ≥ 6 if k = 3. Furthermore, there are exactly two
vertex transitive 3-regular graphs on six vertices, K3,3 and the triangular prism,
and both are rigid. Thus n ≥ 8 when k = 3 and we may assume that k ≥ 4. Since
G is not rigid, it is not globally rigid. Thus G has type (4, 2) or (5, 2) and belongs
to one of the families listed in Theorem 2.2 (c),(d). We can now use the analysis
in the final part of the proof of Theorem 2.2 and the fact that r(G) ≤ 2|V | − 4 to
deduce that s ≥ 4 when k = 4 and s ≥ 8 when k = 5. �

Mader [15] has shown that if G is a connected k-regular vertex transitive graph
then G is k-edge-connected. Tindell [16] extended this by showing that if G has a
non-trivial k-edge-cut, then G has a (k-1)-factor consisting of disjoint copies of Kk

and the graph obtained from G by contracting each of these Kk’s to single vertices
is a k-regular 1-arc-transitive multigraph. It follows that the graphs described in
families (c) and (d) of Theorem 2.2 and Corollary 2.5 have this ‘product’ structure.
Since the graph C2

3 obtained by replacing each edge of a 3-cycle by two parallel
edges is the only 4-regular 1-arc-transitive multigraph on three vertices, and K6 is
the only 5-regular 1-arc-transitive multigraph on six vertices, we may deduce:

Corollary 2.6. There are exactly four vertex transitive graphs which are rigid but
not globally rigid. These are K3,3, the triangular prism, the graph, G1, obtained
from C2

3 by replacing each vertex by a copy of K4 and the graph, G2, obtained from
K6 by replacing each vertex by a copy of K5.

Figure 2. Two equivalent but non-congruent frameworks on the
triangular prism.

3. Highly connected graphs

We adapt the proof technique of Lovasz and Yemini in [12] to show that a slightly
weaker connectivity hypothesis than that given in Theorem 1.4 is sufficient to imply
global rigidity. We say G is essentially 6-connected if:

(a) G is 4-connected,
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Figure 3. Two equivalent frameworks on K3,3 for which there is
no label preserving congruence.
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Figure 4. Two equivalent but non-congruent frameworks on G1.

Figure 5. Two equivalent but non-congruent frameworks on G2.

(b) for all pairs of subgraphs G1, G2 of G such that G = G1 ∪ G2, |V (G1) −
V (G2)| ≥ 3 and |V (G2)− V (G1)| ≥ 3, we have |V (G1) ∩ V (G2)| ≥ 5, and
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(c) for all pairs of subgraphs G1, G2 of G such that G = G1 ∪ G2, |V (G1) −
V (G2)| ≥ 4 and |V (G2)− V (G1)| ≥ 4, we have |V (G1) ∩ V (G2)| ≥ 6.

We shall first show that every essentially 6-connected graph is redundantly rigid.

Theorem 3.1. Every essentially 6-connected graph is redundantly rigid.

Proof. We proceed by contradiction. Suppose the theorem is false and let G =
(V,E) be a counterexample chosen such that |V | is as small as possible and, subject
to this condition, |E| is as large as possible. Choose an edge e = xy ∈ E such that
G − e is not rigid. By Theorem 1.2 there exists a family of induced subgraphs
{Gi = (Vi, Ei)}m

i=1 such that E − e = ∪m
i=1Ei and

∑m
i=1(2|Vi| − 3) ≤ 2|V | − 4. Let

G0 be the subgraph of G induced by e. Then E = ∪m
i=0Ei and

(1)
m∑

i=1

(2|Vi| − 3) ≤ 2|V | − 3.

The maximality of |E| implies that each subgraph Gi, 0 ≤ i ≤ m, is complete.
For each v ∈ V let c(v) be the number of subgraphs Gi containing v.

Claim 3.2. c(v) ≥ 2 for all v ∈ V .

Proof: Suppose c(v) = 1 for some v ∈ V . Clearly v 6∈ V0. Without loss of generality,
v ∈ Vm. Let G′ = G − v, G′

i = Gi for 1 ≤ i ≤ m − 1 and G′
m = Gm − v. Then

E′ − e = ∪m
i=1E

′
i and

m∑
i=1

(2|V ′
i | − 3) =

m∑
i=1

(2|Vi| − 3)− 2 ≤ 2|V | − 4 = 2|V ′| − 4.

Thus G′ − e is not rigid by Theorem 1.2. The minimality of |V | implies that
G′ is not essentially 6-connected. Suppose H ′

1,H
′
2 are subgraphs of G′ such that

G′ = H ′
1 ∪H ′

2. Then the fact that NG(v) induces a complete graph in G′ implies
that NG(v) ⊆ V (H ′

1) or NG(v) ⊆ V (H ′
2). By symmetry NG(v) ⊆ V (H ′

1). Let H1

be the subgraph of G induced by V (H ′
1) ∪ {v} and H2 = H ′

2. Hence, if we choose
H ′

1,H
′
2 to certify the fact that G′ is not essentially 6-connected, then H1,H2 will

contradict the fact that G is essentially 6-connected. �

Claim 3.3. ∑
v∈V

∑
Vi3v

(2− 3
|Vi|

) ≤ 2|V | − 3.

Proof: We have∑
v∈V

∑
Vi3v

(2− 3
|Vi|

) =
m∑

i=0

∑
v∈Vi

(2− 3
|Vi|

) =
m∑

i=0

|Vi|(2−
3
|Vi|

) ≤ 2|V | − 4

by (1). �
For v ∈ V the type of v is the non-increasing sequence of integers given by the

sizes of the sets Vi which contain v.

Claim 3.4. Suppose v ∈ V . Then
∑

Vi3v(2− 3
|Vi| ) ≥ 2 unless v has type (4, 2) or

(5, 2).

Proof. Suppose v has type (a1, a2, . . . , at). Since G is 4-connected, d =
∑t

i=1(ai −
1) ≥ 4. The claim now follows from Lemma 1.5. �



8 B. JACKSON, B. SERVATIUS, AND H. SERVATIUS

Claim 3.5. |V | ≥ 16.

Proof. Using Claims 3.3, 3.4 and the facts that g(4, 2) = 7
4 and g(5, 2) = 19

10 , we
may deduce that

7
4
|V | ≤

∑
v∈V

∑
Vi3v

(2− 3
|Vi|

) ≤ 2|V | − 4.

Thus |V | ≥ 16. �

We say that a vertex v ∈ V is bad if it has type (4, 2) or (5, 2) and that a set Vi

is bad if it has size four or five and contains a bad vertex. Let B be the family of all
bad sets Vi. For each vertex v ∈ V let b(v) be the number of bad sets Xi ∈ B which
contain v. For i = 0, 1 let Ui = {v ∈ V : b(v) = i} and put U2 = V − (U0 ∪ U1).
Using Claim 3.4 we may deduce

Claim 3.6.
∑

v∈U0

∑
Vi3v(2− 3

|Vi| ) ≥ 2|U0|. �

For Vj ∈ B let V ′
j = {v ∈ Vj : b(v) = 1} and V ′′

j = {v ∈ Vj : b(v) ≥ 2}.

Claim 3.7. For Vj ∈ B we have∑
v∈V ′

j

∑
Vi3v

(2− 3
|Vi|

) +
∑

v∈V ′′
j

(2− 3
|Vj |

) ≥ 2|V ′
j |+ |V ′′

j |.

Proof: Since Vj ∈ B, we have |Vj | ∈ {4, 5}. Let Aj be the set of bad vertices in Vj .
Then Aj ⊆ V ′

j and |Aj | ≥ 1 since Vj ∈ B. Consider the following two cases.

|Vj| = 4. Condition (b) in the definition of essentially 6-connected and Claim 3.5
imply that |Aj | ≤ 2. For v ∈ Aj we have

∑
Vi3v(2 − 3

|Vi| ) = 7
4 . For v ∈ V ′

j − Aj

Lemma 1.5 implies that
∑

Vi3v(2− 3
|Vi| ) ≥ min{g(4, 3), g(4, 2, 2)} = 9

4 . These facts
can be used to verify that the claim holds in each of the four subcases |V ′

j | ∈
{1, 2, 3, 4}.
|Vj| = 5. Condition (c) in the definition of essentially 6-connected and Claim 3.5
imply that |Aj | ≤ 3. For v ∈ Aj we have

∑
Vi3v(2 − 3

|Vi| ) = 19
10 . For v ∈ V ′

j − Aj

use Lemma 1.5 implies that
∑

Vi3v(2− 3
|Vi| ) ≥ min{g(5, 3), g(5, 2, 2)} = 12

5 . These
facts can be used to verify that the claim holds in each of the five subcases |V ′

j | ∈
{1, 2, 3, 4, 5}. �

Claim 3.8.
∑

v∈U1∪U2

∑
Vi3v(2− 3

|Vi| ) ≥ 2|U1|+ 2|U2|.

Proof: We have∑
v∈U1∪U2

∑
Vi3v

(2− 3
|Vi|

) =
∑
v∈U1

∑
Vi3v

(2− 3
|Vi|

) +
∑
v∈U2

∑
Vi3v

(2− 3
|Vi|

)

≥
∑

Vj∈B

∑
v∈V ′

j

∑
Vi3v

(2− 3
|Vi|

) +
∑

Vj∈B

∑
v∈V ′′

j

(2− 3
|Vj |

)

≥
∑

Vj∈B

(2|V ′
j |+ |V ′′

j |)

by Claim 3.7. Since each vertex in U1 belongs to exactly one set V ′
j and each vertex

in U2 belongs to at least two distinct sets V ′′
j , we have

∑
Vj∈B(2|V ′

j | + |V ′′
j |) ≥

2|U1|+ 2|U2|. �



THE 2-DIMENSIONAL RIGIDITY OF CERTAIN FAMILIES OF GRAPHS 9

We can now complete the proof of the theorem. Claims 3.6 and 3.8 give∑
v∈V

∑
Vi3v

[
2− 3

|Vi|

]
≥ 2|V |.

This contradicts Claim 3.3. �

Combining Theorem 3.1 with Theorem 1.3, we immediately deduce

Theorem 3.9. Every essentially 6-connected graph is globally rigid.

As an example we note that the complete bipartite graph K4,m, m ≥ 4, satisfies
the hypotheses of Theorem 3.9, and hence is globally rigid, but does not satisfy the
hypotheses of Theorem 1.4.

Our final result of this section observes that an even weaker connectivity con-
dition is sufficient to imply that 4-regular graphs are globally rigid. A graph
G = (V,E) is said to be cyclically k-edge-connected if for all X ⊆ V such that
G[X] and G[V −X] both contain cycles, we have at least k edges from X to V −X.

Theorem 3.10. Let G = (V,E) be a cyclically 5-edge-connected 4-regular graph.
Then G is globally rigid.

Proof. Suppose that G is not globally rigid. The facts that G is cyclically 5-edge-
connected and 4-regular imply that G is 3-connected. Hence, by [8], G is not
redundantly rigid. Let G1 = (V1, E1) be a largest redundantly rigid subgraph of G.
Since |E| = 2n, G contains an M -circuit and hence |V1| ≥ 4 and |E1| ≥ 2|V1| − 2.
Since G is 4-regular this implies that dG(V1) ≤ 4 and |E(G− V1)| ≥ 2|V − V1| − 2.
Thus G1 and G−G1 both contain cycles. Now the fact that dG(V1) ≤ 4 contradicts
the hypothesis that G is cyclically 5-edge-connected. �

Note that examples of non-rigid 4-regular 4-connected graphs and non-rigid 5-
regular 5-connected graphs are given in Theorem 2.5 (c), (d).

4. Random graphs

Let Gn,d denote the probability space of all d-regular graphs on n vertices with
the uniform probability distribution. A sequence of graph properties An holds
asymptotically almost surely, or a.a.s. for short, in Gn,d if limn→∞ PrGn,d

(An) =
1. Graphs in Gn,d are known to be a.a.s. highly connected. It was shown by
Bollobás [1] and Wormald [19] that if G ∈ Gn,d for any fixed d ≥ 3, then G is a.a.s.
d-connected. This result was extended to all 3 ≤ d ≤ n− 4 by Cooper et al. [4] and
Krivelevich et al. [9]. Stronger results hold if we discount ‘trivial’ cutsets. In [20],
Wormald shows that if if G ∈ Gn,d for any fixed d ≥ 3, then G is a.a.s. cyclically
(3d− 6)-edge-connected. Together with Theorem 3.10, this immediately gives:

Theorem 4.1. If G ∈ Gn,4 then G is a.a.s. globally rigid. �

In fact this result holds for all d ≥ 4.

Theorem 4.2. If G ∈ Gn,d and d ≥ 4 then G is a.a.s. globally rigid.

Proof. If d ≥ 6 then G is a.a.s. 6-connected by [4, 9] and the result follows from
Theorem 1.4. If d = 5 then the result follows from Theorem 4.1 by contiguity,
see [20]. �
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Let G(n, p) denote the probability space of all graphs on n vertices in which each
edge is chosen independently with probability p. In the following we will assume
that all logarithms are natural. We will need the following results on G(n, p).

Lemma 4.3. Let G ∈ G(n, p), where p = (log n+k log log n+w(n))/n, k ≥ 2 is an
integer and limn→∞ w(n) = ∞. For each fixed integer t, let St be the set of vertices
of G of degree at most t. Then, a.a.s.
(a) Sk−1 is empty,
(b) no two vertices of St are joined by a path of length at most two in G,
(c) G− St−1 is non-empty and t-connected.

Proof. Facts (a) and (b) are well known, see for example [2]. Fact (c) follows from
(a), (b) and [13, Theorem 4] �

Theorem 4.4. Let G ∈ G(n, p), where p = (log n + k log log n + w(n))/n, and
limn→∞ w(n) = ∞.
(a) If k = 2 then G is a.a.s. rigid.
(b) If k = 3 then G is a.a.s. globally rigid.

Proof. (a) We adopt the notation of Lemma 4.3. It follows from Lemma 4.3 that
a.a.s. S1 = ∅ and G − S5 is a.a.s. 6-connected. Hence G − S5 is a.a.s. (globally)
rigid by Theorem 1.4. Since adding a new vertex joined by at least two new edges
to a rigid graph preserves rigidity, it follows that G is a.a.s. rigid.
(b) This follows in similar way to (a), using the facts that S2 = ∅ and that adding
a new vertex joined by at least three new edges to a globally rigid graph preserves
global rigidity. �

The bounds on p given in Theorem 4.4 are best possible since if G ∈ G(n, p)
and p = (log n + k log log n + c)/n for any constant c, then G does not a.a.s. have
minimum degree at least k, see [2].

Let Geom(n, r) denote the probability space of all graphs on n vertices in which
the vertices are distributed uniformly at random in the unit square and each pair
of vertices of distance at most r are joined by an edge. Suppose G ∈ Geom(n, r).
Li, Wan and Wang [11] have shown that if nπr2 = log n + (2k− 3) log log n + w(n)
for k ≥ 2 a fixed integer and limn→∞ w(n) = ∞, then G is a.a.s. k-connected. As
noted by Eren et al. [5], this result can be combined with Theorem 1.4 to deduce
that if nπr2 = log n + 9 log log n + w(n) then G is a.a.s. globally rigid. On the
other hand, it is also shown in [11] that if nπr2 = log n + (k − 1) log log n + c for
any constant c, then G is not a.a.s. k-connected. It is still conceivable, however,
that if nπr2 = log n + log log n + w(n) then G is a.a.s. rigid, and that if nπr2 =
log n + 2 log log n + w(n) then G is a.a.s. globally rigid.
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