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HEREDITARY PROPERTIES OF COMBINATORIAL

STRUCTURES:

POSETS AND ORIENTED GRAPHS

JÓZSEF BALOGH, BÉLA BOLLOBÁS, AND ROBERT MORRIS

Abstract. A hereditary property of combinatorial structures is a
collection of structures (e.g. graphs, posets) which is closed under
isomorphism, closed under taking induced substructures (e.g. in-
duced subgraphs), and contains arbitrarily large structures. Given
a property P , we write Pn for the collection of distinct (i.e., non-
isomorphic) structures in a property P with n vertices, and call
the function n 7→ |Pn| the speed (or unlabelled speed) of P . Also,
we write Pn for the collection of distinct labelled structures in P
with vertices labelled 1, . . . , n, and call the function n 7→ |Pn| the
labelled speed of P .

The possible labelled speeds of a hereditary property of graphs
have been extensively studied, and the aim of this paper is to
investigate the possible speeds of other combinatorial structures,
namely posets and oriented graphs. More precisely, we show that
(for sufficiently large n), the labelled speed of a hereditary property
of posets is either 1, or exactly a polynomial, or at least 2n−1. We
also show that there is an initial jump in the possible unlabelled
speeds of hereditary properties of posets, tournaments and directed
graphs, from bounded to linear speed, and give a sharp lower bound
on the possible linear speeds in each case.

1. Introduction

A combinatorial structure P consists of a (finite) set, V (P ) (the
elements or vertices of P ), and a collection of relations Ξ(P ) on these
elements. For example, letting V = V (G) and Ξ = {E(G)}, we see
that any graph G is a combinatorial structure in this sense. Any set
of relations is permissible, but in this paper we shall only need those
which define oriented edges. We say that a collection (or property)
P of combinatorial structures is hereditary if it is closed under taking
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induced sub-structures. Thus, for example, the family of graphs with
no induced C4 is hereditary. Write Pn for the collection of distinct
(non-isomorphic) structures in a property P with n vertices, and call
the function n 7→ |Pn| the speed (or unlabelled speed) of P. Also,
write Pn for the collection of distinct labelled structures in P with
n vertices, i.e., the set of non-isomorphic pairs (P, φ), where P ∈ Pn

and φ : [n] ↔ V (P ) is a bijection (or labelling of P ), and call the
function n 7→ |Pn| the labelled speed of P. The speed and labelled
speed of a property P are both very natural measures of the “size” of
P. They are also quite different from one another. For example, for the
collection Q of complete bipartite graphs, we have |Qn| = ⌈(n + 1)/2⌉
and |Qn| = 2n−1, but for the collection R of paths, |Rn| = 1 and
|Rn| = n!/2; thus the measures give different answers to the question:
Which is larger, the property of being complete bipartite, or that of
being a path?
We are interested in the (surprising) phenomenon that for many

types of combinatorial structure, only very ‘few’ (labelled) speeds are
possible. More precisely, there often exists a family F of functions
f : N → N and another function F : N → N with F (n) much larger
than f(n) for every f ∈ F , such that if, for each f ∈ F the speed is
infinitely often larger than f(n), then it is also larger than F (n) for
every n ∈ N. Putting it concisely: the speed jumps from F to F .
Scheinerman and Zito [29] were the first to study speeds of combina-

torial structures when they initiated the study of the labelled speed of
hereditary graph properties. What Scheinerman and Zito showed was
that the functions n 7→ |Pn| are far from being ‘arbitrary’: only cer-
tain ranges of speeds are possible. A little later, considerably stronger
results were proved by Alekseev [1], Bollobás and Thomason [12], [13],
[14], and Balogh, Bollobás and Weinreich [6], [7], [8]. With hindsight,
one can say that in spirit the area goes back to papers of Erdős, Kleit-
man and Rothschild [18], Erdős, Frankl and Rödl [19], Kolaitis, Prömel
and Rothschild [23], Prömel and Steger [24], [25], [26], [27], [28], and
others; for a review of the early results, see Bollobás [11]. Later in this
paper, we shall make use some of these results.
We shall mainly be interested in ‘low-speed’ properties (those satis-

fying |Pn| 6 cn for some constant c and sufficiently large n), though
we shall also comment on what is known for higher speeds. In this
paper we will consider properties of posets and oriented graphs; papers
considering similar questions for ordered graphs and related structures
include [3], [20] and [21]. In a forthcoming paper [4] we shall also con-
sider higher speeds of hereditary properties of tournaments. Our main
results are summarized in the following theorems.
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Let P = (S,<P ) be a partially ordered set (or poset), where <P is
a partial order on the set S. Clearly, P is a combinatorial structure.
If P is a collection of posets, then let Pn and Pn be the unlabelled
and labelled segments of P, respectively, as described above. We begin
with the unlabelled speed.

Theorem 1. If P is a hereditary property of posets, then the following
assertions hold.

(a) If |Pn| is unbounded, then |Pn| > ⌈n+1
2
⌉ for every n ∈ N.

(b) If also (|Pn| − ⌈n+1
2
⌉) is unbounded, then |Pn| > n ∀n ∈ N.

Moreover, the lower bounds are best possible.

Towards the end of the paper we shall extend part (a) to an arbitrary
property of directed graphs (see Theorem 10). The proof uses the ideas
of the proof of Theorem 1, and also Theorem 3, below. In order to prove
part (b), however, we shall need a more detailed structural statement
about properties of posets with speed ⌈(n + 1)/2⌉, which fails to hold
in the more general case.
Next, we turn to the labelled speed. Note that between two la-

belled structures only one isomorphism is possible, whereas in the un-
labelled case there are many possible such isomorphisms. This fact
makes the problem somewhat simpler, and allows us to prove the fol-
lowing, stronger theorem.

Theorem 2. If P is a hereditary property of posets, then one of the
following assertions holds.

(a) |Pn| = 1 for every n > N , for some N ∈ N.

(b) |Pn| is a polynomial. There exists K ∈ N and integers a0, ..., aK
(with aK 6= 0), such that

|Pn| =
K∑

i=0

ai

(
n

i

)

for all sufficiently large n. Moreover,

|Pn| >
K∑

i=0

(
n

i

)

for all n > 2K+1. In particular, |Pn| > n+1 for every n > 3.

(c) |Pn| > 2n − 1 for every n > 6.

Moreover, each of the lower bounds is best possible.
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We remark that it is somewhat surprising that we are able to prove
a sharp lower bound (i.e., |Pn| >

∑K
i=0

(
n
i

)
) for the possible speeds of

order nK for every K ∈ N; for example, we were unable in [3] to prove
such a sharp result for ordered graphs.
A tournament T = (V, ψ) is a complete graph with an orientation on

each edge. Equivalently, it is a set S together with an anti-symmetric
function ψ : (S × S) \ {(x, x) : x ∈ S} → {−1, 1}, where we write
x→ y if ψ(x, y) = 1 and y → x otherwise.

Theorem 3. Let P be a hereditary property of tournaments. Then
either

(a) |Pn| is bounded, and ∃M,N ∈ N such that |Pn| =M if n > N ,

or

(b) |Pn| > n− 2 for every n ∈ N.

Moreover, there exists a unique property P such that |Pn| = n− 2 for
every n ∈ N with n > 4.

The structure of the paper will be as follows: in Section 2 we dis-
cuss poset properties and prove Theorems 1 and 2, and in Section 3
we examine properties of various types of oriented graphs and prove
Theorem 3.

2. Poset Properties

Recall that a hereditary property of posets P is a collection of posets
which is closed under taking induced subposets. In this section, P will
be a hereditary property of posets, unless otherwise stated. Recall also
that Pn is the set of unlabelled posets in P with n vertices, and Pn is
the set of all labelled posets in P with n vertices. The reader might
suggest, as another natural collection associated with P, that we also
consider the set of linear extensions of posets in Pn (i.e., the subset of
Pn for which the labelling is monotone). However, the possible speeds
in this case are just a subset of those possible for ordered graphs, since
a linear extension of a poset may be thought of as an ordered graph.
Thus Theorem 1 of [3] determines the possible speeds up to 2n−1.
The labelled speeds of poset properties have been studied extensively,

for example by Kleitman and Rothschild [22], who in 1975 proved

that the number of all labelled posets on n vertices is 2(1+o(1))n2/4.
Brightwell, Prömel and Steger later gave a sharper estimate, with a
simpler proof [17]. We shall use the Kleitman-Rothschild result to
prove Theorem 5 below, but in the proofs of Theorems 1 and 2 we shall

only need the trivial upper bound 3(
n

2
). Other results on the speeds of
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certain classes of poset properties are due to (amongst others) Alon and
Scheinerman [2], Brightwell and Goodall [15], and Brightwell, Grable
and Prömel [16].
We begin by recalling the following powerful theorem about labelled

speeds of hereditary properties of graphs. The results for |Pn| 6 2o(n
2)

are from [6] and [9], and those for |Pn| > 2Θ(n2) were proved in [1], [13]
and [28]. Bn denotes the number of partitions of [n].

Theorem 4. Let P be a hereditary property of graphs. Then one of
the following is true.

(a) |Pn| =
∑k

i=0 pi(n)i
n for all sufficiently large n, for some k ∈ N

and some collection {pi(n)}
k
i=0 of polynomials.

(b) |Pn| = n(1−1/k+o(1))n for some 2 6 k ∈ N.

(c) n(1+o(1))n = Bn 6 |Pn| 6 2o(n
2).

(d) |Pn| = 2(1−1/k+o(1))n2/2 for some 2 6 k ∈ N.

A principal hereditary poset family is a collection of posets not con-
taining a fixed poset P as an induced subposet. In [16] the following
theorem was proved for principal hereditary poset families. Moreover,
it was shown that |Forb(P )n| = 2o(n

2) if and only if P has height at
most two.

Theorem 5. Let P be a hereditary property of posets. Then the labelled
speed of P is either 2(1+o(1))n2/4, or 2o(n

2).

Proof. Let GQ be the comparability graph of a poset Q ∈ P. Then
G(P) = {GQ : Q ∈ P} is a hereditary property of graphs. Clearly,

|G(P)n| 6 |Pn| 6 |G(P)n| 6 n! · |G(P)n| (1)

since a poset is determined by its comparability graph and any of its
linear extensions. As by Theorem 4 the (labelled) speed of G(P) is

either at least 2(1+o(1))n2/4, or 2o(n
2), the claim follows from (1) and the

Kleitman-Rothschild theorem. �

Theorem 5 concerns poset properties with close to maximal speeds;
now we turn our attention to properties with low speeds. First we
introduce some notation and terminology. Let Γ(v) = ΓG(v) denote the
set of neighbours of a vertex v in a graph G, and define a homogeneous
block S in a graph G to be a maximal set of vertices satisfying Γ(x) \
{y} = Γ(y) \ {x} for all x, y ∈ S. If G is the comparability graph of a
poset P then P is said to realize G. We shall write p(v) for the element
of P corresponding to the vertex v of G, and in the labelled cases, we
shall write p(i) for the poset element labelled i, and trust that this
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will not cause confusion. We shall also use < to denote both <P , the
(partial) order in the poset, and <N, the usual order on the positive
integers, since it will always be clear to which we refer.
We shall call the poset with no comparable elements empty, and the

poset with all elements comparable a chain. We shall also frequently
use without explanation the following trivial observations: that in a
poset realizing a star, the ‘head’ is either above all the other elements,
or below all of them, and that the only poset which realizes a complete
graph is a chain.
We are now ready to prove Theorems 1 and 2.

Proof of Theorem 1. As in our proof of Theorem 5 let G(P) be the set
of comparability graphs of posets in P, and recall that |G(P)n| 6 |Pn|.
We first show that if |Pn| is unbounded then |Pn| >

n+1
2

for every
n ∈ N. Consider a property of posets P such that |Pn| is unbounded,
and for each graph G ∈ G(P), partition V (G) into homogeneous blocks
B1, B2, ..., Bℓ(G), let |Bi| = ti, and reorder so that t1 > t2 > ... > tℓ(G).
Suppose first that there exist graphs G ∈ G(P) with arbitrarily large

values of t2. If G(P) contains all graphs consisting of a clique and
an independent set and all edges in between, or the complements of
all such graphs, then |Pn| > |G(P)n| > n, so we may assume that
there exists M ∈ N such that whenever t2 > M , both B1 and B2 are
cliques, or both are independent sets. Also if P contains all posets
which realize a complete bipartite graph then |Pn| > n. But if B1∪B2

is a clique or an independent set, then since B1 and B2 are distinct
homogeneous blocks, there must exist a vertex v ∈ G\ (B1∪B2) which
distinguishes B1 from B2, i.e., B1 ⊂ Γ(v) and B2 ⊂ V (G) \ Γ(v), or
vice versa. It follows that if B1 ∪ B2 is an independent set then G(P)
contains all graphs whose the edges form a star, so |Pn| > |G(P)n| > n,
and if B1 ∪ B2 induces a clique then G(P) contains all graphs whose
non-edges form a star, so again |Pn| > |G(P)| > n. We are left only
with the possibility that B1 and B2 are incomparable chains, and since
the collection of such posets has speed ⌈n+1

2
⌉, it follows that if t2 is

unbounded then |Pn| > ⌈n+1
2
⌉ for all n ∈ N.

So assume that there exists K such that t2 6 K for all graphs G ∈
G(P). Suppose that for each L ∈ N there exists v ∈ G ∈ G(P) with
L 6 |Γ(v)| 6 |G| −L. Then by Ramsey’s Theorem and the pigeonhole
principle we have graphs in G(P) with arbitrarily large values of t2,
contradicting our assumption. So let L ∈ N be such that for every n,
each vertex v ∈ G ∈ G(P)n has degree at most L or at least n − L.
Given G ∈ G(P)n, let X = {v ∈ V (G) : d(v) 6 L}, let Y = V (G) \X .
It is easy to see (by considering the number of edges between X and
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Y ) that min(|X|, |Y |) 6 2L. Now suppose that for each M ∈ N there
exists some G ∈ G(P) with e(G[X ]) > M . Then since each edge in
G[X ] is incident with at most 2L−2 others, we can recursively find an
arbitrarily large induced matching in some G. But now G(P) contains
all graphs with all degrees at most one, and since there are ⌈n+1

2
⌉ such

graphs of order n, this implies that |Pn| > |G(P)| > ⌈n+1
2
⌉. Similarly,

if there are graphs G ∈ G(P) with arbitrarily large values of e(G[Y ])
then G(P) contains all graphs with all co-degrees at most one, and we
again have |Pn| > |G(P)| > ⌈n+1

2
⌉.

So we may assume that there exists M ∈ N such that e(G[X ]) 6 M
and e(G[Y ]) 6 M for every G ∈ G(P). It follows that for every G ∈
G(P)n we have t1 > n− (2L2 + 2L+ 2M).
Let K = 2L2 +2(L+M) and consider the posets in P which realize

graphs in G(P) with B = B1 an independent set. The number of such

posets of order n is at most K3(
K

2
)3K , which is a constant.

Now consider those posets in P which realize graphs in which B
induces a clique (and so a chain in the poset). Suppose for each N ∈ N

there exists a graphG ∈ G(P) and a vertex v ∈ V (G)\B such that |{b ∈
B : p(v) > p(b)}| > N and |{b ∈ B : p(v) < p(b)}| > N . Since v /∈ B,
there must exist another element u /∈ B such that either p(u) <> p(v)
and p(u) is comparable to the elements of B, or p(u) > p(v) say, and
p(u) <> p(b) for all b ∈ B. The latter case is impossible however,
since p(u) > p(v) > p(b) for some b ∈ B, so we must have the former,
i.e., p(u) <> p(v). But then for every b ∈ B we have p(u) > p(b) if
and only if p(v) > p(b), so P contains all the posets consisting of two
incomparable elements with a chain of N elements above them, and a
chain of N elements below them. Since N was arbitrary, this in turn
implies that |Pn| > n.
We are left with the case that t1 > n − K in every G ∈ G(P)n, B

induces a clique, and there exists an N ∈ N such that |{b ∈ B : p(v) >
p(b)}| < N or |{b ∈ B : p(v) < p(b)}| < N for every P ∈ P and
every v ∈ V (G) \ B. There are now only boundedly many choices for
the orientations of edges from each vertex outside B, so the number of

posets in Pn is bounded above by K3(
K

2
)(2N + 1)K , which contradicts

our initial assumption.

We have proved part (a): that if |Pn| is unbounded then |Pn| > ⌈n+1
2
⌉

for every n ∈ N. Moreover, we have shown that the only possible
properties with speed ⌈n+1

2
⌉ are Q, the set of all posets which are

the union of two (incomparable) chains, the property R consisting of
posets with comparability graphs of maximum degree at most one, and
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the property R consisting of all posets with comparability graphs of
minimum degree n− 1. Observe that for each such graph there exists
a unique poset realizing it. It follows that in fact |Rn| > Fn, the n

th

Fibonacci number, since for every sequence (a1, ..., as) with ai ∈ {1, 2},
s ∈ N and a1 + ... + as = n, Rn contains the (unlabelled) poset on
p1, ..., pn in which pi < pj if i < j unless a1 + ... + at 6 i < j <
a1+ ...+ at+1 for some t 6 s− 1. Hence the only properties with speed
⌈n+1

2
⌉ are Q and R, both of which have exactly this speed.

We have also shown that if P contains neither the propertyQ, nor the
propertyR, then |Pn| > n for every n ∈ N (if P containsR then |Pn| >
Fn > n). The union of Q and R has speed > n, since |Qn ∩ Rn| 6 1
when n > 3, so if |Pn| < n for some n and |Pn| − ⌈n+1

2
⌉ is positive and

unbounded then there are only a small number of possibilities.
First suppose P contains Q, and for each N ∈ N, let P(N) = P\{P ∈

Q : both chains have at least N elements}. If P(N) is hereditary for
some N ∈ N then by the above, either its speed is bounded, or at least
n, or P(N) contains Q orR. In each case we have a contradiction to one
of our assumptions (if P(N) containsR say, then Q∪R ⊂ P), so P(N) is
not hereditary for any N ∈ N. Hence, for each N ∈ N, there must exist
P ∈ P(N) containing an induced copy of some Q ∈ Q with both chains
(B1 and B2 say) having at least N elements. Take B1 and B2 to be
maximal, subject to the condition that P [B1 ∪ B2] ∈ Q (so the chains
are incomparable), and observe that B1 ∪ B2 does not cover P , since
P ∈ P(N). For such a poset P in which |B1| = |B2| = 2N say, choose
a vertex v of GP \ (B1 ∪ B2) (where GP is the comparability graph of
P ), and consider the neighbours of v in B1 and B2. There are various
cases to consider: we shall show that in each case |PN | > N . Since N
was arbitrary, this will suffice to prove the case when P contains Q.
Note first that if |ΓB1

(v)|, |ΓB2
(v)| > N , then G(P) contains the

graph consisting of two cliques of size N , with no edges in between,
and one other vertex adjacent to both of the cliques. This graph
has N distinct subgraphs of order N , so |G(P)N | > N . The case
|ΓB1

(v)|, |ΓB2
(v)| 6 N is similar, so assume that |ΓB1

(v)| > N and
|ΓB2

(v)| 6 N . Without loss of generality, assume p(b) > p(v) for some
b ∈ B1.
If |ΓB1

(v)| = 2N , then since B1 was maximal, we must have |ΓB2
(v)| >

1, so b0 ∈ ΓB2
(v) say. Then since p(b0) is incomparable to B1, we must

have p(b0) > p(v), and p(b1) > p(v) for every b1 ∈ B1. Note also that
p(b2) > p(v) for every b2 ∈ B2 such that p(b2) > p(b0). Thus P contains
the poset consisting of two chains of size N with the top element of one
above the bottom element of the other, and all other pairs of elements
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(not in the same chain) incomparable. This has N distinct subposets
of order N , so again |PN | > N .
So we may assume that N 6 |ΓB1

(v)| < 2N , and |ΓB2
(v)| 6 N ,

which implies that the graph consisting of a clique of size N and a
clique of size N + 1 minus an edge, with no edges in between, is in
G(P). This has N − 1 + ⌈N+1

2
⌉ > N distinct subgraphs of order N , so

again |G(P)N | > N , and so the case Q ⊂ P is complete.
The case where P contains R is similarly easy to deal with. Suppose

that R ⊂ P, and that again |Pn| < n for some n and |Pn| − ⌈n+1
2
⌉

is positive and unbounded. Note that Q 6⊂ P, as |Rn ∪ Qn| > n for
every n ∈ N. From above we see that since Q 6⊂ P and |Pn| < n for
some n, t2 must be bounded. Recall that X = {v ∈ G : d(v) 6 L}
and Y = {v ∈ G : d(v) > |G| − L}, and that (for some L ∈ N),
V (G) = X ∪ Y for every G ∈ G(P) when t2 is bounded. Since R 6⊂ P
then, again by the method above, it follows that in the comparability
graphs of all but a bounded number of posets of Pn we have |X| > |Y |.
Recall also that, for each N ∈ N and every n, the number of posets of
order n with |X| > |Y | and e(G[X ]) 6 N is bounded as well.
From this we may conclude that for any N ∈ N, and for large n, Pn

contains more than ⌈n+1
2
⌉ posets in whose comparability graphs |X| >

|Y | and e(G[X ]) > 2L2N . Since d(v) 6 L for v ∈ X , it follows that in
such a graph there exists an induced matching on 2N vertices in X . For
each N ∈ N, let G[N ] ⊂ G(P) be the collection of comparability graphs
in G(P) in which |X| > |Y | and there exists an induced matching on
at least 2N vertices in X , and let P [N ] be the set of posets in P which
realize a graph in G[N ]. Note that |(P [N ])n| > ⌈n+1

2
⌉ + 1 for every N

and every sufficiently large n ∈ N.
Now, if Y is non-empty in some G ∈ G[n+L], then G(P) also contains

the graph consisting of n triangles with one common point. This has
⌈n−1

2
⌉ + ⌈n+1

2
⌉ > n distinct subgraphs of order n, so we may assume

that for some N1 ∈ N, Y is empty in all graphs G ∈ G[n] with n > N1.
Also, if there exists some vertex in G[X ] with degree at least two in
some G ∈ G[n+1], then G(P) contains all graphs on n vertices with one
vertex of degree at least two and all others of degree at most one. There
are ⌈n−2

2
⌉ + ⌈n+1

2
⌉ > n such graphs, so we may assume that for some

N2 ∈ N, d(v) 6 1 for every v ∈ X in all graphs G ∈ G[n] with n > N2.
The proof is now complete, since there are only ⌈n+1

2
⌉ posets of order

n which realize a graph with |Y | = 0 and d(v) 6 1 for every v ∈ X ,
and this implies that |(P [N ])n| 6 ⌈n+1

2
⌉ for every N > max(N1, N2).

But this is a contradiction, so the case R ⊂ P is complete. �

Next, we prove Theorem 2.
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Proof of Theorem 2. We shall use the following structural theorem on
labelled graph properties (it is the case k = 2 of Theorem 29 from [6]).
Let G0 denote the graph property in which all vertices have degree at
most 1. One can check that this is the property of smallest speed of
the collection of (four) minimal properties given by the theorem. The
theorem states that if G is a hereditary graph property with |Gn| < |Gn

0 |
for some n ∈ N, then ∃ k, ℓ ∈ N such that all graphs G ∈ G can be
partitioned into t(G) + 1 parts V (G) = A ∪ B1 ∪ ... ∪ Bt(G), where
t = t(G) 6 ℓ and |A| 6 k, with each Bi a homogeneous block.
Let P be a property of posets, and suppose there exists 6 6 m ∈ N

such that |Pm| 6 2m−2. Observe that the speed of G0 satisfies |G
n+1
0 | =

|Gn
0 | + n|Gn−1

0 |, and that |G1
0 | = 1 and |G2

0 | = 2, so |G6
0 | = 76 > 26 − 2,

and by induction |Gn
0 | > 2n − 2 for every n > 6. It follows that in

particular |G(P)m| 6 |Pm| 6 2m − 2 < |Gm
0 |, so we may apply the

theorem to G(P) to obtain k and ℓ.
Order the Bi for each G ∈ G(P) so that |B1| > ... > |Bt|, and note

that we may assume there exist graphs with arbitrarily large values of
|Bi| for each 1 6 i 6 ℓ, since otherwise we may choose a larger value
of k, a smaller value of ℓ and add the small Bi’s to A. Let

K = max{k : ∃G ∈ G(P) with |G| = n and |A| = k for arbitrarily large n},

and let

T = max{t : ∃G ∈ G(P) with |G| = t and |A| > K + 1}.

Suppose first that ℓ = 1 and fix an m > 6 such that |Pm| 6 2m − 2.
Let B = B1. We first show that |Pn| = O(nK) as n → ∞. Pick a
G ∈ G(P) with |G| > max(m + K, T + 1), so by the definition of T
we have |A| 6 K, and hence |B| > m. Observe that B is empty or
complete (because it is a homogenous block), and that if it is complete
then |Pn| > n! for all 1 6 n 6 |B|, since Pn then contains all linear
orders on [n]. Since m! > 2m when m > 4, we may assume that B is an
independent set in every such G. But now if v ∈ V (G) \B, and p(v) >
p(b) for some b ∈ B, then p(v) > p(b) for every b ∈ B, and similarly if
p(v) < p(b) or p(v) <> p(b) for some b ∈ B. Thus there are at most

K3K3(
K

2
) unlabelled posets in Pn for every n > max(m+K, T+1), and

each may be labelled in at most nK different ways, so |Pn| = O(nK).
To get our lower bound on |Pn|, we proceed by induction on K.

We may again assume that B is an independent set in G. Note that
if K = 0 then E(G) = ∅ for every G ∈ G(P)n with n > T + 1, so
|Pn| = 1 for sufficiently large n, but not necessarily for all n > 1.
If K = 1 however, then Pn contains the poset with n − 1 pairwise
incomparable elements, and the final element comparable to all others,
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which may be labelled in n ways (if n > 3), and the empty poset, so
|Pn| >

(
n
1

)
+

(
n
0

)
for every n > 3. So let K > 2, and observe that

by the definition of K, there exist graphs in G(P)n with |A| = K for
all sufficiently large n. Each of these may be labelled in at least

(
n
K

)

different ways if n > 2K + 1, since then B is unique.
Now, if there exist graphs in G(P)n with |A| = K − 1 for all suffi-

ciently large n, then we would be done by induction, so suppose not.
Thus if we remove any vertex u from A (in any sufficiently large graph
G ∈ G(P)), another vertex v = v(u) of A must fall into B, so in the
graph G − u, v is homogeneous to each vertex of B. It follows that
there are no edges from v to B (since B is independent), and either
uv ∈ E(G) and there are no edges from u to B in G, or uv 6∈ E(G)
and all potential edges between u and B are in G (since v is not in B).
Partition A into A1 = {u ∈ A : ub ∈ E(G) for every b ∈ B} and

A2 = {u ∈ A : ub 6∈ E(G) for every b ∈ B}, and note that by the
observation above, v(u) ∈ A2 for every u ∈ A. Suppose A1 6= ∅ and let
u ∈ A1. Then v(u) ∈ A2, and since v falls into B, vw 6∈ E(G) for every
w ∈ A2 \ v. But x = v(v(u)) ∈ A2 also, which implies that vx ∈ E(G),
a contradiction.
So A = A2, which means there are no edges between A and B in G.

Let u ∈ A and take v(u) as before. Observe that uv ∈ E(G), since
u, v ∈ A2, and that vw 6∈ E(G) for every w ∈ A \ {u, v} since v is
homogeneous to B in G− u. Thus Γ(v(u)) = {u} for each u ∈ A.
Now, applying this result to the vertex v(u), we see that the only

possibility for v(v(u)) is u, so also Γ(u) = {v(u)}. Since u was arbi-
trary, it follows that A induces a matching. Hence in all sufficiently
large graphs G ∈ G(P) with |A| = K, E(G) consists of exactly K

2
inde-

pendent edges. But the number of ways to partition [K] into ordered
pairs is K!

(K/2)!
, so a poset P ∈ Pn realizing such a graph may be labelled

in K!
(K/2)!

(
n
K

)
ways. Since K!

(K/2)!

(
n
K

)
> K

(
n
K

)
>

∑K
i=0

(
n
i

)
if K > 2 and

n > 2K + 1, we are done in this case also.
Part (a) of the theorem (in the case ℓ = 1) now follows instantly, since

we have proved that if K > 1 then |Pn| >
∑K

i=0

(
n
i

)
> n+1, whilst, as

observed above, K = 0 implies that E(G) = ∅ for all G ∈ G(P)n with
n > T +1, so Pn contains only the poset with no comparable elements,
and |Pn| = 1 for n > T + 1.
Note that for each K ∈ N, the property Q(K) = {bipartite posets

P = X ∪ Y : |X| 6 K, u > v if u ∈ X, v ∈ Y and u <> v if u, v ∈ X

or u, v ∈ Y } has labelled speed |Qn
(K)| =

∑K
i=0

(
n
i

)
for every n ∈ N, so

our lower bound is best possible.
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We shall next prove that moreover if ℓ = 1 then the labelled speed
|Pn| is equal to a polynomial for sufficiently large n. The proof will
once again go by induction on K. The case K = 0 is trivial from
above, since |Pn| = 1 for n > T + 1, so let K > 1 and assume that
the result is true for all smaller values of K. For each unlabelled poset
P ∈ Pn with |A| = K and n > 2K + 1, we form the canonical poset
C = C(P ) of P as follows. First let z = zP : P × P → {−1, 0, 1} be
the antisymmetric function such that z(p, q) = 1 if p > q, z(p, q) = −1
if p < q, and z(p, q) = 0 if p = q or p <> q. Note that for any fixed
q, z(p, q) is constant for p ∈ B, because B is a homogeneous set and
induces an independent set in GP . Now, let C(P ) be the poset on
K + 1 elements, with one element labelled x and the other elements
unlabelled, satisfying that C(P )−p(x) is isomorphic to P restricted to
A (let this isomorphism be ψ), and that for each vertex v ∈ C(P )\p(x),
zC(P )(p(x), v) = zP (u, ψ(v)) for every u ∈ B. In other words, C(P )
is obtained from P by collapsing the set B into a single vertex, and
labelling that vertex x. Since (as noted above) zP (u, ψ(v)) is constant
as u varies over B, C(P ) always exists, and is uniquely determined.
Let C(P) = {C(P ) : P ∈ Pn for some n > 2K + 1, and |A| = K},

and for each C ∈ C(P), let L(C) be the number of distinct ways in
which one can label C with [K] ∪ {x} so that p(x) is labelled x. Note
that if n > 2K+1, C(P)n+1 ⊂ C(P)n, so for sufficiently large n, C(P)n
is constant (and non-empty, by the definition of K). Thus there exist
N ∈ N and M > 1 so that |C(P)n| = M when n > N . Now for
some n > N , let aK =

∑
C∈C(P)n

L(C), and observe that the number

of labelled posets P ∈ Pn with n > max(2K + 1, N) and |A| = K is
aK

(
n
K

)
.

We now apply our induction hypothesis to the property P̂ = {P ∈

P : either |P | 6 max(2K,N−1), or |A| 6 K−1}. P̂ is hereditary, has

ℓ = 1 and max{k : ∃ G ∈ G(P̂) with |G| = n and |A| = k for arbitrar-
ily large n} 6 K − 1, so there exist integers a0, ..., aK−1 such that for

sufficiently large n, |P̂n| =
∑K−1

i=0 ai
(
n
i

)
. The result is now immediate.

So now assume that ℓ > 2, again fix m > 6 satisfying |Pm| 6

2m − 2, and choose G ∈ G(P) with |B1| > |B2| > m. As before,
if either B1 or B2 is complete, then |Pm| > m!, so assume both are
empty. Also, if there is any edge between B1 and B2 then all edges are
present (since both are homogeneous blocks). But then |Pm| > 2m−1,
since P contains all posets of the form P = X ∪ Y , where u > v
for all u ∈ X , v ∈ Y , and all other pairs are incomparable. So we
may assume that there are no edges in G[B1 ∪ B2]. But since these
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are distinct homogeneous blocks, they must be distinguished by some
vertex v ∈ G \ (B1 ∪ B2), so B1 ⊂ Γ(v) and B2 ⊂ V (G) \ Γ(v), say.
Suppose without loss of generality that p(v) > p(b) for some b ∈ B1,
so p(v) > p(b) for every b ∈ B1, since B1 is an independent set. But
now for every partition X ∪ Y ∪ Z of [m] with |X| = 1 and |Y | > 1,
Pm contains the labelled poset P (X, Y, Z) in which p(i) > p(j) if and
only if i ∈ X and j ∈ Y . These posets are all distinct, and there are
m(2m−1−1) of them, so |Pm| > m(2m−1−1) > 2m−2, a contradiction.
We conclude by noting that this lower bound is best possible, since

the property R = {bipartite posets P = X ∪Y : u > v if u ∈ X, v ∈ Y ,
and all other pairs incomparable} has labelled speed |Rn| = 2n − 1 for
every n ∈ N. �

3. Oriented Graph Properties (OGPs)

We consider here six variants of hereditary oriented graph proper-
ties, namely unlabelled and labelled versions of oriented graphs, tour-
naments and directed graphs (in a directed graph edges may be both
ways). A seventh variant, labelled oriented graphs in which the la-
belling φ is monotone, i.e., if x → y in G then φ(x) < φ(y) (this is a
generalization of the monotone-labelled posets, the difference here be-
ing that transitivity is not required), will be considered in [3], since the
possible speeds in this case are a subset of those possible for ordered
graphs. Notice that oriented graphs and tournaments are special cases
of directed graphs, so a certain speed function is possible for OGPs and
tournament properties only if it is possible for properties of directed
graphs.

The range of the speeds of OGPs is between 0 and 4(
n

2
), and there

is a lot to explore. In this section we shall prove the existence of an
initial jump in the range of realizable speeds, for each of the properties
described above. More precisely, we shall show that if the speed of one
of the OGPs described above is unbounded, then it is at least Θ(n).
Our main task will be proving Theorem 3. The other cases will either
be trivial, or will reduce to the tournament case by arguments similar
to those used in Section 2.

We start with a simple observation, which we shall frequently use,
and which may easily proved by induction.

Observation 1. A tournament on at least 2n vertices contains a tran-
sitive subtournament on at least n vertices.
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Now, let us define four specific tournaments. Our plan in the proof of
Theorem 3 below will be to find one of these graphs in any unbounded-
speed property of tournaments.

Let G
(k)
1 be the tournament on [2k + 1] in which i → j if 1 6

i < j 6 2k, and i → (2k + 1) iff i > k + 1. Consider the k − 3
tournaments induced by taking s vertices (for each 1 6 s 6 k−3) from
[k], t = k−s−1 from [k+1, 2k] and the vertex 2k+1. The (out)degree
sequence is (k − 2, k − 3, ..., t, t, ..., s, s, ..., 2, 1).

Let G
(k)
2 be the tournament on [2k + 2] in which i → j if 1 6 i <

j 6 2k + 1, and i → (2k + 2) iff i = k + 1, and consider the k − 2
tournaments induced by taking s vertices (for each 0 6 s 6 k−3) from
[k], t = k− s− 2 from [k+2, 2k+1], and the vertices k+1 and 2k+2.
The degree sequence is (k−2, k−2, k−3, ..., t+2, t+1, t+1, t−1, ..., 1, 0).

Let G
(k)
3 be the tournament on [2k + 2] in which i → j if 1 6 i <

j 6 2k + 1, and i → (2k + 2) iff i 6= k + 1. Again, consider the k − 2
tournaments induced by taking s vertices (for each 0 6 s 6 k−3) from
[k], t = k− s− 2 from [k+2, 2k+1], and the vertices k+1 and 2k+2.
The degree sequence is (k − 1, k − 2, ..., t+ 2, t, t, ..., 2, 1, 1).

Finally, let G
(k)
4 be the tournament on [2k + 3] in which i → j if

1 6 i < j 6 2k + 2, and i → (2k + 3) iff i 6 k or i = k + 2
and consider the k − 2 tournaments induced by taking s vertices (for
each 0 6 s 6 k − 3) from [k], t = k − s − 3 from [k + 3, 2k + 2],
and the vertices k + 1, k + 2 and 2k + 2. The degree sequence is
(k − 1, k − 2, ..., t+ 3, t+ 1, t+ 1, t+ 1, t− 1, ..., 1, 0).
From the outdegree sequences above we can immediately distinguish

all pairs of induced subtournaments, except for in G
(k)
1 , where the tour-

naments given by s = i and s = k − i− 1 have the same sequence for
each 2 6 i 6 k − 3. However these can be distinguished by finding
the only transitive subgraph of order k − 1. (Note that the induced
subtournaments for s = 1 and s = k − 2 cannot be distinguished in
this way, and in fact are isomorphic. It is for this reason that we take

s 6 k − 3 in the subtournaments of G
(k)
1 .) Each graph clearly also has

−→
Tk (the transitive tournament on k vertices) as an induced subgraph.

It follows that G
(k)
1 has at least k − 2 distinct subgraphs of order k,

and G
(k)
i has at least k− 1 distinct subgraphs of order k for i = 2, 3, 4.

With a little extra work it is not hard to show that for k > 4 these are
in fact exactly the numbers of distinct subtournaments in each case.

Let P(i) =
⋃

k

{H : H is an induced subgraph of G
(k)
i } for 1 6 i 6 4.
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Next, if G is a directed graph, then given a vertex u and a transitive
tournament T ⊂ G, u 6∈ T , we define the pattern zT (u) ∈ {−1, 0, 1, 2}|T |

of u on T as follows. Let t = |T |, and for each i ∈ [t], let vi be the
vertex in T with outdegree t − i in T . Let zT (u)i = 0 if u 6→ vi and
vi 6→ u, zT (u)i = 1 if u → vi and vi 6→ u, zT (u)i = −1 if u 6→ vi
but vi → u, and zT (u)i = 2 if u → vi and vi → u. For any collection
P of directed graphs, let Z(P)n be the set of non-transitive patterns
(i.e., vectors z) in {−1, 0, 1, 2}n which occur in P, so Z(P)n = {z : ∃
u ∈ P ∈ P and a transitive tournament u 6∈ T ⊂ P with |T | = n such

that zT (u) = z, and P [T ∪ u] 6=
−−→
Tn+1}.

We first prove the following lemma, which will be needed for several
of the proofs in this section.

Lemma 6. If P is a hereditary directed graph property, and |Z(P)n| is
unbounded, then |Pn| > n− 2 for every n ∈ N. Moreover, if P consists
only of tournaments, then P(i) ⊂ P for some i ∈ [4].

Proof. Let k ∈ N. We shall show that |Pk| > k − 2, and if P consists

only of tournaments then G
(k)
i ∈ P for some 1 6 i 6 4. For some

large n, we wish to choose a collection G of pairs (G, u), with each

G ∈ Pn+1 \
−−→
Tn+1 and u ∈ V (G), such that for each (G, u) ∈ G the

directed graph T (G) induced by V (G) \ u is a transitive tournament,
and the patterns zT (G)(u) for (G, u) ∈ G are all distinct. Since |Z(P)n|
is unbounded, there is an n ∈ N for which we can find such a G with
|G| > 48k(2k + 1).
To ease the notation, we shall write z(G, u) for zT (G)(u), and Gi for

G
(k)
i for 1 6 i 6 4. As before, for each i ∈ [n] let vi be the vertex in

T = T (G) with outdegree n− i in T . Choose a subset Ĝ ⊂ G of size at

least 2k + 1 such that if (G, u), (G′, u′) ∈ Ĝ, then z(G, u)i = z(G′, u′)i
for all 1 6 i 6 4k and n − 4k + 1 6 i 6 n. In other words choose a
subset in which u has the same pattern on the ‘top’ and ‘bottom’ 4k
vertices of T (G). Call the remaining n− 8k vertices of T the ‘middle’
vertices of T .
Now, let (G, u) ∈ Ĝ, and for each ℓ ∈ {−1, 0, 1, 2}, let Aℓ = {vi ∈ T :

1 6 i 6 4k and z(G, u)i = ℓ} and Bℓ = {vi ∈ T : n − 4k + 1 6 i 6 n
and z(G, u)i = ℓ}. Note that |Aℓ| and |Bℓ| do not depend on (G, u).
By the pigeonhole principle, |Aℓ1 | > k and |Bℓ2| > k for some pair
ℓ1, ℓ2 ∈ {−1, 0, 1, 2}. For convenience later on, choose A′ ⊂ Aℓ1 and
B′ ⊂ Bℓ2 with |A′| = |B′| = k. The remainder of the proof now
consists of a fairly simple case analysis: we show that for each pair
(ℓ1, ℓ2), either Gi ∈ Pk for some i ∈ [4], or |Pk| > k and Pk contains a
non-tournament.
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Suppose first that {ℓ1, ℓ2} 6⊂ {−1, 1}, so the directed graphs in Ĝ are

not tournaments. If also ℓ1 6= ℓ2, then for any (G, u) ∈ Ĝ, the directed
graph G[u ∪ A′ ∪ B′] has at least k distinct induced subgraphs on k

vertices, so |Pk| > k. If ℓ1 = ℓ2 then recall that |Ĝ| > 2k+1 > 1, so for

some (G, u) ∈ Ĝ and some 4k + 1 6 i 6 n− 4k we have z(G, u)i 6= ℓ1.
Now G[u∪ vi ∪A

′ ∪B′] has at least k distinct induced subgraphs on k
vertices, so again |Pk| > k.
So we may assume that {ℓ1, ℓ2} ⊂ {−1, 1}, which means that u ∪

Aℓ1 ∪Bℓ2 induces a tournament for each (G, u) ∈ Ĝ. We split into four
subcases: first suppose that ℓ1 = 1 and ℓ2 = −1. This means that u is
‘above’ k of the top vertices of T and ‘below’ k of the bottom vertices.

It is easy to see that for any (G, u) ∈ Ĝ, G[u∪A′ ∪B′] is a copy of G1.
By heredity, G1 ∈ P.
The two cases ℓ1 = ℓ2 ∈ {−1, 1} are almost the same, so we shall

only give the proof for ℓ1 = ℓ2 = 1. In this case, choose (G, u) ∈ Ĝ
and 4k + 1 6 j 6 n− 4k such that z(G, u)j 6= 1 (this is again possible

because |Ĝ| > 1). Now if z(G, u)j = −1 then G[u ∪ vj ∪ A′ ∪ B′] is
a copy of G2, so G2 ∈ P, while if z(G, u)j ∈ {0, 2} then G is a non-
tournament, and G[u ∪ vj ∪ A

′ ∪ B′] has k distinct induced subgraphs
on k vertices, so |Pk| > k. Similarly, if ℓ1 = ℓ2 = −1 then G3 ∈ P, or
there exists a non-tournament in P and |Pk| > k.
The final case, ℓ1 = −1 and ℓ2 = 1, is slightly more complicated.

If there exists a (G, u) ∈ Ĝ and 4k + 1 6 j 6 n − 4k such that
z(G, u)j /∈ {−1, 1} (so G is a non-tournament), then the directed graph
G[u ∪ vj ∪ A′ ∪ B′] has at least k distinct induced subgraphs on k
vertices, and we have |Pk| > k as before. Thus we may assume that
z(G, u)j ∈ {−1, 1} for every middle vertex vj in every directed graph

G with (G, u) ∈ Ĝ. Also, if for some (G, u) ∈ Ĝ there exists an induced
cyclic triangle consisting of u and two of the middle vertices of T (G),
then G contains a copy of G4 (induced by u, A′, B′ and these two
vertices), so assume that this is not the case. It follows that for every

(G, u) ∈ Ĝ, G[u ∪M ] is a transitive tournament (where M = {vi ∈
T (G) : 4k + 1 6 i 6 n− 4k} is the set of middle vertices).
Let X(G, u) = {vi ∈ M : z(G, u)i = 1} and Y (G, u) = {vi ∈

M : z(G, u)i = −1}. Now, since |Ĝ| = 2k + 1, there must be some

(G, u) ∈ Ĝ for which |X(G, u)| > k and |Y (G, u)| > k. For this G,
choose X ′ ⊂ X(G, u) and Y ′ ⊂ Y (G, u) with |X ′| = |Y ′| = k. Since

G 6=
−−→
Tn+1, there must be some i ∈ [4k] for which either z(G, u)i 6= −1

or z(G, u)n+1−i 6= 1. Without loss of generality suppose z(G, u)i 6= −1.
If z(G, u)i ∈ {0, 2} then G is a non-tournament and G[u∪ vi ∪X

′∪Y ′]
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has k distinct subtournaments on k vertices, so |Pk| > k; if z(G, u)i = 1
then G[u ∪ vi ∪X

′ ∪ Y ′] = G2, so G2 ∈ P.
We have shown that either |Pk| > k (and P contains a non-tournament)

or G
(k)
i ∈ P for some i ∈ [4]. Since |P

(i)
k | > k − 2 for each i, it follows

that |Pk| > k − 2 in the latter case as well, and we are done. �

Next, we classify the bounded-speed properties of tournaments. We
first define some canonical properties. If T is a tournament and A,B ⊂
T , then write A → B if a → b for every a ∈ A and b ∈ B. Given
a, b, c ∈ N∪∞, we say that a tournament T can be (a, b, c)-partitioned
if there exist A, B and C, pairwise disjoint, with |A| 6 a, |B| 6 b and
|C| 6 c, satisfying B is transitive, A → B and B → C. Let T (a, b, c)
be the collection of tournaments T which can be (a, b, c)-partitioned.

Lemma 7. Let P be a hereditary property of tournaments. If |Pn| 6 K
for some K ∈ N and every n ∈ N, then P ⊂ T (f(K),∞, f(K)), where
f(K) = 26K+15 + 3K + 7.

Proof. We wish to show that for each n and each tournament G ∈ Pn,
G can be (f(K),∞, f(K))-partitioned. Observe first that the result
is trivial if n 6 2f(K). Now, given a tournament G ∈ Pn with n >

2f(K) > 26K+16, let T = T (G) be a largest transitive subtournament
in G, and choose a vertex u = u(G) ∈ G \ T (G) (if T (G) = G then
G is transitive and the result is trivial). Let t = |T | > 6K + 16
(by Observation 1), and as before, write vi for the vertex in T with
outdegree t− i in T . Also let M = {vi ∈ T : 2K +6 6 i 6 t− 2K − 5}
be the ‘middle’ vertices of T and, with foresight, define B = {vi ∈ T :
3K + 8 6 i 6 t− 3K − 7} be the ‘very middle’ vertices of T .
Consider the pattern z = zT (G)(u(G)) ∈ {−1, 1}|T | of u on T . For

ℓ ∈ {−1, 1}, let Aℓ = {vi : i ∈ [2K + 5], zi = ℓ} and Bℓ = {vi :
t + 1 − i ∈ [2K + 5], zi = ℓ}, as in the proof of Lemma 6. Clearly, for
some ℓ1, ℓ2 ∈ {−1, 1}, |Aℓ1| > K + 3 and |Bℓ2| > K + 3. Again, choose
A′ ⊂ Aℓ1 and B′ ⊂ Bℓ2 with |A′| = |B′| = K + 3. We shall show first
that in each case (i.e., for each pair (ℓ1, ℓ2)) either |PK+3| > K + 1 (a
contradiction), or z is constant on B, the ‘very middle’ vertices of T
(i.e., zi is constant for 3K + 8 6 i 6 t− 3K − 7).
The first three cases are easy to deal with. If ℓ1 = 1 and ℓ2 = −1,

then G[u∪A′∪B′] = G
(K+3)
1 , so G

(K+3)
1 ∈ P, so |PK+3| > K+1. Next,

if ℓ1 = ℓ2 = 1 then either zi = 1 for every 2K + 6 6 i 6 t − 2K − 5
(i.e. z is constant on the middle vertices of T , and hence on the very
middle vertices), or zj = −1 for some 2K + 6 6 j 6 t − 2K − 5.

In the latter case, G[u ∪ vj ∪ A′ ∪ B′] = G
(K+3)
2 , so G

(K+3)
2 ∈ P, so

|PK+3| > K + 1. Similarly if ℓ1 = ℓ2 = −1 then either zi = −1 for
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every 2K +6 6 i 6 t− 2K− 5, so z is constant on the middle vertices,

or G
(K+3)
3 ∈ P, in which case |PK+3| > K + 1.

The fourth case, ℓ1 = −1 and ℓ2 = 1, is once again a little trickier.
Suppose first that there exists an induced cyclic triangle consisting
of u and two of the middle vertices, vi and vj say, of T (G). Then

G[u ∪ vi ∪ vj ∪ A
′ ∪ B′] = G

(K+3)
4 , so G

(K+3)
4 ∈ P, so |PK+3| > K + 1.

So we may assume that G[u ∪M ] is transitive.
Now, since T was chosen to be maximal, G[u ∪ T ] must be non-

transitive, so there must be some i ∈ [2K + 5] for which either zi = 1
or zt+1−i = −1. Without loss of generality suppose zi = 1, so u→ vi.
Let X = {vj ∈ M, zj = 1} and Y = {vj ∈ M, zj = −1}. If

|X| > K + 3 and |Y | > K + 3 then G[u ∪ vi ∪ X ∪ Y ] contains an

induced copy of G
(K+3)
2 , in which case |PK+3| > K + 1, so assume not.

Since G[u ∪M ] is transitive, this implies that z is constant on B.
We have shown that if |PK+3| 6 K, then the vertices of G \ T can

be partitioned into sets A′ = {v ∈ G \ T : v → b for every b ∈ B} and
C ′ = {v ∈ G \ T : b → v for every b ∈ B}. Now observe that in any
G ∈ P we have |A′|, |C ′| 6 26K+15, since otherwise there must exist
at least 6K + 15 vertices in the larger of them which form a transitive
subtournament (by Observation 1), and adding these vertices to B we
obtain a larger transitive tournament than T , a contradiction.
Finally let A = A′ ∪ {vi ∈ T : i 6 3K + 7} = {u ∈ G : u → B}, and

let C = C ′ ∪ {vi ∈ T : i > t − 3K − 6} = {v ∈ G : B → v}. This is
clearly an (f(K),∞, f(K))-partition of G. �

The following lemma limits the possible oscillation of |Pn|. We say
that a property of tournaments P is a core property if for every P ∈ P,
there exists P ′ ∈ P, P ′ 6= P , such that P is an induced subtournament
of P ′.

Lemma 8. Let P be a core hereditary property of tournaments. If
n > 2m+ 1 then |Pn| > |Pm|.

Proof. For each G ∈ Pm, choose a G′ ∈ PN , containing G as a sub-
tournament, with N > 2n + m. Let the vertices corresponding to
some copy of G in G′ be v1, ..., vm (we shall abuse notation and write
G = {v1, ..., vm}), and for each u ∈ G′\G let z(u) = {i ∈ [m] : u→ vi}.
z(u) takes only 2m different values, so is constant on a set U of size at

least 2n−m, and so by Observation 1, U must contain a copy T of
−−−→
Tn−m.

For each G ∈ Pm, let Tn(G) be a tournament G′[G∪ T ] ∈ Pn obtained
in this way. We claim that the tournaments Tn(G) for G ∈ Pm are all
distinct, from which |Pn| > |Pm| follows immediately.
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For each G ∈ Pm, let B = Bn(G) = G′[T ], A = An(G) = {v ∈ G :
v → T} and C = Cn(G) = {v ∈ G : T → v}, so Tn(G) = A ∪ B ∪ C,
since z(u) is constant on U and T ⊂ U . Notice that this is an (m,n−
m,m)-partitioning of Tn(G), and suppose that Tn(G1) = Tn(G2) for
some pair, G1, G2 ∈ Pm with G1 6= G2. Let f : Tn(G1) → Tn(G2) be an
edge-orientation preserving bijection, and for i = 1, 2, let Ai = An(Gi),
Bi = Bn(Gi) and Ci = Cn(Gi).
We claim that f(B1) ⊂ A2 ∪ C2. Suppose, on the contrary, that

f(b) ∈ B2 for some b ∈ B1. Then f(A1) ⊂ A2 ∪ B2 and f(C1) ⊂
B2 ∪ C2, since f preserves edge-orientations. If f(B1) = B2, then f
restricted to A1 ∪ C1 is an edge-preserving bijection from G1 to G2, a
contradiction, so we may assume that f(b′) ∈ A2 ∪C2 for some b′ ∈ B1

and f−1(b′′) ∈ A1 ∪ C1 for some b′′ ∈ B2. Without loss of generality,
let f(b′) ∈ A2 (otherwise reverse all the edges in all tournaments in
P). It follows that f−1(b′′) ∈ C1, so f(B1) ⊂ A2 ∪ B2, again since f
preserves edge-orientations. Also f(A1) ⊂ A2 and f−1(C2) ⊂ C1, so
|f(C1) ∩ B2| = |f−1(A2) ∩B1|.
Let s1, ..., sk be the vertices of f−1(A2) ∩B1, and let t1, ..., tk be the

vertices of f(C1) ∩ B2, ordered so that si → sj and ti → tj if i < j.
Define a function g : A1∪C1 → A2∪C2 by g(v) = f(v) if f(v) ∈ A2∪C2,
and g(v) = f(si) if f(v) = ti. By the observations above, and with a
little work, it can be checked that g is an edge-orientation preserving
bijection from G1 to G2, contradicting the assumption that G1 6= G2.
Hence f(B1) ⊂ A2 ∪ C2 as claimed.
But f is a bijection, and |B1| = n−m > m+ 1 > |G2| = |A2 ∪ C2|,

so f(B1) cannot be a subset of A2 ∪ C2. It follows that our initial
assumption was false, and the tournaments Tn(G) with G ∈ Pm are all
distinct. Since Tn(G) ∈ Pn for every G ∈ Pm, we have |Pn| > |Pm|. �

We are now ready to prove the main result of the section.

Lemma 9. If P is a hereditary property of tournaments, and |Pn| is
unbounded, then P(i) ⊂ P for some 1 6 i 6 4.

Proof. Let k ∈ N and P be a hereditary property of tournaments with

|Pn| unbounded, and G
(k)
i /∈ P for each i ∈ [4]. We shall write Gi for

G
(k)
i .
Suppose first that there exists a constant K such that from each

tournament G ∈ P we may remove at most K vertices and leave a
transitive tournament. For each G ∈ P, choose a maximal transitive
tournament T = T (G) on at least |G| − K vertices, let t = |T |, and
again let vi be the vertex of T with outdegree t− i in T .
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Recall that Z(P)n = {z ∈ {−1, 1}n : ∃ u ∈ G ∈ P and a transitive
tournament u 6∈ T ⊂ G with |T | = n, such that zT (u) = z, and

G[T∪u] 6=
−−→
Tn+1}. If |Z(P)n| 6 L for some L ∈ N and every n ∈ N, then

|Pn| 6 (K+1)2K
2

LK , a contradiction. (This inequality follows because

there are fewer than (K+1)2K
2

ways to choose the tournament induced
by G\T , and at most LK ways to orient the edges between T and G\T

if G 6=
−→
Tn.) But if |Z(P)n| is unbounded then, by Lemma 6, P(i) ⊂ P

for some i ∈ [4], which also contradicts our initial assumptions.
So we may assume that for each integer K, there exists G ∈ P con-

taining no transitive subtournament on |G| − K vertices. Let K =
4k

(
2k
k

)
2k+1, and choose such a G and a maximal transitive subtourna-

ment T = T (G) of G.
Call two vertices of T ‘adjacent’ if they have the same orientation

with respect to the other vertices in T , and note that by maximality
of T , each vertex of G \ T must form a cyclic triangle with some two
adjacent vertices of T . For each vertex u ∈ G \ T , choose such a cyclic
triangle, (u, vj, vj+1) say, and observe that vj and vj+1 must lie in the
top or in the bottom 2k+1 vertices of T (i.e., j ∈ [2k]∪ [t−2k, t−1]),
else for some 1 6 i 6 4 there would be a copy of Gi in P. (This
follows by the now-familiar method: choose X ⊂ {v1, ..., v2k−1} and
Y ⊂ {vt−2k+2, ..., vt} with |X| = |Y | = k and zT (u)i = ℓ1 for every
vi ∈ X , zT (u)j = ℓ2 for every vj ∈ Y , and consider the four cases
(ℓ1, ℓ2) with ℓ1, ℓ2 ∈ {−1, 1}.)
Now, by our choice of K, there must exist at least

(
2k
k

)
2k+1 vertices

u ∈ G \ T for which we chose the same pair of vertices {vj, vj+1} ⊂ T .
Let U = {u ∈ G \ T : u → vj and vj+1 → u}. Suppose, without loss
of generality, that this pair lies in the top 2k + 1 vertices (so j ∈ [2k]),
and for each u ∈ U choose k vertices w1, ..., wk from the bottom 2k of
T which have the same orientation with respect to u. For at least 2k+1

of the vertices in U we chose the same k vertices (call these k vertices
B), and for at least 2k of these, the orientation of uwi is the same. By
Observation 1, these 2k vertices must contain a transitive tournament
on at least k vertices.
Let A be this set of k vertices from U , let B be the k-set defined

above, and let C = {vj, vj+1}. Rename vj and vj+1 c1 and c2 respec-
tively, and recall that for two sets of vertices, X and Y , we writeX → Y
if x→ y for every x ∈ X and y ∈ Y . Thus we have a tournament in P
on 2k+2 vertices consisting of three disjoint transitive subtournaments
A, B and C, with |A| = |B| = k and |C| = 2, and with either A → B
or B → A; B → C or C → B; and with A→ c1, c1 → c2 and c2 → A.
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Now if A → B and B → C, remove c1, and if B → A and C → B
remove c2; in each case we get a copy of G1. If A → B and C → B
the tournament is G2; if B → A and B → C the tournament is G3. In
each case we have shown that Gi ∈ P for some 1 6 i 6 4, and we have
the desired contradiction. �

The proof of Theorem 3 now follows almost immediately from Lem-
mas 7, 8 and 9.

Proof of Theorem 3. If |Pn| 6 n− 3 for some n ∈ N, then P(i) 6⊂ P for
any i ∈ [4], so by Lemma 9, |Pn| is bounded. Now, by Lemma 7 we
can (f(K),∞, f(K))-partition every tournament T ∈ P, where K =
max{|Pn| : n ∈ N}. If n > 26K+18 > 4f(K)+1, then in such a partition
the middle (transitive) block B has order |B| > (n + 1)/2. Remove a
vertex from the middle block of each T ∈ Pn, to get a tournament T ′ ∈
Pn−1. Suppose T ′

1 = T ′
2 for two tournaments formed in this way from

T1, T2 ∈ Pn, and that f ′ : T ′
1 → T ′

2 is an edge-orientation preserving
bijection. Since, |B′

1| = |B′
2| = |B| − 1 > (n − 1)/2, f ′(b) ∈ B′

2 for
some b ∈ B′

1. Now, by the proof of Lemma 8, it can be seen that f ′

extends in the obvious way to an edge-orientation preserving bijection
f : T1 → T2, so T1 = T2
It follows that |Pn| is decreasing if n > 26K+18 and so |Pn| is constant

for sufficiently large n. Moreover by Lemma 8, in a core property this
constant is the maximal value taken by the speed, i.e., |Pn| = K for
sufficiently large n.
Finally, if |Pn| is unbounded, then by Lemma 9, P(i) ⊂ P for some

i. Since P
(i)
n = n − 1 for large n if i > 1, it follows that P(1) is the

unique property P with |Pn| = n− 2 for every n ∈ N with n > 4. �

We finish by shortly sketching proofs for the other types of OGP.

Labelled tournament properties: By Observation 1, any tournament
on N > 2n vertices contains a transitive tournament on n vertices.
Since such a transitive tournament may be labelled in n! ways, this
gives that the speed is either 0 or at least n!.

Unlabelled directed graph properties: The following theorem gen-
eralizes Theorem 1(a) to an arbitrary hereditary property of directed
graphs, but does not attempt to lay the groundwork necessary to prove
a statement corresponding to part (b). The proof uses several of the
results above.
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Theorem 10. If P is a hereditary property of directed graphs and |Pn|
is unbounded then |Pn| > ⌈n+1

2
⌉ for every n ∈ N.

Proof. We shall consider three different graph properties induced by P,
and use the fact that if the speed of any of them is unbounded, then it
is at least ⌈n+1

2
⌉.

Given a directed graph D, let the single-edge graph KD of D be
the graph on V (D) with edges corresponding to single edges of D.
In other words, uv ∈ E(KD) if u → v but v 6→ u, or v → u and
u 6→ v, and uv /∈ E(KD) otherwise. Let the double-edge graph LD of
D be the graph with edges corresponding to double edges of D, and
MD be the graph with edges corresponding to non-edges of D. Let
K = {KD : D ∈ P}, L = {LD : D ∈ P} and M = {MD : D ∈ P}. K,
L and M are clearly hereditary, and |Pn| > |Kn|, |Ln|, |Mn| for every
n ∈ N.
We use the following theorem about graph properties, which is from

[5], but can also be read out of the proof of Theorem 1: the unlabelled
speed of a hereditary property of graphs G satisfies either |Gn| > ⌈n+1

2
⌉

for every n ∈ N, or |Gn| is bounded, in which case there exists a constant
k ∈ N such that every graph G ∈ Gn contains a homogeneous set H(G)
of size at least n−k. Applying this to K, L and M, we see that we may
assume that for some k ∈ N (the largest of the three values given by
the theorem), each graph G ∈ Kn ∪ Ln ∪Mn contains a homogeneous
set H(G) of size at least n− k.
Now, let D be any directed graph in Pn, and define H(D) to be the

intersection H(KD) ∩H(LD) ∩H(MD). This has size at least n− 3k,
and is a homogeneous set in single edges, double edges and non-edges.
This implies that H(D) either induces a complete double-edge graph,
a tournament, or an independent set in D.
Consider first P(1) ⊂ P consisting of those directed graphsD in P for

which H(D) is an independent set or a double-edge clique. Since H(D)
is a homogeneous set in KD, LD and MD, each vertex u ∈ D \H(D)
sends either all double edges, all single edges, or all non-edges to H(D).
We shall show that the number of such graphs of order n is either
bounded or at least n+ 1.
For D ∈ P and u ∈ D \H(D), define X(u) = {v ∈ H(D) : u → v

and v 6→ u} and Y (u) = {v ∈ H(D) : v → u and u 6→ v}. Suppose
that for every n ∈ N, there exists some vertex u and some graph D
with u ∈ D \ H(D), such that both |X(u)| > n and |Y (u)| > n (so
u sends all single edges into H(D)). Then for each n, the directed
graph D[u ∪X(u) ∪ Y (u)] has n + 1 distinct subgraphs on n vertices,

so |P
(1)
n | > n + 1 for every n ∈ N.
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Thus we may assume that there is an N ∈ N such that for each
such D, and each u ∈ D \H(D), either |X(u)| < N or |Y | < N . But

now |P
(1)
n | is bounded, since there are only at most (3k+ 1)4(3k)

2

ways
to choose D[V (D) \ H(D)], at most (2N + 2)3k ways to choose the
cross-edges, and two ways to choose the edges inside H(D).
So suppose there are an unbounded number of directed graphs D ∈

Pn for which H(D) induces a tournament in D, and (for each n ∈ N)

let P
(2)
n = Pn \ P

(1)
n be the collection of such graphs. Since every

tournament induced by some H(D) is in P, by Theorem 3 we have

that either |P
(2)
n | > n− 2 for every n ∈ N, or there are only a bounded

number of different tournaments obtained in this way.
In the former case we are done, so let us assume the latter holds. Now

apply Lemma 7. This tells us that for some ℓ ∈ N, every tournament
induced by some H(D) may be (ℓ,∞, ℓ)-partitioned. The central part
of this partition is a transitive tournament on at least |D| − 3k − 2ℓ
vertices, so an unbounded number of directed graphs D ∈ Pn contain
such a transitive tournament. For each D ∈ P, let T (D) be the largest
transitive tournament contained in D.
Now, since {|D \ T (D)| : D ∈ P(2)} is bounded, and all patterns

on T (D) are non-transitive, there must be an unbounded number of
patterns (on transitive tournaments of order n) which occur in P(2),
and hence in P. The result now follows by Lemma 6. �

Observe that this lower bound is sharp, since it is achieved by the
unlabelled speed of a hereditary graph property. Two extremal exam-
ples are the property consisting of all directed graphs which are union
of two double-edge cliques, and the property consisting of all directed
graphs which are the union of two transitive tournaments.

Labelled directed graph properties: If P is a hereditary property of
directed graphs, and |Pn| > 3 for infinitely many n, then |Pn| > n+ 1
for every n > 3.

Proof. Form the comparability graph properties K, L and M as in the
unlabelled case, and observe that |Pn| > |Kn|, |Ln|, |Mn| for every n.
We use the following simple theorem about graph properties from [6]:
for any graph property G, either |Gn| > n + 1 for every n > 3, or
Gn ⊂ {En, Kn} for every n ∈ N.
Applying this result to each of K, L and M, we see that if |Pn| 6 n

for some n > 3, then Pn ⊂ {En, DKn} ∪ {tournaments on n vertices},
where DKn denotes the complete double-edged graph on n vertices.
Since (by Observation 1) any tournament on N > 2n vertices contains
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a transitive tournament on n vertices, which may be labelled in n!
different ways, it follows that for sufficiently large n, Pn ⊂ {En, DKn},
so |Pn| 6 2. �

Observe again that the lower bound is sharp, since the property con-
sisting of all double-edged stars (the empty graph is included), has
speed exactly n + 1 for n > 3, as does the property consisting of all
single-edged stars, with the edges all directed away (say) from the cen-
tre.

Unlabelled and labelled oriented graph properties: Since an oriented
graph is a special type of directed graph, the possible speeds are a
subset of those possible for directed graphs, so we have the same results
as for directed graphs. By the examples given above, the lower bounds
are once again best possible.
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