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Abstract

A path graph is the intersection graph of subpaths of a tree. In 1970, Renz asked
for a characterization of path graphs by forbidden induced subgraphs. We answer
this question by determining the complete list of graphs that are not path graphs
and are minimal with this property.

1 Introduction

All graphs considered here are finite and have no parallel edges and no loop. A hole is a
chordless cycle of length at least four. A graph is chordal (or triangulated) if it contains
no hole as an induced subgraph. Gavril [6] proved that a graph is chordal if and only if
it is the intersection graph of a family of subtrees of a tree. In this paper, whenever we
talk about the intersection of subgraphs of a graph we mean that the vertex sets of the
subgraphs intersect.

An interval graph is the intersection graph of a family of intervals on the real line;
equivalently, it is the intersection graph of a family of subpaths of a path. An asteroidal

triple in a graph G is a set of three non adjacent vertices such that for any two of them,
there exists a path between them in G that does not intersect the neighborhood of the
third. Lekkerkerker and Boland [11] proved that a graph is an interval graph if and only
if it is chordal and contains no asteroidal triple. They derived from this result the list
of minimal forbidden subgraphs for interval graphs.

An intermediate class is the class of path graphs. A graph is a path graph if it is the
intersection graph of a family of subpaths of a tree. Clearly, the class of path graphs is
included in the class of chordal graphs and contains the class of interval graphs. Several
characterizations of path graphs have been given [7, 13, 15] but no characterization by
forbidden subgraphs was known, whereas such results exist for intersection graphs of
subpaths of a path (interval graphs [11]), subtrees of a tree (chordal graphs [6]), and
also for directed subpaths of a directed tree [14].
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In 1970, Renz [15] asked for a complete list of graphs that are chordal and not path
graphs and are minimal with this property, and he gave two examples of such graphs.
Reference [19] extends the list of minimal forbidden subgraphs for path graphs; but that
list is incomplete. Here we answer Renz’s question and obtain a characterization of path
graphs by forbidden induced subgraphs. We will prove that the graphs presented in
Figures 1–5 are all the minimal non-path graphs. In other words:

Theorem 1 A graph is a path graph if and only if it does not contain any of F0, . . . , F16

as an induced subgraph.

2 Special simplicial vertices in chordal graphs

In a graph G, a clique is set of pairwise adjacent vertices. Let Q(G) be the set of
all (inclusionwise) maximal cliques of G. When there is no ambiguity we will write Q
instead of Q(G).

Given two vertices u, v in a graph G, a {u, v}-separator is a set S of vertices of G
such that u and v lie in two different components of G \ S and S is minimal with this
property. A set is a separator if it is a {u, v}-separator for some u, v in G. Let S(G) be
the set of separators of G. When there is no ambiguity we will write S instead of S(G).

The neighborhood of a vertex v is the set N(v) of vertices adjacent to v. Let us say
that a vertex u is complete to a set X of vertices if X ⊆ N(u). A vertex is simplicial

if its neighborhood is a clique. It is easy to see that a vertex is simplicial if and only if
it does not belong to any separator. Given a simplicial vertex v, let Qv = N(v) ∪ {v}
and Sv = Qv ∩ N(V \ Qv). Since v is simplicial, we have Qv ∈ Q. Remark that Sv

is not necessarily in S; for example, in the graph H with vertices a, b, c, d, e and edges
ab, bc, cd, de, bd, we have Sc = {b, d} and S(H) = {{b}, {d}}.

A classical result [10, 1] (see also [8]) states that, in a chordal graph G, every separator
is a clique; moreover, if S is a separator, then there are at least two components of G\S
that contain a vertex that is complete to S, and so S is the intersection of two maximal
cliques.

A clique tree T of a graph G is a tree whose vertices are the members of Q and such
that, for each vertex v of G, those members of Q that contain v induce a subtree of T ,
which we will denote by T v. A classical result [6] states that a graph is chordal if and
only if it has a clique tree.

For a clique tree T , the label of an edge QQ′ of T is defined as SQQ′ = Q ∩ Q′.
Note that every edge QQ′ satisfies SQQ′ ∈ S; indeed, there exist vertices v ∈ Q \Q′ and
v′ ∈ Q′ \Q, and the set SQQ′ is a {v, v′}-separator. The number of times an element S
of S appears as a label of an edge is equal to c−1, where c is the number of components
of G \ S that contain a vertex complete to S [6, 12]. Note that this number is at least
one and that it depends only on S and not on T , so for a given S ∈ S it is the same in
every clique tree.

Given X ⊆ Q, let G(X) denote the subgraph of G induced by all the vertices that
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appear in members of X. If T is a clique tree of G, then T [X] denotes the subtree of T
of minimum size whose vertices contains X. Note that if |X| = 2, then T [X] is a path.

Given a subtree T ′ of a clique-tree T of G, let Q(T ′) be the set of vertices of T ′ and
S(T ′) be the set of separators of G(Q(T ′)).

Dirac [5] proved that a chordal graph that is not a clique contains two non adjacent
simplicial vertices. We need to generalize this theorem to the following. Let us say that
a simplicial vertex v is special if Sv is a member of S and is (inclusionwise) maximal in
S.

Theorem 2 In a chordal graph that is not a clique, there exist two non adjacent special

simplicial vertices.

Proof. We prove the theorem by induction on |Q|. By the hypothesis, G is not a clique,
so |Q| ≥ 2 and S 6= ∅.

Case 1: S has only one maximal element S. Let Q,Q′ be two maximal cliques such
that Q∩Q′ = S. Let v ∈ Q\Q′ and v′ ∈ Q′\Q. The set S is the only maximal separator
and it does not contain v or v′. So v and v′ do not belong to any element of S, and so
they are simplicial and Sv = Sv′ = S, so they are special.

Case 2: S has two distinct maximal elements S, S′. So |Q| ≥ 3. Let T be a clique
tree of G. Let Q1, Q2, Q

′
1, Q

′
2 be members of Q such that S = SQ1Q2

, S′ = SQ′
1
Q′

2
, and

Q2, Q1, Q
′
1, Q

′
2 appear in this order along the path T [Q2, Q1, Q

′
1, Q

′
2] (possibly Q1 = Q′

1).
Let Y be the subtree of T \Q1 that contains Q2, and let Z be the tree that consists of Y
plus the vertex Q1 and the edge Q1Q2. The subtree Z does not contain Q′

2, so G(Q(Z))
has strictly fewer maximal cliques than G; and G is not a clique. By the induction
hypothesis, there exist two non adjacent simplicial vertices v,w of G(Q(Z)) such that
Sv, Sw are maximal elements of S(Z). At most one of v,w is in Q1 since they are not
adjacent, say v is not in Q1. We claim that v is a simplicial vertex of G and that Sv is a
maximal element of S. Vertex v does not belong to any element of S(Z). If it belongs to
an element of S \S(Z), then it must also belong to Q1∩Q2 = S ∈ S(Z), a contradiction.
So v does not belong to any element of S and so it is a simplicial vertex of G. The set
Sv is a maximal element of S(Z). If it is not a maximal element of S, then it is included
in S ∈ S(Z), a contradiction. So v is a special simplicial vertex of G. Likewise, let Y ′

be the subtree of T \Q′
1 that contains Q′

2, and let Z ′ be the tree that consists of Y ′ plus
the vertex Q′

1 and the edge Q′
1Q

′
2. Just like with v, we can find a simplicial vertex v′ of

G(Q(Z ′)) not in Q′
1 that is a simplicial vertex of G with Sv′ being a maximal element

of S. Vertices v and v′ are not adjacent since S is a {v, v′}-separator. So v and v′ are
the desired vertices. ✷

Algorithms LexBFS [16] and MCS [18] are linear time algorithms that were developed
to find a simplicial vertex in a chordal graph. But a simplicial vertex found by these
algorithms is not necessarily special. For example, on the graph with vertices a, b, c, d, e, f
and edges ab, bc, cd, eb, ec, fb, fc, every application of LexBFS or MCS will end on one
of simplicial vertices a, d, which are not special. The proof of Theorem 2 can be turned
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into a polynomial time algorithm to find a special simplicial vertex in a chordal graph.
We do not know how to find such a vertex in linear time.

3 Forbidden induced subgraphs

A clique path tree T of G is a clique tree of G such that, for each vertex v of G, the
subtree T v induced by cliques that contain v is a path. Gavril [7] proved a graph is a
path graph if and only if it has a clique path tree.

Consider graphs F0, . . . , F16 presented in Figures 1–5. Let us make a few remarks
about them. Each graph in Figure 2 is obtained by adding a universal vertex to some
minimal forbidden subgraph for interval graphs. Clearly, in a path graph the neighbor-
hood of every vertex is an interval graph; so F1, . . . , F5 are not path graphs. Graphs
F10(n)n≥8 are also forbidden in interval graphs. Graphs F6 and F10(8) are from Renz [15,
Figures 1 and 5]. For i ∈ {0, 1, 3, 4, 5, 6, 7, 9, 10, 13, 15, 16}, Panda [14] proved that Fi is
a minimal non directed path graph, so Fi \ x is a directed path graph for every vertex x
(obviously every directed path graph is a path graph). In general we have the following:

Theorem 3 F0, . . . , F16 are minimal non path graphs.

Proof. Clearly, F0 is a minimal non path graph. For the other graphs, we prove the
theorem in one case and then show how the same arguments can be applied to all cases.

Consider F = F11(4k), k ≥ 2; see Figure 4. Name its vertices such that u1, . . . , u2k−1

are the simplicial vertices of degree 2, clockwise; vj−1, vj are the two neighbors of uj
(j = 1, . . . , 2k − 1), with subscripts modulo 2k − 1; and a, b are the remaining vertices.
Let Qj be the maximal clique that contains uj (j = 1, . . . , 2k − 1), and call these 2k− 1
cliques “peripheral”. Let Ra = {a, v1, . . . , v2k−1} and Rb = {b, v1, . . . , v2k−1} be the
maximal cliques that contain respectively a and b, and call these two cliques “central”.
Thus Q(F ) = {Ra, Rb, Q1, . . . , Q2k−1}. Since F is chordal, it admits a clique tree. Let T
be any clique tree of F . Then Ra and Rb are adjacent in T (for otherwise, there would
be at least one interior vertex Q on the path T [Ra, Rb], so we should have Ra ∩Rb ⊆ Q,
but no member Q of Q(F ) \ {Ra, Rb} satisfies this inclusion). By the same argument,
each Qj (j = 1, . . . , 2k − 1) must be adjacent to Ra or Rb in T . Suppose that we are
trying to build a clique path tree T for F . By symmetry, we may assume that Q1 is
adjacent to Ra. Then, for j = 2, . . . , 2k − 2 successively, Qj must be adjacent to Rb (if
j is even) and to Ra (if j is odd) in T , for otherwise, for some v ∈ {vj−1, vj} the subtree
T v induced by the cliques that contain v would not be a path. Note that in this fashion
we obtain a clique path tree T ′ of F \ u2k−1. Now if Q2k−1 is adjacent to Ra, then the
subtree T v2k−1 is not a path, and if if Q2k−1 is adjacent to Rb, then the same holds for
T v2k−2 . This shows that F is not a path graph.

Now consider any vertex x of F . If x is one of the uj’s, then by symmetry we may
assume that x = u2k−1, and we have seen above that F \ x is a path graph with clique
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path tree T ′. Suppose that x is one of the vj ’s, say x = v2k−1. Then by adding vertex
Q2k−1 and edge Q2k−1Ra to T ′, it is easy to see that we obtain a clique path tree of
F \ x. Finally, suppose that x is one of a, b, say x = b. Then the tree with vertices
Ra, Q1, . . . , Q2k−1 and edges RaQ1, . . . , RaQ2k−1 is a clique path tree of F \ x. So F is
a minimal non path graph.

When F is any other Fi (i = 1, . . . , 16), the same arguments apply as follows. For
i = 1, . . . , 10, call peripheral the three cliques that contain a simplicial vertex. For
i = 11, . . . , 16, call peripheral the cliques that contain a simplicial vertex of degree 2,
plus, in the case of F12, the clique that contain the bottom simplicial vertex (which has
degree 3). Call central all other maximal cliques. Then it is easy to prove, as above, that
the central cliques must form a subpath in any clique tree of F , and all the peripheral
cliques except one can be appended to either end of that subpath, but whichever way
this is done, when the last clique is appended, the subtree T v is not a path for some
vertex v of F . Moreover, when any vertex x is removed, it is possible to build a clique
path tree for F \ x. ✷

4 Co-special simplicial vertices

Let us say that a simplicial vertex v is co-special if Sv is a separator such that G \ Sv

has exactly two components. Note that in that case Sv is a minimal element of S and it
appears exactly once as a label of any path tree of G.

Lemma 1 Let G be a minimal non path graph. Then either G is one of F11, . . . F15 or

every simplicial vertex of G is co-special.

Proof. Suppose on the contrary that G is a minimal non path graph, different from
F11, . . . F15, and there is a simplicial vertex q of G that is not co-special. All simplicial
vertices of F0, . . . F10, F16 are co-special, so G is not any of these graphs; moreover it
does not contain any of them strictly (for otherwise G would not be minimal). Therefore
G contains none of F0, . . . , F16.

Let T0 be a clique path tree of G \ q. Let Q′ ∈ Q(G \ q) be such that Sq ⊆ Q′. If
Q′ = Sq, then we can add q to Q′ to obtain a clique path tree of G, a contradiction. So
Q′ 6= Sq, and Sq ∈ S (as there is a vertex q′ ∈ Q′ \ Sq and Sq is a {q, q′}-separator).

Let T ′ be the maximal subtree of T0 that contains Q′ and such that no label of the
edges of T0 is included in Sq. Remark that T ′ plus vertex Q and edge QQ′ is a clique
tree of G(Q(T ′) ∪ {Q}) (but not necessarily a clique path tree), and in that tree only
one label is included in Sq. Since q is not co-special, there is an edge of T0 whose label
is included in Sq, and so T ′ has strictly fewer vertices than T0. So G(Q(T ′) ∪ {Q}) is a
path graph. Let T be a clique path tree of this graph.

We claim that Q is a leaf of T . If not, then there are at least two labels of T that
are included in Sq, which contradicts the definition of T ′ (the number of times a label
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appears in a clique tree is constant).

Let T1, . . . , Tℓ be the subtrees of T0 \ T ′ (ℓ ≥ 1). For 1 ≤ i ≤ ℓ, let QiQ
′
i be the

edge between Ti and T ′ with Qi ∈ Ti and Q′
i ∈ T ′. Note that Q1, . . . , Qℓ are pairwise

disjoint (but Q′, Q′
1, . . . , Q

′
ℓ are not necessarily pairwise disjoint). Let Si = Qi ∩ Q′

i

and vi ∈ Qi \ Q′
i. Let H = (VH, EH) be the intersection graph of S1, . . . , Sℓ, that is,

VH = {S1, . . . , Sℓ} and EH = {SiSj | Si ∩ Sj 6= ∅}.

Claim 1 H contains no odd cycle.

Proof. Suppose on the contrary, without loss of generality, that S1-· · · -Sp-S1 is an
odd cycle in H, with length p = 2r + 1 (r ≥ 1). Let Ij = Sj ∩ Sj+1 (j = 1, . . . , p),
with Sp+1 = S1. Suppose that for some j 6= k we have Ij ∩ Ik 6= ∅; then there is a
common vertex in the cliques Qj, Qj+1, Qk, Qk+1, and the number of different cliques
among these is at least three, which contradicts the fact that T0 is a clique path tree as
these three cliques do not lie on a common path of T0. For 1 ≤ j ≤ p, let sj ∈ Ij. By
the preceding remark, the sj’s are pairwise distinct. By the definition of T ′, we have
Sj ⊆ Sq for each 1 ≤ j ≤ p, so the sj’s are all in Q and Q′. Let q′ ∈ Q′ \ Q. Let us
consider the subgraph induced by q, q′, v1, . . . , vp, s1, . . . , sp. Each of the non-adjacent
vertices q and q′ is adjacent to all of the clique formed by the sj’s. Each vertex vj is
adjacent to sj−1 and sj (with s0 = sp) and not to any other si or to q. Vertex q′ can
have at most two neighbors among the vj’s. If q

′ has zero or one neighbor among them,
then q, q′, v1, . . . , vp, s1, . . . , sp induce respectively F11(4r+4)r≥1 or F12(4r+4)r≥1. If q

′

has two consecutive neighbors vj , vj+1, then q, q′, vj , vj+1, sj−1, sj, sj+1 induce F2. If q′

has two non-consecutive neighbors vj , vk, then we can assume that 1 ≤ j < j+1 < k ≤ p
and k− j is odd, k− j = 2s+1 with s ≥ 1, and then q, q′, vj , . . . , vk, sj , . . . , sk−1 induce
F14(4s + 5)s≥1. In all cases we obtain a contradiction. Thus the claim holds. ⋄

By the preceding claim, H is a bipartite graph.

For 1 ≤ i ≤ ℓ, letRi = {S ∈ S(T ′) | Si∩S 6= ∅ and Si\S 6= ∅}. LetX = {Si | Ri 6= ∅}.

Claim 2 H contains no odd path between two vertices in X.

Proof. Suppose on the contrary, without loss of generality, that S1-· · · -Sp is an odd
path in H between two vertices S1, Sp of X (with p = 2k, k ≥ 1), and assume that p is
minimum with this property. By the minimality, all interior vertices Sj (1 < j < p) are
not in X. For 1 ≤ j < p, let sj be a vertex in Sj ∩ Sj+1. As in the preceding claim, the
sj’s are pairwise distinct and lie in Q and Q′. Let P be the path T ′[Q′

1, Q
′
2]. If p 6= 2,

then S2 is not in X, so Q′
3 = Q′

1, for otherwise T s2
0

would not be a path; then S3 is not
in X, so Q′

4 = Q′
2, and so on. Thus the two extremities of P are Q′

1 = Q′
3 = · · · = Q′

p−1

and Q′
2 = Q′

4 = · · · = Q′
p. Since S1 and Sp are in X, the sets R1,Rp are non empty.

Let L1 be the closest vertex to Q′
1 in P such that there exists an edge incident to L1

with label in R1, and let L1K1 be such an edge and R1 be its label (such an edge exists
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because R1 6= ∅). Similarly, let Lp be the closest vertex to Q′
p in P such that there exists

an edge incident to Lp with label in Rp, and let LpKp be such an edge and Rp be its
label. So S1 ⊆ L1, S1 * K1 and Sp ⊆ Lp, Sp * Kp. Each of K1,Kp may be in P or not.
Since T ′ is a clique path tree, Q′ lies between Q′

1 and L1 and between Lp and Q′
p along

P . So Q′
1, Lp, Q

′, L1, Q
′
p lie in this order on P , and S1 is included in all labels between

Q′
1 and L1 in P , and Sp is included in all labels between Q′

p and Lp in P .

Let v0 ∈ K1 \ L1 and vp+1 ∈ Kp \ Lp. Since T0 is a clique path tree, v0 and vp+1 are
distinct from v1, . . . , vp and not adjacent to q.

Let s0 ∈ S1 ∩ R1 and sp ∈ Sp ∩ Rp. Then v0 and s0 are adjacent, and vp+1 and sp
are adjacent. Since T0 is a clique path tree, if K1 or Kp is not in P , then s0 and sp are
different from each other, from s1, . . . , sp−1 and from v0, . . . , vp+1. Furthermore, if K1 is
not in P , then v0 is not adjacent to any of s1, . . . , sp; and if Kp is not in P , then vp+1 is
not adjacent to any of s0, . . . , sp−1.

Let s′0 ∈ S1 \R1 and s′p ∈ Sp \Rp. Then v0 and s′0 are not adjacent, and vp+1 and s′p
are not adjacent. Since T0 is a clique path tree, if K1 or Kp is in P , then s′0 and s′p are
different from each other, from s1, . . . , sp−1 and from v0, . . . , vp+1. Furthermore, if K1 is
in P , then v0 is adjacent to s′p and to s1, . . . , sp; and if Kp is in P , then vp+1 is adjacent
to s′0 and to s0, . . . , sp−1.

Note that the set {q, s′0, s0, s1, s2, . . . , sp, s
′
p} induces a clique in G. Moreover, v1 is

adjacent to s′0, vp is adjacent to s′p, for i = 1, . . . , p, vi is adjacent to si−1 and si, and
there is no other edge between v1, . . . , vp and that clique.

Suppose that K1 = Kp. Then L1 = Lp = Q′ and K1 is not in P . By the definition of
T ′, there exists y ∈ R1 \ Sq. Vertex y is distinct from all si’s as it is not in Sq, and it is
adjacent to all of v0, s0, . . . , sp and to none of q, v1, . . . , vp. Then q, y, v0, . . . , vp, s0, . . . , sp
induce F12(4k + 4)k≥1, a contradiction. So K1 6= Kp, and v0 and vp+1 are distinct non
adjacent vertices. We can choose vertices x1, . . . , xr (r ≥ 1) not in Sq and on the labels
of T ′[K1,Kp] such that v0-x1-. . .-xr-vp+1 is a chordless path in G. Vertices x1, . . . , xr
are distinct from and adjacent to s′0, s

′
p, s0, . . . , sp, and they are distinct from and not

adjacent to any of v1, . . . vp.

Suppose that L1 = Q′
p and Lp = Q′

1. Then K1 and Kp are not in P . If r = 1,
then q, v0, . . . , vp+1, s0, . . . , sp, x1 induce F14(4k + 5)k≥1. If r = 2, then q, v0, . . . , vp+1,
s0, . . . , sp, x1, x2 induce F15(4k+6)k≥1. If r ≥ 3, then q, v0, vp+1, s0, sp, x1, . . . , xr induce
F10(r + 5)r≥3, a contradiction.

Suppose now that L1 6= Q′
p and Lp = Q′

1. Then Kp is not in P and we may assume
that K1 is in P . If r = 1, then q, v0, . . . , vp+1, s

′
0, s1 . . . , sp, x1 induce F13(4k + 5)k≥1. If

r ≥ 2, then q, v0, vp+1, x1, . . . , xr, s
′
0, sp induce F5(r + 5)r≥2, a contradiction.

Suppose finally that L1 6= Q′
p and Lp 6= Q′

1. Then we may assume that K1

and Kp are in P . If r = 1, then q, v0, vp+1, s
′
0, s1, s

′
p, x1 induce F2. If r = 2, then

q, v0, vp+1, s
′
0, s1, s

′
p, x1, x2 induce F3. If r ≥ 3, then q, v0, vp+1, x1, . . . , xr, s

′
0, s

′
p induce

F10(r + 5)r≥3, a contradiction. Thus the claim holds. ⋄
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By the preceding two claims, H is a bipartite graph (A,B,EH) such that X ⊆ A.
Now all the subtrees Ti can be linked to T to get a clique path tree of G as follows. For
each Si ∈ A, we add an edge QQi between T and Ti. This creates a clique path tree on
the corresponding subset of cliques because A is a stable set of H and Q is a leaf of T .
For each Si ∈ B, let Q′′

i ∈ Q(T ) be such that Q′′
i ∩ Si 6= ∅ and the length of T [Q,Q′′

i ]
is maximal. Since Si ∈ B, we have Ri = ∅, so Si ⊆ Q′′

i and we can add an edge Q′′
iQi

between T and Ti. This creates a clique path tree of G because B is a stable set of H
and by the definition of Q′′

i , a contradiction. ✷

5 Characterization of path graphs

In this section we prove the main theorem, that is, path graphs are exactly the graphs
that do not contain any of F0, . . . , F16. We could not find a characterization similar to
the one found by Lekkerkerker and Boland [11] for interval graphs (“an interval graph
is a chordal graph with no asteroidal triple”). We know that in a path graph, the
neighborhood of every vertex contains no asteroidal triple; but this condition is not
sufficient. So we prove directly that a graph that does not contain any of the excluded
subgraphs is a path graph.

Lemma 2 In a graph that does not contain any of F0, . . . , F5, F10, the neighborhood of

every vertex does not contain an asteroidal triple.

Proof. It suffices to check that when a universal vertex is added to a minimal forbidden
induced subgraph for interval graphs ([11]), then one obtains a graph that contains one
of F0, . . . , F5, F10. The easy details are left to the reader. ✷

Given three non adjacent vertices a, b, c, we say that a is the middle of b, c if every
path between b and c contains a vertex from N(a). If a, b, c is not an asteroidal triple,
then at least one of them is the middle of the others.

Lemma 3 In a chordal graph G with clique tree T , a vertex a is the middle of two

vertices b, c if and only if for all cliques Qb and Qc such that b ∈ Qb and c ∈ Qc, there

is an edge of the path T [Qb, Qc] such that a is complete to its label.

Proof. Suppose that a is the middle of b, c. Let Qb and Qc be cliques such that b ∈ Qb

and c ∈ Qc, and suppose there is no edge of T [Qb, Qc] such that a is complete to its
label. For each edge on T [Qb, Qc], one can select a vertex that is not adjacent to a. Then
the set of selected vertices forms a path from b to c that uses no vertex from N(a), a
contradiction.

Suppose now that for all cliques Qb and Qc with b ∈ Qb and c ∈ Qc, there is an
edge of the path T [Qb, Qc] such that a is complete to its label. Suppose that there

8



exists a path x0-· · · -xr, with b = x0 and c = xr and none of the xi’s is in N(a). We
may assume that this path is chordless. For 1 ≤ i ≤ r, let Qi be a maximal clique
containing xi−1, xi. Then Q1, . . . , Qr appear in this order along a subpath of T . On
each T [Qi, Qi+1] (1 ≤ i ≤ r − 1), vertex a is not adjacent to xi, so a is not complete to
any label of T [Q1, . . . , Qr], but Q1 contains b and Qr contains c, a contradiction. ✷

Now we are ready to prove the main theorem. Part of the proof has be done in the
previous section. Lemma 1 deals with the case where there exists a simplicial vertex that
is the middle of two other vertices; now we have to look at the case where all simplicial
vertices are not the middle of any pair of vertices.

Proof of Theorem 1 By Theorem 3, a path graph does not contain any of F0, . . . , F16.
Suppose now that there exists a graph G that does not contain any of F0, . . . , F16 and
is a minimal non path graph. Since G contains no F0, it is chordal. By Theorem 2,
there is a special simplicial vertex q of G. By Lemma 1, q is co-special. Let Q = Qq and
SQ = Sq ∈ S. Let T0 be a clique path tree of G(Q \ Q). Let Q′ ∈ Q \ Q be such that
SQ ⊆ Q′. We add the edge QQ′ to T0 to obtain a clique tree T ′

0 of G.

Claim 1 For all non-adjacent vertices u,w /∈ Q, there exists a path between u and v
that avoids the neighbourhood of q.

Proof. Suppose the contrary. Let U,W ∈ Q be such that u ∈ U and w ∈ W . We have
U 6= W since u,w are not adjacent. By Lemma 3, there is an edge of T0[U,W ] whose
label is included in SQ, contradicting that q is co-special. Thus the claim holds. ⋄

For each clique L ∈ Q \ {Q,Q′}, let L′ be the neighbor of L along T0[L,Q
′]. Let

SL = L∩L′. Let SL be the set of labels of edges incident to L in T0. Let L be the clique
in T0[L,Q

′] \{Q′} such that SL ⊆ SL and no other edge of T0[L,Q
′] has a label included

in SL. (Possibly L = L.)

Let L be the set of cliques L of Q\{Q,Q′} such that no element of SL\SL contains SL.
For each clique L ∈ L, we define a subtree TL of T ′

0, where TL is the biggest subtree of

T ′
0 that contains Q′ and for which no label is included in SL. Note that L

′
is in TL and

L is not in TL. Since q is special and co-special we have SQ * SL, so TL contains Q.

Claim 2 For each clique L ∈ L we have L′ ∈ TL.

Proof. Suppose on the contrary that L′ /∈ TL. Then L 6= L. When we remove the edges
LL′ and LL

′
from T ′

0, there remain three subtrees T1, T2, T3, where T1 is the subtree that
contains L, T2 is the subtree that contains L′ and L, and T3 is the subtree that contains
L
′
, Q′, Q. Let T4 be the tree formed by T1, T3 plus the edge LL

′
. Then, since SL ⊆ SL,

T4 is a clique tree of G(Q(T4)). The set Q(T4) contains strictly fewer maximal cliques

than Q, so there exists a clique path tree T5 of G(Q(T4)). Label SL is on the edge LL
′

of T4, so it is also a label of T5. Consequently there is an edge LL′′ of T5 with a label
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R such that SL ⊆ R ⊆ L. (Possibly L′′ = L
′
). Suppose that R 6= SL. Then there is

an edge of T1 or T3 with label R. But no label of T1 can be R by the definition of L;
and all the labels of T3 that are included in L are also included in SL, so no label of T3

can be R, a contradiction. So R = SL. Now if we remove the edge LL′′ from T5 and
replace it by the subtree T2 and edges LL′ and LL′′, we obtain a clique path tree of G,
a contradiction. Thus the claim holds. ⋄

Let L∗ be the set of all L ∈ L such that TL is a strict subtree of T ′
0 \ L. For every

vertex x of G(Q \Q) let T x
0 be the subtree of T0 induced by the cliques that contain x.

Recall that T x
0 is a path because T0 is a clique path tree. Let A be the set of vertices a

of Q such that Q′ is a vertex of T a
0 that is not a leaf. Then A is not empty, for otherwise

T ′
0 would be a clique path tree of G. Moreover:

Claim 3 For any a ∈ A, the two leaves of T a
0 are in L and at least one of them is in L∗.

Proof. Let L1, L2 be the leaves of T a
0 , and, for i = 1, 2, let ℓi ∈ Li \ SLi

. We have
a ∈ SL1

, and a is not in any member of S(L1) \ SL1
. Thus L1 ∈ L. Similarly L2 ∈ L.

The three vertices q, ℓ1, ℓ2 are adjacent to a, so they do not form an asteroidal triple by
Lemma 2, and so one of them is the middle of the other two. Vertex q cannot be the
middle of ℓ1, ℓ2 by Claim 1. So we may assume up to symmetry that ℓ1 is the middle
of q, ℓ2. So, by Lemma 3, there is an edge of T ′

0[Q,L2] with a label included in SL1
. So

TL1
is a strict subtree of T ′

0 \ L1 and so L1 ∈ L∗. Thus the claim holds. ⋄

The preceding claim implies that L∗ is not empty. We choose L ∈ L∗ such that the
subtree TL is maximal. Let SQ′ be the label of the edge of T0[L,Q

′] that is incident
to Q′. Vertex q is special and co-special, so there exists sQ in SQ \ SQ′ , and we have
sQ /∈ SL. Therefore no clique of Q \ Q(TL) contains sQ. We add the edge LL′ to TL to
obtain a clique tree T ′

L of G(Q(TL) ∪ {L}). Since T ′
L is a strict subtree of T ′

0, we can
consider a clique path tree T of G(Q(T ′

L)). Note that L is a leaf of T , for otherwise there
are at least two labels of T that are included in SL, which contradicts the definition of
TL.

Claim 4 Let a ∈ A be such that both leaves of T a
0 are not in TL. Let La be a leaf of T a

0

that belongs to L∗. Then L′
a is in TL, and every edge KK ′ of T0 with K /∈ TL,K

′ ∈ TL

satisfies SK ⊆ SLa .

Proof. By Claim 3, La exists. Since the labels of the edges of TL are not included in
SL, they are also not included in SLa . So TL is a subtree of TLa . By the maximality of
TL, we have TL = TLa . By Claim 2, L′

a is in TL. By the definition of TLa , every edge
KK ′ of T0 with K /∈ TL,K

′ ∈ TL satisfies SK ⊆ SLa . Thus the claim holds. ⋄

Claim 5 There exist U,W ∈ Q \ Q(T ′
L) such that UL is an edge of T0, SU \ Q′ 6= ∅,

U ∩W 6= ∅, W ′ ∈ Q(TL) and W ∩Q 6= ∅.
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Proof. We define sets U ,V as follows:

U = {U ∈ Q \ Q(T ′
L) | UL is an edge of T0}

V = {V ∈ Q \ Q(T ′
L) | V

′ ∈ Q(TL)}.

We observe that the members of V are pairwise disjoint. For if there is a vertex v
in V1 ∩ V2 for some V1, V2 ∈ V, then v is on three labels (namely SV1

, SV2
and SL) of T0

that do not lie on a common path, contradicting that T0 is a clique path tree.

We define sets Up (p ≥ 1) and Vp (p ≥ 0) as follows:

V0 = {W ∈ V | W ∩Q 6= ∅}

Up = {U ∈ U \ (U1 ∪ · · · ∪ Up−1) | ∃ V ∈ Vp−1 such that U ∩ V 6= ∅} (p ≥ 1)

Vp = {V ∈ V \ (V1 ∪ · · · ∪ Vp−1) | ∃ U ∈ Up such that V ∩ U 6= ∅} (p ≥ 1).

Consider the smallest k ≥ 1 such that there exists U ∈ Uk with SU \ Q′ 6= ∅. If
no such U exists, then let k = ∞. The claim states that k = 1, so let us suppose on
the contrary that k ≥ 2. For all 1 ≤ p ≤ k − 1 and all U ∈ Up, we have SU ⊆ Q′; let
U ′′ ∈ Q(T ) be such that U ′′ ∩ SU 6= ∅ and the length of T [L,U ′′] is maximal. Remark
that SU is included in U ′′ if and only if all members of Q(T ) that intersect SU contain
SU . Let us prove that:

SU ⊆ U ′′ for every U ∈ Up, 1 ≤ p ≤ k − 1. (1)

Suppose that there exists Up ∈ Up, 1 ≤ p ≤ k − 1, such that SUp * U ′′
p , and let p be

minimum with this property. Let V0, . . . , Vp−1, U1, . . . , Up be such that Vi ∈ Vi, Ui ∈ Ui,
Vi−1 ∩ Ui 6= ∅ and Ui ∩ Vi 6= ∅. Pick ui ∈ Ui \ SUi

and vi ∈ Vi \ SVi
. Let x1, . . . , xr

be such that x1 ∈ V0 ∩ U1, x2 ∈ U1 ∩ V1, . . . , xr ∈ Vp−1 ∩ Up with r = 2p − 1. We
claim that V ′

0 = V ′
1 = · · · = V ′

p−1. For otherwise there exists i ∈ {1, . . . , p− 1} such that
V ′
i−1

6= V ′
i . Then one of V ′

i−1
, V ′

i contains elements of SUi
but not all, and so SUi

* U ′′
i ,

which contradicts the minimality of p.

By the definition of the Vi’s, none of x2, . . . , xr is in Q. Let x0 ∈ V0 ∩ Q (maybe
x0 = x1). So x0 ∈ SV0

⊆ SL ⊂ L. None of U2, . . . , Up can contain x0 by the definition of
U1. Note that xr is in Up and V ′

p−1 = V ′
0 ; on the other hand we have SUp * U ′′

p . So there
exists a clique Z of TL such that Z ′ ∈ T x0

0
, SUp ⊆ Z ′, SUp ∩ Z 6= ∅ and SUp \ Z 6= ∅.

Vertex Q′ is on T [L,Z ′] as SUp ⊆ Q′. Let z ∈ Z \ Z ′. We can find vertices y1, . . . , yt
on the labels of T ′

0[Z,Q] such that none of them is in SL and z-y1-· · · -yt-q is a chordless
path in G. Let ℓ ∈ L \ SL. By Claim 1, there exists a path P between z and ℓ whose
vertices are not neighbors of q.

If Z ∈ T x0

0
, then let b ∈ SUp \Z. As q is special and co-special, we have SQ * SZ , so

let c ∈ SQ \ SZ . Then z, ℓ, q form an asteroidal triple (because of paths P , z-y1-· · · -yt-q
and ℓ-b-c-q), and they lie in the neighborhood of x0, a contradiction. So Z /∈ T x0

0
. Let

xr+1 ∈ Z ∩ Up. If xr+1 ∈ Q, then z, ℓ, q form an asteroidal triple (because of paths P ,
z-y1-· · · -yt-q and ℓ-x0-q), and they lie in the neighborhood of xr+1, a contradiction. So
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xr+1 /∈ Q. The SUi
’s are all included in Q′ and so in SL too. They are pairwise disjoint,

for otherwise T0 is not a clique path tree. Vertex ℓ is not in any of the SUi
’s, and ℓ is

adjacent to all of x0, . . . , xr+1 and to none of u1, . . . , up, v0, . . . , vp−1, y1, . . . , yt, z, q.

Suppose that V0 ∩ U1 ∩ Q 6= ∅. Then we may assume that x0 = x1, so x0 is in A
and the two leaves of T x0

0
are not in TL. By Claim 4, the leaf Lx0

of T x0

0
that is in L∗

is such that L′
x0

is in TL, so Lx0
= V0. But xr+1 is in Z ∩ Up, so it is not in SV0

; thus
SL * SV0

, which contradicts the end of Claim 4. Therefore V0 ∩U1 ∩Q = ∅, so x0 6= x1,
x0 /∈ U1, x1 /∈ Q. Now, if t = 1, then u1, . . . , up, v0, . . . , vp−1, x0, . . . , xr+1, y1, q, z, ℓ
induce F14(4p + 5)p≥1. If t = 2, then u1, . . . , up, v0, . . . , vp−1, x0, . . . , xr+1, y1, y2, q, z, ℓ
induce F15(4p + 6)p≥1. If t ≥ 3, then ℓ, x0, xr+1, z, y1, . . . , yt, q induce F10(s + 5)t≥3, a
contradiction. Therefore (1) holds.

Suppose that k is finite. Let V0, . . . , Vk−1, U1, . . . , Uk be such that Vi ∈ Vi, Ui ∈ Ui,
Vi−1 ∩ Ui 6= ∅, and Ui ∩ Vi 6= ∅. Let ui ∈ Ui \ SUi

and vi ∈ Vi \ SVi
. Pick vertices

x1 ∈ V0 ∩ U1, x2 ∈ U1 ∩ V1, . . . , xr ∈ Vk−1 ∩ Uk with r = 2k − 1. By the definition of
V, none of x2, . . . , xr is in Q. Let x0 ∈ V0 ∩ Q. Suppose that V0 ∩ U1 ∩ Q 6= ∅. Then
we can assume that x0 = x1, so x0 is in A and the two leaves of T x0

0
are not in TL. By

Claim 4, the leaf Lx0
of T x0

0
that is in L∗ is such that L′

x0
is in TL, so Lx0

= V0. But x2
is in SV1

and not in SV0
, so SV1

* SV0
, which contradicts the end of Claim 4. Therefore

V0 ∩ U1 ∩Q = ∅, and x0 6= x1, x0 /∈ U1, x1 /∈ Q. Let sUk
∈ SUk

\Q′. Vertex sUk
is not

adjacent to any of q, sQ, v0, . . . , vk−1 because sUk
/∈ Q′, and by the minimality of k, vertex

sUk
is not adjacent to u1, . . . , uk−1. Then u1, . . . , uk, v0, . . . , vk−1, x0, . . . , xr, sUk

, sQ, q
induce F16(4k + 3)k≥2, a contradiction.

Now k is infinite. Then the members of
⋃

p≥0
Up are included in Q′ and pairwise

disjoint, for otherwise T0 is not a clique path tree. For each member M of U ∪ V, let
T ′
0(M) be the component of T ′

0 \T
′
L that contains M . Starting from the path tree T and

the trees T ′
0(M) (M ∈ U ∪ V), we build a new tree as follows. For each V ∈

⋃
p≥0

Vp,
we add the edge V L between T ′

0(V ) and T . For each U ∈
⋃

p≥1
Up, we add the edge

UU ′′ between T ′
0(U) and T . For each U ∈ U \ (

⋃
p≥1

Up), we add the edge UL between
T ′
0(U) and T . For each V ∈ V \ (

⋃
p≥1

Vp), we define V ′′ ∈ Q(T ) such that V ′′ ∩ SV 6= ∅
and the length of T [L, V ′′] is maximal. By the definition of V0, we have SV ∩Q = ∅, so
V ′′ 6= Q, so V ′′ is a vertex of TL on T0[L, V ] and it contains SV as SV ⊆ SL. Then we
can add the edge V V ′′ between T ′

0(V ) and T . Thus we obtain a clique path tree of G,
a contradiction. So k = 1, and there exist U ∈ U1 and W ∈ V0 such that SU \Q′ 6= ∅,
U ∩W 6= ∅ and W ∩Q 6= ∅. Thus the claim holds. ⋄

Let U,W be as in the preceding claim. Let sU ∈ SU \Q′. Vertex sU is not adjacent
to sQ. Let u ∈ U \ SU and w ∈ W \ SW .

Claim 6 SW = SL.

Proof. Assume on the contrary that SW 6= SL. Then SW is a proper subset of SL.
Suppose that there exists a ∈ U ∩ W ∩ Q 6= ∅. Then a is in A and the two leaves of
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T a
0 are not in TL. By Claim 4, the leaf La of T a

0 that is in L∗ is such that L′
a is in TL,

so La = W . But SL * SW , so Claim 4 is contradicted. Therefore U ∩ W ∩ Q = ∅.
By the definition of U and W , there exists b ∈ W ∩ Q and c ∈ U ∩ W . So b /∈ U ,
c /∈ Q, b 6= c. Since sU is in SU \ Q′, we have SU * SW . The labels of the edges of
TL are not included in SL, so they are also not in SW . Thus we can choose vertices
x1, . . . , xr on the labels of T ′

0[U,Q] such that none of the xi’s is in SW , x1 ∈ U , xr ∈ Q,
and u-x1-. . .-xr-q is a path from u to q that avoids N(w). If r = 1, then x1 is different
from sU and sQ, and w, b, c, u, sU , x1, sQ, q induce F8. If r = 2, then, if x1 is adjacent
to sQ, vertices w, b, c, u, sU , x1, sQ, q induce F9, and if x1 is not adjacent to sQ, vertices
w, b, c, u, x1, x2, sQ, q induce F9. Finally, if r ≥ 3, then w, b, c, u, x1, . . . , xr, q induce
F10(r + 5)r≥3. In all cases we obtain a contradiction. Thus the claim holds. ⋄

Claim 7 W ∈ L∗.

Proof. If W ∈ L, then, by Claim 6, we have TW = TL and W ∈ L∗, as desired. So
suppose W /∈ L. By the definition of W , there is a vertex a ∈ W ∩ Q, and so a ∈ L.
Let L1, L2 ∈ L be the leaves of T a

0 such that L1, L,Q
′,W,L2 lie in this order on that

path. Let K be the member of L that is closest to W on T0[L2,W ]. Clearly W 6= K.
The edges of TL are not included in SL, so they are also not in SW and not in SK . So
TK contains TL. If K ∈ L∗, then TK = TL by the maximality of TL, so K ′ /∈ TK , which
contradicts Claim 2. Thus K /∈ L∗. This means that TK = T ′

0 \ K, and so the labels
of T ′

0 \ K are not included in SK , in particular SW * SK . Let XX ′ be the edge of
T0[K,W ] such that X ′ contains SW and X does not (maybe X ′ = W , X = K). The set
SX contains a but not all of SX′ , and the members of SX′ \ {SX′ , SX} do not contain a.
So no element of SX′ \ SX′ contains SX′ , which means that X ′ ∈ L, a contradiction to
the definition of K. Thus the claim holds. ⋄

By Claim 7, we have W ∈ L∗. By Claim 6, we have TW = TL, so TW is also maximal
and what we have proved for L can be done for W . Thus, by Claim 5, there exists
X /∈ TW such that XW is an edge of T0 with SX \ Q′ 6= ∅ and X ∩ SW 6= ∅. Let
x ∈ X \W and sX ∈ SX \Q′. Vertex sX is not in SW , for otherwise it would also be in
SL and in Q′. Vertex sU is not in SL, for otherwise it would also be in SW and in Q′.
Vertex sQ is not in SW (= SL). So sQ, sX , sU are pairwise non adjacent.

Suppose that there exists a vertex a ∈ U ∩ X ∩ Q 6= ∅. So a ∈ A, but none of the
two leaves of T a

0 can satisfy Claim 4, a contradiction. Therefore U ∩X ∩Q = ∅.

Suppose that U ∩ X 6= ∅, and let a ∈ U ∩ X. So a is not in Q. Let b ∈ SW ∩ Q
(= SL ∩Q). So b is not in U ∩X. If b /∈ X ∪U , then q, u, x, sQ, sU , sX , a, b induce F6, a
contradiction. So b is in one of U,X, say b ∈ X\U (if b is in U\X the argument is similar).
Since W is in L, there is a vertex c ∈ SW \ SX . Vertex c is adjacent to a, b, sU , sQ and
not to x. Then x, a, b, u, sU , c, sQ, q induce F8, F9 or F10(8), a contradiction. Therefore
U ∩X = ∅.
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Let a ∈ U ∩ W , so a /∈ X. Suppose a /∈ Q. If there exists b ∈ X ∩ Q, then b
is also in L and q, u, x, sQ, sU , sX , a, b induce F6, a contradiction. So X ∩ Q = ∅. Let
c ∈ W ∩ Q. Then c ∈ L and c /∈ X. Let d ∈ X ∩ SW ; so d ∈ L, d /∈ Q, d /∈ U .
If c is adjacent to u, then q, u, x, sQ, sU , sX , c, d induce F6, else q, u, x, sQ, sU , sX , a, c, d
induce F7, a contradiction. So a ∈ Q. Let e ∈ X ∩ SW ; so e ∈ L. If e /∈ Q, then
q, u, x, sQ, sU , sX , a, e induce F6, a contradiction. So e ∈ Q. Let f ∈ SW \ SQ (f exists
because q is special and co-special). Since U ∩ X = ∅, f is adjacent to at most one of
u, x, and then q, u, x, sU , sX , a, e, f induce F9 or F10(8), a contradiction. This completes
the proof of Theorem 1. ✷

6 Recognition algorithm

The proof that we give above yields a new recognition algorithm for path graphs, which
takes any graph G as input and either builds a clique path tree for G or finds one of
F0, . . . , F16. We have not analyzed the exact complexity of such a method but it is easy
to see that it is polynomial in the size of the input graph. More efficient algorithms
were already given by Gavril [7], Schäffer [17] and Chaplick [3], whose complexity is
respectively O(n4), O(nm) and O(nm) for graphs with n vertices and m edges. Another
algorithm was proposed in [4] and claimed to run in O(n + m) time, but it has only
appeared as an extended abstract (see comments in [3, Section 2.1.4]).

There are classical linear time recognition algorithms for triangulated graphs [16],
and, following [2], there have been several linear time recognition algorithms for interval
graphs, of which the most recent is [9]. We hope that the work presented here will be
helpful in the search for a linear time recognition algorithm for path graphs.
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Paris 9 (1960) 123–160.

[2] K.S. Booth, G.S. Lueker. Testing for the consecutive ones property, interval graphs
and graph planarity using PQ-tree algorithm. J. Comput. Syst. Sci. 13 (1976) 335–
379.

[3] S. Chaplick. PQR-trees and undirected path graphs. M.Sc. Thesis, Dept. of Computer
Science, University of Toronto, 2008.

[4] E. Dahlhaus, G. Bailey. Recognition of path graphs in linear time. 5th Italian Con-
ference on Theoretical Computer Science (Revello, 1995) World Sci. Publishing,
River Edge, NJ, 1996, 201–210.

[5] G.A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 38 (1961)
71–76.

14



[6] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
J. Combin. Theory B 16 (1974) 47–56.

[7] F. Gavril. A recognition algorithm for the intersection graphs of paths in trees.
Discrete Math. 23 (1978) 211–227.

[8] M. C. Golumbic. Algorithmic graph theory and perfect graphs. Annals Disc. Math.
57, Elsevier, 2004.

[9] M. Habib, R. McConnell, C. Paul, L. Viennot. Lex-BFS and partition refinement,
with applications to transitive orientation, interval graph recognition and consecu-
tive ones testing. Theoretical Computer Science 234 (2000) 59–84.
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F0(n)n≥4

Figure 1: Forbidden subgraphs with no simplicial vertices

F1 F2 F3 F4 F5(n)n≥7

Figure 2: Forbidden subgraphs with a universal vertex

F6 F7 F8 F9 F10(n)n≥8

Figure 3: Forbidden subgraphs with no universal vertex and exactly three simplicial
vertices

F11(4k)k≥2 F12(4k)k≥2 F13(4k + 1)k≥2 F14(4k + 1)k≥2 F15(4k + 2)k≥2

Figure 4: Forbidden subgraphs with at least one simplicial vertex that is not co-special.
(bold edges form a clique)

F16(4k + 3)k≥2

Figure 5: Forbidden subgraphs with ≥ 4 simplicial vertices that are all co-special. (bold
edges form a clique)
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