
ar
X

iv
:0

80
4.

46
81

v1
  [

m
at

h.
C

O
]  

29
 A

pr
 2

00
8

d-Regular Graphs of Acyclic Chromatic Index at least d+2

Manu Basavaraju∗ L. Sunil Chandran† Manoj Kummini‡

Abstract

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. Theacyclic
chromatic indexof a graph is the minimum number k such that there is an acyclicedge coloring using k colors and is
denoted bya′(G). It was conjectured by Alon, Sudakov and Zaks (and earlier byFiamcik) thata′(G) ≤ ∆ + 2, where
∆ = ∆(G) denotes the maximum degree of the graph. Alon et.al also raised the question whether the complete graphs
of even order are the only regular graphs which require∆ + 2 colors to be acyclically edge colored. In this paper, using
a simple counting argument we observe not only that this is not true, but infact all d-regular graphs with2n vertices and
d > n, requires at leastd + 2 colors. We also show thata′(Kn,n) ≥ n + 2, whenn is odd using a more non-trivial
argument(HereKn,n denotes the complete bipartite graph withn vertices on each side). This lower bound forKn,n can be
shown to be tight for some families of complete bipartite graphs and for small values ofn. We also infer that for everyd, n
such thatd ≥ 5, n ≥ 2d+ 3 anddn even, there existd-regular graphs which require at leastd+ 2-colors to be acyclically
edge colored.

Keywords: Acyclic edge coloring, acyclic edge chromatic index, matching, perfect 1-factorization, complete bipartite
graphs.

All graphs considered in this paper are finite and simple. A properedge coloringof G = (V,E) is a mapc : E → C

(whereC is the set of availablecolors) with c(e) 6= c(f) for any adjacent edgese,f . The minimum number of colors needed
to properly color the edges ofG, is called the chromatic index ofG and is denoted byχ′(G). A proper edge coloring c is
called acyclic if there are no bichromatic cycles in the graph. In other words an edge coloring is acyclic if the union of any
two color classes induces a set of paths (i.e., linear forest) in G. Theacyclic edge chromatic number(also calledacyclic
chromatic index), denoted bya′(G), is the minimum number of colors required to acyclically edge colorG. The concept
of acyclic coloringof a graph was introduced by Grünbaum [6]. Let∆ = ∆(G) denote the maximum degree of a vertex in
graphG. By Vizing’s theorem, we have∆ ≤ χ′(G) ≤ ∆ + 1(see [4] for proof). Since any acyclic edge coloring is also
proper, we havea′(G) ≥ χ′(G) ≥ ∆.

It has been conjectured by Alon, Sudakov and Zaks [2] thata′(G) ≤ ∆ + 2 for anyG. We were informed by Alon
that the same conjecture was raised earlier by Fiamcik [5]. Using probabilistic arguments Alon, McDiarmid and Reed [1]
proved thata′(G) ≤ 60∆. The best known result up to now for arbitrary graph, is by Molloy and Reed [7] who showed that
a′(G) ≤ 16∆.

The complete graph on n vertices is denoted byKn and the complete bipartite graph with n vertices on each sideis
denoted byKn,n. We denote the sides of the bi-partition byA andB. ThusV (Kn,n) = A ∪B.

Our Result: Alon, Sudakov and Zaks [2] suggested a possibility that complete graphs of even order are the only regular
graphs which require∆ + 2 colors to be acyclically edge colored. Nešetřil and Wormald [8] supported the statement by
showing that the acyclic edge chromatic number of a random d-regular graph is asymptotically almost surely equal tod+1
(whend ≥ 2). In this paper, we show that this is not true in general. Morespecifically we prove the following Theorems :

Theorem 1. LetG be a d-regular graph with2n vertices andd > n, thena′(G) ≥ d+ 2 = ∆(G) + 2.

Theorem 2. For anyd andn such thatdn is even andd ≥ 5, n ≥ 2d + 3, there exists a connectedd-regular graphs that
required+ 2 colors to be acyclically edge colored.
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Theorem 3. a′(Kn,n) ≥ n+ 2 = ∆+ 2, when n is odd.

Remarks:

1. It is interesting to compare the statement of Theorem 1 to the result of [8], namely that almost alld-regular graphs for
a fixedd, require onlyd + 1 colors to be acyclically edge colored. From the introduction of [8], it appears that the
authors expect their result for randomd-regular graphs would extend to all d-regular graphs exceptfor Kn, n even.
From Theorem 1 and Theorem 2 it is clear that this is not true: There exists a large number ofd-regular graphs which
required+ 2 colors to be acyclically adge colored, evend is fixed.

2. The complete bipartite graph,Kn+2,n+2 is said to have a perfect 1-factorization if the edges ofKn+2,n+2 can be
decomposed inton+2 disjoint perfect matchings such that the union of any two perfect matchings forms a hamiltonian
cycle. It is obvious from Lemma 1 thatKn+2,n+2 does not have perfect 1-factorization whenn is even. Whenn is
odd, some families have been proved to have perfect 1-factorization (see [3] for further details). It is easy to see that
if Kn+2,n+2 has a perfect 1-factorization thenKn+2,n+1 and thereforeKn+1,n+1 has a acyclic edge coloring using
n+ 2 colors. Therefore the statement of Theorem 3 cannot be extended to the case whenn is even in general.

3. Clearly ifKn+2,n+2 has a perfect 1-factorization, thena′(Kn,n) = n + 2. It is known that (see [3]), ifn + 2 ∈
{p, 2p− 1, p2}, wherep is an odd prime or whenn+ 2 < 50 and odd, thenKn+2,n+2 has a perfect 1-factorization.
Thus the lower bound in Theorem 3 is tight for the above mentioned values ofn+ 2.

Proof of Theorem 1:

Proof. Observe that two different color classes cannot haven edges each, since that will lead to a bichromatic cycle.
Therefore at most one color class can haven edges while all other color classes can have at mostn − 1 edges. Thus the
number of edges in the union of∆(G) + 1 = d+ 1 color classes is at mostn+ d(n− 1) < dn, whend > n (Note that dn
is the total number of edges inG). ThusG needs at least one more color. Thusa′(G) ≥ d+ 2 = ∆(G) + 2.

Remark: It is clear from the proof that ifn+ d(n − 1) + x < dn then even after removingx edges from the given graph,
the resulting graph still would required+ 2 colors to be acyclically edge colored.
Proof of Theorem 2:

Proof. If d is odd, letG′ = Kd+1. Else ifd is even letG′ be the complement of a perfect matching ond + 2 vertices. Let
H be anyd-regular graph onN = n− n′ vertices. Now remove an edge(a, a′) fromG′ and an edge(b, b′) fromH . Now
connecta to b anda′ to b′ to create ad-regular graphG. ClearlyG requiresd+2 colors to be acyclically edge colored since
otherwise it would mean thatG′ − {(a, a′)} is d + 1 colorable, a contradiction in view of the Remark following Theorem
1, for d ≥ 5.

Complete bipartite graphs offer a interesting case since they haved = n. Observe that the above counting argument fails.
We deal with this case in the next section.

Complete Bipartite Graphs

Lemma 1. If n is even, thenKn,n does not contain three disjoint perfect matchingsM1, M2, M3 such thatMi ∪Mj forms
a hamiltonian cycle fori, j ∈ {1, 2, 3} andi 6= j.

Proof. Observe that a perfect matching ofKn,n corresponds to a permutation of{1, 2, . . . , n}. Let perfect matchingMi

corresponds to permutationπi. Without loss of generality, we can assume thatπ1 is the identity permutation by renumbering
the vertices of one side ofKn,n.

SupposeKn,n contains three perfect matchingsM1, M2, M3 such thatMi ∪ Mj forms a hamiltonian cycle fori, j ∈
{1, 2, 3} andi 6= j.

Now we study the permutationπ−1

i πj . SinceMi ∪ Mj induces a hamiltonian cycle inKn,n, it is easy to see that the
smallestt ≥ 1 such that(π−1

i πj)
t(1) = 1 equalsn. It follows that, in the cycle structure ofπ−1

i πj , there exists exactly one
cycle and this cycle is of lengthn. The sign of a permutation is defined as:sign(π) = (−1)k , wherek is the number of
even cycles in the cycle structure of the permutationπ. Recalling thatn is even, we have the following claim:

Claim 1. sign(π−1

i πj) = −1 for i, j ∈ {1, 2, 3} andi 6= j.
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Now with respect toπ−1

i πj , takingπi = π1 (the identity permutation) andπj = π2 (orπ3), we infer thatsign(π2) = −1
andsign(π3) = −1. Now sign(π−1

2 π3) = sign(π−1

2 )sign(π3) = (-1)(-1) = 1, a contradiction in view ofClaim 1.

Proof of Theorem 3:

Proof. SinceKn,n is a regular graph,a′(Kn,n) ≥ ∆+1 = n+1. Supposen+1 colors are sufficient. This can be achieved
only in the following way: One color class containsn edges and the remaining color classes containn− 1 edges each. Let
α be the color class that hasn edges. Thus colorα is present at every vertex on each sideA andB. Any other color is
missing at exactly one vertex on each side.

Observation 1. Let θ 6= α be a color class. The subgraph induced by color classesθ andα contains2n − 1 edges and
since there are no bichromatic cycles, the subgraph inducedis a hamiltonian path. We call this an(α, θ) hamiltonian path.

Observation 2. Let θ1 andθ2 be color classes withn − 1 edges each. The subgraph induced by color classesθ1 andθ2
contains2n− 2 edges. Since there are no bichromatic cycles, the subgraph induced consists of exactly two paths.

Note that there is a unique color missing at each vertex on each side ofKn,n. Letm(u) be the color missing at vertex
u. For a1 ∈ A andb1 ∈ B, let m(a1) = m(b1) = β. Let the color of the edge(a1, b1) = γ. Clearlyγ 6= α since
otherwise there cannot be a(α, β) hamiltonian path, a contradiction toObservation 1. For a2 ∈ A and b2 ∈ B, let
m(a2) = m(b2) = γ. Its clear thata1 6= a2 andb1 6= b2. Consider the subgraph induced by the colorsβ andγ. In view of
Observation 2 it consists of exactly two paths. One of them is the single edge(a1, b1). The other path has length2n− 3
and hasa2 andb2 as end points.

Now we construct aKn+1,n+1 from the aboveKn,n by adding a new vertex,an+1 to sideA and a new vertex,bn+1 to
sideB. Now foru ∈ B color each edge(an+1, u) by the colorm(u) and forv ∈ A color each edge(bn+1, v) by the color
m(v). Assign the colorα to the edge(an+1, bn+1). Clearly the coloring thus obtained is a proper coloring.

Now we know that there existed a(α, β) hamiltonian path inKn,n with a1 andb1 as end points. Recalling thatm(a1) =
m(b1) = β, we havecolor(an+1, b1) = color(bn+1, a1) = β. It is easy to see that inKn+1,n+1 this path along with the
edges(a1, bn+1), (bn+1, an+1) and(an+1, b1) forms a(α, β) hamiltonian cycle. In a similar way, for(α, γ) hamiltonian
path that existed inKn,n, we can see that inKn+1,n+1, we have a corresponding(α, γ) hamiltonian cycle.

Recall that there was a(β, γ) bichromatic path starting froma2 and ending atb2 in Kn,n. In theKn+1,n+1 we created,
we havec(a2, an+1) = γ , c(a1, bn+1) = β , c(an+1, b1) = β andc(an+1, b2) = γ. Thus the above(β, γ) bichromatic path
in Kn,n along with the edges(a2, bn+1), (bn+1, a1), (a1, b1), (b1, an+1), (an+1, b2) in that order. Thus we have 3 perfect
matchings induced by the color classesα, β andγ whose pairwise union gives rise to hamiltonian cycles inKn+1,n+1, a
contradiction toLemma 1 sincen+ 1 is even.
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