d-Regular Graphs of Acyclic Chromatic Index at least d+2

Manu Basavaraju*
L. Sunil Chandran ${ }^{\dagger}$
Manoj Kummini ${ }^{\ddagger}$

Abstract

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by $a^{\prime}(G)$. It was conjectured by Alon, Sudakov and Zaks (and earlier by Fiamcik) that $a^{\prime}(G) \leq \Delta+2$, where $\Delta=\Delta(G)$ denotes the maximum degree of the graph. Alon et.al also raised the question whether the complete graphs of even order are the only regular graphs which require $\Delta+2$ colors to be acyclically edge colored. In this paper, using a simple counting argument we observe not only that this is not true, but infact all d-regular graphs with $2 n$ vertices and $d>n$, requires at least $d+2$ colors. We also show that $a^{\prime}\left(K_{n, n}\right) \geq n+2$, when n is odd using a more non-trivial argument(Here $K_{n, n}$ denotes the complete bipartite graph with n vertices on each side). This lower bound for $K_{n, n}$ can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that $d \geq 5, n \geq 2 d+3$ and $d n$ even, there exist d-regular graphs which require at least $d+2$-colors to be acyclically edge colored.

Keywords: Acyclic edge coloring, acyclic edge chromatic index, matching, perfect 1-factorization, complete bipartite graphs.

All graphs considered in this paper are finite and simple. A proper edge coloring of $G=(V, E)$ is a map $c: E \rightarrow C$ (where C is the set of available colors) with $c(e) \neq c(f)$ for any adjacent edges e, f. The minimum number of colors needed to properly color the edges of G, is called the chromatic index of G and is denoted by $\chi^{\prime}(G)$. A proper edge coloring c is called acyclic if there are no bichromatic cycles in the graph. In other words an edge coloring is acyclic if the union of any two color classes induces a set of paths (i.e., linear forest) in G. The acyclic edge chromatic number (also called acyclic chromatic index), denoted by $a^{\prime}(G)$, is the minimum number of colors required to acyclically edge color G. The concept of acyclic coloring of a graph was introduced by Grünbaum [6]. Let $\Delta=\Delta(G)$ denote the maximum degree of a vertex in graph G. By Vizing's theorem, we have $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$ (see [4] for proof). Since any acyclic edge coloring is also proper, we have $a^{\prime}(G) \geq \chi^{\prime}(G) \geq \Delta$.

It has been conjectured by Alon, Sudakov and Zaks [2] that $a^{\prime}(G) \leq \Delta+2$ for any G. We were informed by Alon that the same conjecture was raised earlier by Fiamcik [5]. Using probabilistic arguments Alon, McDiarmid and Reed [1] proved that $a^{\prime}(G) \leq 60 \Delta$. The best known result up to now for arbitrary graph, is by Molloy and Reed [7] who showed that $a^{\prime}(G) \leq 16 \Delta$.

The complete graph on n vertices is denoted by K_{n} and the complete bipartite graph with n vertices on each side is denoted by $K_{n, n}$. We denote the sides of the bi-partition by A and B. Thus $V\left(K_{n, n}\right)=A \cup B$.

Our Result: Alon, Sudakov and Zaks [2] suggested a possibility that complete graphs of even order are the only regular graphs which require $\Delta+2$ colors to be acyclically edge colored. Nešetřil and Wormald [8] supported the statement by showing that the acyclic edge chromatic number of a random d-regular graph is asymptotically almost surely equal to $d+1$ (when $d \geq 2$). In this paper, we show that this is not true in general. More specifically we prove the following Theorems :

Theorem 1. Let G be a d-regular graph with $2 n$ vertices and $d>n$, then $a^{\prime}(G) \geq d+2=\Delta(G)+2$.
Theorem 2. For any d and n such that $d n$ is even and $d \geq 5, n \geq 2 d+3$, there exists a connected d-regular graphs that require $d+2$ colors to be acyclically edge colored.

[^0]Theorem 3. $a^{\prime}\left(K_{n, n}\right) \geq n+2=\Delta+2$, when n is odd.

Remarks:

1. It is interesting to compare the statement of Theorem 1 to the result of [8], namely that almost all d-regular graphs for a fixed d, require only $d+1$ colors to be acyclically edge colored. From the introduction of [8], it appears that the authors expect their result for random d-regular graphs would extend to all d-regular graphs except for K_{n}, n even. From Theorem 1 and Theorem 2 it is clear that this is not true: There exists a large number of d-regular graphs which require $d+2$ colors to be acyclically adge colored, even d is fixed.
2. The complete bipartite graph, $K_{n+2, n+2}$ is said to have a perfect 1 -factorization if the edges of $K_{n+2, n+2}$ can be decomposed into $n+2$ disjoint perfect matchings such that the union of any two perfect matchings forms a hamiltonian cycle. It is obvious from Lemma 1 that $K_{n+2, n+2}$ does not have perfect 1-factorization when n is even. When n is odd, some families have been proved to have perfect 1-factorization (see [3] for further details). It is easy to see that if $K_{n+2, n+2}$ has a perfect 1-factorization then $K_{n+2, n+1}$ and therefore $K_{n+1, n+1}$ has a acyclic edge coloring using $n+2$ colors. Therefore the statement of Theorem 3 cannot be extended to the case when n is even in general.
3. Clearly if $K_{n+2, n+2}$ has a perfect 1-factorization, then $a^{\prime}\left(K_{n, n}\right)=n+2$. It is known that (see [3]), if $n+2 \in$ $\left\{p, 2 p-1, p^{2}\right\}$, where p is an odd prime or when $n+2<50$ and odd, then $K_{n+2, n+2}$ has a perfect 1-factorization. Thus the lower bound in Theorem 3 is tight for the above mentioned values of $n+2$.

Proof of Theorem 1:

Proof. Observe that two different color classes cannot have n edges each, since that will lead to a bichromatic cycle. Therefore at most one color class can have n edges while all other color classes can have at most $n-1$ edges. Thus the number of edges in the union of $\Delta(G)+1=d+1$ color classes is at most $n+d(n-1)<d n$, when $d>n$ (Note that dn is the total number of edges in G). Thus G needs at least one more color. Thus $a^{\prime}(G) \geq d+2=\Delta(G)+2$.

Remark: It is clear from the proof that if $n+d(n-1)+x<d n$ then even after removing x edges from the given graph, the resulting graph still would require $d+2$ colors to be acyclically edge colored.

Proof of Theorem 2:

Proof. If d is odd, let $G^{\prime}=K_{d+1}$. Else if d is even let G^{\prime} be the complement of a perfect matching on $d+2$ vertices. Let H be any d-regular graph on $N=n-n^{\prime}$ vertices. Now remove an edge (a, a^{\prime}) from G^{\prime} and an edge $\left(b, b^{\prime}\right)$ from H. Now connect a to b and a^{\prime} to b^{\prime} to create a d-regular graph G. Clearly G requires $d+2$ colors to be acyclically edge colored since otherwise it would mean that $G^{\prime}-\left\{\left(a, a^{\prime}\right)\right\}$ is $d+1$ colorable, a contradiction in view of the Remark following Theorem 1 , for $d \geq 5$.

Complete bipartite graphs offer a interesting case since they have $d=n$. Observe that the above counting argument fails. We deal with this case in the next section.

Complete Bipartite Graphs

Lemma 1. If n is even, then $K_{n, n}$ does not contain three disjoint perfect matchings M_{1}, M_{2}, M_{3} such that $M_{i} \cup M_{j}$ forms a hamiltonian cycle for $i, j \in\{1,2,3\}$ and $i \neq j$.

Proof. Observe that a perfect matching of $K_{n, n}$ corresponds to a permutation of $\{1,2, \ldots, n\}$. Let perfect matching M_{i} corresponds to permutation π_{i}. Without loss of generality, we can assume that π_{1} is the identity permutation by renumbering the vertices of one side of $K_{n, n}$.

Suppose $K_{n, n}$ contains three perfect matchings M_{1}, M_{2}, M_{3} such that $M_{i} \cup M_{j}$ forms a hamiltonian cycle for $i, j \in$ $\{1,2,3\}$ and $i \neq j$.

Now we study the permutation $\pi_{i}^{-1} \pi_{j}$. Since $M_{i} \cup M_{j}$ induces a hamiltonian cycle in $K_{n, n}$, it is easy to see that the smallest $t \geq 1$ such that $\left(\pi_{i}^{-1} \pi_{j}\right)^{t}(1)=1$ equals n. It follows that, in the cycle structure of $\pi_{i}^{-1} \pi_{j}$, there exists exactly one cycle and this cycle is of length n. The sign of a permutation is defined as: $\operatorname{sign}(\pi)=(-1)^{k}$, where k is the number of even cycles in the cycle structure of the permutation π. Recalling that n is even, we have the following claim:

Claim 1. $\operatorname{sign}\left(\pi_{i}^{-1} \pi_{j}\right)=-1$ for $i, j \in\{1,2,3\}$ and $i \neq j$.

Now with respect to $\pi_{i}^{-1} \pi_{j}$, taking $\pi_{i}=\pi_{1}$ (the identity permutation) and $\pi_{j}=\pi_{2}$ (or π_{3}), we infer that $\operatorname{sign}\left(\pi_{2}\right)=-1$ and $\operatorname{sign}\left(\pi_{3}\right)=-1$. Now $\operatorname{sign}\left(\pi_{2}^{-1} \pi_{3}\right)=\operatorname{sign}\left(\pi_{2}^{-1}\right) \operatorname{sign}\left(\pi_{3}\right)=(-1)(-1)=1$, a contradiction in view of Claim 1

Proof of Theorem 3:

Proof. Since $K_{n, n}$ is a regular graph, $a^{\prime}\left(K_{n, n}\right) \geq \Delta+1=n+1$. Suppose $n+1$ colors are sufficient. This can be achieved only in the following way: One color class contains n edges and the remaining color classes contain $n-1$ edges each. Let α be the color class that has n edges. Thus color α is present at every vertex on each side A and B. Any other color is missing at exactly one vertex on each side.
Observation 1. Let $\theta \neq \alpha$ be a color class. The subgraph induced by color classes θ and α contains $2 n-1$ edges and since there are no bichromatic cycles, the subgraph induced is a hamiltonian path. We call this an (α, θ) hamiltonian path.

Observation 2. Let θ_{1} and θ_{2} be color classes with $n-1$ edges each. The subgraph induced by color classes θ_{1} and θ_{2} contains $2 n-2$ edges. Since there are no bichromatic cycles, the subgraph induced consists of exactly two paths.

Note that there is a unique color missing at each vertex on each side of $K_{n, n}$. Let $m(u)$ be the color missing at vertex u. For $a_{1} \in A$ and $b_{1} \in B$, let $m\left(a_{1}\right)=m\left(b_{1}\right)=\beta$. Let the color of the edge $\left(a_{1}, b_{1}\right)=\gamma$. Clearly $\gamma \neq \alpha$ since otherwise there cannot be a (α, β) hamiltonian path, a contradiction to Observation [1 For $a_{2} \in A$ and $b_{2} \in B$, let $m\left(a_{2}\right)=m\left(b_{2}\right)=\gamma$. Its clear that $a_{1} \neq a_{2}$ and $b_{1} \neq b_{2}$. Consider the subgraph induced by the colors β and γ. In view of Observation 2 it consists of exactly two paths. One of them is the single edge (a_{1}, b_{1}). The other path has length $2 n-3$ and has a_{2} and b_{2} as end points.

Now we construct a $K_{n+1, n+1}$ from the above $K_{n, n}$ by adding a new vertex, a_{n+1} to side A and a new vertex, b_{n+1} to side B. Now for $u \in B$ color each edge $\left(a_{n+1}, u\right)$ by the color $m(u)$ and for $v \in A$ color each edge $\left(b_{n+1}, v\right)$ by the color $m(v)$. Assign the color α to the edge $\left(a_{n+1}, b_{n+1}\right)$. Clearly the coloring thus obtained is a proper coloring.

Now we know that there existed a (α, β) hamiltonian path in $K_{n, n}$ with a_{1} and b_{1} as end points. Recalling that $m\left(a_{1}\right)=$ $m\left(b_{1}\right)=\beta$, we have $\operatorname{color}\left(a_{n+1}, b_{1}\right)=\operatorname{color}\left(b_{n+1}, a_{1}\right)=\beta$. It is easy to see that in $K_{n+1, n+1}$ this path along with the edges $\left(a_{1}, b_{n+1}\right),\left(b_{n+1}, a_{n+1}\right)$ and $\left(a_{n+1}, b_{1}\right)$ forms a (α, β) hamiltonian cycle. In a similar way, for (α, γ) hamiltonian path that existed in $K_{n, n}$, we can see that in $K_{n+1, n+1}$, we have a corresponding (α, γ) hamiltonian cycle.

Recall that there was a (β, γ) bichromatic path starting from a_{2} and ending at b_{2} in $K_{n, n}$. In the $K_{n+1, n+1}$ we created, we have $c\left(a_{2}, a_{n+1}\right)=\gamma, c\left(a_{1}, b_{n+1}\right)=\beta, c\left(a_{n+1}, b_{1}\right)=\beta$ and $c\left(a_{n+1}, b_{2}\right)=\gamma$. Thus the above (β, γ) bichromatic path in $K_{n, n}$ along with the edges $\left(a_{2}, b_{n+1}\right),\left(b_{n+1}, a_{1}\right),\left(a_{1}, b_{1}\right),\left(b_{1}, a_{n+1}\right),\left(a_{n+1}, b_{2}\right)$ in that order. Thus we have 3 perfect matchings induced by the color classes α, β and γ whose pairwise union gives rise to hamiltonian cycles in $K_{n+1, n+1}$, a contradiction to Lemma 1 since $n+1$ is even.

References

[1] N. Alon, C. J. H. McDiarmid, and B. A. Reed, Acyclic coloring of graphs, Random Structures and Algorithms, 2 (1991), pp. 343-365.
[2] N. Alon, B. Sudakov, and A. Zaks, Acyclic edge-colorings of graphs, Journal of Graph Theory, 37 (2001), pp. 157-167.
[3] D. Bryant, B. M. Maenhaut, and I. M. Wanless, A family of perfect factorisations of complete bipartite graphs, Journal of Combinatorial Theory, Series A, 98 (2002), pp. 328-342.
[4] R. Diestel, Graph Theory, vol. 173, Springer Verlag, New York, 2 ed., 2000.
[5] I. Fiamcik, The acyclic chromatic class of a graph (russian), Math. Slovaca, 28 (1978), pp. 139-145.
[6] B. Grünbaum, Acyclic colorings of planar graphs, Israel Journal of Mathematics, 14 (1973), pp. 390-408.
[7] M. Molloy and B. Reed, Further algorithmic aspects of lovász local lemma, in Proceedings of the 30th Annual ACM Symposium on Theory of Computing, 1998, pp. 524-529.
[8] J. NĚSETŘIL AND N. C. WORMALD, The acyclic edge chromatic number of a random d-regular graph is $d+1$, Journal of Graph Theory, 49 (2005), pp. 69-74.

[^0]: *Computer Science and Automation department, Indian Institute of Science, Bangalore- 560012, India. manu@csa.iisc.ernet.in
 ${ }^{\dagger}$ (The Corresponding Author). Computer Science and Automation department, Indian Institute of Science, Bangalore- 560012, India. sunil@csa.iisc.ernet.in
 ${ }^{\ddagger}$ Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd., Rm Snow 405 Lawrence, KS 66045-7523. USA. kummini@math. ku . edu

