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A note on regular Ramsey graphs
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Abstract

We prove that there is an absolute constant C > 0 so that for every natural n there exists a triangle-

free regular graph with no independent set of size at least C
√

n log n.

1 Introduction

A major problem in extremal combinatorics asks to determine the maximal n for which there exists a graph

G on n vertices such that G contains no triangles and no independent set of size t. This Ramsey-type

problem was settled asymptotically by Kim [6] in 1995, after a long line of research; Kim showed that

n = Θ(t2/ log t). Recently, Bohman [1] gave an alternative proof of Kim’s result by analyzing the so-called

triangle-free process, as proposed by Erdős, Suen and Winkler [3], which is a natural way of generating a

triangle-free graph. Consider now the above problem with the additional constraint that G must be regular.

In this short note we show that the same asymptotic results hold up to constant factors. The main ingredient

of the proof is a gadget-like construction that transforms a triangle-free graph with no independent set of

size t, which is not too far from being regular, into a triangle-free regular graph with no independent set of

size 2t.

Our main result can be stated as follows.

Theorem 1.1. There is a positive constant C so that for every natural n there exists a regular triangle-free

graph G on n vertices whose independence number satisfies α(G) ≤ C
√
n logn.

Denote by R(k, ℓ) the maximal n for which there exists a graph on n vertices which contains neither a

complete subgraph on k vertices nor an independent set on ℓ vertices. Let Rreg(k, ℓ) denote the maximal n

for which there exists a regular graph on n vertices which contains neither a complete subgraph on k vertices
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nor an independent set on ℓ vertices. Clearly, for every k and ℓ one has Rreg(k, ℓ) ≤ R(k, ℓ). Theorem 1.1

states that Rreg(3, t) = Θ (R(3, t)) = Θ
(

t2

log t

)

.

2 Proof of Theorem 1.1

Note first that the statement of the theorem is trivial for small values of n. Indeed, for every n0 one can

choose the constant C in the theorem so that for n ≤ n0, C
√
n logn ≥ n, implying that for such values of n

a graph with no edges satisfies the assertion of the theorem. We thus may and will assume, whenever this

is needed during the proof, that n is sufficiently large.

The following well known theorem due to Gale and to Ryser gives a necessary and sufficient condition for

two lists of non-negative integers to be the degree sequences of the classes of vertices of a simple bipartite

graph. The proof follows easily from the max-flow-min cut condition on the appropriate network flow graph

(see e.g. [8, Theorem 4.3.18]).

Theorem 2.1 (Gale; Ryser). If d = (d1, . . . , dm) and d′ = (d′1, . . . , d
′

n) are lists of non-negative integers

with d1 ≥ . . . ≥ dm, d′1 ≥ . . . ≥ d′n and
∑

di =
∑

d′j then there exists a simple bipartite graph with degree

sequences d and d′ on each side respectively iff
∑m

i=1 min{di, s} ≥ ∑s

j=1 d
′

j for every 1 ≤ s ≤ n .

Corollary 2.2. Let a ≥ 1 be a real. If d = (d1, . . . , dm) is a list of non-negative integers with d1 ≥ . . . ≥ dm

and

d1 ≤ min

{

adm,
4am

(a+ 1)2

}

, (1)

then there exists a simple bipartite graph with degree sequence d on each side. In particular, this holds for

d1 ≤ min{2dm, 8m
9 }.

Proof. By Theorem 2.1 it suffices to check that for every s, 1 ≤ s ≤ m,
∑s

i=1 di ≤
∑m

i=1 min{di, s}. Suppose
this is not the case and there is some s as above so that

d1 + d2 + . . .+ ds >

m
∑

i=1

min{di, s}. (2)

If di < d1 for some i satisfying 2 ≤ i ≤ s, replace di by d1. Observe that by doing so the left hand side of

(2) increases by d1 − di, whereas the right hand side increases by at most this quantity, hence (2) still holds

with this new value of di. We can thus assume that d1 = d2 = · · · = ds. Note that if d1 ≤ s, then (2) cannot

hold, hence d1 > s. If di > d1/a for some i satisfying s+ 1 ≤ i ≤ m, then reducing it to d1/a (even if this is

not an integer), maintains (2), as the left hand side does not change, whereas the right hand side can only

decrease. Moreover, the new sequence still satisfies (1). Thus we may assume that in (2) di = d1/a for all

s+ 1 ≤ i ≤ m. Put d = di+1 (= di+2 = . . . = dm), then (2) gives

d1 + . . .+ ds = s · (ad) >
m
∑

i=1

min{di, s} = s2 + (m− s)d.

Therefore [(a+ 1)s−m]d > s2, implying that (a+ 1)s−m > 0, that is, s > m
a+1 , and

d >
s2

(a+ 1)s−m
. (3)
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The function g(s) = s2

(a+1)s−m
attains its minimum in the range m

a+1 < s ≤ m at s = 2m
a+1 and its value at this

point is 4m
(a+1)2 . We thus conclude from (3) that d > 4m

(a+1)2 and hence that d1 = ad > 4am
(a+1)2 contradicting

the assumption (1). This completes the proof.

Remark 2.3. Condition (1) is tight for all values of a > 1, in the sense that if d1 > 4am
(a+1)2 and d1 = d2 . . . =

ds for s = 2m
a+1 with di =

4m
(a+1)2 for all s+ 1 ≤ i ≤ m, then there is no simple bipartite graph whose degree

sequence in each side is (d1, d2, . . . , dm). This follows from Theorem 2.1.

Let R(n, 3, t) denote the set of all triangle-free graphs G on n vertices with α(G) < t. As usual, let ∆(G)

and δ(G) denote the respective maximal and minimal degrees of G.

Proposition 2.4. Let t and d be integers. If there exists a graph G ∈ R(n, 3, t) such that ∆(G) − δ(G) ≤
d ≤ 4

9 ·
⌊

n
∆(G)+1

⌋

, then there exists a (d+∆(G))-regular graph G′ ∈ R(2n, 3, 2t− 1).

Proof. Construct a new graph G′ as follows. Take two copies of G, and color each of these copies by the

same equitable coloring using ∆(G) + 1 colors with all color classes of cardinality either ⌊n/(∆(G) + 1)⌋
or ⌈n/(∆(G) + 1)⌉ using the Hajnal-Szemerédi Theorem [4] (see also a shorter proof due to Kierstead and

Kostochka [5]). Let C and C′ be the same color class in each of the copies of G. Denote the degree sequence

of the vertices of C in G by d′1 ≤ . . . ≤ d′m, where m = |C|, and set di = d + ∆(G) − d′i. According to

Corollary 2.2 there exists a simple bipartite graph with m vertices on each side, where the degree sequence

of each side is d1 ≥ . . . ≥ dm as the maximal degree d1 = d+∆(G)− δ(G) ≤ 2d, the minimal degree dm ≥ d,

and by our assumption on G we have d1 ≤ 8m
9 . We can thus connect the vertices of C and C′ using this

bipartite graph such that all vertices in C ∪ C′ have degree d +∆(G). By following this method for every

color class, we create the graph G′ which is (d+∆(G))-regular, triangle-free and has no independent set of

cardinality 2t− 1.

2.1 The H-free process and Bohman’s result

Consider the following randomized greedy algorithm to generate a graph on n labeled vertices with no H-

subgraph for some fixed graph H . Given a set of n vertices, a sequence of graphs {G(H)
i }ti=0 on this set

of vertices is constructed. Start with G
(H)
0 as the empty graph, and for each 0 < i ≤ t, the graph G

(H)
i

is defined by G
(H)
i−1 ∪ {ei} where ei is chosen uniformly at random from all unselected pairs of vertices that

do not create a copy of H when added to G
(H)
i−1 . The process terminates at step t, the first time that no

potential unselected pair et+1 exists. This algorithm is called the H-free process.

The K3-free process was proposed by Erdős, Suen and Winkler [3] and was further analyzed by Spencer

[7]. Recently, Bohman [1] extending and improving previous results, was able to analyze the K3-free process

and to show that with high probability it passes through an almost regular Ramsey-type graph.

Theorem 2.5 (Bohman [1]). With high probability1 there exists an integer 1 ≤ m = m(n) such that the

following properties hold simultaneously:

1. G
(K3)
m ∈ R(n, 3, C

√
n logn) for some absolute constant C > 0;

2. ∆(G
(K3)
m ) = Θ(

√
n logn);

1In this context we mean that the mentioned events hold with probability tending to 1 as n, the number of vertices, goes to

infinity.
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3. ∆(G
(K3)
m )− δ(G

(K3)
m ) = o(

√

n/ logn).

Remark 2.6. Item (3) can be derived implicitly from [1], or alternatively, it follows from [2, Theorem 1.4],

as the degree of every vertex is a trackable extension variable.

Note that Proposition 2.4 in conjunction with Theorem 2.5 completes the proof of Theorem 1.1 for every

large enough even integer n. To fully complete the proof, we describe how to deal with the case of n odd.

So, let now n be be large enough and odd. Our aim is to show the existence of a regular triangle-free graph

Gn on n vertices with α(Gn) = O(
√
n logn). The approach we take to achieve this goal is to construct a

“big” graph satisfying our Ramsey conditions on an even number of vertices, and to add to it a “small”

graph with an odd number of vertices without affecting the asymptotic results claimed.

For every k = 0 (mod 5), and every even r ≤ 2k/5, let Hk,r denote a graph constructed as follows.

Start with a copy of C5 blown up by factor of k/5 and delete from the resulting graph (2k/5− r/2) disjoint

2-factors (which exist by Petersen’s Theorem, see e.g. [8, Theorem 3.3.9]). Hk,r is hence a triangle-free

r-regular graph on k vertices.

Denote by Fn an r-regular triangle-free graph on 2n vertices with α(Fn) ≤ C
√
n logn for some absolute

constant C, and furthermore assume r is even (this can be achieved by choosing the appropriate parameter

d in Proposition 2.4, as we have much room to spare with the values we plug in from Theorem 2.5). Let

n0 = (n− k)/2, where k = 5 (mod 10), and k = (1+ o(1))5C2
√
n logn. Clearly, n0 is integer. The graph Fn0

is r-regular for some even r ≤ α(Fn0
), is triangle-free on 2n0 vertices, and satisfies α(Fn0

) ≤ C
√
n0 logn0 ≤

C
√
n logn. Now, define Gn to be a disjoint union of Fn0

and Hk,r. Clearly, Gn has 2n0 + k = n vertices, is

r-regular, triangle-free and satisfies α(Gn) = α(Fn0
)+α(Hk,r) ≤ α(Fn0

)+k ≤ C
√
n logn+k = O(

√
n logn).

3 Discussion

A natural question that extends the above is to try and determine Rreg(k, ℓ) for other values of k and ℓ (in

particular for fixed values of k > 3 and ℓ arbitrary large), and also to try and investigate its relation with

R(k, ℓ). The following conjecture seems plausible.

Conjecture 3.1. For every k ≥ 2 there is a constant ck > 0 so that Rreg(k, ℓ) ≥ ckR(k, ℓ) for all ℓ ≥ 2.

This is trivial for k = 2, and by our main result here holds for k = 3 as well.

Recently, Bohman and Keevash [2] were able to generalize the techniques of [1] for the H-free process,

where H is a strictly 2-balanced graph. This in turn provided new lower bounds for R(k, ℓ) (as complete

graphs are strictly 2-balanced) where k is fixed and ℓ arbitrarily large. It is plausible to think that these

results can also be used to construct regular Ramsey graphs in a manner similar to that described in this

note. Nonetheless, since the asymptotic behavior of R(k, ℓ) is not known for k ≥ 4, a complete proof of

Conjecture 3.1 appears to require some additional ideas, and remains open.
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