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A CLASS OF SYMMETRIC GRAPHS WITH

2-ARC-TRANSITIVE QUOTIENTS

BIN JIA, ZAI PING LU, AND GAI XIA WANG

Abstract. Let Γ be a finite X-symmetric graph with a nontrivial X-
invariant partition B on V (Γ) such that ΓB is a connected (X, 2)-arc-
transitive graph and Γ is not a multicover of ΓB. A characterization
of (Γ, X,B) was given in [20] for the case where |Γ(C) ∩ B| = 2 for
B ∈ B and C ∈ ΓB(B). This motivates us to investigate the case
where |Γ(C) ∩ B| = 3, that is, Γ[B,C] is isomorphic to one of 3K2,
K3,3 − 3K2 and K3,3. This investigation requires a study on (X, 2)-
arc-transitive graphs of valency 4 or 7. Based on the results in [14], we
give a characterization of tetravalent (X, 2)-arc-transitive graphs; and
as a byproduct, we prove that every tetravalent (X, 2)-transitive graph
is either the complete graph on 5 vertices or a near n-gonal graph for
some n ≥ 4. We show that a heptavalent (X, 2)-arc-transitive graph Σ

can occur as ΓB if and only if X
Σ(τ)
τ

∼= PSL(3, 2) for τ ∈ V (Σ).

Keywords. Symmetric graph, quotient graph, three-arc graph, double
star graph, near n-gonal graph.

1. Introduction

In this paper, all graphs are assumed to be finite, nonempty, simple and
undirected. This paper involves graphs, permutation groups and designs,
the reader is referred to [3], [4] and [2] respectively for the notation and
terminology not mentioned here.

Let Σ be a regular graph with vertex set V (Σ) and edge set E(Σ). By
val(Σ) we denote the valency of Σ. For an integer s ≥ 1 and an (s + 1)-
sequence � = (α0, α1, . . . , αs) of V (Σ), set �

−1 := (αs, αs−1, . . . , α0), � is
called an s-arc of Σ if {αi, αi+1} ∈ E(Σ) for i = 0, 1, . . . , s − 1, and αi−1 6=
αi+1 for i = 1, 2, . . . , s − 1. An s-arc � = (α0, α1, . . . , αs) is called an s-
dipath if αi 6= αj for i, j ∈ {0, 1, . . . , s} with i 6= j. Evidently, � is an
s-arc (s-dipath, respectively) of Σ if and only if �−1 is an s-arc (s-dipath,
respectively) of Σ. For any s-dipath � = (α0, α1, . . . , αs) of Σ, identifying
� and �

−1 gives rise to an s-path [α0, α1, . . . , αs] of Σ. Denote by Arcs(Σ)
(Paths(Σ), respectively) the set of s-arcs (s-paths) of Σ. In the case where
s = 1, we use arc and Arc(Σ) in place of 1-arc and Arc1(Σ), respectively.
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Let X be a group acting on V (Σ). The induced action of X on V (Σ) ×
V (Σ) is defined by (τ, σ)x = (τx, σx) for (τ, σ) ∈ V (Σ)× V (Σ) and x ∈ X.
We say that X preserves the adjacency of Σ if Arc(Σ)x = Arc(Σ), for all
x ∈ X. The graph Σ is said to be X-vertex-transitive if X preserves the
adjacency of Σ and acts transitively on V (Σ); and Σ is said to be (X, s)-arc-
transitive ((X, s)-arc-regular, respectively) if in addition the induced action
of X on Arcs(Σ) is transitive (regular, respectively). Further, Σ is said
to be (X, s)-transitive if Σ is (X, s)-arc-transitive but is not (X, s + 1)-arc-
transitive. An (X, 1)-arc-transitive graph is usually called an X-symmetric
graph. For τ ∈ V (Σ), we denote by Xτ the point-stabilizer of τ in X.
It is well-known that, for s ∈ {1, 2}, an X-vertex-transitive graph Σ is
(X, s)-arc-transitive if and only if Xτ is s-transitive on the neighborhood
Σ(τ) := {σ ∈ V (Σ)

∣

∣ (τ, σ) ∈ Arc(Σ)} of τ in Σ. The reader is referred to
[1] for basic results about symmetric graphs.

Let Γ be a finite X-symmetric graph admits a nontrivial X-invariant
partition B on V (Γ), that is, 1 < |B| < V (Γ) and Bx := {vx

∣

∣ v ∈ B} ∈ B
for B ∈ B and x ∈ X. (Such a graph is said to be an imprimitive X-
symmetric graph.) The quotient graph ΓB of Γ with respect to B is defined
to be the graph with vertex set B such that, for B,C ∈ B, B is adjacent to
C in ΓB if and only if there exists some v ∈ B adjacent to some u ∈ C in Γ.
It is easy to see that X acts transitively on the vertex set and on the arc set
of ΓB, that is, ΓB is X-symmetric. We always assume that ΓB has at least
one edge, which implies that each B ∈ B is an independent set of V (Γ).

It has been observed in the literature that the quotient graphs of an
(X, 2)-arc-transitive graph are usually not (X, 2)-arc-transitive, and that an
X-symmetric graph with an (X, 2)-arc-transitive quotient itself is not neces-
sarily (X, 2)-arc-transitive. (For example, several examples are given in [5, 6]
for the first situation; and for the second situation, it is shown in [14] that
every connected (X, 3)-arc-transitive graph is a quotient graph of at least
one X-symmetric graph which is not (X, 2)-arc-transitive.) This observation
gave rise to a series of intensively studies of the following two questions (Q1)
and (Q2) [20, 10] by investigating ‘local’ structures of imprimitive symmetric
graphs and their quotient graphs.

(Q1) When can ΓB be (X, 2)-arc-transitive?
(Q2) What information of the structure of Γ can we obtain from an (X, 2)-

arc-transitive quotient ΓB of Γ?

For B ∈ B and v ∈ V (Γ), we set Γ(B) :=
⋃

u∈B Γ(u), ΓB(B) := {C ∈

B
∣

∣ (B,C) ∈ Arc(ΓB)} and ΓB(v) := {C ∈ B
∣

∣ v ∈ Γ(C)}. Let D(B) :=
(B,ΓB(B), |) denote the incidence structure such that v|C for v ∈ B, C ∈
ΓB(B) if and only if C ∈ ΓB(v). For any B ∈ B, C ∈ ΓB(B) and v ∈ B, as Γ
is X-symmetric, v := |B|, k := |Γ(C)∩B|, r := |ΓB(v)| and b := val(ΓB) are
independent of the choice of B and v, and D(B) is an XB-flag-transitive 1-
(v, k, r) design with b blocks [14, Lemma 2.1]. Γ is said to be a multicover of
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ΓB if k = v. For (B,C) ∈ Arc(ΓB), denote by Γ[B,C] the bipartite subgraph
of Γ induced by (Γ(C) ∩ B) ∪ (Γ(B) ∩ C). Then Γ[B,C] is independent of
the choice of (B,C) ∈ Arc(ΓB) up to isomorphism, and XB ∩ XC acts
transitively on the edges of Γ[B,C].

Without doubt, the triple (ΓB,Γ[B,C],D(B)) mirrors ‘global’ and ‘local’
information of the structure of Γ, which allows us to reconstruct Γ in some
sense. This approach to imprimitive symmetric graphs have received atten-
tion in the literature. Gardiner and Praeger [7] suggested to analyse these
three configurations, (Γ,Γ[B,C],D(B)), and they discussed the case when
Γ is X-locally primitive, that is, the stabilizer of a vertex v ∈ V (Γ) in X
acts primitively on the neighbourhood Γ(v) of the vertex in Γ. In [8, 9]
they considered the case when the quotient ΓB is a complete graph and the
setwise stabiliser XB (the subgroup of X fixing B setwise) is 2-transitive on
B. Li, Praeger and Zhou [12] proved that, if k = v − 1 ≥ 2, then D(B)
contains no repeated blocks (that is, the subsets of B incident with distinct
blocks of D(B) are distinct) if and only if ΓB is (X, 2)-arc-transitive, and
further they found an elegant construction (called the 3-arc graph construc-
tion) for constructing all such graphs from ΓB. Iranmanesh, Praeger and
Zhou [10], Lu and Zhou [14] studied the case where the quotient ΓB is (X, 2)-
arc-transitive and obtained a series of interesting results. In particular, Lu
and Zhou [14] found the second type 3-arc graph construction, which led to
a classification [21] of a family of symmetric graphs. The reader is referred
to [16, 17, 18, 19, 20] for further more developments in this topic.

In answering the above two questions, a relatively explicit classification of
(Γ,X,B) has been given in [20], when ΓB is a connected (X, 2)-arc-transitive
graph such that 2 = k ≤ v−1. This motivated us in this paper to investigate
the case where k = 3, and then we give a characterization for this case.

For a groupX acting on a set V and a subset B of V , denote byX(B) (XB ,
respectively) the point-wise (set-wise, respectively) stabilizer of B in X, and
by XB

B the permutation group induced by XB on B. Then XB
B

∼= XB/X(B).

The following is a summary of the main results of this paper, which is a
sketch of our answer to (Q1) and (Q2) in the case where k = 3. More details
will be given in Theorem 4.1.

Theorem 1.1. Let Γ be an X-symmetric graph with an X-invariant parti-
tion B on V (Γ) such that k = 3 and val(ΓB) ≥ 2. Let B ∈ B. If X is faithful
on V (Γ) and Γ is not a multicover of ΓB, then ΓB is (X, 2)-arc-transitive if
and only if one of the following cases occurs.

(a) (v, b, r) = (4, 4, 3) and XB
B

∼= A4 or S4;
(b) (v, b, r) = (6, 4, 2) and XB

B
∼= A4 or S4;

(c) (v, b, r) = (7, 7, 3) and XB
B

∼= PSL(3, 2);
(d) v = 3b ≥ 6, r = 1 and XB acts 2-transitively on the blocks of D(B).
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2. Graphs constructed from given graphs

In this section, we aim to restate several graphs constructed from given
graphs, as well as some of their properties, which turn out to be useful in
a further characterization of (Γ,X,B) stated in Theorem 1.1. Hereafter, we
denote by G the set of triples (Γ,X,B) such that Γ is a finite X-symmetric
graph with a nontrivial X-invariant partition B on V (Γ), val(ΓB) ≥ 2 and Γ

is not a multicover of ΓB, and by Ĝ the subset of G such that ΓB is connected
and X acts faithfully on V (Γ), that is, ∩v∈V (Γ)Xv = 1.

The following two propositions are quoted from [14].

Proposition 2.1. Let Σ be a finite (X, 2)-arc-transitive graph with val(Σ) ≥
2. Let ∆ be a self-paired subset of Arc3(Σ), that is, �

−1 ∈ ∆ whenever � ∈
∆. Define ג := (∆,Σ)ג to be the graph with vertex set Path2(Σ) and edge set
{{[α0, α1, α2], [α1, α2, α3]}

∣

∣ (α0, α1, α2, α3) ∈ ∆}. Set Pτ := {[τ1, τ, τ2] ∈

Path2(Σ)
∣

∣ τ1, τ2 ∈ Σ(τ)} for τ ∈ V (Σ), and P := {Pσ

∣

∣ σ ∈ V (Σ)}. If ∆
is a self-paired X-orbit on Arc3(Σ), then (X,P,ג) ∈ G and Σ ∼= Pג .

The following lemma improves [14, Theorem 4.10].

Lemma 2.2. Let (Γ,X,B) ∈ G with b ≥ 3 and r = 2. Set

∆ :=







(C,B(v), B(u),D)

∣

∣

∣

∣

∣

∣

(v, u) ∈ Arc(Γ)
v ∈ B(v) ∈ B, u ∈ B(u) ∈ B
C ∈ ΓB(v),D ∈ ΓB(u), C 6= B(u),D 6= B(v)







.

Suppose that |Γ(D) ∩ B0 ∩ Γ(C)| 6= 0 for any 2-path [D,B0, C] of ΓB with
a given middle vertex B0 ∈ B. Then ΓB is (X, 2)-arc-transitive and λ :=
|Γ(D)∩B0∩Γ(C)| is independent of the choices of [D,B0, C] and B0; further,
∆ is a self-paired X-orbit on Arc3(ΓB), and either

(a) λ = 1 and Γ ∼= ;(∆,ΓB)ג or
(b) λ ≥ 2 and Γ admits a second nontrivial X-invariant partition

Q := {Γ(D) ∩B ∩ Γ(C)
∣

∣ [D,B,C] ∈ Path2(ΓB)}

on V (Γ), which is a proper refinement of B such that ΓQ
∼= .(∆,ΓB)ג

Proof. Note that b ≥ 3. Take three distinct blocks C,D,E ∈ ΓB(B0).
Since |Γ(D) ∩ B0 ∩ Γ(C)| 6= 0 and |Γ(E) ∩ B0 ∩ Γ(C)| 6= 0, there exist
v, u ∈ Γ(C) ∩ B0 with v ∈ Γ(D) and u ∈ Γ(E). Let v

′, u′ ∈ C be such
that (v, v′), (u, u′) ∈ Arc(Γ). Then (v, v′)x = (u, u′) for some x ∈ X as Γ is
X-symmetric. So v

x = u and v
′x = u

′, it implies Bx
0 = B0 and Cx = C,

hence x ∈ XB0 ∩XC . Further C,Dx, E ∈ ΓB(u), it follows that Dx = E as
r := |ΓB(u)| = 2. Thus XB0 ∩XC is transitive on ΓB(B0) \ {C}, it follows
that XB0 is 2-transitive on ΓB(B0). Therefore, ΓB is (X, 2)-arc-transitive.
Then, by [14], λ ≥ 1 is a constant number; and if λ = 1, ∆ is a self-paired
X-orbit on Arc3(ΓB) and Γ ∼= .(∆,ΓB)ג In the following we assume λ ≥ 2.
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We first show Q is an X-invariant partition of V (Γ). Take two arbitrary
2-paths [D1, B1, C1] and [D2, B2, C2] of ΓB. Suppose that there exists some
v ∈ V (Γ) such that v ∈ (Γ(D1) ∩ B1 ∩ Γ(C1)) ∩ (Γ(D2) ∩ B2 ∩ Γ(C2)).
Then B1 = B2 and Ci,Di ∈ ΓB(v) for i = 1, 2. Since r = 2, we have
that {C1,D1} = {C2,D2}, thus [D1, B1, C1] = [D2, B2, C2]. It follows that
Q is a partition of V (Γ). For any [D,B,C] ∈ Path2(ΓB) and x ∈ X, we
have [D,B,C]x = [Dx, Bx, Cx] ∈ Path2(ΓB) and so (Γ(D) ∩ B ∩ Γ(C))x =
Γ(Dx) ∩ Bx ∩ Γ(Cx) ∈ Q. Thus Q is X-invariant. Noting that Γ is not a
multicover of ΓB, we know |B| > |Γ(D) ∩ B ∩ Γ(C)| := λ ≥ 2, so Q is a
proper refinement of B. In particular, the pair (B,Q) gives an X-invariant
partition B̄ of V (ΓQ).

Consider the quotient graph (ΓQ)B̄ of ΓQ with respect to B̄. For any
2-path [D̄, B̄, C̄] of (ΓQ)B̄ and any v̄ ∈ V (ΓQ), we have |(ΓQ)B̄(v̄)| = 2 and
|ΓQ(D̄)∩ B̄∩ΓQ(C̄)| = 1. It follows from (a) that ΓQ

∼= ,B̄(ΓQ))ג ∆̄), where
∆̄ = {(C̄, B̄(v̄), B̄(ū), D̄)

∣

∣ (C,B(v), B(u),D) ∈ ∆}. Moreover, it is easily

shown that B̄ → B, B̄ 7→ B is an isomorphism from (ΓQ)B̄ to ΓB. Therefore,
ΓQ

∼= ,B̄(ΓQ))ג ∆̄) ∼= .(∆,ΓB)ג

For a finite X-symmetric graph Σ with valency no less than three, let
J(Σ) be the set of pairs ([τ1, τ, τ2], [σ1, σ, σ2]) of 2-paths of Σ such that σ ∈
Σ(τ)\{τ1, τ2}, τ ∈ Σ(σ)\{σ1, σ2}. A subset Λ of J(Σ) is said to be self-paired
if ([τ1, τ, τ2], [σ1, σ, σ2]) ∈ Λ always implies that ([σ1, σ, σ2], [τ1, τ, τ2]) ∈ Λ.

Proposition 2.3. Let Σ be a finite (X, 2)-arc-transitive graph with val(Σ) ≥
3 and let Λ be a self-paired X-orbit on J(Σ). Define a graph Ψ := Ψ(Σ,Λ)
with vertex set Path2(Σ) such that two 2-paths �,� are adjacent if and only
if (�,�) ∈ Λ. Then Ψ is X-symmetric and P is a nontrivial X-invariant
partition of V (Ψ) with Σ ∼= ΨP , where P is defined as in Proposition 2.1.

We now quote a result about 3-arc graphs [12].

Proposition 2.4. Let Σ be a finite (X, 2)-arc-transitive graph with val(Σ) ≥
3 and let ∆ be a self-paired X-orbit on Arc3(Σ). The 3-arc graph Ξ :=
Ξ(Σ,∆) with respect to ∆ is defined to be the graph with vertex set Arc(Σ)
such that two arcs (τ, τ1) and (σ, σ1) of Σ are adjacent in Ξ if and only if
(τ1, τ, σ, σ1) ∈ ∆. Then (Ξ,X,A) ∈ G and Σ ∼= ΞA, where A := {Aτ

∣

∣ τ ∈
V (Σ)} and Aτ := {(τ, σ)|σ ∈ Σ(τ)} for τ ∈ V (Σ).

Lemma 2.5. Let Σ, X, ∆ and Ξ be as in Proposition 2.4. Then rA :=
|ΞA((τ, τ1))| = val(Σ)− 1 and val(Ξ) = rAℓ, where (τ, τ1), (τ, σ) ∈ V (Ξ) =
Arc(Σ) and ℓ is the valency of Ξ[Aτ , Aσ ].

Proof. For any arc (τ, σ) of Σ, there is a 3-arc (τ1, τ, σ, σ1) ∈ ∆ as X
acts transitively on arcs of Σ. Then Aτ and Aσ are adjacent in ΞA. It
implies that val(Ξ) = rAℓ. So it suffices to show rA = val(Σ) − 1. Let
(σ′, σ′1) ∈ Arc(Σ). Note that ∆ is self-paired. Then {(τ, τ1), (σ

′, σ′1)} ∈ E(Ξ)
if and only if (τ1, τ, σ

′, σ′1) ∈ ∆. In particular, if Aσ′ ∈ ΞA((τ, τ1)) then
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τ1 6= σ′ and (τ, σ′) ∈ Arc(Σ). Then σ′, and hence Aσ′ , has at most val(Σ)−1
choices. So rA ≤ val(Σ) − 1. On the other hand, since Σ is (X, 2)-arc-
transitive, for any σ′ ∈ Σ(τ) with σ′ 6= τ1, there is some x ∈ X such that
(τ1, τ, σ, σ1)

x = (τ1, τ, σ
′, σx1 ) ∈ ∆. It follows that {(τ, τ1), (σ

′, σx1 )} ∈ E(Ξ),
and so Aσ′ ∈ ΞA((τ, τ1)). Then rA ≥ val(Σ)− 1. Thus rA = val(Σ)− 1.

3. Double star graphs

If (Γ,X,B) ∈ G such that ΓB is (X, 2)-arc-transitive then, by [14], Γ or
a quotient of Γ is isomorphic to one of |E(ΓB)|K2, ,(∆,ΓB)ג Ψ(ΓB,Λ) and
Ξ(ΓB,∆) for r = 1, 2, b−2 and b−1, respectively, where ∆ is a self-paired X-
orbit on Arc3(ΓB) and Λ is a self-paired X-orbit on J(ΓB). This motivates
us in this section to consider the general case where 1 ≤ r ≤ b − 1, and
introduce the stars and the double stars for a given graph. We shall show
that there is a close connection between Γ and the graph constructed from
a certain set of double stars of Σ := ΓB.

3.1. Stars of symmetric graphs. Let Σ be an X-symmetric graph with
valency no less that 2. For τ ∈ V (Σ) and an k-subset S of Σ(τ), we call
s(τ, S) := {(τ, σ) ∈ Arc(Σ)

∣

∣ σ ∈ S} a k-star of Σ with respect to τ and S.

Set Stkτ (Σ) := {s(τ, S)
∣

∣ S ⊆ Σ(τ), |S| = k} and Stk(Σ) := ∪τ∈V (Σ)St
k

τ (Σ).
A star s := s(τ, S) is said to be Xs-symmetric if Xτ ∩XS acts transitively
on S. A nonempty subset S of Stk(Σ) is said to be X-symmetric if S is
X-transitive and s is Xs-symmetric for some s ∈ S.

Let S be an X-symmetric subset of Stk(Σ). For τ ∈ V (Σ), set Sτ =
{s ∈ S

∣

∣ s = s(τ, S), S ⊆ Σ(τ), |S| = k}. Define an incidence structure
D(τ) := (Σ(τ),Sτ , ‖) in which σ‖s(τ, S), for σ ∈ Σ(τ), s(τ, S) ∈ Sτ , if
and only if σ ∈ S. A pair (σ, s) with σ‖s is said to be a flag of D(τ).
Let r := |{s(τ, S) ∈ Sτ

∣

∣ σ ∈ S}|,b := |Sτ | and v := val(Σ). Then it is
easy to see that D(τ) is an Xτ -flag-transitive 1-(v,k, r) design with b blocks.
Moreover, D(τ) is independent of the choice of τ ∈ V (Σ) up to isomorphism.

The following Lemma 3.1 says that, for τ ∈ V (Σ), an arbitrary Xτ -
flag-transitive 1-(v,k, r) design can be constructed as above in some sense.
Let D(τ) := (Σ(τ),B, I) be an Xτ -flag-transitive 1-(v,k, r) design. It
may happen that distinct blocks b1 and b2 of D(τ) have the same trace
{σ

∣

∣ σIb1} = {σ
∣

∣ σIb2}. Since D(τ) is flag-transitive, the number of blocks
with the same trace is a constant, say m(D(τ)), called the multiplicity of
D(τ). Let D

′(τ) be the design with vertex set Σ(τ) and blocks being the
traces of blocks of D(τ). Then D

′(τ) is an Xτ -flag-transitive 1-(v,k, r′)
design, where r′ = r

m(D(τ)) .

Lemma 3.1. Let Σ be an X-symmetric graph with valency v ≥ 2 and D(τ)
be an Xτ -flag-transitive 1-(v,k, r) design with b blocks, where 1 ≤ k ≤ v−1
and τ ∈ V (Σ). Set S := {s(τx, Sx)

∣

∣ x ∈ X,S ∈ D
′(τ)}. Then S is
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X-symmetric, and D
′(τ) ∼= D(τ) is an Xτ -flag-transitive 1-(v,k, r

m(D(τ)) )

design with b

m(D(τ)) blocks.

3.2. Double stars. Let L andR be k-subsets of Σ(τ) and Σ(σ) respectively,
set l = s(τ, L) and r = s(σ,R), the pair (l, r) is called a k-double star of Σ
if σ ∈ L and τ ∈ R. Denote by DStk(Σ) the set of k-double stars of Σ.
A nonempty subset Θ of DStk(Σ) is said to be X-symmetric if St(Θ) :=
{l, r

∣

∣ (l, r) ∈ Θ} is X-symmetric; and is self-paired if (l, r) ∈ Θ always
implies that (r, l) ∈ Θ.

Here we give a straightforward lemma by ignoring the proof.

Lemma 3.2. Let Σ be an X-symmetric graph with valency v ≥ 2 and k an
integer with 1 ≤ k ≤ v.

(a) If S is an X-symmetric orbit on Stk(Σ), then for l = s(τ, L), r =
s(σ,R) ∈ S with σ ∈ L and τ ∈ R, Θ := {(lx, rx)

∣

∣ x ∈ X} is an

X-symmetric orbit on DStk(Σ) and St(Θ) = S.
(b) Let Θ be an X-symmetric orbit on DStk(Σ) and let τ, σ ∈ V (Σ).

Then (τ, σ) ∈ Arc(Σ) if and only if there exist l := s(τ, L), r :=
s(σ,R) ∈ St(Θ) such that (l, r) ∈ Θ.

The following example shows that an X-symmetric orbit Θ of k-double
stars of an X-symmetric graph is not necessarily self-paired.

Example 3.3. Let Σ be a cubic (X, 2)-arc-regular graph with a 3-arc
(τ1, τ, σ, σ1) such that there is no x ∈ X maps this 3-arc into (σ1, σ, τ, τ1).
(See [1, 18c], for example.) Set L = {τ1, σ}, R = {σ1, τ}, l := s(τ, L) and
r = s(σ,R). Let Θ = {(lx, rx)

∣

∣ x ∈ X}. Then Θ is an X-symmetric orbit

on DSt2(Σ). However, it is easily shown that Θ is not self-paired.

Construction 3.4. Let Σ be an X-symmetric graph with valency v ≥ 2
and Θ be a self-paired X-symmetric orbit on DStk(Σ) with 1 ≤ k ≤ v − 1.
Define a graph Π(Σ,Θ), called the double star graph of Σ with respect to Θ,
with vertex set St(Θ) such that two k-stars l and r in St(Θ) are adjacent if
and only if (l, r) ∈ Θ.

Theorem 3.5. Let Σ, Θ and Γ := Π(Σ,Θ) be as in Construction 3.4. Set
S = St(Θ) and B = {Sτ

∣

∣ τ ∈ V (Σ)}, where Sτ = {s ∈ S
∣

∣ s = s(τ, S), S ⊆
Σ(τ), |S| = k}. Then (Γ,X,B) ∈ G such that ΓB

∼= Σ, and for B = Sτ ∈ B,
D(B) ∼= D∗(τ), where D∗(τ) is the dual design of D(τ).

Proof. It is easy to see that B is an X-invariant partition of V (Γ) = S.
For any s := s(τ, S) ∈ B := Sτ ∈ B, as 1 ≤ k = |S| ≤ v − 1, take σ ∈ S
and δ ∈ Σ(τ) \ S. Since Σ is X-symmetric, there exists g ∈ Xτ such that
δ = σg. Let l = s

g. Then s 6= l ∈ Sτ , thus v = |Sτ | ≥ 2, and hence B
is a nontrivial X-invariant partition of V (Γ). By Lemma 3.2, there exists
r ∈ Sδ such that (l, r) ∈ Θ, hence C := Sδ ∈ ΓB(B). If there exists r

′ ∈ Sδ
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such that (s, r′) ∈ Θ, then δ ∈ S, a contradiction. Thus s 6∈ B ∩ Γ(C) and
k = |B∩Γ(C)| ≤ v−1. Hence Γ is not a multicover of ΓB. It is easily shown
by using Lemma 3.2 that Γ is X-symmetric, and V (Σ) → V (ΓB), τ 7→ Sτ is
an isomorphism from Σ to ΓB.

For τ ∈ V (Σ) and B = Sτ , define a map π : B ∪ ΓB(B) → Sτ ∪
Σ(τ); s(τ, S) 7→ s(τ, S), C 7→ σ for s(τ, S) ∈ B = Sτ and C = Sσ ∈ ΓB(B).
Assume C = Sσ ∈ ΓB(B). Then by the definition of ΓB and the construction
of Γ there exist l = s(τ, L) ∈ B and r = s(σ,R) ∈ C such that (l, r) ∈ Θ.
In particular, σ ∈ L ⊆ Σ(τ). Thus π is well-defined. Moreover π is a bijec-
tion. By the definition of D(B), for s = s(τ, S) ∈ B and C = Sσ ∈ ΓB(B),
we know that s|C if and only if there is some t = s(σ, T ) ∈ C such that
(s, t) ∈ Θ, that is, τ ∈ T and σ ∈ S; it follows that σ‖s. Now assume that
σ′ ∈ Σ(τ) and s

′ = s(τ, S′) with σ′‖s′. Then σ′ ∈ S′. Take some t′ = s(τ ′, T ′)
such that (s′, t′) ∈ Θ. Then τ ′ ∈ S′. Since s′ is Xs′-symmetric, there is some
x ∈ Xτ ∩ XS′ with τ ′x = σ′. Thus s

′x = s
′, t

′x = s(σ′, T ′x) ∈ Sσ′ and
(s′, t′x) = (s′, t′)x ∈ Θ. Hence s

′|Sσ′ . The above argument says that π is an
isomorphism from D(B) to D∗(τ). So D(B) ∼= D∗(τ).

Here we give the following sufficient condition which is useful in deter-
mining whether or not a double star graph exists.

Theorem 3.6. Let Σ be an X-symmetric graph with valency v ≥ 2 and
let τ ∈ V (Σ). If there exists some Xτ -flag-transitive 1-(v,k, r) design D(τ)
on Σ(τ) for 1 ≤ k ≤ v − 1 such that r

m(D(τ)) is odd, then there exists a

self-paired X-symmetric orbit Θ on DStk(Σ).

Proof. By Lemma 3.1, setting S = {s(τx, Sx)
∣

∣ x ∈ X,S ∈ D
′(τ)}, we

know that D
′(τ) ∼= D(τ) is an Xτ -flag-transitive 1-(v,k, r

m(D(τ)) ) design

with b

m(D(τ)) blocks, and S is X-symmetric. Let (τ, σ) ∈ Arc(Σ). Then,

since Σ is X-symmetric, (τ, σ)y = (σ, τ) for some y ∈ X. Set S(τ,σ) =

{s(τ, S) ∈ Sτ

∣

∣ σ ∈ S}. Then r

m(D(τ)) = |S(τ,σ)| is odd, Sy

(τ,σ) = S(σ,τ) and

Sy2

(τ,σ)
= S(τ,σ). Let O be a 〈y2〉-orbit on S(τ,σ) with odd length l. Then

for l ∈ O, the stabilizer of l in 〈y2〉 is 〈y2l〉. Let z = yl and r = l
z. Then

(l, r)z = (r, l), and hence Θ := {(lx, rx)
∣

∣ x ∈ X} is a self-pairedX-symmetric

orbit on DStk(Σ) with St(Θ) = S.

The following Theorem 3.7 says that, for any X-symmetric graph Γ with
an nontrivial X-invariant partition, Γ or a quotient of Γ can be constructed
as in Construction 3.4.

Let (Γ,X,B) ∈ G. For B ∈ B and v ∈ B, define Bv = B∩(∩C∈ΓB(v)Γ(C)).
Then |Bv|, denoted by m∗(Γ,B) is independent of the choices of B and v.
Noting that Γ is not a multicover of ΓB, we have m

∗(Γ,B) ≤ k := |B∩Γ(C)|
for C ∈ ΓB(B). In fact, m∗(Γ,B) is the multiplicity of the dual design
D∗(B) of D(B). Set B = {Bv

∣

∣ B ∈ B, v ∈ B}. Then B is an X-invariant
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partition of V (Γ). For B ∈ B, we set B̄ = {Bv

∣

∣ v ∈ B}. Then ΓB is an

X-symmetric graph with an X-invariant partition B̄ := {B̄
∣

∣ B ∈ B} such

that (ΓB)B̄
∼= ΓB. Moreover, m∗(ΓB, B̄) = 1.

Theorem 3.7. Let (Γ,X,B) ∈ G. Set S = {s(B,ΓB(v))
∣

∣ B ∈ B, v ∈
B}. Then S is an X-symmetric orbit on Str(ΓB), where r = |ΓB(v)| is a
constant. Let Θ = {(l, r)

∣

∣ l = s(B,ΓB(v)), r = s(C,ΓB(u)), v ∈ B ∈ B, u ∈
C ∈ B, (v, u) ∈ Arc(Γ)}. Then Θ is a self-paired X-symmetric orbit on
DStr(ΓB) with St(Θ) = S and ΓB

∼= Π(ΓB,Θ), and X acts faithfully on B
if and only X acts faithfully on B.

Proof. It is easily shown that Θ is a self-paired X-symmetric orbit on
DStr(ΓB) with St(Θ) = S. Assume m∗(Γ,B) = 1. Then, for two distinct
vertices v ∈ B ∈ B and u ∈ C ∈ B of Γ, Bv = {v} and Cu = {u}, it
implies ΓB(v) 6= ΓB(u), and hence s(B,ΓB(v)) 6= s(C,ΓB(u)). Thus V (Γ) →
V (Π(ΓB)), v 7→ s(B,ΓB(v)) is a bijection. Further, it is easy to see this
bijection is in fact an isomorphism between Γ and Π(ΓB,Θ).

Now assumem∗(Γ,B) > 1. Recall thatm∗(Γ,B) ≤ k := |B∩Γ(C)| for C ∈
ΓB(B). Then B is a proper refinement of B. Consider ΓB with X-invariant
partition B̄. Then m∗(ΓB, B̄) = 1. Then a similar argument as above leads

to ΓB
∼= Π(Σ, Θ̄), where Σ = (ΓB)B̄ and Θ̄ = {(̄l, r̄)

∣

∣ l̄ = s(B̄,Σ(Bv)), r̄ =

s(C̄,Σ(Cu)), Bv ∈ B̄ ∈ B̄, Cu ∈ C̄ ∈ B̄, (Bv, Cu) ∈ Arc(ΓB)}. Noting that
Bv = Bv′ for any v

′ ∈ Bv, it follows that s(B̄,Σ(Bv)) 7→ s(B,ΓB(v)) gives a
bijection between V (Π(Σ, Θ̄)) and V (Π(ΓB,Θ)), which is in fact an isomor-
phism between Π(Σ, Θ̄) and Π(ΓB,Θ). Hence ΓB

∼= Π(ΓB,Θ).

Let K and H be the kernels of X acting on B and on B respectively.
Noting that B is a refinement of B, we have H ≤ K. Let x ∈ K and Bv ∈
B̄ ∈ B. Since m∗(ΓB, B̄) = 1, we have {Bv} = B̄ ∩ (∩C̄∈(ΓB)B̄(Bv )ΓB(C̄)) =

B̄∩(∩C∈ΓB(v)ΓB(C̄)), yielding Bx
v = Bv. The above argument implies x ∈ H.

Hence K ≤ H, and so H = K. Therefore, X acts faithfully on B (that is,
K = 1) if and only X acts faithfully on B (that is, H = 1).

Finally, we list a simple fact which will be used in the following sections.

Theorem 3.8. Let (Γ,X,B) ∈ G and B ∈ B. If m∗(Γ,B) = 1 and

m(D(B)) = 1, then XB
B

∼= X
ΓB(B)
B .

Proof. If x ∈ X fixes B set-wise, then it also fixes the neighborhood ΓB(B)
of B in ΓB. Now consider the action of XB on ΓB(B), and let K be the
kernel of this action. For any v ∈ B, since m∗(Γ,B) = 1, we have {v} =
B∩(∩C∈ΓB(v)Γ(C)). It follows that K fixes v. ThusK ≤ X(B). On the other
hand, x fixes B ∩ Γ(C) point-wise for any x ∈ X(B) and any C ∈ ΓB(B),
in particular, B ∩ Γ(Cx) = (B ∩ Γ(C))x = B ∩ Γ(C). It follows from
m(D(B)) = 1 that C = Cx. Therefore, x ∈ K. Thus X(B) ≤ K, and so

X(B) = K. Then XB
B

∼= XB/X(B) = XB/K ∼= X
ΓB(B)
B .
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4. The main result

We state the main result of this paper in this section and prove it in the
next four sections.

To state the result we need the following concept. A near n-gonal graph [15]
is a connected graph Σ of girth at least 4 together with a set E of n-cycles
of Σ such that each 2-arc of Σ is contained in a unique member of E .

Let (Γ,X,B) ∈ G. For a subgraph ∆ of Γ, denote by X[∆] the subgroup

of X which preserves the adjacency of ∆, and set X
[∆]
[∆] = X[∆]/X(V (∆)).

Recall that, for v ∈ B ∈ B and C ∈ ΓB(B), the parameters v := |B|,
k := |Γ(C) ∩ B|, r := |ΓB(v)| and b := val(ΓB) are independent of the
choices of B and v, and D(B) is an XB-flag-transitive 1-(v, k, r) design with
b blocks. Now we are ready to state the main result of this paper.

Theorem 4.1. Let (Γ,X,B) ∈ Ĝ and B ∈ B. Let e = |E(ΓB)|, µ = |V (ΓB)|.
Suppose that k = 3. Then ΓB is (X, 2)-arc-transitive if and only if one of
the following four cases occurs.

(a) (v, b, r) = (4, 4, 3), XB
B

∼= A4 or S4;

(b) (v, b, r) = (6, 4, 2), XB
B

∼= A4 or S4;
(c) (v, b, r) = (7, 7, 3), XB

B
∼= PSL(3, 2);

(d) v = 3b ≥ 6, r = 1 and XB acts 2-transitively on the blocks of D(B).

Furthermore, if case (a) occurs, then Γ ∼= Ξ(ΓB,∆) for some self-paired X-
orbit ∆ on Arc3(ΓB), X acts faithfully on B, and any connected tetravalent
(X, 2)-arc-transitive graph can occur as ΓB; moreover, one of the following
three statements holds.

(a.1) Γ[B,C] ∼= 3K2, val(Γ) = 3, there exists an X-orbit E of n-cycles

of ΓB with |E| = m such that ∆ = ∪C∈EArc3(C), X
[C]
[C]

∼= D2n for

each C ∈ E, where m ≥ 6 and n ≥ girth(ΓB) with mn = 3e = 6µ.
Moreover, either ΓB

∼= K5 or ΓB is a near n-gonal graph with respect
to E; either XB

∼= A4, Γ is (X, 1)-arc-regular and ΓB is (X, 2)-arc-
regular; or XB

∼= S4 and Γ is (X, 2)-arc-regular.
(a.2) Γ[B,C] ∼= K3,3 − 3K2, val(Γ) = 6, XB

∼= S4, and Γ is connected
and (X, 1)-arc-regular. Further, ∆′ := Arc3(ΓB) \∆ is a self-paired
X-orbit on Arc3(ΓB), and there exists an X-orbit E of n-cycles of

Σ with |E| = m, such that ∆′ = ∪C∈EArc3(C), X
[C]
[C]

∼= D2n for

each C ∈ E, where m ≥ 6 and n ≥ girth(Σ) with mn = 3e = 6µ.
Moreover, either ΓB

∼= K5 or ΓB is a near n-gonal graph.
(a.3) Γ[B,C] ∼= K3,3, val(Γ) = 9, Γ is connected and (X, 1)-transitive,

and ΓB is (X, 3)-arc transitive.

If case (b) holds, then Γ ∼= (∆,ΓB)ג ∼= Ψ(ΓB,Λ) for some self-paired X-orbit
∆ on Arc3(ΓB) and some self-paired X-orbit Λ on J(ΓB), X acts faithfully
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on B, and any connected tetravalent (X, 2)-arc-transitive graph can occur as
ΓB; moreover, one of the following three cases occurs.

(b.1) Γ[B,C] ∼= 3K2, Γ ∼= mCn, and there exists an X-orbit E of n-cycles

of ΓB with |E| = m, such that ∆ = ∪C∈EArc3(C), X
[C]
[C]

∼= D2n for

each C ∈ E, where m ≥ 6 and n ≥ girth(ΓB) with mn = 3e = 6µ.
Moreover, either ΓB

∼= K5 or ΓB is a near n-gonal graph with respect
to E; either XB

∼= A4, Γ is (X, 1)-arc-regular and ΓB is (X, 2)-arc-
regular, or XB

∼= S4 and Γ is not (X, 1)-arc-regular.
(b.2) Γ[B,C] ∼= K3,3 − 3K2, val(Γ) = 4, XB

∼= S4, Γ is connected and
(X, 1)-arc-regular. Further, ∆′ := Arc3(ΓB) \∆ is a self-paired X-
orbit on Arc3(ΓB), and there exists an X-orbit E of n-cycles of Σ

with |E| = m, such that ∆′ = ∪C∈EArc3(C), X
[C]
[C]

∼= D2n for each

C ∈ E, where m ≥ 6 and n ≥ girth(Σ) with mn = 3e = 6µ.
Moreover, either ΓB

∼= K5 or ΓB is a near n-gonal graph.
(b.3) Γ[B,C] ∼= K3,3, val(Γ) = 6, Γ is connected and (X, 1)-transitive,

and ΓB is (X, 3)-arc transitive.

If case (c) holds, then Γ ∼= Π(ΓB,Θ) for some self-paired X-symmetric or-
bit Θ on DSt3(ΓB), X acts faithfully on B, one connected heptavalent X-

symmetric graph Σ can occur as ΓB, if and only if X
Σ(τ)
τ

∼= PSL(3, 2) for
τ ∈ V (Σ); further, one of the following three cases occurs.

(c.1) Γ[B,C] ∼= 3K2, val(Γ) = 3, Γ is (X, 2)-arc-transitive but not (X, 2)-
arc-regular.

(c.2) Γ[B,C] ∼= K3,3 − 3K2, val(Γ) = 6, Γ is connected and is (X, 1)-
transitive.

(c.3) Γ[B,C] ∼= K3,3, val(Γ) = 9, Γ is connected and is (X, 1)-transitive.

If case (d) occurs, then one of the following three cases occurs.

(d.1) Γ[B,C] ∼= 3K2, Γ ∼= 3eK2.
(d.2) Γ[B,C] ∼= K3,3 − 3K2, Γ ∼= e(K3,3 − 3K2).
(d.3) Γ[B,C] ∼= K3,3, Γ ∼= eK3,3.

5. Self-paired orbits of 3-arcs

We begin this section by showing that there always exists a self-paired
X-orbit of 3-arcs for any symmetric graph of even valency.

Theorem 5.1. Any X-symmetric graph Σ of even valency v ≥ 2 contains
a self-paired X-orbit ∆ on Arc3(Σ).

Proof. For any (τ, σ) ∈ Arc(Σ), as Σ is X-symmetric, there exists y ∈ X

such that (τ, σ)y = (σ, τ), and so (Σ(τ)\{σ})y = Σ(σ)\{τ}, (Σ(τ)\{σ})y
2
=

Σ(τ) \ {σ}. Since |Σ(τ) \ {σ}| = v − 1 is odd, there must be some 〈y2〉-
orbit O on Σ(τ) \ {σ} with odd length l. For τ1 ∈ O, the stabilizer of
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τ1 in 〈y2〉 is 〈y2l〉. Let z = yl, σ1 = τ z1 and � = (τ1, τ, σ, σ1). Since l is

odd, (τ, σ)z = (τ, σ)y
l

= (σ, τ). Then � ∈ Arc3(Σ) and �

z = �

−1. Thus
∆ = {(τx1 , τ

x, σx, σx1 )
∣

∣ x ∈ X} is a self-paired X-orbit on Arc3(Σ).

Let Σ be an X-symmetric graph with valency v ≥ 2 and ∆ be an X-orbit
on Arc3(Σ). For any � := (τ1, τ, σ, σ1) ∈ ∆, consider the action of X(τ1,τ,σ)

on Σ(σ)\{τ}, and denote by O1, O2, . . . , Ot the orbits of this action. Without
loss of generality, assume σ1 ∈ O1 and |O2| ≤ |O3| ≤ . . . ≤ |Ot|. Since ∆ is
an X-orbit of 3-arcs, all ℓi(∆) := |Oi| ≥ 1 are independent of the choice of
� ∈ ∆. Set l(∆) = (ℓ1(∆), . . . , ℓt(∆)).

Theorem 5.2. Let Σ be a connected (X, 2)-arc-transitive graph with valency
v ≥ 3 and ∆ be a self-paired X-orbit on Arc3(Σ) such that ℓ1(∆) = 1. If
X is faithful on V (Σ), then Xτ is faithful on Σ(τ) for τ ∈ V (Σ). Set
µ = |V (Σ)| and e = |E(Σ)|. Then (∆,Σ)ג ∼= mCn such that

(1) m ≥ v(v−1)/2, n ≥ girth(Σ) ≥ 3 and mn = µv(v−1)/2 = e(v−1);
(2) there exists an X-orbit E of n-cycles of Σ with ∆ = ∪C∈EArc3(C)

and |E| = m;

(3) X
[C]
[C]

∼= D2n for C ∈ E, where D2n is the dihedral group of order 2n;

(4) every 2-path of Σ is contained in a unique member of E, and either
Σ ∼= K

v+1 (the complete graph on v+1 vertices), or n ≥ girth(Σ) ≥
4 and Σ is a near n-gonal graph with respect to E.

Proof. Since Σ is (X, 2)-arc-transitive, every 2-arc of Σ lies in a member of
∆. Let (τ, σ) be an arbitrary arc of Σ. Since ℓ1(∆) = 1 and ∆ is a self-
paired X-orbit, we conclude that, for any τ1 ∈ Σ(τ) \ {σ} there is a unique
σ1 ∈ Σ(σ) \ {τ} such that (τ1, τ, σ, σ1) ∈ ∆, X(τ1,τ,σ) = X(τ,σ,σ1), and that

(τ ′1, τ, σ, σ1) ∈ ∆ implies τ ′1 = τ . Then (Xτ )(Σ(τ)) = ∩τ1∈Σ(τ)\{σ}X(τ1,τ,σ) =
∩σ1∈Σ(σ)\{τ}X(τ,σ,σ1) = (Xσ)(Σ(σ)). It follows from the connectedness of Σ
that (Xτ )(Σ(τ)) fixes every vertex of Σ. Thus, if X is faithful on V (Σ), then
(Xτ )(Σ(τ)) = 1 and Xτ is faithful on Σ(τ).

Let ג = .(∆,Σ)ג By Proposition 2.1, ג is X-symmetric and admits an
X-invariant partition P := {Pσ

∣

∣ σ ∈ V (Σ)} such that Σ ∼= Pג , where Pσ

is the set of 2-paths of Σ with middle vertex σ. It follows from [14] that
r := Pג| (v)| = 2 and λ := |Pδ ∩ Pτ)ג ) ∩ |(Pσ)ג = 1 for any vertex v (a
2-path of Σ) in V (ג) and Pδ with v ∈ Pδ and Pג (v) = {Pτ , Pσ}. Since
ℓ1(∆) = 1 and ∆ is self-paired, for any 2-path [τ1, τ, σ] of Σ, there exist
exactly two 2-paths [τ, σ, σ1] and [τ2, τ1, τ ] such that (τ1, τ, σ, σ1) ∈ ∆ and
(τ2, τ1, τ, σ) ∈ ∆. It follows that ג is of valency two, and that ג is a disjoint
union of cycles. Assume ג ∼= mCn. Then mn is the number of 2-paths of Σ,
and hence mn = µv(v − 1)/2 = e(v − 1). Noting that ג is of valency 2 and
every Pσ is an independent set of V ,(ג) it follows that different vertices in
Pσ appear in different n-cycles of .ג Thus m ≥ |Pσ | = v(v − 1)/2.
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Let C = [v1, v2, . . . , vn, v1] be an arbitrary n-cycle of ,ג where vi =
[τi, σi, δi] are n distinct 2-paths of Γ with middle vertices σi, respectively.
Without loss of generality, we assume δi = σi+1 = τi+2 for 1 ≤ i ≤ n,
where subscripts are reduced modulo n. Since vi is a 2-path, σi 6= δi, hence
σi 6= σi+1. Then (σi, σi+1) ∈ Arc(Σ). Since {vi, vi+1} is an edge of ,ג we
have (σi−1, σi, σi+1, σi+2) = (τi, σi, δi, δi+1) ∈ ∆.

Now we shall show C = [σ1, σ2, . . . , σn, σ1] is an n-cycle of Σ. In par-
ticular, n ≥ girth(Σ) ≥ 3. Note that C is a component of .ג Then C

is X[C]-symmetric; in particular, X
[C]
[C]

∼= D2n, the dihedral group of order

2n. Thus there exist x, y ∈ X[C] such that v
x
i = vi+1 and v

y
i = vn−i+1,

hence σxi = σi+1 and σyi = σn−i+1 for 1 ≤ i ≤ n with subscripts mod-
ulo n. Assume that σi = σj for some i and j. Then σi+1 = σxi = σxj =
σj+1 and σi+2 = σxi+1 = σxj+1 = σj+2. Thus Pσi

= Pσj
, Pσi+1 = Pσj+1

and Pσi+2 = Pσj+2 . It yields (vi, vi+1), (vj , vj+1) ∈ Arc(ג[Pσi
, Pσi+1 ]) and

(vi+1, vi+2), (vj+1, vj+2) ∈ Arc(ג[Pσi+1 , Pσi+2 ]). It follows that vi+1, vj+1 ∈
Pσi+1 ∩ Pσi)ג

) ∩ .(Pσi+2)ג Since 1 = λ = |Pσi+1 ∩ Pσi)ג
) ∩ ,|(Pσi+2)ג we have

vi+1 = vj+1. Thus i = j. Then all σi are distinct, C is an n-cycle and C is

〈x, y〉-symmetric. It implies X
[C]
[C]

∼= D2n. Hence X
[Cg]
[Cg]

∼= D2n for any g ∈ X.

Set E = {Cx
∣

∣ x ∈ X}. Then E is an X-orbit of n-cycles of Σ. Since
C is X[C]-symmetric, C is (X[C], 3)-arc-transitive. Recall that the 3-arc
(σi−1, σi, σi+1, σi+2) of C is contained in ∆. It follows that ∆ = ∪C∈EArc3(C).

It is easily shown that X[C] is a subgroup of X[C], and so |E| = |X :
X[C]| ≤ |X : X[C]| = m. Suppose that X[C] is a proper subgroup of X[C].
Then there is some z ∈ X[C] with C

z = C but Cz 6= C. Noting that C and
C
z are distinct connected component of ,ג we have V (C)∩V (Cz) = ∅. Since
Cz = C, there exist i, j and l with σ1 = σzi , σ2 = σzj and σ3 = σzl . Then

v
z
i = [τ zi , σ1, δ

z
i ] ∈ Pσ1 , v

z
j = [τ zj , σ2, δ

z
j ] ∈ Pσ2 and v

z
l = [τ zl , σ3, δ

z
l ] ∈ Pσ3 .

Since (σ1, σ2, σ3) is a 2-arc of C, we know (σi, σj , σl) is also a 2-arc of C. It
follows that i− j ≡ j − l ≡ ±1 ( mod n). Then [vi, vj , vl] is a 2-path of C,
and so [vzi , v

z
j , v

z
l ] is a 2-path of Cz. Thus v2, v

z
j ∈ Pσ2∩ג(Pσ1)∩ג(Pσ3). Since

V (C) ∩ V (Cz) = ∅, we have v2 6= v
z
j , which contradicts λ = 1. X[C] = X[C]

and so |E| = |X : X[C]| = |X : X[C]| = m.

Since Σ is (X, 2)-arc-transitive, every 2-path is contained in some n-cycle
in E . Thenmn = |Path2(Σ) = |∪C∈EPath2(C)| ≤

∑

C∈E |Path2(C)| = mn.
It follows that every 2-path of Σ is contained in a unique member of E . Thus
either girth(Σ) = 3 and Σ ∼= K

v+1, or n ≥ girth(Σ) ≥ 4 and Σ is a near
n-gonal graph with respect to E .

The following result follows from Theorem 5.1 and 5.2.

Corollary 5.3. Any connected (X, 2)-arc-regular graph with even valency
and girth no less than 4 is a near n-gonal graph for some integer n ≥ 4.



14 BIN JIA, ZAI PING LU, AND GAI XIA WANG

6. On tetravalent symmetric graphs

Let Σ be a regular graph with valency four. Recall that J(Σ) is the set
of pairs ([τ ′, τ, τ ′′], [σ′, σ, σ′′]) of 2-paths of Σ such that σ ∈ Σ(τ) \ {τ ′, τ ′′},
τ ∈ Σ(σ)\{σ′, σ′′}. For an arbitrary 3-arc � := (τ1, τ, σ, σ1) of (Σ), let J� be
the pair ([τ2, τ, τ3], [σ2, σ, σ3]) of 2-paths of Σ, where Σ(τ) = {σ, τ1, τ2, τ3}
and Σ(σ) = {τ, σ1, σ2, σ3}. Then J

�

∈ J(Σ). For any subset ∆ of Arc3(Σ),
we set J(∆) := {J

�

∣

∣

� ∈ ∆}. It is easily shown that ∆ is a self-paired
X-orbit on Arc3(Σ) if and only if J(∆) is a self-paired X-orbit on J(Σ).

Theorem 6.1. Let Σ be a connected (X, 2)-arc-transitive graph of valency
4. If ∆ is a self-paired X-orbit on Arc3(Σ), then (∆,Σ)ג ∼= Ψ(Σ, J(∆)).

Proof. Define ψ : Path2(Σ) → Path2(Σ); [τ1, τ, τ2] 7→ [τ3, τ, τ4], where
{τ3, τ4} = Σ(τ) \ {τ1, τ2}. It is easy to check that ψ is an isomorphism from
(∆,Σ)ג to Ψ(Σ, J(∆)).

The main aim of this section is to give a characterization of tetravalent
(X, 2)-arc-transitive graphs. The following simple lemma is useful.

Lemma 6.2. Let Γ be an X-symmetric graph with an X-invariant partition
B such that ΓB is connected and (X, 2)-arc-transitive. Let B ∈ B and C, D ∈
ΓB(B) with C 6= D. If Γ[B,C] is connected and Γ(C)∩B ∩ Γ(D) 6= ∅, then
Γ must be connected.

Proof. It suffices to show that there is a path in Γ between any two different
vertices v and u of Γ. Since ΓB is (X, 2)-arc-transitive, Γ[B,C] is independent
of the choices of B and C ∈ ΓB(B) up to isomorphism; and |Γ(C)∩B∩Γ(D)|
is independent of the choices of B and C, D ∈ ΓB(B) (with C 6= D).

Assume first v, u ∈ B. Without loss of generality, we assume v ∈ Γ(C) ∩
B ∩ Γ(D). If u ∈ Γ(C) ∩ B, then there a path in Γ between v and u as
Γ[B,C] is connected. So we assume u 6∈ Γ(C) ∩ B. Take E ∈ ΓB(u). Then
E ∈ ΓB(B), u ∈ B ∩ Γ(E) and |Γ(C) ∩B ∩ Γ(E)| = |Γ(C) ∩B ∩ Γ(D)| > 0.
Let w ∈ Γ(C) ∩B ∩ Γ(E). Then either v = w or there is a path between v

and w, and there is a path between w and u. Thus there is a path between
v and u.

Now let v ∈ B and u ∈ B′ with B 6= B′. Since ΓB is connected, there
is a path [B = B1, . . . , Bl = B′]. Let u

′
l ∈ Bl and ul−1 ∈ Bl−1 such that

{ul−1, u
′
l} ∈ E(Γ). Thus there is a path between ul−1 and u. Then induction

on l implies that there is a path between v and u.

Now we are ready to state and prove the main result of this section.

Theorem 6.3. Let Σ be a connected (X, 2)-arc-transitive graph with valency
v = 4, where X acts faithfully on V (Σ). Then Σ has a self-paired X-orbit
∆ on Arc3(Σ). Set ג := ,(∆,Σ)ג Ξ := Ξ(Σ,∆), e := |E(Σ)|, µ := |V (Σ)|.
Let (τ, σ) ∈ Arc(Σ). Then one of the following cases occurs.
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(a) Pτ]ג , Pσ] ∼= Ξ[Aτ , Aσ] ∼= 3K2, (∆,Σ)ג ∼= mCn, val(Ξ) = 3, and
there exists an X-orbit E of n-cycles of Σ with |E| = m, such that

∆ = ∪C∈EArc3(C), X
[C]
[C]

∼= D2n for each C ∈ E, where m ≥ 6 and

n ≥ girth(Σ) with mn = 3e = 6µ. Moreover, either Σ ∼= K5 or Σ is
a near n-gonal graph with respect to E; and, either
(a.1) XPτ = XAτ = Xτ

∼= A4, both ג and Ξ are (X, 1)-arc-regular
and Σ is (X, 2)-arc-regular; or

(a.2) Xτ = XPτ = XAτ
∼= S4, ג is not (X, 1)-arc-regular, Ξ is (X, 2)-

arc-regular.
(b) Pτ]ג , Pσ] ∼= Ξ[Aτ , Aσ] ∼= K3,3 − 3K2, val(ג) = 4, val(Ξ) = 6, XPτ =

XAτ = Xτ
∼= S4, both ג and Ξ are connected and (X, 1)-arc-regular.

Further, ∆′ := Arc3(Σ) \∆ is a self-paired X-orbit on Arc3(Σ), and
there exists an X-orbit E of n-cycles of Σ with |E| = m, such that

∆′ = ∪C∈EArc3(C), X
[C]
[C]

∼= D2n for each C ∈ E, where m ≥ 6 and

n ≥ girth(Σ) ≥ 3 with mn = 3e = 6µ. Moreover, either Σ ∼= K5 or
Σ is a near n-gonal graph with respect to E.

(c) Pτ]ג , Pσ] ∼= Ξ[Aτ , Aσ] ∼= K3,3, val(ג) = 6, val(Ξ) = 9, both ג and Ξ
are connected and (X, 1)-transitive, and Σ is (X, 3)-arc-transitive.

Proof. By Theorem 5.1, Σ has a self-paired X-orbit ∆ on Arc3(Σ). Then,
by Proposition 2.1, ג := (∆,Σ)ג is X-symmetric and admits an X-invariant
partition P := {Pσ

∣

∣ σ ∈ V (Σ)} with Σ ∼= Pג , and by Proposition 2.4,
Ξ := Ξ(Σ,∆) is X-symmetric and admits an X-invariant partition A :=
{Aσ

∣

∣ σ ∈ V (Σ)} with Σ ∼= ΞA. Let ℓi := ℓi(∆), i = 1, 2, . . . , t, be defined
as in Section 5. Then t ≤ 3 as val(Σ) = 4.

Let (τ, σ) ∈ Arc(Σ). Then there is a 3-arc (τ1, τ, σ, σ1) ∈ ∆ as Σ is
X-symmetric. It follows that {[τ1, τ, σ], [τ, σ, σ1]} is an edge of Pτ]ג , Pσ ],
and that {(τ, τ1), (σ, σ1)} is an edge of Ξ[Aτ , Aσ]. It is easily shown that
X(τ,σ) = Xτ ∩Xσ = XPτ ∩XPσ acts transitively on the edges of Pτ]ג , Pσ]. It
implies that the stabilizer (X(τ,σ))[τ1,τ,σ] = X(τ1,τ,σ) acts transitively on the
neighborhood of [τ1, τ, σ] in Pτ]ג , Pσ ]. Then the valency of Pτ]ג , Pσ ] equals
to |X(τ1,τ,σ) : (X(τ1,τ,σ))[τ,σ,σ1]| = |X(τ1,τ,σ) : X(τ1,τ,σ,σ1)| = ℓ1. Further, since
Σ is (X, 2)-arc-transitive, X(τ,σ) is transitive on Σ(τ) \ {σ} := {τ1, τ2, τ3}

and on Σ(σ) \ {τ} := {σ1, σ2, σ3}. Thus V Pτ]ג) , Pσ ]) = {[τi, τ, σ]
∣

∣ i =

1, 2, 3}∪{[τ, σ, σi ]
∣

∣ i = 1, 2, 3}. A similar argument leads to V (Ξ[Aτ , Aσ ]) =

{(τ, τi)
∣

∣ i = 1, 2, 3}∪{(σ, σi)
∣

∣ i = 1, 2, 3}. It is easy to check that [τi, τ, σ] 7→
(τ, τi), [τ, σ, σi] 7→ (σ, σi) gives an isomorphism from Pτ]ג , Pσ] to Ξ[Aτ , Aσ ].
Further, Pτ]ג , Pσ ] ∼= 3K2, K3 − 3K2 or K3,3 according to ℓ1 = 1, 2 or
3, respectively. By [14, Theorem 4.3], 2 = rP := ,P([τ1ג| τ, σ])| for any
[τ1, τ, σ] ∈ V .(ג) Then val(ג) = rPℓ1 = 2ℓ1. By Lemma 2.5, val(Ξ) =

rAℓ1 = 3ℓ1. Since Σ is (X, 2)-arc-transitive, X
Σ(τ)
τ

∼= A4 or S4. It is
easy to see Xτ = XPτ = XAτ , (Xτ )(Σ(τ)) = X(Pτ ) = X(Aτ ) and hence

X
Σ(τ)
τ

∼= XPτ

Pτ
= XAτ

Aτ
. We treat the following three separate cases.
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Case 1. ℓ1 = 1. Then val(ג) = 2, val(Ξ) = 3 and l(∆) = (1, 1, 1) or (1, 2)
in this case. By Theorem 5.2, the part of (a) prior to (a.1) holds. Again by

Theorem 5.2, Xτ acts faithfully on Σ(τ), and hence X
Σ(τ)
τ

∼= Xτ .

Assume first l(∆) = (1, 1, 1). Then X(τ1,τ,σ) ≤ X(τ,σ,σ1) for any 2-arc
(τ1, τ, σ) of Σ and τ 6= σ1 ∈ Σ(σ). Since Σ is (X, 2)-arc-transitive, the
stabilizers of any two 2-arcs of Σ are conjugate in X, in particular, they has
the same order. Thus X(τ1,τ,σ) = X(τ,σ,σ1). Since Σ is connected, X(τ1,τ,σ) =
X(τ ′1,τ

′,σ′) for an arbitrary 2-arc (τ ′1, τ
′, σ′) of Σ. Hence X(τ1,τ,σ) = 1 as X

is faithful on V (Σ). Then Σ is (X, 2)-arc-regular. It implies XPτ = XAτ =
Xτ

∼= A4. Then (a.1) follows from calculating the numbers of arcs or 2-arcs
of ,ג Ξ and Σ.

Now let l(∆) = (1, 2). Then X(τ1,τ,σ) acts transitively on Σ(σ) \ {τ, σ1}
for (τ1, τ, σ, σ1) ∈ ∆. Thus X(τ1,τ,σ) 6= 1, and Σ is not (X, 2)-arc-regular.
Recall that Xτ acts faithfully on Σ(τ). It implies XPτ = XAτ = Xτ

∼= S4.
Since ℓ1 = 1, we have X(τ1,τ,σ,σ1) = X(τ1,τ,σ) 6= 1. It implies that ג is not
(X, 1)-arc regular.

Let (τ, σ) ∈ V (Ξ) = Arc(Σ). Set Ξ((τ, σ)) = {(σ1, δ1), (σ2, δ2), (σ3, δ3)},
the neighborhood of (τ, σ) in Ξ. Then Σ(τ) = {σ, σ1, σ2, σ3} and (σ, τ, σi, δi) ∈
∆, i = 1, 2, 3. It follows from ℓ1 = 1 that σxi = σj implies δxi = δj for
x ∈ X(τ,σ) and 1 ≤ i, j ≤ 3. Then X(τ,σ) fixes Ξ((τ, σ)) setwise. Since
Xτ

∼= S4, we conclude that the permutation group induced by X(τ,σ) on
Σ(τ)\{σ} is isomorphic to S3, which is 2-transitive on Σ(τ)\{σ}. ThusX(τ,σ)

acts 2-transitively on Ξ((τ, σ)). It follows that Ξ is (X, 2)-arc-transitive.
Further, checking the number of the 2-arcs of Ξ implies that Ξ is (X, 2)-arc-
regular. This complete the proof of (a).

Case 2. ℓ1 = 2. In this case, val(ג) = 2ℓ1 = 4, val(Ξ) = 3ℓ1 = 6 and
Pτ]ג , Pσ] ∼= Ξ[Aτ , Aσ] ∼= K3,3 − 3K2. By Lemma 6.2, both ג and Ξ are
connected.

Now we shall show that Xτ acts faithfully on the neighborhood Σ(τ) of
τ in Σ, by a similar argument as in the first paragraph of the proof of The-
orem 5.2. Since Σ is (X, 2)-arc transitive, every 2-arc of Σ lies in a member
of ∆. Let (τ, σ) be an arbitrary arc of Σ. Since ℓ1(∆) = 2 and ∆ is a self-
paired X-orbit, we conclude that, for any τ1 ∈ Σ(τ) \ {σ} there is a unique
σ1 ∈ Σ(σ) \ {τ} such that (τ1, τ, σ, σ1) 6∈ ∆, X(τ1,τ,σ) = X(τ,σ,σ1), and that

(τ ′1, τ, σ, σ1) 6∈ ∆ implies τ ′1 = τ1. Then (Xτ )(Σ(τ)) = ∩τ1∈Σ(τ)\{σ}X(τ1,τ,σ) =
∩σ1∈Σ(σ)\{τ}X(τ,σ,σ1) = (Xσ)(Σ(σ)). It follows from the connectedness of Σ
that (Xτ )(Σ(τ)) fixes every vertex of Σ. Thus (Xτ )(Σ(τ)) = 1 and Xτ is
faithful on Σ(τ).

For a 2-arc (τ1, τ, σ) of Σ, since ℓ1(∆) = 2, there is σ2, σ3 ∈ Σ(σ) such
that (τ1, τ, σ, σ2) ∈ ∆ and (τ1, τ, σ, σ3) ∈ ∆. Since ∆ is an X-orbit, X(τ1,τ,σ)

acts transitively on {σ2, σ3}. In particular, X(τ1,τ,σ) 6= 1. Thus we have
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XPτ = XAτ = Xτ
∼= S4. Further, |X| = |V (Σ)||Xτ | = 24µ = |Arc(ג)| =

|Arc(Ξ)|, so both ג and Ξ are (X, 1)-arc-regular.

Set ∆′ = Arc3(Σ) \∆. Then ∆′ is self-paired and X-invariant. For any
two 3-arcs (τ1, τ, σ, σ1) and (τ ′1, τ

′, σ′, σ′1) of Σ in ∆′, since Σ is (X, 2)-arc-
transitive, there exists some x ∈ X such that (τ ′1, τ

′, σ′)x = (τ1, τ, σ). Then
(τ1, τ, σ, σ

′x
1 ) = (τ ′1, τ

′, σ′, σ′1)
x ∈ ∆′. By the argument in the second para-

graph of this case, σ′x1 = σ1, that is, (τ
′
1, τ

′, σ′, σ′1)
x = (τ1, τ, σ, σ1). It follows

that ∆′ is X-transitive and ℓ1(∆
′) = 1. Thus (b) holds by Theorem 5.2.

Case 3. ℓ1(∆) = 3. Then val(ג) = 2ℓ1 = 6, val(Ξ) = 3ℓ1 = 9 and
Pτ]ג , Pσ] ∼= Ξ[Aτ , Aσ] ∼= K3,3. It follows from [12, Theorem 2] that Σ is
(X, 3)-arc transitive. By Lemma 6.2, both ג and Ξ are connected. Note
that Σ ∼= Pג is of valency four. Let σ, τ and δ be three distinct vertices of Σ
such that Pσ, Pδ ∈ P(Pτג ). Then there exist v ∈ Pτ , u1, u2 ∈ Pσ and w ∈ Pδ

such that (u1, v, u2) and (w, v, u1) are 2-arcs of .ג Since P is X-invariant,
there is no x ∈ X with (u1, v, u2)

x = (w, v, u1). Thus ג is not (X, 2)-arc-
transitive, and so it is (X, 1)-transitive. A similar argument implies that Ξ
is (X, 1)-transitive. Hence (c) holds.

Corollary 6.4. Let Σ be a connected tetravalent (X, 2)-transitive graph.
Then either Σ ∼= K5, or Σ is a near n-gonal graph for some integer n ≥ 4.

At the end of this section we give several examples, which indicate that
there exist certain graphs satisfying each case listed in Theorem 6.3.

Example 6.5. Let X = PSL(2, p), where p is a prime such that 5 6= p ≡
±3 (mod 8). Then by [11], there exist H < X and an involution z ∈ X
such that H ∼= A4, P = H ∩ Hz =: 〈h〉 ∼= Z3, z ∈ NX(P ) and hz =
h−1. Moreover, Σ := Cos(X,H,HzH) ≇ K5 is a tetravalent (X, 2)-arc-
regular graph and Aut(Σ) = X. Set H = P ∪ Pg ∪ Pg2 ∪ Pg3. Let ∆ =
{(Hzgx,Hx,Hzx,Hzgzx)

∣

∣ x ∈ X}. Then ∆ is a self-paired X-orbit on
Arc3(Σ) with l(∆) = (1, 1, 1).

Example 6.6. Let X = PSL(2, p) for a prime p ≥ 11 with p ≡ ±1 (mod 8).
Let S4 ∼= H < X. Then by [13, Lemma 4.1], there exists an involution
z ∈ X\H such thatNX(P ) = P×〈z〉, where P = H∩Hz ∼= S3. Further, Σ =
Cos(X,H,HzH) is a tetravalent (X, 2)-transitive graph with Aut(Σ) = X.
Set H = P∪Pg∪Pg2∪Pg3. Then ∆ = {(Hzgx,Hx,Hzx,Hzgzx)

∣

∣ x ∈ X}
is a self-paired X-orbit on Arc3(Σ) with l(∆) = (1, 2).

Example 6.7. Let Σ = K5,5 − 5K2 with vertex set {i, i′
∣

∣ 1 ≤ i ≤ 5}. For

g ∈ S5, define ḡ : i 7→ g(i), i′ 7→ g(i)′. Let z : i ↔ i′. Set X = 〈ḡ, z
∣

∣ g ∈

S5〉. Then Σ is (X, 2)-transitive. Then both ∆1 := {(1, 2′, 3, 1′)x
∣

∣ x ∈ X}

and ∆2 := {(1, 2′, 3, 4′)x
∣

∣ x ∈ X} are self-paired with l(∆1) = (1, 2) and
l(∆2) = (2, 1).
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7. Heptavalent graphs with X
Σ(τ)
τ

∼= PSL(3, 2)

Theorem 7.1. Let Σ be an (X, 2)-arc-transitive graph of valency 7 with

X
Σ(τ)
τ

∼= PSL(3, 2) for τ ∈ V (Σ). Then there exists a self-paired X-
symmetric orbit Θ on DSt3(Σ). Let Π = Π(Σ,Θ) and S = St(Θ). Then,
for σ ∈ Σ(τ), one of the following cases occurs.

(1) Π[Sτ ,Sσ] ∼= 3K2, and Π is a trivalent (X, 2)-arc-transitive graph;
(2) Π[Sτ ,Sσ] ∼= K3,3 − 3K2, val(Π) = 6, Π is connected and (X, 1)-

transitive;
(3) Π[Sτ ,Sσ] ∼= K3,3, val(Π) = 9 and Π is connected and (X, 1)-transitive.

Proof. Let τ ∈ V (Σ). Since X
Σ(τ)
τ

∼= PSL(3, 2), we may identify Σ(τ) with
the point set of seven-point plane PG(2, 2), which is an Xτ -flag-transitive 1-
(7, 3, 3) design with multiplicity 1. By Theorem 3.6, there exists a self-paired
X-symmetric orbit Θ on DSt3(Σ). Set S = St(Θ) and Π = Π(Σ,Θ). Then,
by Theorem 3.5, Π isX-symmetric and ΠB

∼= Σ, where B = {Sτ

∣

∣ τ ∈ V (Σ)}

and Sτ = {s ∈ S
∣

∣ s = s(τ, S), S ⊆ Σ(τ), |S| = 3}. Further, for Sτ ∈ B,
we have Xτ = XSτ and D(Sτ ) ∼= D∗(τ) ∼= PG(2, 2). (See Section 3 for
the definition of D(τ).) In particular, for σ ∈ Σ(τ), |Sτ ∩ Π(Sσ)| = 3;
thus the bipartite graph Π[Sτ ,Sσ] is isomorphic to one of 3K2, K3,3 − 3K2

and K3,3 as Xτ ∩Xσ acts transitively on the edges of Π[Sτ ,Sσ]. Moreover,
noting that, any pair of distinct lines of PG(2, 2) intersect a unique point
and any pair of distinct points determine a unique line, it follows that λ :=
|Π(Sσ) ∩ Sτ ∩ Π(Sδ)| = 1 for σ, δ ∈ Σ(τ) with σ 6= δ. Then by Lemma 6.2,
Π is connected if Π[Sτ ,Sσ ] ∼= K3,3 − 3K2 or K3,3. Note that each point of
D(Sτ ) belongs to three blocks. It follows that Π is of valency 3ℓ, where ℓ is
the valency of Π[Sτ ,Sσ].

Assume first that Π[Sτ ,Sσ ] ∼= 3K2. Then val(Π) = 3. Let s ∈ Sτ , and
Π(s) = {s1, s2, s3} with si ∈ Sτi for i = 1, 2, 3. Then τ1, τ2 and τ3 are
distinct vertices of Σ. Recall D(Sτ ) ∼= D∗(τ) ∼= PG(2, 2). Then we may
identify s with a line L of PG(2, 2), and Sτi with the points in this line.

Then (X
Σ(τ)
τ )s ∼= S4 acts 2-transitively on {Sτi

∣

∣ i = 1, 2, 3}. It implies that
(Xτ )s = Xs acts 2-transitively (and unfaithfully) on {s1, s2, s3}. Thus Π is
(X, 2)-arc-transitive, and (1) holds.

Now let Π[Sτ ,Sσ ] ∼= K3,3 − 3K2 or K3,3. Then Π has two 2-arcs, say
(v, u,w) and (v′, u′,w′), such that v, v′,w ∈ Sτ , u, u

′ ∈ Sσ and w
′ ∈ Sδ for

distinct τ , σ and δ. Noting B is X-invariant, there is no x ∈ X maps (v, u,w)
to (v′, u′,w′). Thus Π is not (X, 2)-arc-transitive. Then (2) and (3) hold.

The following examples indicate that there exist certain graphs satisfying
each case listed in Theorem 7.1.

Example 7.2. Let Σ be the complete graph on vectors of F3, where F =
{0, 1} is a binary field. Then the 3-dimensional affine group X := AGL(3, 2)
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is a subgroup of the automorphism group Aut(Σ) ∼= S8 of Σ. Set v0 =
(0, 0, 0), v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (1, 1, 0), v4 = (0, 0, 1), v5 =
(1, 0, 1), v6 = (0, 1, 1) and v7 = (1, 1, 1). Then Xv0 = GL(3, 2) ∼= PSL(3, 2)
is 2-transitive on {vi

∣

∣ i = 1, 2, . . . , 7}. Hence Σ is (X, 2)-arc-transitive. We
define t1 : (a1, a2, a3) 7→ (a1, a2, a3 +1) and t2 : (a1, a2, a3) 7→ (a2, a1, a3 +1)
for (a1, a2, a3) ∈ F3, respectively. Then t1, t2 ∈ X with t21 = t22 = 1. Let
L = {v2,v4,v6} and set l = s(v0, L). Note that {v0,v2,v4,v6} is a subspace
of F3. Then Xl is the stabilizer of this subspace in GL(3, 2). Thus

Xl =

{[

1 e f
0 a b
0 c d

]

∣

∣

∣

∣

a, b, c, d, e, f ∈ F

ad− bc = 1

}

,

(Xl)v4 =

{[

1 e f
0 1 b
0 0 1

]

∣

∣ b, e, f ∈ F

}

.

Let ri = s(v4, L
ti) for i = 1 and 2. Then Lt1 = {v0,v2,v6}, L

t2 =

{v0,v1,v5}, l
ti = ri and r

ti
i = l. Thus Θi := {(lx, rxi )

∣

∣ x ∈ X} is a self-

paired X-orbits on DSt3(Σ). Let Πi = Π(Σ,Θi) and ∆i = Πi[Sv0 ,Sv4 ]
for i = 1 and 2. Note that XSv0

∩ XSv4
= Xv0 ∩ Xv4 acts transitively on

the edges of ∆i. It follows that (Xv0 ∩ Xv4)l = (Xl)v4 is transitive on the
neighborhood of l in ∆i. Thus val(∆i) = |{rxi

∣

∣ x ∈ (Xl)v4}|. If i = 1,

then r
x
1 = s(v4, L

t1x) = s(v4, L
t1) = r1 for x ∈ (Xl)v4 , so val(∆1) = 1 and

Theorem 7.1 (1) occurs. (In fact, Π1
∼= 14K4. We omit the detail.) If

i = 2, then Lt2x = Lt2 or {v0,v3,v7} for x ∈ (Xl)v4 , thus val(∆2) = 2 and
Theorem 7.1 (2) occurs.

Example 7.3. Let F = {0, 1} be a a binary field. Denote by i the non-zero
vector of F3 with coordinate (a1, a2, a3) such that i = 4a1 +2a2 + a3. Let Σ
be the complete bipartite graph with vertex set {li

∣

∣ 1 ≤ i ≤ 7} ∪ {ri
∣

∣ 1 ≤
i ≤ 7}. Then X := PSL(3, 2) ≀Z2 is a subgroup of Aut(Σ), and Σ is (X, 3)-
transitive. Let L = {r1, r2, r3} and R = {l1, l2, l3}. Set l = s(l1, L),
r = s(r1, R) and Θ3 := {(l, r)x

∣

∣ x ∈ X}. Then Θ3 is a self-paired X-

symmetric orbit on DSt3(Σ), and Π := Π(Σ,Θ) satisfies Theorem 7.1 (3).

8. Proof of Theorem 4.1

Now we are ready to give the proof of of Theorem 4.1.

Since Γ is X-symmetric and ΓB contains at least one edge, ΓB is X-
symmetric, that is, XB is transitive on ΓB(B) for B ∈ B; further, B is an
independent subset of V (Γ).

We first show that each of Theorem 4.1(a)-(d) implies the (X, 2)-arc-
transitivity of ΓB. It suffices to show that XB acts 2-transitively on ΓB(B)
for B ∈ B. It is trivial for the case (d) as ΓB(B) is the block set of D(B).
In the following we assume one of (a), (b) and (c) occurs.
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Suppose that m := m(D(B)) 6= 1. Then ΓB(B) admits an XB-invariant
partition M := {MC

∣

∣ C ∈ ΓB(B)}, where MC is a set of blocks of D(B)
with the same trace B ∩ Γ(C) of C. Thus m = |MC | is a divisor of b. For
v ∈ B, it is easily to see that C ∈ ΓB(v) yields D ∈ ΓB(v) for any D ∈ MC .
This observation says that m = |MC | is a divisor of r := |ΓB(v)|. It follows
that (v, b, r) = (6, 4, 2), m = 2 = r and |M| = 2. Set M = {MC ,MD}.
Then T := {B ∩ Γ(C), B ∩ Γ(D)} is an XB-invariant partition of B. Let
K be the kernel of XB acting on T . Then |XB : K| = 2 and X(B) ≤ K.

It follows that XB
B

∼= S4 and K/X(B)
∼= A4. Note that K is in fact the

set-wise stabilizer of B ∩ Γ(C), and also of B ∩ Γ(D), in XB . Then K is
transitive on B∩Γ(C) and on B ∩Γ(D). Let H and H1 be the kernels of K
acting on B ∩ Γ(C) and on B ∩ Γ(D), respectively. Then K/H and K/H1

are permutation groups of degree 3. Noting that X(B) ≤ H and X(B) ≤ H1,
it follows that H/X(B) and H1/X(B) are normal subgroups of K/X(B) with
index 3 in K/X(B). Hence H1/X(B) = H/X(B) as A4 has only one normal
subgroup of order 4. Thus H1 = H fixes B point-wise, and so H ≤ X(B),
which contradicts |H/X(B)| = 4.

Suppose thatm∗(Γ,B) 6= 1. Recall thatm∗(Γ,B) := |B∩(∩C∈ΓB(v)Γ(C))|,
the multiplicity of the dual design D∗(B) of D(B), is independent of the
choices of B and v ∈ B. Assume that D∗(B) is a 1-(v∗, b∗, r∗) design.
Then (v∗, b∗, r∗) = (b, v, k) is one of (4, 4, 3), (4, 6, 3) and (7, 7, 3). A similar
argument as in the above paragraph implies that m∗(Γ,B) is a divisor of v
and of k. Then (b, v, k) = (4, 6, 3) and m∗(Γ,B) = 3 = k. It follows that
m(D(B)) ≥ |ΓB(v)| = 2, again a contradiction.

The above argument gives m(D(B)) = 1 and m∗(Γ,B) = 1. Then

X
ΓB(B)
B

∼= XB
B by Theorem 3.8. Thus X

ΓB(B)
B is 2-transitive on ΓB(B) if

one of cases (a), (b) and (c) occurs. Therefore, if one of Theorem 4.1(a)-(d)
occurs, then XB acts 2-transitively on the blocks of D(B) = ΓB(B), and
hence ΓB is (X, 2)-arc-transitive.

Now assume that ΓB is (X, 2)-arc-transitive. Recall that m(D(B)) is the
multiplicity of D(B), the number C ∈ ΓB(B) with the same trace, which is
independent of the choice of B. Then m(D(B)) = 1 by [14, Lemma 2.4].
Since ΓB is (X, 2)-arc-transitive, λ := |Γ(C) ∩ B ∩ Γ(D)| is independent of
the choice of [C,B,D] ∈ Path2(ΓB). By [14, Corollary 3.3], vr = 3b and
λ(b− 1) = 3(r − 1), thus (9 − λv)r = 3(3 − λ). Since Γ is not a multicover
of ΓB, we have λ ≤ k − 1 = 2 and v > k. If λ = 0, then r = 1 and v = 3b.
Let λ ≥ 1. Then, by [14, Theorem 3.2], the dual design D∗(B) of D(B) is a
2-(b, r, λ) design with v blocks. The well-known Fisher’s Inequality applied
to D∗(B) gives b ≤ v, and so r ≤ k = 3. If λ = 2, then λ(b− 1) = 3(r − 1),
(9 − 2v)r = 3 and v > k imply (v, b, r) = (4, 4, 3). If λ = 1, then r ≤ k,
vr = 3b and (9− v)r = 6 yield (v, b, r) = (6, 4, 2) or (7, 7, 3).
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Note that 1 ≤ m∗(Γ,B) ≤ λ if λ 6= 0. Suppose that m∗(Γ,B) 6= 1 for
some λ 6= 0. Then λ = 2 = m∗(Γ,B). It follows from r = 3 = k that there
are C,D ∈ ΓB(v) such that C 6= D and B ∩ Γ(C) = B ∩ Γ(D). Thus C and
D has the same trace, and hence m(D(B)) ≥ 2, a contradiction. Therefore,

if λ 6= 0 then m∗(Γ,B) = 1 and, by Theorem 3.7 and 3.8, X
ΓB(B)
B

∼= XB
B ,

and the induced action of X on B is faithful.

We treat four separate cases in the following.

Case 1. (v, b, r, λ) = (4, 4, 3, 2). Then val(ΓB) = 4, and XB
B

∼= A4 or S4
as XB acts 2-transitively on ΓB(B). Thus (a) holds.

By [12, Theorem 2], Γ ∼= Ξ(ΓB,∆) for some self-paired X-orbit ∆ on
Arc3(ΓB). For any connected tetravalent (X, 2)-arc-transitive graph Σ, by
Theorem 5.1, there exists some self-paired X-orbit on Arc3(Σ), and by [12,
Theorem 10], the corresponding 3-arc graph admits an X-invariant partition
with quotient graph isomorphic to Σ and parameters (v, b, k, r) = (4, 4, 3, 3).
Thus, by Theorem 6.3, one of (a.1), (a.2) and (a.3) of Theorem 4.1 holds.

Case 2. (v, b, r, λ) = (6, 4, 2, 1). Then val(ΓB) = 4, XB
B

∼= A4 or S4, and
so (b) occurs.

Since (r, λ) = (2, 1), by Lemma 2.2, Γ ∼= (∆,ΓB)ג for some self-paired
X-orbit ∆ on Arc3(ΓB). By Theorem 6.1, J(∆) is a self-paired X-orbit on
J(ΓB), and (∆,ΓB)ג ∼= Ψ(ΓB, J(∆)). For any connected tetravalent (X, 2)-
arc-transitive graph Σ, by Theorem 5.1, there exists some self-pairedX-orbit
on Arc3(Σ), and by Proposition 2.1 and Theorem 6.3, the corresponding
graph constructed as in Proposition 2.1 admits an X-invariant partition
with quotient graph isomorphic to Σ and parameters (v, b, r, λ) = (6, 4, 2, 1).
Then (b.1), (b.2) or (b.3) follows from Theorem 6.3,

Case 3. (v, b, r, λ) = (7, 7, 3, 1). In this case, D(B) ∼= PG(2, 2) is XB-

flag-transitive. Then X
ΓB(B)
B is isomorphic to a subgroup of PSL(3, 2), the

automorphism group of PG(2, 2). Since ΓB is (X, 2)-arc-transitive, X
ΓB(B)
B

is 2-transitive on ΓB(B), and hence |X
ΓB(B)
B | ≥ 42. It follows that X

ΓB(B)
B

∼=

PSL(3, 2). Thus XB
B

∼= X
ΓB(B)
B

∼= PSL(3, 2) by Theorem 3.8. Hence (c)
holds. Since m∗(Γ,B) = 1, by Theorem 3.7, Γ ∼= Π(ΓB,Θ) for some self-
paired X-symmetric orbit Θ on DSt3(ΓB). Further, by Theorem 7.1 and
the above argument, one connected heptavalent (X, 2)-arc-transitive graph

Σ occurs as ΓB if and only if X
Σ(τ)
τ

∼= PSL(3, 2). Again by Theorem 7.1,
one of (c.1), (c.2) and (c.3) holds.

Case 4. λ = 0, r = 1 and v = 3b. Since ΓB is (X, 2)-arc-transitive,
XB acts 2-transitively on the blocks of D(B). It follows from r = 1 and
λ = 0 that Γ ∼= eΓ[B,C] for {B,C} ∈ E(ΓB). Since k = 3, we know
Γ[B,C] ∼= 3K2,K3,3 − 3K2 or K3,3, so one of (d.1), (d.2) and (d.3) occurs.
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