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High-girth cubic graphs are homomorphic to the

Clebsch graph
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Abstract

We give a (computer assisted) proof that the edges of every graph with
maximum degree 3 and girth at least 17 may be 5-colored (possibly improp-
erly) so that the complement of each color class is bipartite. Equivalently,
every such graph admits a homomorphism to the Clebsch graph (Fig. 1).

Hopkins and Staton [11] and Bondy and Locke [2] proved that every
(sub)cubic graph of girth at least 4 has an edge-cut containing at least 4

5
of

the edges. The existence of such an edge-cut follows immediately from the ex-
istence of a 5-edge-coloring as described above, so our theorem may be viewed
as a coloring extension of their result (under a stronger girth assumption).

Every graph which has a homomorphism to a cycle of length five has an
above-described 5-edge-coloring; hence our theorem may also be viewed as a
weak version of Nešetřil’s Pentagon Problem (which asks whether every cubic
graph of sufficiently high girth is homomorphic to C5).

1 Introduction

Throughout the paper all graphs are assumed to be finite, undirected and simple.
For any positive integer n, we let Cn denote the cycle of length n, and Kn denote
the complete graph on n vertices. If G is a graph and U ⊆ V (G), we put δ(U) =
{uv ∈ E(G) : u ∈ U and v 6∈ U}, and we call any subset of edges of this form a
cut. The maximum size of a cut of G, denoted MAXCUT(G) = maxU⊆V |δ(U)| is
a parameter which has received great attention. Next, we normalize and define

b(G) =
MAXCUT(G)

|E(G)|
.

Determining b(G) (or equivalently MAXCUT(G)) for a given graph G is known
to be NP-complete, so it is natural to seek lower bounds. It is an easy exercise
to show that b(G) ≥ 1/2 for any graph G and b(G) ≥ 2/3 whenever G is cubic
(that is 3-regular). The former inequality is almost attained by a large complete
graph, the latter is attained for G = K4: any triangle contains at most two edges
from any bipartite subgraph, and each edge of K4 is in two triangles. This suggests
that triangles play a special role, and raises the question of improving this bound for
cubic graphs of higher girth. In the 1980’s, several authors independently considered
this problem [2, 11, 23], the strongest results being
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• b(G) ≥ 4/5 for G with maximum degree 3 and no triangle [2]

• b(G) ≥ 6/7− o(1) for cubic G with girth tending to infinity [23]

On the other hand, cubic graphs exist with arbitrarily high girth and satisfying
b(G) < 0.9351. This result was announced by McKay in a conference [13] but did
not appear in print. It is, however, rather straightforward to prove it (with a worse
constant) by considering random cubic graphs, see [22] for a nice survey. In thesis
of Jan Hladký [10] the constant 0.9351 is recovered.

Define a set of edges C from a graphG to be a cut complement if C = E(G)\δ(U)
for some U ⊆ V (G). Then the problem of finding a cut of maximum size is exactly
equivalent to that of finding a cut complement of minimum size. A natural relative
of this is the problem of finding many disjoint cut complements. Indeed, packing
cut complements may be viewed as a coloring version of the maximum cut problem.

There are a variety of interesting properties which are equivalent to the existence
of 2k + 1 disjoint cut complements, so after a handful of definitions we will state
a proposition which reveals some of these equivalences. This proposition is well
known, but we have provided a proof of it in Section 3 for the sake of completeness.
For every positive integer n, we let Qn denote the n-dimensional cube, so the vertex
set of Qn is the set of all binary vectors of length n, and two such vertices are
adjacent if they differ in a single coordinate. The n-dimensional projective cube,1

denoted PQn, is the simple graph obtained from the (n+1)-dimensional cube Qn+1

by identifying pairs of antipodal vertices (vertices that differ in all coordinates).
Equivalently, the projective cube PQn can be described as a Cayley graph, see
Section 3. If G, H are graphs, a homomorphism from G to H is a mapping f :
V (G) → V (H) with the property that f(u)f(v) is an edge of H whenever uv is
an edge of G. When there exists a homomorphism from G to H , we say that G is
homomorphic to H and write G → H . We need yet another concept, introduced in
[3]: A mapping g : E(G) → E(H) is cut-continuous if the preimage of every cut is
a cut. Now we are ready to state the relevant equivalences.

Proposition 1.1 For every graph G and nonnegative integer k, the following prop-
erties are equivalent.

(1) There exist 2k pairwise disjoint cut complements.

(2) There exist 2k + 1 pairwise disjoint cut complements with union E(G).

(3) G has a homomorphism to PQ2k.

(4) G has a cut-continuous mapping to C2k+1.

Perhaps the most interesting conjecture concerning the packing of cut comple-
ments—or equivalently homomorphisms to projective cubes—is the following con-
jectured generalization of the Four Color Theorem. Although not immediately
obvious, this is equivalent to Seymour’s [20] conjecture on r-edge-coloring of planar
r-graphs (when r is odd).

Conjecture 1.2 (Seymour) Every planar graph with all odd cycles of length at
least 2k + 1 has a homomorphism to PQ2k.

Since the graph PQ2 is isomorphic to K4, the k = 1 case of this conjecture is
equivalent to the Four Color Theorem. The k = 2 case of this conjecture concerns
homomorphisms to the graph PQ4 which is also known as the Clebsch graph (see

1sometimes called folded cube
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Figure 1: Petersen and Clebsch graph with one cut complement emphasized, the
respective bipartition of the vertex set is depicted, too. The other four cut comple-
ments are obtained by rotation.

Figure 1). This case was resolved in the affirmative by Naserasr [14] who deduced
it from a theorem of Guenin [5].

The following theorem is the main result of this paper; it shows that graphs
of maximum degree three without short cycles also have homomorphisms to PQ4.
The girth of a graph is the length of its shortest cycle, or ∞ if none exists.

Theorem 1.3 Every graph of maximum degree 3 and girth at least 17 is homo-
morphic to PQ4 (also known as the Clebsch graph), or equivalently has 5 disjoint
cut complements. Furthermore, there is a linear time algorithm which computes the
homomorphism and the cut complements.

Clearly no graph with a triangle can map homomorphically to the triangle-free
Clebsch graph (equivalently, have 5 disjoint cut complements), but we believe this to
be the only obstruction for cubic graphs. We highlight this and one other question
we have been unable to resolve below.

Conjecture 1.4 ([17]) Every triangle-free cubic graph is homomorphic to PQ4.

Problem 1.5 What is the largest integer k with the property that all cubic graphs
of sufficiently high girth are homomorphic to PQ2k?

As we mentioned before, there are high-girth cubic graphs G with b(G) < 0.94.
Such graphs do not admit homomorphism to PQ2k for any k ≥ 8 (Proposition 1.1
(2)), so there is indeed some largest integer k in the above problem. At present, we
know only that 2 ≤ k ≤ 7.

Another topic of interest for cubic graphs of high girth is circular chromatic
number, a parameter we now pause to define. For any graph G, we let G≥k de-
note the simple graph with vertex set V (G) and two nodes adjacent if they have
distance at least k in G. The circular chromatic number of G, is χc(G) = inf{n

k
:

G has a homomorphism to C≥k
n }. Every graph satisfies ⌈χc(G)⌉ = χ(G) so the cir-

cular chromatic number is a refinement of the usual notion of chromatic number.
The following curious conjecture asserts that cubic graphs of sufficiently high girth
have circular chromatic number ≤ 5

2 (since C2k+1 and C≥k
2k+1 are isomorphic).

Conjecture 1.6 (Nešetřil’s Pentagon Conjecture [15]) If G is a cubic graph
of sufficiently high girth then G is homomorphic to C5.
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It is an easy consequence of Brook’s Theorem that the above conjecture holds
with C3 in place of C5 (i.e., every cubic graph of girth at least 4 is 3-colorable).
On the other hand, it is known that the conjecture is false if we replace C5 by C7

[7], consequently it is false if we replace C5 by any Cn for odd n ≥ 7. (Earlier, this
result was proved for n ≥ 11 [12] and n ≥ 9 [21].)

An important extension of Conjecture 1.6 is the problem to determine the infi-
mum of real numbers r with the property that every cubic graph of sufficiently high
girth has circular chromatic number ≤ r. The above results show that this infimum
must lie in the interval [ 73 , 3], but this is the extent of our knowledge. It is tempting
to try to use the fact that girth ≥ 17 cubic graphs map to the Clebsch graph and
girth ≥ 4 cubic graphs map to C3 to improve the upper bound, but the circular
chromatic numbers of C3, the Clebsch graph, and their direct product are all at
least three,2 so no such improvement can be made. Neither were we able to use our
result to improve upper bounds on fractional chromatic numbers of cubic graphs.
This is conjectured to be at most 14/5 for triangle-free cubic graphs (Heckmann
and Thomas [9]), and proved to be at most 3− 3/64 (Hatami and Zhu [8]).

It is easy to prove directly that Conjecture 1.6, if true, implies Theorem 1.3
(perhaps with a stronger assumption on the girth). This follows from part (4) of
Proposition 1.1 and the following easy observation.

Observation 1.7 If there is a homomorphism from G to H, then there is a cut-
continuous mapping from G to H.

Proof Let f : V (G) → V (H) be a homomorphism and define the mapping
f ♯ : E(G) → E(H) by the rule f ♯(uv) = f(u)f(v). If S = δ(U) is a cut in H , then
(f ♯)−1(S) = δ(f−1(U)), which is also a cut. �

The relationship between homomorphisms and cut-continuous maps is studied
in greater detail in [18] and [19] where it is shown that, perhaps surprisingly, ex-
istence of a cut-continuous mapping from G to H frequently implies the existence
of a homomorphism from G to H . Unfortunately, it does not appear likely that
these techniques can be used to extend the main theorem of this paper to attain
Conjecture 1.6.

We finish the introduction with another conjecture due to Nešetřil (personal
communication) concerning the existence of homomorphisms for cubic graphs of
high girth.

Conjecture 1.8 For every integer k there is a graph H of girth at least k and an
integer N , such that for every cubic graph G of girth at least N we have

G
hom
−−−→ H .

Let us note that if we replace “girth” by “odd-girth”, than the result is true,
by a result of [6], or in a greater generality [16]. In [6] they also give a simple and
explicit construction of such graph H when k = 4; a corollary of our main theorem
is that one can let H be the Clebsch graph (quite a bit smaller than the graph
constructed in [6]) in this case.

2 The Proof

The goal of this section is to prove the main theorem. We begin with a lemma
which reduces our task to cubic graphs.

2The only nontrivial case is the product PQ4 ×K3. By a theorem of [4] this graph is uniquely
3-colorable; consequently χc(PQ4 ×K3) = 3.
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Lemma 2.1 If Theorem 1.3 holds for every cubic G then it holds for every sub-
cubic G, too.

Proof Let G be a subcubic graph of girth at least 17. We will find a cubic
graph G′ such that girth of G′ is at least 17 and G′ ⊇ G. The lemma then fol-

lows, as restriction of any homomorphism G′ hom
−−−→ PQ4 to V (G) is the desired

homomorphism G
hom
−−−→ PQ4.

To construct G′, put r =
∑

v∈V (G)(3 − deg(v)). Let H be an r-regular graph

of girth at least 17 (it is well known that such graphs exist, see, e.g., [1] for a
nice survey). We take |V (H)| copies of G. For every edge uv of H we choose two
vertices of degree less than 3, one from a copy of G corresponding to each of u
and v; then we connect these by an edge. Clearly, this process will lead to a cubic
graph containing G and with girth at least the minimum of girths of G and H . �

Proof outline: To show that cubic graphs of girth ≥ 17 have homomorphism
to the Clebsch graph, we shall use property (1) from Proposition 1.1 — that is, we
try to find a 4-tuple of pairwise disjoint cut complements. A natural way to do so
is to consider any 4-tuple of cut complements and then make them as disjoint as
possible. To say this precisely we introduce several terms to describe the tuples of
cut complements and to measure “how disjoint” they are.

A labeling of a graph G is a four-tuple X = (X1, X2, X3, X4) so that each Xi is
a subset of E(G). We call a labeling X a cut labeling if every Xi is a cut, and a
cut complement labeling if every Xi is a cut complement. If Xi ∩Xj = ∅ whenever
1 ≤ i < j ≤ 4 we say that the labeling is wonderful.

Define function a : {0, 1, . . . , 4} → Z by a(0) = 0, a(1) = 1, a(2) = 10, a(3) = 40,
and a(4) = 1000. Now, for any labeling X , we define the label of an edge e (with
respect to X) to be lX(e) = {i ∈ {1, 2, 3, 4} : e ∈ Xi}, the weight of e to be
wX(e) = |lX(e)|, and the cost of e to be costX(e) = a(wX(e)). Finally, we define
the cost of X to be cost(X) =

∑

e∈E(G) costX(e).
The structure of our proof is quite simple: we prove that any cut complement

labeling of minimum cost in a cubic graph of girth ≥ 17 is wonderful. To show that
such a labeling is wonderful, we shall assume it is not, and then make a small local
change to improve the cost—thus obtaining a contradiction. (This also leads to a
linear time algorithm. Confirming the outline above, each step of the algorithm is
making the four cut complements more disjoint, in the sense that it decreases the
cost defined in the previous paragraph.)

The observation below will be used to make our local changes. For any sets A,B
we let A∆B = (A \B)∪ (B \A) be the symmetric difference. If X = (X1, . . . , X4)
and Y = (Y1, . . . , Y4) are labelings, then we let X ∆ Y = (X1 ∆ Y1, . . . , X4 ∆ Y4).

Observation 2.2 If C is a cut and D is a cut complement, then C ∆D is a cut
complement. Similarly, if X is a cut complement labeling and Y is a cut labeling,
then X ∆ Y is a cut complement labeling.

Proof Let C = δ(U) andD = E(G)\δ(V ). Then C∆D = E(G)\
(

δ(U)∆δ(V )
)

=
E(G)\δ(U∆V ) so it is a cut complement. For labelings we consider each coordinate
separately. �

The graphs we consider have high girth, so they ‘locally are trees’. Our proof
will exploit this by using the above observation to make changes on a tree.

For example, consider the tree on Figure 4 (on the top). This is supposed to
be a part of a large cubic graph G with a corresponding part of a cut complement
labeling of G. The dashed lines indicate two cuts of G: Y2 (indicated by {2}) and
Y3 (indicated by {3}). Putting Y1 = Y4 = ∅, we get a cut labeling (Y1, Y2, Y3, Y4)
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of G. By Observation 2.2, X ∆ Y is a cut complement labeling. It is easy to verify
that X∆Y has lower cost that X : the number of weight 1 edges (edges contained in
exactly one of the cut complements) decreases by 1, the number of edges of weight
2, 3, and 4 is not changed.

Perhaps surprisingly, it is possible to reach a wonderful labeling (a 4-tuple of
disjoint cut complements) by a series of such local operations. We need, however,
to get a bit more precise to describe how operations with trees correspond to local
operations with graphs.

To this end, we introduce a family of rooted trees (see Figure 2). Let Ti denote
a rooted tree of “depth i” in which all vertices have degrees 1 and 3, and the root
vertex, denoted r, has degree 1. Explicitly, we let T1 be an edge (with one end being
the root). Having defined Ti, we form Ti+1 by joining two copies of Ti by identifying
their root vertices and then connecting this common vertex to a new vertex, which
will be the new root. The unique edge incident with the root we shall call the root
edge. We let 2Ti denote the tree obtained from two copies of Ti by identifying their
root edges in the opposite direction (the resulting edge will be called the central
edge of 2Ti). A vertex of Ti or 2Ti is interior if either it has degree 3, or it is the
root of Ti.

A cut C of Ti or 2Ti is called internal if C = δ(Z) for some set Z of interior
vertices. A cut labelingX is internal ifX is a 4-tuple of internal cuts. (As illustrated
above on the example from Figure 4, internal cuts of a tree T correspond to “normal”
cuts in a graph that contains T as a subgraph, possibly with some leafs identified.
This is utilized later, in the proof of Theorem 1.3.)

Now we are ready to state and prove a lemma that forms the first step of the
proof: it will be used to show that any cut complement labeling of minimum cost
has no edges of weight > 2.

T1 T2 T3

2T2

Figure 2: Illustration of definitions, root vertex/central edge are emphasized.

Lemma 2.3 Let X be a labeling of the tree 2T2 and assume that the weight of
the central edge is > 2. Then there exists an internal cut labeling Y of 2T2 so that
cost(X ∆ Y ) < cost(X).

(Note that we will actually prove this for T2 in place of 2T2. This version,
however, corresponds better to Lemma 2.4.)

Proof Let e be the central edge, let x be a vertex incident with e, let f, g be the
other edges incident with x, and let A = lX(e), B = lX(f), and C = lX(g). We will
construct an internal cut labeling Y = (δ(Z1), . . . , δ(Z4)) (where each Zi is either
∅ or {x}) so that cost(X ∆ Y ) < cost(X). For convenience, we shall say that we
switch a set I ⊆ {1, 2, 3, 4} if we set Zi = {x} if i ∈ I and Zi = ∅ otherwise.

If S = A∩B ∩C is nonempty then we may switch S, thereby reducing the cost
of each of e, f , g. Hence we may suppose S is empty.

Case 1. |A| = 4: If B = C = ∅ then we switch {1} decreasing the cost from a(4)
to a(3)+2a(1). Otherwise we switch B∪C; this leads to a label {1, 2, 3, 4}\(B∪C)
on e, C on f and B on g, reducing the cost again.
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Case 2. |A| = 3: We may suppose A = {1, 2, 3} and |A| ≥ |B| ≥ |C|. Moreover,
|C| < 3 for otherwise A ∩B ∩C is nonempty. If A and B have a common element,
then we switch it. This changes the weights of edges in T from 3, |B|, |C| to 2,
|B| − 1, |C|+1 and as |C| < 3, this is an improvement in the total cost. It remains
to consider the cases when both B and C are subsets of {4}. In each of these cases
we switch {1}, this reduces the cost from at least a(3) to at most 3a(2). �

The next lemma, which provides the second step of the proof, is analogous to
the previous one, but is considerably more complicated to prove.

Lemma 2.4 Let X be a labeling of the tree 2T9 and assume that every edge has
weight ≤ 2 and that the central edge has weight exactly 2. Then there exists an
internal cut labeling Y of 2T9 so that cost(X ∆ Y ) < cost(X).

Before discussing the proof of this lemma we shall use it to prove the main
theorem.

Proof (of Theorem 1.3) It follows from Lemma 2.1 and Proposition 1.1 that
it suffices to prove that all cubic graphs with girth at least 17 have wonderful
cut complement labelings. Let G be such graph and let X be a cut complement
labeling of G of minimum cost. It follows immediately from Lemma 2.3 that every
edge of G has weight ≤ 2. Suppose there is an edge e of weight 2. Then it follows
from our assumption on the girth that G contains a subgraph isomorphic to 2T9

(possibly with some of the leaf vertices identified) where e is the central edge. Now
Lemma 2.4 gives us an internal cut labeling Y of 2T9 (hence a cut labeling of G)
such that cost(X ∆ Y ) < cost(X). This contradiction shows that X is wonderful,
and completes the proof of the first part.

Next we give a short description of a linear-time algorithm that finds the par-
tition. We start with a cut complement labeling X = (E(G), E(G), E(G), E(G)).
Then we repeatedly pick a bad edge e—that is an edge for which w(e) > 1. By
Lemma 2.3 and 2.4 we can decrease the total cost by moving from X to X ∆ Y
where Y is a cut labeling that contains only edges at distance at most 8 from e. We
can therefore find the cut labeling in constant time (e.g., by brute force if we do not
try to minimize the constant)—we only have to use an efficient representation of
the graph, namely a list of edges, list of vertices, and pointers between the adjacent
objects. As the cost of the starting coloring is a(4) · |E(G)| and at each step the
decrease is at least by 1, it remains to handle the operation “pick a bad edge” in
constant time. For this, we maintain a linked list of bad edges, for each element
of the list there is a pointer from and to the corresponding edge in the main list
of edges. This allows us to change the list of bad edges after each step in constant
time (although, we repeat, the constant is impractically large). �

Outline of the computer search

It remains to prove Lemma 2.4, and our proof of this requires a computer. Un-
fortunately, both the number of labelings and the number of possible cuts is far
too large for a brute-force approach: There are 2(29 − 1) − 1 edges of 2T9, which
means more than 111000 labelings, even if we use Lemma 2.3 to eliminate labeling
with edges of weight 3 or 4. Moreover, there are roughly (22·2

8

)4 internal cut la-
belings in 2T9, hence we cannot use brute-force even for one labeling. To overcome
the second problem we shall recursively compute all of the necessary information,
a so-called “menu” for the subtrees, leading to an efficient algorithm for a given
labeling. To solve the first problem, instead of enumerating all labelings of 2T9 and
computing the menu for them, we will iteratively find all menus corresponding to
all labelings of T1, T2, . . . , T8. This way we avoid considering the same “partial

7



labeling” several times. To further reduce the computational load, we will consider
only “worst possible menus” in each Ti. Now, to the details.

If S ⊆ [4] (we shall use [4] to denote {1, 2, 3, 4}), we define an internal cut labeling
Y of Ti to be an internal S-swap if Y = (δ(Z1), . . . , δ(Z4)) where every Zi is a set of
interior nodes (note that the root r is an interior vertex) and S = {i ∈ [4] : r ∈ Zi}.
Informally, an internal S-swap ‘switches S between the root and the leaves’ (see
Figure 3). A menu is a mapping M : P([4]) → Z. If Ti is a copy of a rooted tree
with root r and X is a labeling of Ti then the menu corresponding to X is defined
as follows

MX(S) = min{cost(X ∆ Y )− cost(X) : Y is an internal S-swap} . (1)

Thus, the menu MX associated with X is a function which tells us for each subset
S ⊆ [4] the minimum cost of making an internal S-swap. This is enough information
to check whether we can decrease the cost of a given labeling: if T1, T2, T3 are trees
meeting at a vertex and Xi is the restriction of a labeling X to Ti, then we can
decrease the cost by a local swap (using only edges of T1, T2, and T3) if we have
MX1

(S) +MX2
(S) +MX3

(S) < 0 for some S ∈ P([4]).
For menusM , N and a setR ⊆ [4] we define Parent menu(M,N,R) : P([4]) → Z

to be the mapping given by the following rule:

Parent menu(M,N,R)(S) = min
Q∈P([4])

(

M(Q)+N(Q)+a(|R∆S∆Q|)−a(|R|)
)

. (2)

The motivation for this definition is the following observation, which is the key to
our recursive computation.

Observation 2.5 Let X be a labeling of the tree Ti (i ≥ 2). Let e be the root edge
of Ti, let the two copies of Ti−1 that form Ti − {e} be denoted T ′ and T ′′. Finally,
let X ′ and X ′′ be the restrictions of the labeling X to the trees T ′ and T ′′. Then

MX = Parent menu(MX′ ,MX′′ , lX(e)) .

Proof Let v be the end of the edge e which is distinct from the root r. Choose any
S ∈ P([4]), we need to show, that MX(S) = Parent menu(MX′ ,MX′′ , lX(e))(S),
where the latter is defined by Equation (2).

Consider an internal S-swap Y = (δ(Z1), . . . , δ(Z4)) and observe, that it is in
1-1 correspondence with a triple (Y ′, Y ′′, Q), where

• Q = {i ∈ [4] : v ∈ Zi},

• Y ′ = (δT ′(Z1∩V (T ′)), . . . , δT ′(Z4∩V (T ′))) (here δT ′ means the neighborhood
in T ′), Y ′ is an internal Q-swap in T ′. Similarly

• Y ′′ = (δT ′′ (Z1 ∩ V (T ′′)), . . . , δT ′′(Z4 ∩ V (T ′′))) is an internal Q-swap in T ′′.

See also Figure 3, where the labeling of Figure 4 (described in detail below Observa-
tion 2.2) is “decomposed” in this way. With this correspondence we can decompose
the change of cost between labelings X ∆ Y and X in the following way:

cost(X ∆ Y )− cost(X) =
(

cost(X ′ ∆ Y ′)− cost(X ′)
)

+
(

cost(X ′′ ∆ Y ′′)− cost(X ′′)
)

+
(

a(|lX(e) ∆ S ∆Q|)− a(|lX(e)|)
)

If we minimize the left-hand side over all internal S-swaps Y , we get MX(S).
Equivalently, we can minimize the right-hand side over allQ ∈ P([4]) and all internal
Q-swaps Y ′ (in T ′) and Y ′′ (in T ′′). However, for a fixed Q the minimum over all
such Y ′ of cost(X ′ ∆ Y ′)− cost(X ′) is MX′(Q), similarly for the second summand.
Thus, minimizing over Q, Y , and Y ′ we get the formula in Equation (2). �
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{2}

{3}

{3}

{1}

∅

{2}

{3}

{3}
{4}

{2}

{4}

{2}

∅

{1}
{4}

{4}

{3}

Figure 3: Illustration of the proof of Observation 2.5: We have S = ∅ and consider
the internal S-swap indicated in Figure 4. The split-up in this figure results in an
internal {2}-swap in T ′ (on the left) and an internal {2}-swap in T ′′ (on the right);
the set Q equals {2}.

Using the above observation, it is relatively fast to compute the menu associated
with a fixed labeling of a tree Ti. However, for our problem, we need to consider
all possible labelings of Ti. Accordingly, we now define a few collections of menus
which contain all of the information we need to compute to resolve Lemma 2.4.
Prior to defining these collections, we need to introduce the following partial order
on menus: if M1 and M2 are menus, we write M1 4 M2 if M1(S) ≤ M2(S) for
every S ∈ P([4]).

We let Mi be the set of all MX , where X is a labeling of Ti, and every e ∈ E(Ti)
satisfies wX(e) ≤ 2. We let Wi denote the set of maximal (‘worst’) elements (with
respect to 4) of Mi. Further, we define two subsets of these sets: M′

i denotes
the set of menus corresponding to those labelings X of Ti where each edge is of
weight at most 2 and where the root edge is labeled by {1, 2}. Finally, W ′

i is the
set of maximal elements of M′

i. The following observation collects the important
properties of these sets.

Observation 2.6 For every i ≥ 2 we have

(1) Mi =
{

Parent menu(M,N,R) | M,N ∈ Mi−1, R ∈ P([4]), |R| ≤ 2
}

(2) Wi = max
in 4

{

Parent menu(M,N,R) | M,N ∈ Wi−1, R ∈ P([4]), |R| ≤ 2
}

(3) W ′
i = max

in 4

{

Parent menu(M,N, {1, 2}) | M,N ∈ Wi−1

}

Proof Part (1) follows immediately from Observation 2.5. The second part
follows from this and from the fact that the mapping Parent menu is monotone
with respect to the order 4 on menus. Part (3) follows by a similar argument. �

Next we state the key claim proved by our computer check.

Claim 2.7 (verified by computer) For every W1 ∈ W ′
9, and W2,W3 ∈ W8

there exists S ∈ P([4]) such that W1(S) +W2(S) +W3(S) < 0.

We use Observation 2.6 to give a practical scheme for computing the collections
W8 and W ′

9 followed by a simple test for each possible triple. Further details are
described in the Code Listing. With this, we are finally ready to give a proof of
Lemma 2.4.
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Proof (of Lemma 2.4) Let X be an edge labeling of 2T9 satisfying the as-
sumptions; we may suppose the central edge uv is labeled by {1, 2}. Let T 1,
T 2, T 3 be the three distinct maximal subtrees of 2T9 which have v as a leaf,
and assume that T 1 contains the central edge. Let Xj denote the restriction
of X to T j, and let Mj = MXj

be the corresponding menu. Choose W1 ∈ W ′
9,

W2,W3 ∈ W8 so that Mj 4 Wj holds for each j. By Claim 2.7, we may choose
S ∈ P([4]) for which W1(S) +W2(S) +W3(S) < 0 and by definition of 4 we have
M1(S)+M2(S)+M3(S) < 0, too. Let Xj be the internal S-swap for which the mini-
mum in the definition ofMj (Equation (1)) is attained. Then Y = X1∆X2∆X3 is an
internal cut labeling of 2T9 and cost(X∆Y )−cost(X) = M1(S)+M2(S)+M3(S) <
0. This completes the proof. �

Remark 2.8 In the definition of cost of a coloring, the values of parameters a(i)
can be chosen in a variety of ways—provided we do penalize edges of weight 1.
Perhaps it seems more natural to have a(1) = 0, we only need to get rid of the edges
of weight ≥ 2, so we might not penalize edges of weight 1 at all. However, this
straightforward approach does not work. Consider the edge labeling of 2T4 the upper
part of which is depicted in Figure 4. (The lower part of 2T4 is a mirror image of
this.) It is rather easy to verify, that switching any local cut labeling does not get rid
of edge of weight 2. Moreover, this labeling can be extended to arbitrary 2Tn by the
‘growing rules’ depicted in the lower part of the figure (a, b, c, d stand for {1}, {2},
{3}, {4} in any order). On the other hand, by switching {2} and {3} on the cuts
depicted in the figure, we decrease the cost of the coloring by a(1). Thus, choosing
a(1) nonzero allows us to distinguish, say, among various cut labelings where there
is just one edge of weight 1. Then we can (by a series of local changes) move to a
cut labeling, where we can get rid of the edge of weight 1.

{2}

{3}

{1, 2}

{3} {4}

{1}

∅ {2}

∅{2}

{3}

{3}
{4} {1}

{4}

{4}

{3}

a ∅

−→

a ∅
b

c c
d

a b

−→

a b

c

∅ d
∅

Figure 4: A difficult labeling of T4.
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Remark 2.9 We note that we could prove Lemma 2.3 by the same method as
Lemma 2.4; in fact a simple modification of the code verifies both of these lemmas
at the same time. The reason we put Lemma 2.3 separately is that it allows for an
easy proof by hand, and this hopefully makes the proof easier to understand.

Another remark is that an easy modification of our method of verifying Claim 2.7
could decrease the running time by 30%. We did not want to obscure the main proof
for this relatively small saving, but we wish to mention the trick here. In the process
of enumerating the sets Wi, we can throw away all menus M that satisfy M(∅) < 0.
It is not hard to show that we still consider all ‘hard cases’.

Remark 2.10 The necessity to use computer for huge amount of checking is not
entirely satisfying (although this point of view may be a rather historically condi-
tioned aesthetic criterion). It would be interesting to find a proof of Lemma 2.4
without extensive case-checking, perhaps by a careful inspection of the sets Wi.

3 Some Equivalences

The goal of this section is to prove Proposition 1.1 from the Introduction (restated
here for convenience as Proposition 3.2), which gives several graph properties equiv-
alent to the existence of a homomorphism to a projective cube PQ2k. To prove this,
it is convenient to first introduce another family of graphs. For every positive inte-
ger n, let Hn denote the graph with all binary vectors of length n forming the vertex
set and with two vertices being adjacent if they agree in exactly one coordinate (note
that Hn is a Cayley graph on Z

n
2 ).

For odd n, the graphHn has exactly two components, one containing all vertices
with an even number of 1’s, and the other all vertices with an odd number of 1’s;
we call the components He

n and Ho
n, respectively.

Observation 3.1 For every k ≥ 1 the graphs He
2k+1, H

o
2k+1, and PQ2k are iso-

morphic.

Proof The mapping that sends each binary vector to its complementary vector
gives an isomorphism between Ho

2k+1 and He
2k+1. Thus, the simple graph obtained

from H2k+1 by identifying complementary vectors is isomorphic to He
2k+1 (and to

Ho
2k+1). However, this graph is also isomorphic to PQ2k, since viewing the vertices

of each as a pair of complementary vectors, we see that u and v will be adjacent if
and only if one vector associated with u and one vector associated with v differ in
exactly 1 coordinate. �

Now we are ready to prove the proposition.

Proposition 3.2 For every graph G and nonnegative integer k, the following prop-
erties are equivalent.

(1) There exist 2k pairwise disjoint cut complements.

(2) There exist 2k + 1 pairwise disjoint cut complements with union E(G).

(3) G has a homomorphism to PQ2k.

(4) G has a cut-continuous mapping to C2k+1.

Proof We shall show (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1).
To see that (1) =⇒ (2), let S1, S2, . . . , S2k be pairwise disjoint cut com-

plements, and for every 1 ≤ i ≤ 2k let Wi = E(G) \ Si. Now setting S2k+1 =
E(G) \ ∪1≤i≤2kSi = E(G) \∆1≤i≤2kWi we have (2).

Next we shall show that (2) =⇒ (3). Let S1, S2, . . . , S2k+1 be 2k + 1 disjoint
cut complements with union E(G) and for every 1 ≤ i ≤ 2k + 1 choose Ui ⊆ V (G)
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so that Si = E(G)\ δ(Ui). Now assign to each vertex v a binary vector xv of length
2k + 1 by the rule xv

i = 1 if x ∈ Ui and xv
i = 0 otherwise. This mapping gives a

homomorphism from G to H2k+1, so by Observation 3.1 we conclude that G has a
homomorphism to PQ2k.

Next we prove that (3) =⇒ (4). Since the composition of two cut-continuous
mappings is cut-continuous, it follows from Observation 1.7 and Observation 3.1
that it suffices to find a cut-continuous mapping from H2k+1 to C2k+1. To construct
this, let E(C2k+1) = {e1, e2, . . . , e2k+1} and define a mapping g : E(H2k+1) →
E(C2k+1) by the rule that g(uv) = ei if u and v agree exactly in coordinate i. We
claim that g is a cut-continuous mapping. To see this, let R be a cut of C2k+1, let
J = {i ∈ {1, 2, . . . , 2k+1} : ei ∈ R}, and note that |J | is even. Now let X be the set
of all binary vectors with the property that there are an even number of 1’s in the
coordinates specified by J . Then g−1(R) = δ(X) so our mapping is cut-continuous
as required.

To see that (4) =⇒ (1), simply note that the preimage of any edge of C2k+1

is a cut complement, so the preimages of the 2k + 1 edges are 2k + 1 disjoint cut
complements. �

We can extract the key idea of the above proof as follows. Let Ei ⊆ E(H2k+1)
be the set of edges uv such that u and v agree in exactly the i-th coordinate.3 The
sets E1, . . . , E2k+1 form a partition of E(H2k+1) into disjoint cut complements.

4 Code Listing

In this section we present the code used to verify Claim 2.7. The code is written in C;
it can be found at http://kam.mff.cuni.cz/~samal/papers/clebsch/ together
with its output. It runs about 30 minutes on a 2 GHz processor.4 We have tested
it with compilers gcc (version 3.0, 3.3, and 4.3), Intel C, and Borland C++ on
several computers to minimize the possibility of error in the proof due to erroneous
computer hardware/software.

We use Observation 2.6 to iteratively compute Wi+1 from Wi, this is accom-
plished by function W update. By the same function we compute W ′

9 from W8,
we only provide a shorter (namely, one-element) list of possible labels of the root
edge. Finally, we use final test to check whether all triples of menus satisfy the
inequality of Claim 2.7. To simplify and speed up the code, we use static data
structures for Wi’s. That is, the elements of the set Wi are stored as W[i][ j ], with
0 ≤ j < W size[i ] and with a limit MAX=20000 on the number of elements W size[i ].
If this number had turned out to be too small, the program would have output an
error message (this, however, did not happen).

Labels of edges, that is elements of P([4]) are represented as integers from 0
up to 15. For convenience variables that hold labels have type label (which is a
new name for short). Symmetric difference of labels corresponds to bitwise xor—
“ˆ”. Cost of edges are stored in variables of type cost (a new name for int). From
Equation (2) it is easy to deduce that Parent menu(M,N,R)(S) ≤ M(S) +N(S).
Consequently, the largest coordinate of an element of Wi is in absolute value at
most 2i−1a(4), and as we only use sets Wi for i ≤ 9, we will not have to store larger
numbers than an int can hold. Other new data types are menu (array of 16 cost’s
used to represent a menu), and comparison—variables of that type are assigned
values −1, 0, 1, or INCOMP=2 if the result of a corresponding comparison (of two
menus) is ≺, =, ≻ or incomparable.

3 If you think of Hn as of a Cayley graph, then Ei consists of edges corresponding to the i-th
element of the generating set. We thank to Reza Naserasr for this comment.

4Over the course of the refereering process, this time decreased to 12 minutes on a recent laptop.
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When we need to compute M = Parent menu(M1,M2, c), this is implemented as
add menus(M 1,M 2,children); p menu(children, parent, M). (The reason for this two-
step process is that children is only computed once and then used for all possible
c’s.) Here children corresponds to the sum M1+M2, parent is a menu corresponding
to the single edge of T1 labeled by c. Then we insert the menu in the set Wi (array
W[i]) by calling insert menu. This simply compares M to all menus in W[i]. If some
of them is ≻ M , we are done with M . Otherwise, we add M to W[i] and delete
all menus in W[i], that are possibly ≺ M . (This is implemented in a somewhat
roundabout way (to save time). To fill the empty spaces after the deleted menus we
move there menus from the end, that is W[i][W size[i]−1]. This avoids moving all of
the menus in memory. When we implemented the deletion of ‘small’ menus in this
function in a more straightforward manner (‘move everything left’), the running
time did approximately double.)

#include <s t d i o . h>
#include < l im i t s . h>
#define MAX 20000 // l im i t on s i z e o f the s e t s W i

typedef short label ;
typedef int cost ;
typedef cost menu [ 1 6 ] ;

typedef short comparison ;
comparison INCOMP = 2 ;

cost a [5 ]={0 ,1 ,10 ,40 ,1000} ;
cost l a b e l c o s t [ 1 6 ] ; // co s t o f edge l a b e l e d by each p o s s i b l e l a b e l
menu on e l ab e l [ 1 ] ; // W’ 1 , i . e . o n e l a b e l [ 0 ] corresponds to T1 l a b e l e d by {1 ,2}
menu W[ 9 ] [MAX] ;
menu Wprime [MAX] ; // W’ 9
int Wsize [ 9 ] ; // Wsize [ i ] i s the number o f e l ements o f W[ i ]
int Wprimesize ; // the number o f e l ements o f Wprime

void menu from labe l ( label r , menu M) {
// M w i l l be the menu corresponding to T1 l a b e l e d by r

label s ;
for ( s=0; s<16; s++)

M[ s ] = l ab e l c o s t [ r ˆ s ] − l a b e l c o s t [ r ] ;
}

void i n i t v a r i a b l e s ( ) {
label s ;
for ( s=0; s<16; s++)

l a b e l c o s t [ s ] = a [ ( s&1) + ( ( s>>1) & 1) + ( ( s>>2) & 1) + ( ( s>>3)&1)];
// the r i g h t hand s i d e i s a [ n ] , where n i s the number o f ones
// in binary r ep r e s en ta t i on o f s

menu from labe l ( 3 , on e l ab e l [ 0 ] ) ; // 3 corresponds to {1 ,2}

Wsize [ 1 ]=0 ;
for ( s=0; s<16; s++)

i f ( l a b e l c o s t [ s ] < a [ 3 ] )
menu from labe l ( s ,W[ 1 ] [ Wsize [ 1 ]++ ] ) ;

}

void add menus (menu M1, menu M2, menu sum) {
label s ;
for ( s=0; s<16; s++)
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sum [ s ] = M1[ s ]+M2[ s ] ;
}

comparison s i gn ( int n) {
i f (n > 0) return 1 ;
i f (n < 0) return −1;
return 0 ;

}

comparison compare menus (menu M1, menu M2) {
// re turns −1, 0 , 1 , INCOMP, depending on
// whether M1<M2, M1=M2, M1 > M2, or they are incomparable

label s ;
comparison t , cu r r en t=0;

for ( s=0; s < 16 ; s++) {
t = s ign (M1[ s ] − M2[ s ] ) ;
i f ( ( t != 0) && ( t == −cu r r en t ) ) return INCOMP;
i f ( cu r r en t == 0) cu r ren t = t ;

}
return cu r r en t ;

}

void p menu (menu ch i ld r en , menu parent , menu output ) {
// ch i l d r en i s the sum of the menus o f the two sub t r e e s
// parent corresponds to the roo t edge

label s , q ;
cost new , cu r r en t b e s t ;

for ( s=0; s<16; s++) {
cu r r en t b e s t = ch i l d r en [ 0 ] + parent [ s ] ; // f o r q=0
for (q = 1 ; q < 16 ; q++) {

new = ch i l d r en [ q ] + parent [ s ˆ q ] ; // using equa t i on (2)
i f (new < cu r r en t b e s t ) cu r r en t b e s t = new ;

}
output [ s ] = cu r r en t b e s t ;

}
}

void in sert menu (menu ∗book , int ∗ books ize , menu M) {
// book i s an array o f menus : book [ 0 ] . . . book [∗ books i ze −1]
// book s i z e i s the number o f e l ements o f book , we are i n s e r t i n g M

int i ;
label s ;
comparison t=0;

for ( i =0; i < ∗ books i z e ; i++) {
t = compare menus (M, book [ i ] ) ;
i f ( t <= 0) return ; // M <= book [ i ] , so we w i l l not i n s e r t M
i f ( t == 1) break ; // M > book [ i ] , so no o ther element

// o f book may be l a r g e r than M
}

// e i t h e r M i s INCOMP with every menu
// or :

i f ( t==1) // i . e . M > book [ i ] , we w i l l
// d e l e t e a l l e l ements o f book t ha t are < M

for ( ; i < ∗ books i z e ; i++) {
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while ( i < ∗ books i z e && compare menus (M, book [ i ])==INCOMP)
i++;

// at t h i s po in t we have found another menu l e s s than M, namely book [ i ]
while (∗ books i z e > i && compare menus ( book [∗ books ize −1] ,M) <= 0 )

(∗ books i z e )−−; // we abandon sma l l menus at the end
i f (∗ books i z e <= i ) // a l l the remaining menus were sma l l

break ; // a l l menus < M are d e l e t e d
// there i s a b i g menu at the end , we move i t to book [ i ] :
(∗ books i z e )−−;
for ( s = 0 ; s<16; s++)

book [ i ] [ s ] = book [∗ books i z e ] [ s ] ;
}

// we i n s e r t M as the l a s t element o f book
i f (∗ books i z e == MAX) p r i n t f ( ” too shor t array !\n” ) ;
else {

for ( s = 0 ; s<16; s++)
book [∗ books i z e ] [ s ] = M[ s ] ;

(∗ books i z e )++;
}

}

void W update(menu ∗oldW , int o ld s i z e , menu ∗ root edge , int r oo t s i z e ,
menu ∗newW, int ∗newsize ) {

menu N, ch i l d r en ;
int i , j , k ;

∗newsize = 0 ;
for ( i =0; i < o l d s i z e ; i++)

for ( j=i ; j < o l d s i z e ; j++) {
add menus (oldW [ i ] , oldW [ j ] , c h i l d r en ) ;
for ( k=0; k < r o o t s i z e ; k++) {

p menu ( ch i ld r en , root edge [ k ] ,N) ;
insert menu (newW, newsize , N) ;

}
}

}

int f i n a l t e s t (menu ∗C, int Csize , menu ∗P, int Ps ize ) {
int i , j , k ;
label s ;
int counter=0; // number o f found counterexamples to Claim 2.7
menu ch i l d r en ;

for ( i =0; i < Csize ; i++)
for ( j=i ; j < Csize ; j++) {

add menus (C[ i ] ,C[ j ] , c h i l d r en ) ;
for ( k=0; k < Ps ize ; k++) {

counter ++; // we are t e s t i n g p o s s i b l e counterexample P[ k ] , C[ i ] , C[ j ]
for ( s=0; s<16; s++)

i f ( ch i l d r en [ s ]+P[ k ] [ s ] < 0) { counter−−; break ;}
// Claim 2.7 ho l d s f o r P[ k ] ,C[ i ] ,C[ j ]
// we proceed by t e s t i n g another t r i p l e

}
}

return counter ;
}
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int main ( ) {
int i ;
i n i t v a r i a b l e s ( ) ;

p r i n t f ( ”%d %d\n” , INT MIN , INT MAX) ;
// to check whether 2ˆ8.1000 i s not too l a r g e

for ( i =1; i <8; i++) {
W update(W[ i ] , Wsize [ i ] ,W[ 1 ] , Wsize [ 1 ] ,W[ i +1] ,&Wsize [ i +1 ] ) ;
p r i n t f ( ”The s i z e o f W%d i s : %d\n” , i +1,Wsize [ i +1 ] ) ;

}
W update(W[ 8 ] , Wsize [ 8 ] , one labe l , 1 ,Wprime,&Wprimesize ) ;

i f ( f i n a l t e s t (W[ 8 ] , Wsize [ 8 ] ,Wprime , Wprimesize ) == 0)
p r i n t f ( ”\nProof i s f i n i s h e d .\n\n” ) ;

return 0 ;
}
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[4] Don Greenwell and László Lovász, Applications of product colouring, Acta
Math. Acad. Sci. Hungar. 25 (1974), 335–340.

[5] Bertrand Guenin, Packing T-joins and edge colouring in planar graphs, (to
appear).
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