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Budapest, Hungary, and

Department of Mathematics, University of Toronto

Toronto, Ontario, Canada

February 2009

Abstract

In an earlier paper the authors proved that limits of convergent graph sequences can be

described by various structures, including certain 2-variable real functions called graphons,

random graph models satisfying certain consistency conditions, and normalized, multiplica-

tive and reflection positive graph parameters. In this paper we show that each of these

structures has a related, relaxed version, which are also equivalent. Using this, we describe

a further structure equivalent to graph limits, namely probability measures on countable

graphs that are ergodic with respect to the group of permutations of the nodes.

As an application, we prove an analogue of the Positivstellensatz for graphs: We show

that every linear inequality between subgraph densities that holds asymptotically for all

graphs has a formal proof in the following sense: it can be approximated arbitrarily well

by another valid inequality that is a “sum of squares” in the algebra of partially labeled

graphs.
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1 Introduction

In an earlier paper the authors proved that limits of convergent graph sequences can be described

by various structures, including 2-variable symmetric, measurable functions [0, 1]2 → [0, 1], ran-

dom graph models satisfying a “consistency” and a “locality” condition, and normalized, multi-

plicative and reflection positive graph parameters (see Theorem 3.1 and Proposition 3.3).

In this paper we show that each of these structures has a related, relaxed version: We can drop

the multiplicativity condition on the graph parameter, replacing it with the simple condition that

deleting isolated nodes does not change the value of the parameter. We can drop the “locality”

condition on the random graph model. We can replace the graphon by a probability distribution

of the graphon. As the first main result of this paper, we prove that these relaxed versions are

also equivalent.

This result will be used in adding a further equivalent structure to the list of structures

describing graph limits: a probability measure on countable graphs that is ergodic with respect

to the group of permutations of the nodes.

As an application, we prove an analogue of the Positivstellensatz for graphs. Many fun-

damental theorems in extremal graph theory can be expressed as linear inequalities between

subgraph densities. For example, the Mantel–Turán Theorem is implied by the linear inequality

that the density of triangles is always at least the edge-density minus 1
2 . (To be more precise,

using “homomorphism densities” to be defined in Section 2, we get inequalities that hold true

for all graphs; in terms of subgraph densities, we get in general only asymptotic results with

some error terms.)

It has been observed long ago that most of these extremal results seem to follow by one of more

tricky applications of the Cauchy–Schwartz inequality. We confirm this in the following sense: we

show that every linear inequality between homomorphism densities that holds for all graphs can

be derived, up to an arbitrarily small error term, by the Cauchy–Schwartz Inequality. To make

the last phrase precise, we use graph algebras introduced by Freedman, Lovász and Schrijver in

[6]. The square of an algebra element, when expanded, yields a valid linear inequality between

homomorphism densities. Sums of such inequalities yield further valid linear inequalities, and

our result says that such sums of squares are dense among all valid linear inequalities.

2 Preliminaries

2.1 Homomorphism densities and limits

In this paper, all graphs are simple. If we don’t quantify, we also mean that the graph is finite.

For two graphs F and G, we write F ∼= G if they are isomorphic, and F ≃ G if they become

isomorphic after their isolated nodes are deleted. So the graph Un consisting of n isolated nodes

satisfies Un ≃ K0
∼= U0.

For two graphs F and G, let hom(F,G) denote the number of homomorphisms (adjacency-

preserving maps) from F to G, and inj(F,G), the number of injective homomorphisms from F
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to G. We consider the homomorphism densities

t(F,G) =
hom(F,G)

|V (G)||V (F )|
,

and subgraph densities

tinj(F,G) =
inj(F,G)

|V (G)| · (|V (G)| − 1) · · · (|V (G)| − |V (F )|+ 1)
,

Let W0 denote the set of symmetric measurable functions W : [0, 1]2 → [0, 1]. A graphon is

any function in W0. For every graph F and graphon W , we define the density of F in W by

t(F,W ) =

∫

[0,1]V

∏

ij∈E

W (xi, xj)
∏

i∈V

dxi

To every graph G we can assign a graphon WG as follows: Let V (G) = [n]. Split [0, 1] into

n intervals J1, . . . , Jn of length λ(Ji) = αi/αG. For x ∈ Ji and y ∈ Jj , let WG(x, y) = 1ij∈E(G).

With this construction, we have t(F,G) = t(F,WG) for all finite graphs F .

We consider on W0 the cut norm

‖W‖� = sup
S,T⊆[0,1]

∣

∣

∣

∫

S×T

W (x, y) dx dy
∣

∣

∣

where the supremum is taken over all measurable subsets S and T , and the cut distance

δ�(U,W ) = inf
φ,ψ

‖Uφ −Wψ‖�,

where φ, ψ range over all measure preserving maps from [0, 1] → [0, 1], and Wφ(x, y) =

W (φ(x), φ(y)) [2, 3]. This also defines a distance between graphs by

δ�(F,G) = δ�(WF ,WG).

(See [4] for more combinatorial definitions of this graph distance.)

We note that δ�(U,W ) = 0 can hold for two different graphons: δ�(W
φ,Wψ) = 0 for every

graphon W and measure preserving maps φ, psi : [0, 1] → [0, 1]. (It was proved in [1] that this

gives all pairs of graphons with distance 0.) We call two graphons weakly isomorphic if their

distance is 0.

It was proved in [8] that (W0, δ�) is a compact metric space.

A sequence of graphs (Gn) with |V (Gn)| → ∞ is convergent if the densities t(F,Gn) converge

for all finite graphs F . This is clearly equivalent to saying that the subgraph densities tinj(F,Gn)

converge for all finite graphs F .

It was proved in [4] that a graph sequence is convergent if and only if it is Cauchy in the δ�

distance. It was proved in [9] that for every convergent graph sequence there is a limit object in

the form of a function W ∈ W , so that

t(F,Gn) → t(F,W ) for all graphs F.

In [4] it was shown that this is equivalent to δ�(WGn
,W ) → 0. In [1] it was proved that this

limit is uniquely determined up to weak isomorphism.
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2.2 Partially labeled graphs and quantum graphs

A k-labeled graph is a graph in which k of the nodes are labeled by 1, . . . , k (there may be any

number of unlabeled nodes). A 0-labeled graph is just an unlabeled graph. Let Fk denote the

set of k-labeled graphs (up to label-preserving isomorphism).

A k-labeled graph F is called flat if V (F ) = [k]. Let F ′
k denote the set of all flat k-labeled

graphs.

Let F1 and F2 be two k-labeled graphs. We define the k-labeled graph F1F2 by taking their

disjoint union, and then identifying nodes with the same label (if multiple edges arise, we only

keep one copy). Clearly this multiplication is associative and commutative. For two 0-labeled

graphs, F1F2 is their disjoint union.

Sometimes it is more convenient to combine k-labeled graphs into a single structure. A

partially labeled graph is a finite graph in which some of the nodes are labeled by distinct positive

integers. For two partially labeled graphs F1 and F2, let F1F2 denote the partially labeled graph

obtained by taking their disjoint union, and identifying nodes with the same label. Let F∗

denote the set of partially labeled graphs (up to isomorphism).

A quantum graph is defined as a formal linear combination of graphs with real coefficients. A

k-labeled quantum graph is defined similarly as a formal linear combination of k-labeled graphs.

The product of k-labeled graphs defined above extends to quantum graphs by distributivity: if

f =
∑n

i=1 λiFi and g =
∑m

j=1 µjGj , then fg =
∑n

i=1

∑m
j=1 λiµjFiGj .

2.3 Graph parameters

A graph parameter is a real valued function defined on isomorphism types of graphs (including

the graph K0 with no nodes and edges). Let f be any graph parameter and fix an integer k ≥ 0.

We define the k-th connection matrix of the graph parameter f as the (infinite) symmetric matrix

M(f, k), whose rows and columns are indexed by (isomorphism types of) k-labeled graphs, and

the entry in the intersection of the row corresponding to F1 and the column corresponding to F2

is f(F1F2). The flat connection matrix Mflat(f, k) is the submatrix of M(f, k) formed by rows

and columns corresponding to flat k-labeled graphs (this matrix is finite).

We denote by M the space of F∗ × F∗ matrices (these are infinite matrices). For a graph

parameter f , we define the full connection matrix as the symmetric matrix M(f) ∈ M, whose

entry in the intersection of the row corresponding to F1 and the column corresponding to F2 is

f(F1F2). Clearly this matrix contains as a submatrix all connection matrices M(f, k). In the

other direction, we note that every finite submatrix of M(f) is contained as a submatrix in one

of the matrices M(f, k).

Let f be a graph parameter. We say that f is isolate-indifferent if f(G) = f(G′) whenever

G ≃ G′. The parameter is multiplicative if f(FG) = f(F )f(G), where FG denotes the disjoint

union of the graphs F and G.

For every graph parameter f , we define its Möbius transform f † by

f †(F ) =
∑

F ′: V (F ′)=V (F )

E(F ′)⊇E(F )

(−1)|E(F ′)\E(F )|f(F ′).
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We say that f is normalized if f(K0) = f(K1) = 1. Note that for a multiplicative parameter,

it would be enough to assume f(K1) = 1, while for an isolate-indifferent parameter, it would be

enough to assume f(K0) = 1. Trivially, if a graph parameter is multiplicative and normalized,

then it is isolate-indifferent.

We call a graph parameter reflection positive if all of its connection matrices are positive

semidefinite (this is equivalent to saying that its full connection matrixM(f) is positive semidefi-

nite). We call it flatly reflection positive if all its flat connection matrices are positive semidefinite.

We denote by K the linear space of matrices A ∈ M in which AF1,G1 = AF2,G2 if F1G1
∼=

F2G2, and by L, the linear space of matrices A ∈ M in which AF1,G1 = AF2,G2 if F1G1 ≃ F2G2.

Clearly connection matrices define a bijection between matrices in K and graph parameters.

Under this bijection, matrices in L correspond to isolate-indifferent graph parameters.

Let P ⊆ M denote the cone of positive semidefinite matrices in M. Reflection positive graph

parameters correspond to matrices in P ∩ K.

2.4 Random graph models

A random graph model is a sequence (Pn : n = 0, 1, 2, . . . ), where Pn is a probability distribution

on graphs on [n]. Let Gn be a random graph from distribution Pn. We say that the random

graph model is consistent, if the distribution Pn is invariant under relabeling nodes, and if we

delete node n from Gn, the distribution of the resulting graph is the same as the distribution of

Gn−1.

We say that the random graph model is local, if for every S ⊆ [n], the subgraphs of Gn

induced by S and [n] \ S are independent (as random variables).

Let
(

N

2

)

denote the set of all unordered pairs from N. Every subset of
(

N

2

)

can be thought of

as a graph on node set N, and {0, 1}(N2) is the set of all graphs on N. Let A denote the σ-algebra

on {0, 1}(N2) generated by the sets obtained by fixing whether a given pair is connected or not.

A random countable graph model is a probability distribution P on ({0, 1}(N2),A). Such a

distribution is consistent if the distribution of the labeled subgraph induced by an ordered finite

set S depends only on the size of S. The distribution is local if for any two finite disjoint subsets

S1, S2 ⊆ N, the subgraphs induced by S1 and S2 are independent (as random variables). The

distribution is invariant if it is invariant under permutations of N. The distribution is ergodic if

there is no set S ∈ A with 0 < π(S) < 1 invariant under permutations of N. Invariant measures

form a convex set in the linear space of all signed measures, and ergodic measures are the extreme

points of this convex set.

A probability distribution on the Borel sets of (W0, δ�) will be called a random graphon

model. Note that the σ-algebra of Borel sets does not distinguish weakly isomorphic graphons.

3 Equivalent forms of the limit object

3.1 Graph limits and random graph limits

We quote the following theorem, which was proved essentially in [9].
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Theorem 3.1 The following are equivalent (cryptomorphic):

(a) A multiplicative, normalized graph parameter with nonnegative Möbius transform;

(b) A consistent and local random graph model;

(c) A consistent and local random countable graph model;

(d) A graphon, up to weak isomorphism.

(e) A point in the completion of the set of finite graphs with the cut-metric;

The following theorem shows that in each of these objects, we can naturally relax the condi-

tions, to get another important set of cryptomorphic structures.

Theorem 3.2 The following are equivalent (cryptomorphic):

(a) An isolate-indifferent, normalized graph parameter with nonnegative Möbius transform;

(b) A consistent random graph model;

(c) A consistent random countable graph model;

(d) A random graphon model.

Proof. We describe a cycle of constructions, mapping one object in the theorem to the next.

(a)→(b). Let f be an isolate-indifferent, reflection positive, normalized graph parameter with

nonnegative Möbius transform. Using that f is isolate-indifferent, we get

∑

F :V (F )=[n]

f †(F ) = f(Un) = 1.

So we can construct a random graph Gn on [n] by

P(Gn = F ) = f †(F ) (V (F ) = [n]). (1)

It is clear that this distribution does not depend on the labeling of the nodes. Let F0 be a graph

on [n− 1], and let F+
0 be obtained from F0 by adding n as an isolated node. Then

P(Gn \ {n} = F0) =
∑

F : F\{n}=F0

P(Gn = F ) =
∑

F : F\{n}=F0

f †(F )

=
∑

F : F\{n}=F0

∑

F ′⊇F

(−1)|E(F ′)|−|E(F )|f(F ′)

=
∑

F ′⊇F+
0

f(F ′)
∑

F⊆F ′

F\{n}=F0

(−1)|E(F ′)|−|E(F )|

Here the last sum is 0 unless F ′ contains no edges incident with the node n, and so f(F ′) = f(F ′′),

where F ′′ = F ′ \ {n}. Thus

P(Gn \ {n} = F0) =
∑

F ′′⊇F0

f(F ′′)(−1)|E(F ′′)|−|E(F0)| = f †(F0).

Thus this model is consistent. We note that f can be recovered by

f(F ) = P(F ⊆ Gn) (V (F ) = [n]). (2)

6



(b)→(c). Let Gn be a random graph from a consistent finite random graph model, we

construct a countable random graph model by π(AF ) = P(Gn = F ) (V (F ) = [n]). This extends

to a probability measure on the σ-algebra A. It is straightforward to check that this measure is

consistent.

(c)→(d). Let G be a random countable graph from a consistent countable random graph

model, we construct a probability distribution on the Borel sets of (W0, δ�). Let Gn be the

finite graph spanned by the first n nodes of G.

We claim that with probability 1, the graph sequence (Gn) is convergent. Theorem 2.11 in

[4] implies that

δ�(Gn,Gm) ≤ 10√
logn

with probability 1− exp(−n2/(2 logn)).

Let Hk = G2k , then

P

(

δ�(Hk,Hk+1) >
10

2k/2

)

< exp
(−22

k

2k+1

)

,

and so by the Borel-Cantelli Lemma,

δ�(Hk,Hk+1) ≤
10

2k/2

holds for all but a finite number of values of k, with probability 1. Hence with probability 1, the

sequence (WHk
) is a Cauchy sequence in (W0, δ�).

Now for a general value of n, let kn = ⌈log logn⌉. Then as before, we get that

P

(

δ�(Gn,Hkn) >
10√
logn

)

< exp
( −n2

2 logn

)

.

Again by the Borel-Cantelli Lemma,

δ�(Gn,Hkn) ≤
10√
logn

holds for all but a finite number of n, with probability 1. This proves that the sequence (Gn) is

Cauchy. Thus it tends to a limit graphon W.

So we have described a method to generate a random graphon W. For every graph F , this

satisfies

t(F,W) = lim
n→∞

t(F,Gn) = lim
n→∞

tinj(F,Gn).

By the consistency of G, the expectation of tinj(F,Gn) is independent of n for n ≥ k = |V (F )|,
and so

E(t(F,W)) = lim
n→∞

E(tinj(F,Gn)) = E(tinj(F,Gk)) = P(F ⊆ Gk).

(d)→(a). Let W be a random graphon from any probability distribution on the Borel sets

of (W0, δ�). This defines a graph parameter f by

f(F ) = E(t(F,W).

For every fix W ∈ W0, the graph parameter f(.) = t(.,W ) is normalized, isolate-indifferent

(since it is multiplicative), and has nonnegative Möbius transform (by Theorem 3.1). Trivially,

these properties are inherited by the expectation. �
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3.2 More equivalences

In theorems 3.1 and 3.2, we listed several seemingly quite different objects that have turned out

equivalent. In this section we show that these objects have alternative characterizations. The

following characterization of graph parameters occurring in Theorem 3.1 was proved in [9].

Proposition 3.3 Let f be a multiplicative, normalized graph parameter. Then the following are

equivalent:

(a) f is reflection positive;

(b) f is flatly reflection positive;

(c) f has nonnegative Möbius transform;

(d) f = t(.,W ), where W is a graphon.

(e) f is the limit of homomorphism density functions.

For graph parameters in Theorem 3.2, we have the following.

Proposition 3.4 Let f be an isolate-indifferent, normalized graph parameter. Then the follow-

ing are equivalent:

(a) f is reflection positive;

(b) f is flatly reflection positive;

(c) f has nonnegative Möbius transform;

(d) f = E(t(.,W)), where W is a random graphon.

(e) f is in the convex hull of limits of homomorphism density functions.

While the proof here is similar, there are some differences, and we include it for completeness.

Proof. (a)⇒(b) is trivial.

(b)⇒(c): The Lindström–Wilf Formula gives the following diagonalization ofMflat(f, k): Let

Z denote the F ′
k × F ′

k matrix defined by ZF1,F2 = 1F1⊆F2 . Let D be the diagonal matrix with

DF,F = f †(F ). Then Mflat(f, k) = Z⊤DZ. This implies that Mflat(f, k) is positive semidefinite

if and only if f † ≥ 0 for all graphs with k nodes.

(c)⇒(d): Let f be an isolate-indifferent, normalized graph parameter with nonnegative

Möbius transform. By Theorem 3.2, it defines a random graphon W such that f = E(t(.,W)).

(d)⇒(e): By Theorem 3.2, each t(.,W) is the limit of homomorphism density functions for

every W.

(e)⇒(a): Every homomorphism density function f is reflection positive, and this is clearly

inherited to their limits, and then to the convex hull of these limits. �

The following propositions describe connections between graph-theoretic and group-theoretic

properties of countable random graph models. They also indicate a connection with ergodic

theory.
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Proposition 3.5 A countable random graph model is consistent if and only if it invariant.

Proof. It is trivial that invariant countable random graph models are consistent. Conversely,

if a countable random graph model is consistent, then it defines a consistent finite graph model,

which in turn defines a unique countable random graph model, independently of the labeling of

the nodes. �

Proposition 3.6 A consistent countable random graph model is local if and only if it is ergodic.

Proof. Let µ be an invariant probability measure on the Borel sets in {0, 1}(N2). By Proposition

3.5 it is consistent, and so by Theorem 3.2 it is defined by a random graphon. If µ is ergodic,

then µ is an extreme point of all invariant distributions, and therefore this random graphon must

be concentrated on a single graphon. Thus Theorem 3.1 implies that µ is local.

Conversely, if µ is not ergodic, then µ = 1
2 (µ1 + µ2), where µ1, µ2 are invariant probability

measures and µ1 6= µ2. LetG1 andG2 be random countable graphs from the distributions µ1 and

µ2, respectively, and let G be G1 with probability 1/2 and G2 with probability 1/2. Let S ⊆ N

be a finite set and F a labeled graph on |S| nodes such that P(G1[S] = F ) 6= P(G2[S] = F ). Let

T ⊆ N be another set with |T | = |S| and T ∩ S = ∅. Set a1 = P(G1[S] = F ) = P(G1[T ] = F )

(by invariance, these two probabilities are equal), and define a2 analogously.

Thus we have

P(G[S] = F,G[T ] = F )− P(G[S] = F )P(G[T ] = F )

=
1

2

(

P(G1[S] = F,G1[T ] = F ) + P(G2[S] = F,G2[T ] = F )
)

− 1

4

(

P(G1[S] = F ) + P(G2[S] = F )
)(

P(G1[T ] = F ) + P(G2[T ] = F )
)

=
1

2
(a21 + a22)−

1

4
(a1 + a2)

2 =
1

4
(a1 − a2)

2 > 0.

This shows that µ is not local. �

4 Weak Positivstellensatz for graphs

Let x = α1F1+· · ·+αrFr be any quantum graph. We say that x ≥ 0 if t(x,W ) =
∑

i αit(Fi,W ) ≥
0 for every W ∈ W0. Hence x ≥ 0 if and only if

∑

i αif(Fi) ≥ 0 for every multiplicative,

reflection positive graph parameter f . Proposition 3.4 implies that this is equivalent to saying

that
∑

i αif(Fi) ≥ 0 for every isolate-indifferent, reflection positive parameter f .

An easy example of quantum graphs x ≥ 0 is any quantum graph of the form
∑

i y
2
i , where

the yi are k-labeled quantum graphs for some k ≥ 0 (and the labels are ignored after squaring).

One may ask whether every quantum graph x ≥ 0 can be represented this way. We don’t

know the answer, although based on the analogy of polynomials, the answer is probably negative.

However, we prove the following weaker version, which is analogous to Lasserre’s result [7]

asserting that positive polynomials are approximately sums of squares.
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Theorem 4.1 Let x be a quantum graph. Then x ≥ 0 if and only if for every ε > 0 there is a

k ≥ 1 and y1, . . . , ym ∈ Gk such that ‖x− y21 − · · · − y2m‖1 < ε.

Proof. For n ≥ k ≥ 0, let Fk denote the set of k-labeled simple graphs on [k] (up to

isomorphism). Let Φk denote the operator mapping a matrix M to its restriction to Fk × Fk.
Then Mk = ΦkM is the space of all symmetric Fk×Fk matrices, and Pk = ΦkP is the positive

semidefinite cone in ΦkM. It is also clear that Lk = ΦkL consists of those matrices A ∈ Mk in

which AF1,G1 = AF2,G2 whenever F1G1 ≃ F2G2. We set Rk = ΦkP ∩ΦkL. Clearly,

Φk(P ∩ L) ⊆ Rk, (3)

but equality may not hold in general.

We note that the entries of every matrix A ∈ Rk are in [0, A∅,∅]. Indeed, looking at the

2 × 2 submatrix formed by the rows corresponding to some k-labeled flat graph F and the k-

labeled edgeless graph Uk. From A ∈ ΦkL it follows that AUk,F = A)F, F = AF,Uk
, so positive

semidefiniteness implies that AUk,Uk
AF,F ≥ A2

F,F . Since AUk,Uk
= A∅,∅ by A ∈ ΦkL, we get

that (A∅,∅ −AF,F )AF,F ≥ 0, which implies that AF,F ∈ [0, A∅,∅].

For k ≤ m, we consider Fk as a subset of Fm, by adding m − k isolated nodes labeled

k + 1, . . . ,m. The corresponding restriction operator on matrices we denote by Φm,k.

We claim that the following weak converse of (3) holds:

Φk(P ∩ L) =
⋂

m≥k

Φm,kRm. (4)

Indeed, let A be a matrix that is contained in the right hand side. Then for every m ≥ k we

have a matrix Bm ∈ Rm such that A is a restriction of Bm. Now let m → ∞; by selecting

a subsequence, we may assume that all entries of Bm tend to a limit. This limit defines a

graph parameter f , which is normalized, isolate-indifferent and flatly reflection positive. By

Proposition 3.4, f is reflection positive, and so the matrix M(f) is in P ∩ L and ΦkM(f) = A.

Let x = α1F1 + · · · + αrFr. We may assume that |V (Fi)| = k for all i. Let F ′
i be obtained

from Fi by labeling all its nodes. Let A ∈ Mk denote the matrix

AFG =

{

αi, if F = G = Fi,

0, otherwise.

Then x ≥ 0 means that A ·Z ≥ 0 for all Z ∈ Φk(P ∩L), in other words, A is in the dual cone of

Φk(P ∩ L). From (4) it follows that there are diagonal matrices Am ∈ Mk such that Am → A

and Am ·Y ≥ 0 for all Y ∈ Φm,kRm. In other words, Am ·Φm,kZ ≥ 0 for all Z ∈ Rm, which can

also be written as Φ∗
m,kAm · Z ≥ 0, where Φ∗

m,k : Mk → Mm is the adjoint of the linear map

Φm,k : Mm → Mk. (This adjoint acts by adding 0-s in all entries outside Fk×Fk.) So Φ∗
m,kAm

is in the polar cone of Rm = Pm ∩ Lm, which is P∗
M + L∗

m. The positive semidefinite cone is

self-polar. The linear space L∗
m consists of those matrices B ∈ Mm for which

∑

F1,F2
BF1,F2 = 0,

where the summation extends over all pairs F1, F2 ∈ F ′
m for which F1F2 ≃ F0 for some fixed

graph F0. Thus we have Φm,kAm = P + L, where P is positive semidefinite and L ∈ L∗
m. Since
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P is positive semidefinite, we can write it as P =
∑N

k=1 vkvk
⊤, where vk ∈ R

F ′
m . We can write

this as
∑

F1,F2
F1F2≃F0

N
∑

k=0

vk,F1vk,F2 =

{

(Am)F0,F0 , if F1F2 ≃ F0 ∈ Fk,
0, otherwise.

In other words,
N
∑

k=1

(

∑

F

vk,FF

)2

=
∑

F0

(Am)F0,F0F0,

which proves the Theorem. �
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