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On generalized Ramsey numbers for 3-uniform hypergraphs
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Abstract

The well-known Ramsey number r(t, u) is the smallest integer n such that every Kt-
free graph of order n contains an independent set of size u. In other words, it contains a
subset of u vertices with no K2. Erdős and Rogers introduced a more general problem
replacing K2 by Ks for 2 ≤ s < t. Extending the problem of determining Ramsey
numbers they defined the numbers

fs,t(n) = min
{
max{|W | : W ⊆ V (G) and G[W ] contains no Ks}

}
,

where the minimum is taken over all Kt-free graphs G of order n. In this note, we study

an analogous function f
(3)
s,t (n) for 3-uniform hypergraphs. In particular, we show that

there are constants c1 and c2 depending only on s such that

c1(logn)
1/4

(
log logn

log log logn

)1/2

< f
(3)
s,s+1(n) < c2 logn.

1 Introduction

A hypergraph G is a pair (V, E) such that V = V (G) is a set of vertices and E ⊆ 2V is a
set of hyperedges. A k-uniform hypergraph (also called a k-graph) is a hypergraph such

that all its hyperedges have size k. Denote by K
(k)
t the complete k-uniform hypergraph

of order t. Let the Ramsey number r(k)(t, u) denote the smallest integer n such that any

red-blue coloring of the edges of K
(k)
n yields a red copy of K

(k)
t or a blue copy of K

(k)
u . It

is well-known due to a result of Ramsey [15] that such numbers are finite. In other words,

r(k)(t, u) is the smallest integer n such that every K
(k)
t -free hypergraph of order n contains

an independent set of size u, or equivalently, it contains a u-subset of vertices with no K
(k)
k .

One can consider a more general problem replacing K
(k)
k by K

(k)
s for some k ≤ s < t. For

fixed integers k ≤ s < t let

f
(k)
s,t (n) = min

{
max{|W | : W ⊆ V (G) and G[W ] contains no K(k)

s }
}
,
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where the minimum is taken over all K
(k)
t -free k-uniform hypergraphs G of order n. To prove

the lower bound f
(k)
s,t (n) ≥ a one must show that every K

(k)
t -free k-graph of order n contains

a subset of a vertices with no copy of K
(k)
s . To prove the upper bound f

(k)
s,t (n) < b one must

construct a K
(k)
t -free k-graph of order n such that every subset of b vertices contains a copy

of K
(k)
s .
As we already observed the problem of determining f

(k)
s,t (n) extends that of finding

Ramsey numbers. Formally,

r(k)(t, u) = min{n : f
(k)
k,t (n) ≥ u}.

For graphs (i.e. k = 2) the above function was first considered by Erdős and Rogers [11]
only for t = s+1, which might be viewed as the most restrictive case. Since then the function
has been studied by several researchers including Alon, Bollobás, Dudek, Erdős, Gallai,
Hind, Krivelevich, Retter, Rödl, Sudakov, and Wolfovitz [1, 3, 6, 7, 8, 9, 13, 14, 18, 19, 20].
All logs in this paper are to the base e. For any s ≥ 3 the best published bounds are of the
form

Ω
(
(n log log n)1/2

)
= f

(2)
s,s+1(n) = O

(
(log n)4s

2

n1/2
)
, (1)

where the lower bound comes from [14] and the upper bound from [6]. However, using the
result due to Shearer [17], that an n-vertex Ks-free graph with average degree d has an
independent set of size at least

Ω

(
n

d

log d

log log d

)

,

we can immediately improve the lower bound in (1) to a new bound

Ω

((
n log n

log log n

)1/2
)

. (2)

Indeed, if there is a vertex of degree at least ( n logn
log logn)

1/2 in a Ks+1-free graph, then its neigh-

borhood is Ks-free and we are done. Otherwise, the average degree is less than ( n logn
log logn)

1/2

and by the Shearer result there is an independent set of size bounded from below by (2).
In this note we extend the previous results to 3-uniform hypergraphs and show the

following bounds.

Theorem 1.1 For all integers 3 ≤ s < t and every n

f
(2)
s−1,t−1

(
⌊
√

log n⌋
)
≤ f

(3)
s,t (n) ≤ C log n,

where C is a positive constant depending only on s.

In particular, for t = s + 1 the above theorem together with (2) implies that there are
positive constants c1 and c2 depending only on s such that

c1(log n)
1/4

(
log log n

log log log n

)1/2

< f
(3)
s,s+1(n) < c2 log n.
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2 General upper bound

For s ≥ k ≥ 3, we show that there is a K
(k)
s+1-free k-graph G such that any subset of its

vertices of size C(log n)1/(k−2) (for some C = C(k, s)) contains K
(k)
s . This will imply that

f
(k)
s,s+1(n) ≤ C(log n)1/(k−2). (3)

Moreover, since for any t ≥ s+ 1

f
(k)
s,t (n) ≤ f

(k)
s,s+1(n),

setting k = 3 will yield the upper bound in Theorem 1.1.
The following construction has some similarities to the approach taken by Conlon, Fox

and Sudakov in the proof of Theorem 3.1 in [4]. Let χ :
( [n]
k−1

)
→ [s− k+2] be a coloring of

all (k − 1)-tuples chosen uniformly at random from all (s− k + 2)-colorings of
( [n]
k−1

)
. That

means every (k− 1)-tuple is colored with one particular color with probability 1/(s− k+2)
independently of all other (k−1)-tuples. Now we construct G = G(χ). Let V = {1, 2, . . . , n}
be the vertex set of G. The set of hyperedges consists of all k-tuples e = {u1 < · · · < uk−1 <
uk} for which χ(e \ uk) 6= χ(e \ uk−1).

First observe that G is K
(k)
s+1-free. Indeed, let {v1 < v2 < · · · < vs+1} be a set of

vertices inducing a clique K
(k)
s+1. Then, in particular, all k-tuples {v1 < · · · < vk−1 < vi}

for k ≤ i ≤ s + 1 must be present. Hence, all s − k + 3 of the numbers χ(v1, . . . , vk−2, vi),
k − 1 ≤ i ≤ s + 1, must be pairwise different. Clearly, this gives a contradiction, since we
only have s− k + 2 colors.

Now note that with a positive probability, say p, which does not depend on n, any fixed

set S = {v1 < v2 < · · · < vs} of vertices will induce K
(k)
s . Indeed, it suffices to observe that

if for each {vj1 < · · · < vjk−1
} ∈

( S
k−1

)

χ(vj1 , . . . , vjk−1
) = jk−1 − k + 2,

then every k-tuple of S is present.
Let C(k−1, s,W ) be a maximum collection of s-sets of set W such that no (k−1)-set in

W is covered more than once. Denote its size by c(k− 1, s,W ). Due to a result of Rödl [16]
(see also Section 4.7 in [2]) it is known that

lim
|W |→∞

c(k − 1, s,W )
( |W |
k−1

)
/
(

s
k−1

) = 1,

hence, c(k − 1, s,W ) = Θ(|W |k−1).
For a fixed subset S ⊆ V of size s let AS be the event that G[S] is a clique of size s. As

we already observed
Pr(AS) = p

for some 0 < p < 1. Let W of size w be a subset of vertices of V . Thus,

Pr




⋂

S⊆W

ĀS



 ≤ Pr




⋂

S∈C(k−1,s,W )

ĀS



 .
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Moreover, since for all different S and S′ in C(k−1, s,W ), |S∩S′| ≤ k−2, and consequently,
all events AS for S ∈ C(k − 1, s,W ) are mutually independent. Thus,

Pr




⋂

S⊆W

ĀS



 ≤
∏

S∈C(k−1,s,W )

Pr(ĀS) = (1− p)Θ(wk−1)

and hence, the union bound yields

Pr




⋃

W⊆V

⋂

S⊆W

ĀS



 ≤
(
n

w

)

(1− p)Θ(wk−1) < 1

provided that w = Ω((log n)1/(k−2)). Thus, there is a coloring χ and a constant C = C(k, s)
such that every subset of C(log n)1/(k−2) of vertices in G(χ) contains a clique of size s, as
required.

3 Lower bound for 3-graphs

In this section we prove the lower bound from Theorem 1.1.

We show that everyK
(3)
t -free 3-graph G of order n contains a subset of f

(2)
s−1,t−1(⌊

√
log n⌋)

vertices with no copy of K
(3)
s . In order to do it, we will adapt the classical approach of

Erdős and Rado [10] (see also Section 1.2 in [12]) for finding an upper bound on Ramsey
numbers.

Given n, choose m such that

2m
2 ≤ n < 2m

2+1. (4)

Let G = (V, E) be a K
(3)
t -free 3-graph of order n. Denote the complement of E (i.e. the

set of all triples which are not in E) by Ec. We will greedily construct a sequence A =
{v1, . . . , vm, vm+1} ⊆ V such that for any given pair 1 ≤ i < j ≤ m all triples {vi, vj , vk}
with j < k ≤ m + 1 are in E or all of them are in Ec. Assume for a while that we can
construct such a sequence A. Let G be a graph on set {v1, . . . , vm} such that {vi, vj}, i < j,
is an edge if and only if all triples {vi, vj , vk} with j < k ≤ m + 1 are in E . First observe
that G is Kt−1-free graph. Otherwise, if S is a set of vertices of G that induces Kt−1, then

S ∪ {vm+1} induces a clique K
(3)
t in G, a contradiction.

Since G is Kt−1-free, we can find a subset W of at least f
(2)
s−1,t−1(m) vertices with no

Ks−1. Now it is not difficult to see that the subhypergraph induced by W in G contains no

K
(3)
s . Otherwise, let S ⊆ W be a set of size s such that G[S] is a clique K

(3)
s . Moreover,

let v ∈ S be a vertex which appears latest in sequence A compared to other vertices in S.
Then S \ v ⊆ W induces a clique Ks−1 in G, a contradiction.

We just showed that every K
(3)
t -free graph G of order n satisfying (4) has a subhyper-

graph of order at least

f
(2)
s−1,t−1(m)

with no K
(3)
s . Since n < 2m

2+1, we see that m >
√
log n as desired.
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It remains to show how to construct sequence A, and this is the argument of Erdős and
Rado. Pick any vertex v1 of V = V (G). Set V1 = V \ {v1}. Assume that we already picked
{v1, . . . , vi} and set Vi such that all triples {va, vb, w} with 1 ≤ a < b ≤ i and w ∈ Vi are
in E or all are in Ec. Choose any vertex from Vi, say vi+1. Now we show how to define
Vi+1 such that |Vi+1| ≥ (|Vi| − 1)/2i and all triples {va, vb, w} with 1 ≤ a < b ≤ i + 1 and
w ∈ Vi+1 are in E or all are in Ec. Let Vi,0 = Vi \ {vi+1}. Suppose we already constructed
Vi,j ⊆ Vi,0 such that all triples {va, vi+1, w} with 1 ≤ a ≤ j and w ∈ Vi,j are in E or all are
in Ec. If the number of triples {vj+1, vi+1, w} in E with w ∈ Vi,j is at least |Vi,j|/2, then we
set

Vi,j+1 = {w : {vj+1, vi+1, w} ∈ E and w ∈ Vi,j},
otherwise we set

Vi,j+1 = {w : {vj+1, vi+1, w} ∈ Ec and w ∈ Vi,j}.
Finally, we put Vi+1 = Vi,i and continue the algorithm until A of size m+1 is chosen. This
is possible, since |Vi| ≥ 1 for all 1 ≤ i ≤ m. Indeed,

|Vm| ≥ |Vm−1| − 1

2m−1
≥ |Vm−1|

2m
≥ |Vm−2|

2m2m−1
≥ |V1|

2m2m−1 · · · 22 =
n− 1

2(m+2)(m−1)/2
≥ 1,

since n ≥ 2m
2

.

4 Concluding remarks

It seems natural to try to extend the above results for arbitrary k ≥ 4. A similar approach
to the one taken in Section 3 and inequality (3) yield

c1(log log . . . log
︸ ︷︷ ︸

k−2

n)1/4 ≤ f
(k)
s,s+1(n) ≤ c2(log n)

1/(k−2) (5)

for some positive constants c1 and c2 depending only on k and s. This big discrepancy
could be possibly removed by strengthening the upper bound. Analogously to the problem
of estimating the Ramsey numbers for hypergraphs one could apply some variation of the
stepping-up lemma of Erdős and Hajnal (see, e.g., Section 4.7 in [12]). Unfortunately, it is
not obvious how to use this idea.

Recently, Conlon, Fox and Sudakov [5] slightly improved the lower bound in (5) and
showed that

(log log . . . log
︸ ︷︷ ︸

k−2

n)1/3−o(1) ≤ f
(k)
s,s+1(n).
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