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UNIVERSIDAD DE BUENOS AIRES

BUENOS AIRES, ARGENTINA
E-mail: oscarlin@dc.uba.ar
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UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
RIO DE JANEIRO, BRAZIL
E-mail: jayme@nce.ufrj.br

Received April 17, 2013; Revised January 20, 2014

Published online 2 May 2014 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt.21804

Contract grant sponsor: UBACyT; contract grant numbers: 20020100100754 and
20020090100149 (to M.C.L. and V.A.M.); contract grant sponsor: PICT ANPCyT;
contract grant number: 1970 (to M.C.L. and V.A.M.); contract grant sponsor: PIP
CONICET; contract grant number: 11220100100310 (to M.C.L. and V.A.M.); con-
tract grant sponsor: CAPES/DAAD Probral Project Cycles, Convexity, and Searching
in Graphs (to D.R.); contract grant sponsor: CNPq (to J.L.S.); contract grant sponsor:
CAPES (to J.L.S.); contract grant sponsor: FAPERJ (to J.L.S.).

Journal of Graph Theory
C© 2014 Wiley Periodicals, Inc.
258



THE MAXIMUM NUMBER OF DOMINATING INDUCED MATCHINGS 259

Abstract: A matching M of a graph G is a dominating induced matching
(DIM) of G if every edge of G is either in M or adjacent with exactly one
edge in M. We prove sharp upper bounds on the number μ(G) of DIMs of
a graph G and characterize all extremal graphs. Our results imply that if G is
a graph of order n, then μ(G) ≤ 3

n
3 ; μ(G) ≤ 4

n
5 provided G is triangle-free;

and μ(G) ≤ 4
n−1

5 provided n ≥ 9 and G is connected. C© 2014 Wiley Periodicals, Inc.

J. Graph Theory 78: 258–268, 2015
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1. INTRODUCTION

We consider finite, simple, and undirected graphs and use standard terminology. For a
matching M of a graph G, let V (M) denote the set of vertices of G incident with an edge
in M. A matching M of G is a dominating induced matching (DIM) of G if every edge of
G is either in M or adjacent with exactly one edge in M, that is, if G[V (M)] is 1-regular
and V (G) \ V (M) is an independent set where V (G) denotes the vertex set of G and for
a set U of vertices of G, the subgraph of G induced by U is denoted by G[U]. For a graph
G, let μ(G) denote the number of DIMs of G.

In this article, we give sharp upper bounds on the maximum possible value of μ(G)

for a graph G that is either arbitrary, or triangle-free, or connected. Furthermore, we
characterize all extremal graphs for our bounds.

The algorithmic questions related to DIMs have been studied in great detail. In [9], it
is shown that μ(G) for a given arbitrary graph G of order n can be determined in time
O∗(1.1939n). It is unlikely that there is a polynomial time algorithm computing μ(G),
because it is already NP-complete to decide whether μ(G) = 0 [7], even for planar
bipartite graphs of maximum degree 3 [1], or regular graphs [4]. Dominating induced
matchings have been the main subject of many recent papers [1–6,8,11,12]. Further
studies about DIMs and some applications related to coding theory, network routing, and
resource allocation can be found in [7,10].

Our results are as follows.

Theorem 1. If G is a graph of order n, then μ(G) ≤ f (n) where

f (n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if n ≤ 2,

3
n
3 , if n ≥ 3 and n ≡ 0 mod 3,

3
n−1

3 , if n ≥ 4 and n ≡ 1 mod 3, and

4 · 3
n−5

3 , if n ≥ 5 and n ≡ 2 mod 3.

Furthermore, if the graph G of order n with n ≥ 3 is such that μ(G) = f (n), then G ∈ F
where

F =
{n

3
K3 : n ≥ 3 and n ≡ 0 mod 3

}

∪
{

K1 ∪ n − 1

3
K3 : n ≥ 4 and n ≡ 1 mod 3

}
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FIGURE 1. The graph H8.

∪
{

K1,3 ∪ n − 4

3
K3 : n ≥ 4 and n ≡ 1 mod 3

}

∪
{

K1,4 ∪ n − 5

3
K3 : n ≥ 5 and n ≡ 2 mod 3

}
.

Theorem 2. If G is a triangle-free graph of order n, then μ(G) ≤ g(n) where

g(n) =

⎧⎪⎪⎨
⎪⎪⎩

1, if n = 1,

n − 1, if n ∈ {2, 3, 6, 7},
20, if n = 11, and
3t · 4

n−4t
5 , if n ≥ 4t and n ≡ −t mod 5 for some t ∈ {0, 1, 2, 3, 4}.

Furthermore, if the triangle-free graph G of order n with n ≥ 2 is such that μ(G) = g(n),
then G ∈ G where

G = {K1,n−1 : 2 ≤ n ≤ 7} ∪ {K1,2 ∪ K1,3, K1,4 ∪ K1,5}
∪

{
tK1,3 ∪ n − 4t

5
K1,4 : n ≥ 4t and n ≡ −t mod 5 f or some t ∈ {0, 1, 2, 3, 4}

}
.

For an integer n with n ≥ 11 and n ≡ 1 mod 5, let the graph Hn arise from K1 ∪ n−1
5 K1,4

by adding edges between the vertex of the K1 and each center of the n−1
5 stars.

Let the graph H8 of order 8 be as shown in Figure 1.

Theorem 3. If G is a connected graph of order n, then μ(G) ≤ h(n) where

h(n) =

⎧⎪⎪⎨
⎪⎪⎩

1, if n ∈ {1, 2},
3, if n = 3,

n − 1, if 4 ≤ n ≤ 8, and
4

n−1
5 , if n ≥ 9.

Furthermore, if the connected graph G of order n is such that μ(G) = h(n), then G ∈ H
where

H = {K1, K2, K3, K1,3, K1,4, K1,5, K1,6, K1,7, H8} ∪ {Hn : n ≥ 11 and n ≡ 1 mod 5}.
The rest of the article is devoted to the proofs.

2. PROOFS

Before we proceed to the proofs of our theorems, we introduce some further notation and
establish two preliminary results.

For a graph G and two disjoint subsets B and W of its vertex set V (G), a DIM M of G
is compatible with (G; B,W ) if B ⊆ V (M) and W ∩ V (M) = ∅. Let μ(G; B,W ) denote

Journal of Graph Theory DOI 10.1002/jgt
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the number of DIMs of G that are compatible with (G; B,W ). By the definition of DIMs,
we have

μ(G; B,W ) > 0 ⇒ G[B] has maximum degree at most 1 andW is independent. (1)

Note that if V (G) \ (B ∪ W ) has at most n elements, then μ(G; B,W ) is an integer at most
2n. This implies that for a class G of graphs and a nonnegative integer n, the maximum

sG (n) = max{μ(G; B,W ) : G is a graph inG, B andW are disjoint subsets ofV (G),

B ∪ W = ∅, and |V (G) \ (B ∪ W )| ≤ n}
is well defined and finite, even though the maximum is possibly taken over infinitely
many graphs. Note that sG (0) ≤ 1. Furthermore, if G contains a nonempty graph that has
a DIM, then sG (n) ≥ 1.

Lemma 4. If C is the class of connected {C3,C4}-free graphs of minimum degree at
least 2, then sC(n) = 1 for n ∈ {0, 1, 2, 3} and sC(n) ≤ sC(n − 4) + sC(n − 2) for every
integer n with n ≥ 4.

Proof. We prove the statement by induction on n. For n = 0, the statement fol-
lows from the above observations using μ(C6) > 0 and C6 ∈ C. Now let n ≥ 1. Clearly,
sC(n) ≥ 1 and sC(n − 1) ≤ sC(n). Hence, in view of the desired statement, we may
assume that sC(n) ≥ 2. Let (G; B,W ) be a maximizer in the definition of sC(n), that
is, sC(n) = μ(G; B,W ). Since sC(n) ≥ 2, the set B ∪ W is a proper nonempty subset
of V (G). Since G is connected, there is an edge uv of G such that u ∈ B ∪ W and
v ∈ V (G)\(B ∪ W ).

If u ∈ W , then sC(n) = μ(G; B,W )
(1)= μ(G; B ∪ {v},W ) ≤ sC(n − 1). If u ∈ B and

u has a neighbor in B, then sC(n) = μ(G; B,W )
(1)= μ(G; B,W ∪ {v}) ≤ sC(n − 1). If

u ∈ B and all neighbors of u distinct from v belong to W , then sC(n) = μ(G; B,W )
(1)=

μ(G; B ∪ {v},W ) ≤ sC(n − 1). In all three cases, we obtain sC(n) ≤ sC(n − 1). By in-
duction, if n − 1 ≤ 3, then 1 ≤ sC(n) ≤ sC(n − 1) = 1, and if n − 1 ≥ 4, then sC(n) ≤
sC(n − 1) ≤ sC(n − 5) + sC(n − 3) ≤ sC(n − 4) + sC(n − 2).

Hence, we may assume that u belongs to B and that u has a neighbor w in V (G) \ (B ∪
W ) that is distinct from v. Since G is of minimum degree at least 2, the vertex v has a
neighbor v′ distinct from u and the vertex w has a neighbor w′ distinct from u. Since G is
{C3,C4}-free, the vertices v, v′, w, and w′ are all distinct.

If v′ ∈ W , then sC(n) = μ(G; B,W )
(1)= μ(G; B ∪ {v},W ) ≤ sC(n − 1). If v′ ∈ B,

then sC(n) = μ(G; B,W )
(1)= μ(G; B,W ∪ {v}) ≤ sC(n − 1). Again, we obtain sC(n) ≤

sC(n − 1) and can argue as above.
Hence, we may assume that v′ and w′ belong to V (G) \ (B ∪ W ), which implies n ≥ 4.

Now

sC(n) = μ(G; B,W )

= μ(G; B ∪ {v},W ) + μ(G; B,W ∪ {v})
(1)= μ(G; B ∪ {v, w′},W ∪ {v′, w}) + μ(G; B ∪ {v′},W ∪ {v})
≤ sC(n − 4) + sC(n − 2),

which completes the proof. �
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If F(n) denotes the n-th Fibonacci number, that is, F(0) = 0, F(1) = 1, and F(n) =
F(n − 2) + F(n − 1) for every integer n with n ≥ 2, then Lemma 4 immediately implies

max{sC(2n), sC(2n + 1)} ≤ F(n + 1), (2)

for every nonnegative integer n.

Lemma 5. If G is a {C3,C4}-free graph of order n and minimum degree at least 2, then
μ(G) < 0.928 · φ

n
2 where φ = 1+√

5
2 .

Proof. First, we assume that G is connected. Note that n ≥ 5. If n = 5, then G = C5

and μ(G) = 0. Hence, let n ≥ 6. Let u be a vertex of G. Since u has at least two neighbors,

we obtain μ(G) = μ(G; ∅, {u}) + μ(G; {u}, ∅)
(1)= μ(G; NG(u), {u}) + μ(G; {u},∅) ≤

sC(n − 3) + sC(n − 1). If n is odd, then μ(G) ≤ sC(n − 3) + sC(n − 1)
(2)≤ F

(
n−1

2

) +
F

(
n+1

2

) = F
(

n+3
2

)
. If n is even, then μ(G) ≤ sC(n − 3) + sC(n − 1)

(2)≤ F
(

n−2
2

) +
F

(
n
2

) = F
(

n+2
2

)
. Using φ−2 + φ−1 = 1 and max

{
F(4) · φ− 6

2 , F(5) · φ− 7
2 , F(6) · φ− 9

2

}
< 0.928, it follows easily by induction on n that for n ≥ 6, we have

F

(
n + 3

2

)
, if n is odd and

F

(
n + 2

2

)
, if n is even

⎫⎪⎪⎬
⎪⎪⎭

< 0.928 · φ
n
2

and hence μ(G) < 0.928 · φ
n
2 .

If G has components G1, . . . , Gk of orders n1, . . . , nk, respectively, then μ(G) ≤∏k
i=1 μ(Gi) < 0.928k · φ

n1+...+nk
2 ≤ 0.928 · φ

n
2 , which completes the proof. �

We proceed to the proofs of our theorems. The general structure of all three proofs is
very similar.

A. Proof of Theorem 1

Let G be a graph of order n and size m. We prove, by induction on n + m, that μ(G) ≤ f (n)

and, for n ≥ 3, μ(G) = f (n) if and only if G belongs to F . Since the result is easily
verified for n ≤ 5, we assume now that n ≥ 6. We establish a series of claims concerning
properties that G can be assumed to have.

Claim 1. Every edge of G belongs to some DIM of G.

Proof of Claim 1. If G contains an edge e such that no DIM of G contains e, then
every DIM of G is a DIM of G − e and, by induction, μ(G) ≤ μ(G − e) ≤ f (n). If
μ(G) = f (n), then μ(G − e) = f (n) and hence, by induction, G − e ∈ F . It is easily
verified that adding any edge to a graph H in F results in a graph with strictly less DIMs
than H. Therefore, μ(G) < μ(G − e), which is the contradiction μ(G) < f (n). �

Since no DIM of G can contain an edge that belongs to a cycle of length 4, Claim 1
implies that G has no such cycle.

Claim 2. The graph G is triangle-free.
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Proof of Claim 2. Let T : xyzx be a triangle in G. Since every DIM of G contains
exactly one of the three edges of T , no DIM of G contains an edge between a vertex in
V (T ) and a vertex in V (G) \ V (T ). By Claim 1, this implies that T is a component of
G. Now, by induction, μ(G) = 3 · μ(G − V (T )) ≤ 3 · f (n − 3) = f (n). Furthermore, if
μ(G) = f (n), then μ(G − V (T )) = f (n − 3) and hence, by induction, G − V (T ) ∈ F .
Since G is the disjoint union of a triangle and G − V (T ), we obtain G ∈ F . �
Claim 3. The graph G has no isolated vertex.

Proof of Claim 3. If u is an isolated vertex of G, then every DIM of G is a DIM of G −
u. Therefore, by induction, μ(G) ≤ μ(G − u) ≤ f (n − 1) ≤ f (n). If μ(G) = f (n), then
f (n − 1) = f (n), which implies that n ≡ 1 mod 3. Furthermore, μ(G − u) = f (n − 1)

and hence, by induction, G − u = n−1
3 K3. Now G = K1 ∪ n−1

3 K3 ∈ F . �
Claim 4. The graph G has minimum degree at least 2.

Proof of Claim 4. By Claim 3, the graph G has no isolated vertex. If u is a vertex
of degree 1 and v is the unique neighbor of u in G, then every DIM of G contains an
edge incident with v. Hence, no DIM contains an edge between a vertex in NG[v] and
V (G)\NG[v]. By Claims 1 and 2, the closed neighborhood NG[v] of v in G is the vertex
set of a component of G and induces a star K1,d where d = dG(v) ≥ 1. Now, by induction,
μ(G) = d · μ(G − NG[v]) ≤ d · f (n − (d + 1)).

If d ∈ {1, 2} or d ≥ 5, then it is easily verified that d · f (n − (d + 1)) < f (n) and
hence μ(G) < f (n) in these cases.

If d = 3, then d · f (n − (d + 1)) ≤ f (n) with equality if and only if n ≡ 1 mod 3.
Hence, μ(G) ≤ f (n). Furthermore, if μ(G) = f (n), then μ(G − NG[v]) = f (n − (d +
1)) and hence, by induction, G − NG[v] = n−4

3 K3. Now G = K1,3 ∪ n−4
3 K3 ∈ F .

If d = 4, then d · f (n − (d + 1)) ≤ f (n) with equality if and only if n ≡ 2 mod 3.
Hence, μ(G) ≤ f (n). Furthermore, if μ(G) = f (n), then μ(G − NG[v]) = f (n − (d +
1)) and hence, by induction, G − NG[v] = n−5

3 K3. Now G = K1,4 ∪ n−5
3 K3 ∈ F . �

By Claims 1–4, the graph G is a {C3,C4}-free graph of minimum degree at least
2. Since f (n) ≥ 4 · 3− 5

3 · 3
n
3 and 0.928 · φ

n
2 < 4 · 3− 5

3 · 3
n
3 for n ≥ 6, Lemma 5 implies

μ(G) < f (n), which completes the proof. �

B. Proof of Theorem 2

Let G be a triangle-free graph of order n and size m. We prove, by induction on n + m,
that μ(G) ≤ g(n) and, for n ≥ 2, μ(G) = g(n) if and only if G belongs to G. Since the
result is easily verified for n ≤ 8, we assume now that n ≥ 9. We establish a series of
claims concerning properties that G can be assumed to have.

Claim 5. Every edge of G belongs to some DIM of G.

Proof of Claim 5. This can be proved exactly as Claim 1. �
Claim 5 implies that G is {C3,C4}-free.

Claim 6. The graph G has no isolated vertex.

Proof of Claim 6. Note that unlike the function f from Theorem 1, the function g is
strictly increasing for n ≥ 3. Using this fact, this claim can be proved as Claim 3. �
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Claim 7. The graph G has minimum degree at least 2.

Proof of Claim 7. By Claim 6, the graph G has no isolated vertex. Let u be a
vertex of degree 1 and let v be the unique neighbor of u in G. Arguing as in the proof
of Claim 4, we obtain that the closed neighborhood NG[v] of v in G is the vertex set
of a component of G and induces a star K1,d where d = dG(v) ≥ 1. Now, by induction,
μ(G) = d · μ(G − NG[v]) ≤ d · g(n − (d + 1)).

It is easy to verify d · g(n − (d + 1)) ≤ g(n) for every n ≥ 9 with equality if and only
if

� either d = 3, n mod 5 = 0 and n = 11,
� or d = 4 and n ∈ {12, 16},
� or d = 5 and n = 11.

The proof can now be completed similarly as the proof of Claim 4. We give details
only for d = 3.

Let d = 3. We obtain μ(G) = d · μ(G − NG[v]) ≤ d · g(n − (d + 1)) ≤ g(n). If
μ(G) = g(n), then d · g(n − (d + 1)) = g(n), which implies n mod 5 = 0 and n = 11.
Furthermore, μ(G − NG[v]) = g(n − (d + 1)), which implies, by induction, that G −
N[v] ∈ G. Since for every graph H in G of order n′ = n − 4 with n′ ≥ 5, n′ mod 5 = 1,
and n′ = 7, we have K1,3 ∪ H ∈ G, we obtain G ∈ G. �

By Claims 5–7, the graph G is a {C3,C4}-free graph of minimum degree at least
2. Clearly, g(n) > 0.928 · φ

n
2 for n ∈ {9, 10, 11}. Furthermore, for n ≥ 12, we have

g(n) ≥ 81 · 4
n−16

5 > 0.956 · 1.319n > 0.928 · φ
n
2 , Lemma 5 implies μ(G) < g(n), which

completes the proof. �

C. Proof of Theorem 3

Let G be a connected graph of order n and size m. We prove the statement by induction
on n + m. For n ≤ 8, the result is easily verified. Note that

for every positive integer p, we have p · 4
−(p+1)

5 ≤ 1 with equality if and only if p = 4. (3)

This implies that if n ≤ 8 and G is neither a star nor a triangle nor H8, then n ≥ 4 and
μ(G) ≤ h(n) − 1 = n − 2 ≤ 4

n−1
5 .

We assume now that n ≥ 9. Note that if G′ is a graph of order n′ less than n and no
component of G′ is a star or a triangle or H8, then, by induction, every component K of

G of order n(K) satisfies μ(K) ≤ 4
n(K)−1

5 , which implies μ(G′) ≤ 4
n′−1

5 . We establish a
series of claims concerning properties that G can be assumed to have.

Claim 8. Every edge of G that does not belong to some DIM of G is a bridge.

Proof of Claim 8. If G contains an edge e such that no DIM of G contains e and e is
not a bridge of G, then every DIM of G is a DIM of the connected graph G − e and, by
induction, μ(G) ≤ μ(G − e) ≤ h(n). If μ(G) = h(n), then μ(G − e) = h(n) and hence,
by induction, G − e ∈ H. It is easily verified that adding any edge to a graph H in H
results in a graph with strictly less DIMs than H. Therefore, μ(G) < μ(G − e) = h(n),
which is a contradiction. �

By Claim 8, the graph G has no cycle of length 4.
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Claim 9. No edge of G that does not belong to some DIM of G is incident with a vertex
of degree 1.

Proof of Claim 9. If uv is an edge of G that does not belong to some DIM of G such
that u has degree 1, then μ(G) ≤ μ(G − u) ≤ h(n − 1) < h(n). �
Claim 10. The graph G is triangle-free.

Proof of Claim 10. Let T : xyzx be a triangle in G. Since G is connected, we may
assume that z has a neighbor z′ that does not lie on T .

First, we assume that y has a neighbor y′ that does not lie on T . Since G has no cycle
of length 4, the vertices y′ and z′ are distinct. For every DIM M of G, the set M contains
an edge of T and M \ E(T ) is a DIM of G − V (T ). This implies, by induction,

μ(G) = μ(G; {x, y},∅) + μ(G; {x, z}, ∅) + μ(G; {y, z},∅)

(1)= μ(G; {x, y, z′}, {y′}) + μ(G; {x, z, y′}, {z′}) + μ(G; {y, z}, {y′, z′})
≤ μ(G − V (T ); {z′}, {y′}) + μ(G − V (T ); {y′}, {z′}) + μ(G − V (T ); ∅, {y′, z′})
≤ μ(G − V (T ))

≤ h(n − 3)

< h(n).

Hence, we may assume that for every triangle T̃ of G, exactly one vertex of T̃ has degree
at least 3.

Next, we assume that no component of G − V (T ) is either a star or a triangle or H8.
By induction, this implies that μ(G − V (T )) ≤ 4

(n−3)−1
5 . Now

μ(G) = μ(G; {x, y},∅) + μ(G; {x, z}, ∅) + μ(G; {y, z},∅)

(1)= μ(G; {x, y, z′}, ∅) + μ(G; {x, z}, {z′}) + μ(G; {y, z}, {z′})
≤ μ(G − V (T ); {z′},∅) + 2 · μ(G − V (T ); ∅, {z′})
≤ 2 · μ(G − V (T ))

≤ 2 · 4
(n−3)−1

5

< 4
n−1

5 .

Hence, we may assume that for every triangle T̃ of G, some component of G − V (T̃ ) is
either a star or a triangle or H8.

Next, we assume that some component S of G − V (T ) is a star of order s. Since the
edge xy belongs to some DIM of G, we obtain that s ≥ 2. Since the edge xz belongs to
some DIM of G, we obtain that s ≥ 3 and that z is adjacent to a leaf z′ of S. If z has degree
3, then the graph is completely determined. Note that the structure of G is similar to H8

in this case. Using n ≥ 9, it is easy to verify that μ(G) < h(n). Hence, we may assume
that z has degree at least 4. If G − V (S) is H8, then the graph is completely determined.
Again, it is easy to verify that μ(G) < h(n). Hence, no component of G − V (S) is either
a star or a triangle or H8, which implies, by induction, μ(G − V (S)) ≤ 4

(n−s)−1
5 . Since

every DIM of G contains an edge of S, we obtain, by induction,

μ(G) = μ(G; {z′}, ∅) + μ(G; ∅, {z′})
(1)= μ(G; {z′}, {z}) + μ(G; {z}, {z′})
≤ μ(G − V (S); ∅, {z}) + (s − 2) · μ(G − V (S); {z}, ∅)
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≤ (s − 2) · μ(G − V (S))

≤ (s − 2) · 4
(n−s)−1

5

(3)
< 4

n−1
5 .

Hence, we may assume that for every triangle T̃ of G, no component of G − V (T̃ ) is a
star.

Next, we assume that some component T ′ of G − V (T ) is a triangle. Since n ≥ 9, the
degree of z is at least 4. This implies that the connected graph G − V (T ′) is H8. Now the
graph is completely determined, n = 11, and μ(G) = 8 < h(n). Hence, we may assume
that for every triangle T̃ of G, some component of G − V (T̃ ) is H8. Now the graph G
arises from T ∪ H8 by adding an edge between z and the vertex a in H8 (see Fig. 1). This
implies n = 11 and μ(G) = 13 < h(n), which completes the proof of the claim. �

Claims 8 and 10 imply that G is {C3,C4}-free. By assumption, G has no isolated vertex.

Claim 11. The graph G has minimum degree at least 2.

Proof of Claim 11. Let v be a vertex of G of degree p + q such that v has p ≥ 1
neighbors u1, . . . , up of degree 1 and q neighbors w1, . . . , wq of degree at least 2. If G is
a star, then the theorem is easily verified. Hence, we may assume that q ≥ 1. Since every
DIM of G contains an edge incident with v, every edge between a vertex in NG[v] and
V (G) \ NG[v] is a bridge. Since G is triangle-free, this implies that every edge incident
with a vertex in NG[v] is a bridge and that NG[v] induces a star S. For j ∈ [q], let z j denote
a neighbor of wj that is distinct from v. Let Z = {z1, . . . , zq}.

We have

μ(G) =
p∑

i=1

μ(G; {v, ui},∅) +
q∑

j=1

μ(G; {v, wj},∅)

(1)=
p∑

i=1

μ(G; {v, ui} ∪ Z, ∅) +
q∑

j=1

μ(G; {v, wj} ∪ (Z \ {z j}), {z j})

≤
p∑

i=1

μ(G − V (S); Z, ∅) +
q∑

j=1

μ(G − V (S); Z \ {z j}, {z j})

= p · μ(G − V (S); Z, ∅) +
q∑

j=1

μ(G − V (S); Z \ {z j}, {z j})

≤ p · μ(G − V (S)).

If q ≥ 2 and some component S′ of G − V (S) is a star, then Claim 9 implies that S′ has
order at least 2 and, by exchanging the roles of S and S′, we may assume that q = 1.
Hence, we may assume that

� either q ≥ 2 and no component of G − V (S) is a star,
� or q = 1.

If q ≥ 2 and no component of G − V (S) is a star, then, by induction, μ(G − V (S)) ≤
4

(n−|V (S)|)−1
5 = 4

(n−(p+q+1))−1
5 ≤ 4

(n−(p+3))−1
5 and we obtain μ(G) ≤ p · μ(G − V (S)) ≤ p ·

4
(n−(p+3))−1

5
(3)
< 4

n−1
5 . Hence, we may assume now that q = 1.
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First, we assume that the edge vw1 does not belong to any DIM of G. In this case,
μ(G) ≤ p · μ(G − {u1, . . . , up, v}). If the connected graph G − {u1, . . . , up, v} is a star,
then the result is easily verified. Hence, we may assume that G − {u1, . . . , up, v} is not a

star. By induction, this implies μ(G − {u1, . . . , up, v}) ≤ 4
(n−(p+1))−1

5 and hence μ(G) ≤
p · μ(G − {u1, . . . , up, v}) ≤ p · 4

(n−(p+1))−1
5

(3)≤ 4
n−1

5 . Furthermore, if μ(G) = 4
n−1

5 , then,

by (3), we have p = 4, n ≡ 1 mod 5, and μ(G − {u1, . . . , up, v}) = 4
(n−(p+1))−1

5 . By in-
duction, this implies G − {u1, . . . , up, v} = Hn−5, which easily implies G = Hn ∈ H.
Hence, we may assume that the edge vw1 belongs to some DIM of G.

Next, we assume that some component S′ of G − V (S) is a star of order s′. Since, by
Claim 9, the edge u1v belongs to some DIM of G, we obtain that s ≥ 2. Since the edge
vw1 belongs to some DIM of G, we obtain that s ≥ 3 and that w1 is adjacent to a leaf
z′ of S′. If w1 has degree 2, then the graph is completely determined and it is easy to
verify that μ(G) < h(n). Hence, we may assume that w1 has degree at least 3. Since vw1

belongs to some DIM of G, the graph G − V (S′) does not belong to H and n − s′ ≥ 6.

By induction, this implies μ(G − V (S′)) ≤ 4
(n−s′ )−1

5 . Since every DIM of G contains an
edge of S′, we obtain

μ(G) = μ(G; {z′},∅) + μ(G; ∅, {z′})
(1)= μ(G; {z′}, {w1}) + μ(G; {w1}, {z′})
≤ μ(G − V (S′); ∅, {w1}) + (s′ − 2) · μ(G − V (S′); {w1}, ∅)

≤ (s′ − 2) · μ(G − V (S′))

≤ (s′ − 2) · 4
(n−s′ )−1

5

(3)
< 4

n−1
5 .

Hence, we may assume that no component of G − V (S) is a star. By induction, this implies

μ(G − V (S)) ≤ 4
(n−(p+2))−1

5 and we obtain μ(G) ≤ p · μ(G − V (S)) ≤ p · 4
(n−(p+2))−1

5
(3)
<

4
n−1

5 , which completes the proof of the claim. �
By Claims 8–11, the graph G is a {C3,C4}-free graph of minimum degree at least 2.

Since 0.928 · φ
n
2 < 4

n−1
5 for n ≥ 9, Lemma 5 implies μ(G) < h(n), which completes the

proof. �
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