The Maximum Number of Dominating Induced Matchings

Min Chih Lin, ${ }^{1}$ Veronica A. Moyano, ${ }^{2}$ Dieter Rautenbach, ${ }^{3}$ and Jayme L. Szwarcfiter ${ }^{4}$

1 CONICET, AND INSTITUTO DE CÁLCULO AND DEPARTAMENTO DE COMPUTACIÓN
UNIVERSIDAD DE BUENOS AIRES
BUENOS AIRES, ARGENTINA
E-mail: oscarlin@dc.uba.ar
${ }^{2}$ INSTITUTO DE CÁLCULO AND DEPARTAMENTO DE COMPUTACIÓN
UNIVERSIDAD DE BUENOS AIRES
BUENOS AIRES, ARGENTINA
E-mail: vmoyano@ic.fcen.uba.ar
${ }^{3}$ INSTITUT FÜR OPTIMIERUNG UND OPERATIONS RESEARCH UNIVERSITÄT ULM
ULM, GERMANY
E-mail: dieter.rautenbach@uni-ulm.de
${ }^{4}$ INSTITUTO NACIONAL DE METROLOGIA, QUALIDADE E TECNOLOGIA INSTITUTO DE MATEMÁTICA AND COPPE UNIVERSIDADE FEDERAL DO RIO DE JANEIRO RIO DE JANEIRO, BRAZIL
E-mail: jayme@nce.ufrj.br

Received April 17, 2013; Revised January 20, 2014

Published online 2 May 2014 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt. 21804

[^0]
Abstract

A matching M of a graph G is a dominating induced matching (DIM) of G if every edge of G is either in M or adjacent with exactly one edge in M. We prove sharp upper bounds on the number $\mu(G)$ of DIMs of a graph G and characterize all extremal graphs. Our results imply that if G is a graph of order n, then $\mu(G) \leq 3^{\frac{n}{3}} ; \mu(G) \leq 4^{\frac{n}{5}}$ provided G is triangle-free; and $\mu(G) \leq 4^{\frac{n-1}{5}}$ provided $n \geq 9$ and G is connected. © 2014 Wiley Periodicals, Inc. J. Graph Theory 78: 258-268, 2015

Keywords: dominating induced matching; Fibonacci numbers
AMS subject classification: 05c35

1. INTRODUCTION

We consider finite, simple, and undirected graphs and use standard terminology. For a matching M of a graph G, let $V(M)$ denote the set of vertices of G incident with an edge in M. A matching M of G is a dominating induced matching (DIM) of G if every edge of G is either in M or adjacent with exactly one edge in M, that is, if $G[V(M)]$ is 1-regular and $V(G) \backslash V(M)$ is an independent set where $V(G)$ denotes the vertex set of G and for a set U of vertices of G, the subgraph of G induced by U is denoted by $G[U]$. For a graph G, let $\mu(G)$ denote the number of DIMs of G.

In this article, we give sharp upper bounds on the maximum possible value of $\mu(G)$ for a graph G that is either arbitrary, or triangle-free, or connected. Furthermore, we characterize all extremal graphs for our bounds.

The algorithmic questions related to DIMs have been studied in great detail. In [9], it is shown that $\mu(G)$ for a given arbitrary graph G of order n can be determined in time $O^{*}\left(1.1939^{n}\right)$. It is unlikely that there is a polynomial time algorithm computing $\mu(G)$, because it is already NP-complete to decide whether $\mu(G)=0$ [7], even for planar bipartite graphs of maximum degree 3 [1], or regular graphs [4]. Dominating induced matchings have been the main subject of many recent papers [1-6,8,11,12]. Further studies about DIMs and some applications related to coding theory, network routing, and resource allocation can be found in $[7,10]$.

Our results are as follows.
Theorem 1. If G is a graph of order n, then $\mu(G) \leq f(n)$ where

$$
f(n)= \begin{cases}1, & \text { if } n \leq 2, \\ 3^{\frac{n}{3}}, & \text { if } n \geq 3 \text { and } n \equiv 0 \bmod 3, \\ 3^{\frac{n-1}{3}}, & \text { if } n \geq 4 \text { and } n \equiv 1 \bmod 3, \text { and } \\ 4 \cdot 3^{\frac{n-5}{3}}, & \text { if } n \geq 5 \text { and } n \equiv 2 \bmod 3 .\end{cases}
$$

Furthermore, if the graph G of order n with $n \geq 3$ is such that $\mu(G)=f(n)$, then $G \in \mathcal{F}$ where

$$
\begin{aligned}
\mathcal{F}= & \left\{\frac{n}{3} K_{3}: n \geq 3 \text { and } n \equiv 0 \bmod 3\right\} \\
& \cup\left\{K_{1} \cup \frac{n-1}{3} K_{3}: n \geq 4 \text { and } n \equiv 1 \bmod 3\right\}
\end{aligned}
$$

FIGURE 1. The graph H_{8}.

$$
\begin{aligned}
& \cup\left\{K_{1,3} \cup \frac{n-4}{3} K_{3}: n \geq 4 \text { and } n \equiv 1 \bmod 3\right\} \\
& \cup\left\{K_{1,4} \cup \frac{n-5}{3} K_{3}: n \geq 5 \text { and } n \equiv 2 \bmod 3\right\} .
\end{aligned}
$$

Theorem 2. If G is a triangle-free graph of order n, then $\mu(G) \leq g(n)$ where

$$
g(n)= \begin{cases}1, & \text { if } n=1, \\ n-1, & \text { if } n \in\{2,3,6,7\}, \\ 20, & \text { if } n=11, \text { and } \\ 3^{t} \cdot 4^{\frac{n-4 t}{5},} & \text { if } n \geq 4 t \text { and } n \equiv-t \bmod 5 \text { for some } t \in\{0,1,2,3,4\} .\end{cases}
$$

Furthermore, if the triangle-free graph G of order n with $n \geq 2$ is such that $\mu(G)=g(n)$, then $G \in \mathcal{G}$ where

$$
\begin{aligned}
\mathcal{G}= & \left\{K_{1, n-1}: 2 \leq n \leq 7\right\} \cup\left\{K_{1,2} \cup K_{1,3}, K_{1,4} \cup K_{1,5}\right\} \\
& \cup\left\{t K_{1,3} \cup \frac{n-4 t}{5} K_{1,4}: n \geq 4 t \text { and } n \equiv-t \bmod 5 \text { for somet } \in\{0,1,2,3,4\}\right\} .
\end{aligned}
$$

For an integer n with $n \geq 11$ and $n \equiv 1 \bmod 5$, let the graph H_{n} arise from $K_{1} \cup \frac{n-1}{5} K_{1,4}$ by adding edges between the vertex of the K_{1} and each center of the $\frac{n-1}{5}$ stars.

Let the graph H_{8} of order 8 be as shown in Figure 1.
Theorem 3. If G is a connected graph of order n, then $\mu(G) \leq h(n)$ where

$$
h(n)= \begin{cases}1, & \text { if } n \in\{1,2\}, \\ 3, & \text { if } n=3, \\ n-1, & \text { if } 4 \leq n \leq 8, \text { and } \\ 4^{\frac{n-1}{5},} & \text { if } n \geq 9\end{cases}
$$

Furthermore, if the connected graph G of order n is such that $\mu(G)=h(n)$, then $G \in \mathcal{H}$ where
$\mathcal{H}=\left\{K_{1}, K_{2}, K_{3}, K_{1,3}, K_{1,4}, K_{1,5}, K_{1,6}, K_{1,7}, H_{8}\right\} \cup\left\{H_{n}: n \geq 11\right.$ and $\left.n \equiv 1 \bmod 5\right\}$.
The rest of the article is devoted to the proofs.

2. PROOFS

Before we proceed to the proofs of our theorems, we introduce some further notation and establish two preliminary results.

For a graph G and two disjoint subsets B and W of its vertex set $V(G)$, a DIM M of G is compatible with $(G ; B, W)$ if $B \subseteq V(M)$ and $W \cap V(M)=\emptyset$. Let $\mu(G ; B, W)$ denote
the number of DIMs of G that are compatible with $(G ; B, W)$. By the definition of DIMs, we have

$$
\begin{equation*}
\mu(G ; B, W)>0 \Rightarrow G[B] \text { has maximum degree at most } 1 \text { and } W \text { is independent. } \tag{1}
\end{equation*}
$$

Note that if $V(G) \backslash(B \cup W)$ has at most n elements, then $\mu(G ; B, W)$ is an integer at most 2^{n}. This implies that for a class \mathcal{G} of graphs and a nonnegative integer n, the maximum

$$
\begin{aligned}
s_{\mathcal{G}}(n)=\max \{\mu(G ; B, W): & G \text { is a graph in } \mathcal{G}, B \text { and } W \text { are disjoint subsets of } V(G), \\
& B \cup W \neq \emptyset, \text { and }|V(G) \backslash(B \cup W)| \leq n\}
\end{aligned}
$$

is well defined and finite, even though the maximum is possibly taken over infinitely many graphs. Note that $s_{\mathcal{G}}(0) \leq 1$. Furthermore, if \mathcal{G} contains a nonempty graph that has a DIM, then $s_{\mathcal{G}}(n) \geq 1$.

Lemma 4. If \mathcal{C} is the class of connected $\left\{C_{3}, C_{4}\right\}$-free graphs of minimum degree at least 2 , then $s_{\mathcal{C}}(n)=1$ for $n \in\{0,1,2,3\}$ and $s_{\mathcal{C}}(n) \leq s_{\mathcal{C}}(n-4)+s_{\mathcal{C}}(n-2)$ for every integer n with $n \geq 4$.

Proof. We prove the statement by induction on n. For $n=0$, the statement follows from the above observations using $\mu\left(C_{6}\right)>0$ and $C_{6} \in \mathcal{C}$. Now let $n \geq 1$. Clearly, $s_{\mathcal{C}}(n) \geq 1$ and $s_{\mathcal{C}}(n-1) \leq s_{\mathcal{C}}(n)$. Hence, in view of the desired statement, we may assume that $s_{\mathcal{C}}(n) \geq 2$. Let $(G ; B, W)$ be a maximizer in the definition of $s_{\mathcal{C}}(n)$, that is, $s_{\mathcal{C}}(n)=\mu(G ; B, W)$. Since $s_{\mathcal{C}}(n) \geq 2$, the set $B \cup W$ is a proper nonempty subset of $V(G)$. Since G is connected, there is an edge $u v$ of G such that $u \in B \cup W$ and $v \in V(G) \backslash(B \cup W)$.

If $u \in W$, then $s_{\mathcal{C}}(n)=\mu(G ; B, W) \stackrel{(1)}{=} \mu(G ; B \cup\{v\}, W) \leq s_{\mathcal{C}}(n-1)$. If $u \in B$ and u has a neighbor in B, then $s_{\mathcal{C}}(n)=\mu(G ; B, W) \stackrel{(1)}{=} \mu(G ; B, W \cup\{v\}) \leq s_{\mathcal{C}}(n-1)$. If $u \in B$ and all neighbors of u distinct from v belong to W, then $s_{\mathcal{C}}(n)=\mu(G ; B, W) \stackrel{(1)}{=}$ $\mu(G ; B \cup\{v\}, W) \leq s_{\mathcal{C}}(n-1)$. In all three cases, we obtain $s_{\mathcal{C}}(n) \leq s_{\mathcal{C}}(n-1)$. By induction, if $n-1 \leq 3$, then $1 \leq s_{\mathcal{C}}(n) \leq s_{\mathcal{C}}(n-1)=1$, and if $n-1 \geq 4$, then $s_{\mathcal{C}}(n) \leq$ $s_{\mathcal{C}}(n-1) \leq s_{\mathcal{C}}(n-5)+s_{\mathcal{C}}(n-3) \leq s_{\mathcal{C}}(n-4)+s_{\mathcal{C}}(n-2)$.

Hence, we may assume that u belongs to B and that u has a neighbor w in $V(G) \backslash(B \cup$ W) that is distinct from v. Since G is of minimum degree at least 2 , the vertex v has a neighbor v^{\prime} distinct from u and the vertex w has a neighbor w^{\prime} distinct from u. Since G is $\left\{C_{3}, C_{4}\right\}$-free, the vertices v, v^{\prime}, w, and w^{\prime} are all distinct.

If $v^{\prime} \in W$, then $s_{\mathcal{C}}(n)=\mu(G ; B, W) \stackrel{(1)}{=} \mu(G ; B \cup\{v\}, W) \leq s_{\mathcal{C}}(n-1)$. If $v^{\prime} \in B$, then $s_{\mathcal{C}}(n)=\mu(G ; B, W) \stackrel{(1)}{=} \mu(G ; B, W \cup\{v\}) \leq s_{\mathcal{C}}(n-1)$. Again, we obtain $s_{\mathcal{C}}(n) \leq$ $s_{\mathcal{C}}(n-1)$ and can argue as above.

Hence, we may assume that v^{\prime} and w^{\prime} belong to $V(G) \backslash(B \cup W)$, which implies $n \geq 4$. Now

$$
\begin{aligned}
s_{\mathcal{C}}(n) & =\mu(G ; B, W) \\
& =\mu(G ; B \cup\{v\}, W)+\mu(G ; B, W \cup\{v\}) \\
& \stackrel{(1)}{=} \mu\left(G ; B \cup\left\{v, w^{\prime}\right\}, W \cup\left\{v^{\prime}, w\right\}\right)+\mu\left(G ; B \cup\left\{v^{\prime}\right\}, W \cup\{v\}\right) \\
& \leq s_{\mathcal{C}}(n-4)+s_{\mathcal{C}}(n-2),
\end{aligned}
$$

which completes the proof.

If $F(n)$ denotes the n-th Fibonacci number, that is, $F(0)=0, F(1)=1$, and $F(n)=$ $F(n-2)+F(n-1)$ for every integer n with $n \geq 2$, then Lemma 4 immediately implies

$$
\begin{equation*}
\max \left\{s_{\mathcal{C}}(2 n), s_{\mathcal{C}}(2 n+1)\right\} \leq F(n+1) \tag{2}
\end{equation*}
$$

for every nonnegative integer n.
Lemma 5. If G is a $\left\{C_{3}, C_{4}\right\}$-free graph of order n and minimum degree at least 2 , then $\mu(G)<0.928 \cdot \phi^{\frac{n}{2}}$ where $\phi=\frac{1+\sqrt{5}}{2}$.

Proof. First, we assume that G is connected. Note that $n \geq 5$. If $n=5$, then $G=C_{5}$ and $\mu(G)=0$. Hence, let $n \geq 6$. Let u be a vertex of G. Since u has at least two neighbors, we obtain $\mu(G)=\mu(G ; \emptyset,\{u\})+\mu(G ;\{u\}, \emptyset) \stackrel{(1)}{=} \mu\left(G ; N_{G}(u),\{u\}\right)+\mu(G ;\{u\}, \emptyset) \leq$ $s_{\mathcal{C}}(n-3)+s_{\mathcal{C}}(n-1)$. If n is odd, then $\mu(G) \leq s_{\mathcal{C}}(n-3)+s_{\mathcal{C}}(n-1) \stackrel{(2)}{\leq} F\left(\frac{n-1}{2}\right)+$ $F\left(\frac{n+1}{2}\right)=F\left(\frac{n+3}{2}\right)$. If n is even, then $\mu(G) \leq s_{\mathcal{C}}(n-3)+s_{\mathcal{C}}(n-1) \stackrel{(2)}{\leq} F\left(\frac{n-2}{2}\right)+$ $F\left(\frac{n}{2}\right)=F\left(\frac{n+2}{2}\right)$. Using $\phi^{-2}+\phi^{-1}=1$ and $\max \left\{F(4) \cdot \phi^{-\frac{6}{2}}, F(5) \cdot \phi^{-\frac{7}{2}}, F(6) \cdot \phi^{-\frac{9}{2}}\right\}$ <0.928, it follows easily by induction on n that for $n \geq 6$, we have

$$
\left.\begin{array}{ll}
F\left(\frac{n+3}{2}\right), & \text { if } n \text { is odd and } \\
F\left(\frac{n+2}{2}\right), & \text { if } n \text { is even }
\end{array}\right\}<0.928 \cdot \phi^{\frac{n}{2}}
$$

and hence $\mu(G)<0.928 \cdot \phi^{\frac{n}{2}}$.
If G has components G_{1}, \ldots, G_{k} of orders n_{1}, \ldots, n_{k}, respectively, then $\mu(G) \leq$ $\prod_{i=1}^{k} \mu\left(G_{i}\right)<0.928^{k} \cdot \phi^{\frac{n_{1}+\ldots+n_{k}}{2}} \leq 0.928 \cdot \phi^{\frac{n}{2}}$, which completes the proof.

We proceed to the proofs of our theorems. The general structure of all three proofs is very similar.

A. Proof of Theorem 1

Let G be a graph of order n and size m. We prove, by induction on $n+m$, that $\mu(G) \leq f(n)$ and, for $n \geq 3, \mu(G)=f(n)$ if and only if G belongs to \mathcal{F}. Since the result is easily verified for $n \leq 5$, we assume now that $n \geq 6$. We establish a series of claims concerning properties that G can be assumed to have.

Claim 1. Every edge of G belongs to some DIM of G.
Proof of Claim 1. If G contains an edge e such that no DIM of G contains e, then every DIM of G is a DIM of $G-e$ and, by induction, $\mu(G) \leq \mu(G-e) \leq f(n)$. If $\mu(G)=f(n)$, then $\mu(G-e)=f(n)$ and hence, by induction, $G-e \in \mathcal{F}$. It is easily verified that adding any edge to a graph H in \mathcal{F} results in a graph with strictly less DIMs than H. Therefore, $\mu(G)<\mu(G-e)$, which is the contradiction $\mu(G)<f(n)$.

Since no DIM of G can contain an edge that belongs to a cycle of length 4, Claim 1 implies that G has no such cycle.

Claim 2. The graph G is triangle-free.

Proof of Claim 2. Let T : xyzx be a triangle in G. Since every DIM of G contains exactly one of the three edges of T, no DIM of G contains an edge between a vertex in $V(T)$ and a vertex in $V(G) \backslash V(T)$. By Claim 1, this implies that T is a component of G. Now, by induction, $\mu(G)=3 \cdot \mu(G-V(T)) \leq 3 \cdot f(n-3)=f(n)$. Furthermore, if $\mu(G)=f(n)$, then $\mu(G-V(T))=f(n-3)$ and hence, by induction, $G-V(T) \in \mathcal{F}$. Since G is the disjoint union of a triangle and $G-V(T)$, we obtain $G \in \mathcal{F}$.
Claim 3. The graph G has no isolated vertex.
Proof of Claim 3. If u is an isolated vertex of G, then every DIM of G is a DIM of $G-$ u. Therefore, by induction, $\mu(G) \leq \mu(G-u) \leq f(n-1) \leq f(n)$. If $\mu(G)=f(n)$, then $f(n-1)=f(n)$, which implies that $n \equiv 1 \bmod 3$. Furthermore, $\mu(G-u)=f(n-1)$ and hence, by induction, $G-u=\frac{n-1}{3} K_{3}$. Now $G=K_{1} \cup \frac{n-1}{3} K_{3} \in \mathcal{F}$.
Claim 4. The graph G has minimum degree at least 2.
Proof of Claim 4. By Claim 3, the graph G has no isolated vertex. If u is a vertex of degree 1 and v is the unique neighbor of u in G, then every DIM of G contains an edge incident with v. Hence, no DIM contains an edge between a vertex in $N_{G}[v]$ and $V(G) \backslash N_{G}[v]$. By Claims 1 and 2, the closed neighborhood $N_{G}[v]$ of v in G is the vertex set of a component of G and induces a star $K_{1, d}$ where $d=d_{G}(v) \geq 1$. Now, by induction, $\mu(G)=d \cdot \mu\left(G-N_{G}[v]\right) \leq d \cdot f(n-(d+1))$.

If $d \in\{1,2\}$ or $d \geq 5$, then it is easily verified that $d \cdot f(n-(d+1))<f(n)$ and hence $\mu(G)<f(n)$ in these cases.

If $d=3$, then $d \cdot f(n-(d+1)) \leq f(n)$ with equality if and only if $n \equiv 1 \bmod 3$. Hence, $\mu(G) \leq f(n)$. Furthermore, if $\mu(G)=f(n)$, then $\mu\left(G-N_{G}[v]\right)=f(n-(d+$ 1)) and hence, by induction, $G-N_{G}[v]=\frac{n-4}{3} K_{3}$. Now $G=K_{1,3} \cup \frac{n-4}{3} K_{3} \in \mathcal{F}$.

If $d=4$, then $d \cdot f(n-(d+1)) \leq f(n)$ with equality if and only if $n \equiv 2 \bmod 3$. Hence, $\mu(G) \leq f(n)$. Furthermore, if $\mu(G)=f(n)$, then $\mu\left(G-N_{G}[v]\right)=f(n-(d+$ 1)) and hence, by induction, $G-N_{G}[v]=\frac{n-5}{3} K_{3}$. Now $G=K_{1,4} \cup \frac{n-5}{3} K_{3} \in \mathcal{F}$.

By Claims 1-4, the graph G is a $\left\{C_{3}, C_{4}\right\}$-free graph of minimum degree at least 2. Since $f(n) \geq 4 \cdot 3^{-\frac{5}{3}} \cdot 3^{\frac{n}{3}}$ and $0.928 \cdot \phi^{\frac{n}{2}}<4 \cdot 3^{-\frac{5}{3}} \cdot 3^{\frac{n}{3}}$ for $n \geq 6$, Lemma 5 implies $\mu(G)<f(n)$, which completes the proof.

B. Proof of Theorem 2

Let G be a triangle-free graph of order n and size m. We prove, by induction on $n+m$, that $\mu(G) \leq g(n)$ and, for $n \geq 2, \mu(G)=g(n)$ if and only if G belongs to \mathcal{G}. Since the result is easily verified for $n \leq 8$, we assume now that $n \geq 9$. We establish a series of claims concerning properties that G can be assumed to have.
Claim 5. Every edge of G belongs to some DIM of G.
Proof of Claim 5. This can be proved exactly as Claim 1.
Claim 5 implies that G is $\left\{C_{3}, C_{4}\right\}$-free.
Claim 6. The graph G has no isolated vertex.
Proof of Claim 6. Note that unlike the function f from Theorem 1, the function g is strictly increasing for $n \geq 3$. Using this fact, this claim can be proved as Claim 3.

Claim 7. The graph G has minimum degree at least 2.
Proof of Claim 7. By Claim 6, the graph G has no isolated vertex. Let u be a vertex of degree 1 and let v be the unique neighbor of u in G. Arguing as in the proof of Claim 4, we obtain that the closed neighborhood $N_{G}[v]$ of v in G is the vertex set of a component of G and induces a star $K_{1, d}$ where $d=d_{G}(v) \geq 1$. Now, by induction, $\mu(G)=d \cdot \mu\left(G-N_{G}[v]\right) \leq d \cdot g(n-(d+1))$.

It is easy to verify $d \cdot g(n-(d+1)) \leq g(n)$ for every $n \geq 9$ with equality if and only if

- either $d=3, n \bmod 5 \neq 0$ and $n \neq 11$,
- or $d=4$ and $n \notin\{12,16\}$,
- or $d=5$ and $n=11$.

The proof can now be completed similarly as the proof of Claim 4. We give details only for $d=3$.

Let $d=3$. We obtain $\mu(G)=d \cdot \mu\left(G-N_{G}[v]\right) \leq d \cdot g(n-(d+1)) \leq g(n)$. If $\mu(G)=g(n)$, then $d \cdot g(n-(d+1))=g(n)$, which implies $n \bmod 5 \neq 0$ and $n \neq 11$. Furthermore, $\mu\left(G-N_{G}[v]\right)=g(n-(d+1))$, which implies, by induction, that $G-$ $N[v] \in \mathcal{G}$. Since for every graph H in \mathcal{G} of order $n^{\prime}=n-4$ with $n^{\prime} \geq 5, n^{\prime} \bmod 5 \neq 1$, and $n^{\prime} \neq 7$, we have $K_{1,3} \cup H \in \mathcal{G}$, we obtain $G \in \mathcal{G}$.

By Claims 5-7, the graph G is a $\left\{C_{3}, C_{4}\right\}$-free graph of minimum degree at least 2. Clearly, $g(n)>0.928 \cdot \phi^{\frac{n}{2}}$ for $n \in\{9,10,11\}$. Furthermore, for $n \geq 12$, we have $g(n) \geq 81 \cdot 4^{\frac{n-16}{5}}>0.956 \cdot 1.319^{n}>0.928 \cdot \phi^{\frac{n}{2}}$, Lemma 5 implies $\mu(G)<g(n)$, which completes the proof.

C. Proof of Theorem 3

Let G be a connected graph of order n and size m. We prove the statement by induction on $n+m$. For $n \leq 8$, the result is easily verified. Note that
for every positive integer p, we have $p \cdot 4^{\frac{-(p+1)}{5}} \leq 1$ with equality if and only if $p=4$.
This implies that if $n \leq 8$ and G is neither a star nor a triangle nor H_{8}, then $n \geq 4$ and $\mu(G) \leq h(n)-1=n-2 \leq 4^{\frac{n-1}{5}}$.

We assume now that $n \geq 9$. Note that if G^{\prime} is a graph of order n^{\prime} less than n and no component of G^{\prime} is a star or a triangle or H_{8}, then, by induction, every component K of G of order $n(K)$ satisfies $\mu(K) \leq 4^{\frac{n(K)-1}{5}}$, which implies $\mu\left(G^{\prime}\right) \leq 4^{\frac{n^{\prime}-1}{5}}$. We establish a series of claims concerning properties that G can be assumed to have.

Claim 8. Every edge of G that does not belong to some DIM of G is a bridge.
Proof of Claim 8. If G contains an edge e such that no DIM of G contains e and e is not a bridge of G, then every DIM of G is a DIM of the connected graph $G-e$ and, by induction, $\mu(G) \leq \mu(G-e) \leq h(n)$. If $\mu(G)=h(n)$, then $\mu(G-e)=h(n)$ and hence, by induction, $G-e \in \mathcal{H}$. It is easily verified that adding any edge to a graph H in \mathcal{H} results in a graph with strictly less DIMs than H. Therefore, $\mu(G)<\mu(G-e)=h(n)$, which is a contradiction.

By Claim 8, the graph G has no cycle of length 4 .

Claim 9. No edge of G that does not belong to some DIM of G is incident with a vertex of degree 1 .

Proof of Claim 9. If $u v$ is an edge of G that does not belong to some DIM of G such that u has degree 1 , then $\mu(G) \leq \mu(G-u) \leq h(n-1)<h(n)$.

Claim 10. The graph G is triangle-free.
Proof of Claim 10. Let $T: x y z x$ be a triangle in G. Since G is connected, we may assume that z has a neighbor z^{\prime} that does not lie on T.

First, we assume that y has a neighbor y^{\prime} that does not lie on T. Since G has no cycle of length 4 , the vertices y^{\prime} and z^{\prime} are distinct. For every DIM M of G, the set M contains an edge of T and $M \backslash E(T)$ is a DIM of $G-V(T)$. This implies, by induction,

$$
\begin{aligned}
\mu(G) & =\mu(G ;\{x, y\}, \emptyset)+\mu(G ;\{x, z\}, \emptyset)+\mu(G ;\{y, z\}, \emptyset) \\
& \stackrel{(1)}{=} \mu\left(G ;\left\{x, y, z^{\prime}\right\},\left\{y^{\prime}\right\}\right)+\mu\left(G ;\left\{x, z, y^{\prime}\right\},\left\{z^{\prime}\right\}\right)+\mu\left(G ;\{y, z\},\left\{y^{\prime}, z^{\prime}\right\}\right) \\
& \leq \mu\left(G-V(T) ;\left\{z^{\prime}\right\},\left\{y^{\prime}\right\}\right)+\mu\left(G-V(T) ;\left\{y^{\prime}\right\},\left\{z^{\prime}\right\}\right)+\mu\left(G-V(T) ; \emptyset,\left\{y^{\prime}, z^{\prime}\right\}\right) \\
& \leq \mu(G-V(T)) \\
& \leq h(n-3) \\
& <h(n)
\end{aligned}
$$

Hence, we may assume that for every triangle \tilde{T} of G, exactly one vertex of \tilde{T} has degree at least 3.

Next, we assume that no component of $G-V(T)$ is either a star or a triangle or H_{8}. By induction, this implies that $\mu(G-V(T)) \leq 4^{\frac{(n-3)-1}{5}}$. Now

$$
\begin{aligned}
\mu(G) & =\mu(G ;\{x, y\}, \emptyset)+\mu(G ;\{x, z\}, \emptyset)+\mu(G ;\{y, z\}, \emptyset) \\
& \stackrel{(1)}{=} \mu\left(G ;\left\{x, y, z^{\prime}\right\}, \emptyset\right)+\mu\left(G ;\{x, z\},\left\{z^{\prime}\right\}\right)+\mu\left(G ;\{y, z\},\left\{z^{\prime}\right\}\right) \\
& \leq \mu\left(G-V(T) ;\left\{z^{\prime}\right\}, \emptyset\right)+2 \cdot \mu\left(G-V(T) ; \emptyset,\left\{z^{\prime}\right\}\right) \\
& \leq 2 \cdot \mu(G-V(T)) \\
& \leq 2 \cdot 4^{\frac{(n-3)-1}{5}} \\
& <4^{\frac{n-1}{5}}
\end{aligned}
$$

Hence, we may assume that for every triangle \tilde{T} of G, some component of $G-V(\tilde{T})$ is either a star or a triangle or H_{8}.

Next, we assume that some component S of $G-V(T)$ is a star of order s. Since the edge $x y$ belongs to some DIM of G, we obtain that $s \geq 2$. Since the edge $x z$ belongs to some DIM of G, we obtain that $s \geq 3$ and that z is adjacent to a leaf z^{\prime} of S. If z has degree 3 , then the graph is completely determined. Note that the structure of G is similar to H_{8} in this case. Using $n \geq 9$, it is easy to verify that $\mu(G)<h(n)$. Hence, we may assume that z has degree at least 4 . If $G-V(S)$ is H_{8}, then the graph is completely determined. Again, it is easy to verify that $\mu(G)<h(n)$. Hence, no component of $G-V(S)$ is either a star or a triangle or H_{8}, which implies, by induction, $\mu(G-V(S)) \leq 4 \frac{(n-s)-1}{5}$. Since every DIM of G contains an edge of S, we obtain, by induction,

$$
\begin{aligned}
\mu(G) & =\mu\left(G ;\left\{z^{\prime}\right\}, \emptyset\right)+\mu\left(G ; \emptyset,\left\{z^{\prime}\right\}\right) \\
& \stackrel{(1)}{=} \mu\left(G ;\left\{z^{\prime}\right\},\{z\}\right)+\mu\left(G ;\{z\},\left\{z^{\prime}\right\}\right) \\
& \leq \mu(G-V(S) ; \emptyset,\{z\})+(s-2) \cdot \mu(G-V(S) ;\{z\}, \emptyset)
\end{aligned}
$$

$$
\begin{aligned}
& \leq(s-2) \cdot \mu(G-V(S)) \\
& \leq(s-2) \cdot 4^{\frac{(n-s)-1}{5}} \\
& \stackrel{(3)}{<} 4^{\frac{n-1}{5}} .
\end{aligned}
$$

Hence, we may assume that for every triangle \tilde{T} of G, no component of $G-V(\tilde{T})$ is a star.

Next, we assume that some component T^{\prime} of $G-V(T)$ is a triangle. Since $n \geq 9$, the degree of z is at least 4. This implies that the connected graph $G-V\left(T^{\prime}\right)$ is H_{8}. Now the graph is completely determined, $n=11$, and $\mu(G)=8<h(n)$. Hence, we may assume that for every triangle \tilde{T} of G, some component of $G-V(\tilde{T})$ is H_{8}. Now the graph G arises from $T \cup H_{8}$ by adding an edge between z and the vertex a in H_{8} (see Fig. 1). This implies $n=11$ and $\mu(G)=13<h(n)$, which completes the proof of the claim.

Claims 8 and 10 imply that G is $\left\{C_{3}, C_{4}\right\}$-free. By assumption, G has no isolated vertex.
Claim 11. The graph G has minimum degree at least 2 .
Proof of Claim 11. Let v be a vertex of G of degree $p+q$ such that v has $p \geq 1$ neighbors u_{1}, \ldots, u_{p} of degree 1 and q neighbors w_{1}, \ldots, w_{q} of degree at least 2 . If G is a star, then the theorem is easily verified. Hence, we may assume that $q \geq 1$. Since every DIM of G contains an edge incident with v, every edge between a vertex in $N_{G}[v]$ and $V(G) \backslash N_{G}[v]$ is a bridge. Since G is triangle-free, this implies that every edge incident with a vertex in $N_{G}[v]$ is a bridge and that $N_{G}[v]$ induces a star S. For $j \in[q]$, let z_{j} denote a neighbor of w_{j} that is distinct from v. Let $Z=\left\{z_{1}, \ldots, z_{q}\right\}$.

We have

$$
\begin{aligned}
\mu(G) & =\sum_{i=1}^{p} \mu\left(G ;\left\{v, u_{i}\right\}, \emptyset\right)+\sum_{j=1}^{q} \mu\left(G ;\left\{v, w_{j}\right\}, \emptyset\right) \\
& \stackrel{(1)}{=} \sum_{i=1}^{p} \mu\left(G ;\left\{v, u_{i}\right\} \cup Z, \emptyset\right)+\sum_{j=1}^{q} \mu\left(G ;\left\{v, w_{j}\right\} \cup\left(Z \backslash\left\{z_{j}\right\}\right),\left\{z_{j}\right\}\right) \\
& \leq \sum_{i=1}^{p} \mu(G-V(S) ; Z, \emptyset)+\sum_{j=1}^{q} \mu\left(G-V(S) ; Z \backslash\left\{z_{j}\right\},\left\{z_{j}\right\}\right) \\
& =p \cdot \mu(G-V(S) ; Z, \emptyset)+\sum_{j=1}^{q} \mu\left(G-V(S) ; Z \backslash\left\{z_{j}\right\},\left\{z_{j}\right\}\right) \\
& \leq p \cdot \mu(G-V(S)) .
\end{aligned}
$$

If $q \geq 2$ and some component S^{\prime} of $G-V(S)$ is a star, then Claim 9 implies that S^{\prime} has order at least 2 and, by exchanging the roles of S and S^{\prime}, we may assume that $q=1$. Hence, we may assume that

- either $q \geq 2$ and no component of $G-V(S)$ is a star,
- or $q=1$.

If $q \geq 2$ and no component of $G-V(S)$ is a star, then, by induction, $\mu(G-V(S)) \leq$ $4^{\frac{(n-|V(S)|)-1}{5}}=4^{\frac{(n-(p+q+1))-1}{5}} \leq 4^{\frac{(n-(p+3)-1}{5}}$ and we obtain $\mu(G) \leq p \cdot \mu(G-V(S)) \leq p$. $4 \frac{(n-(p+3)-1}{5} \stackrel{(3)}{<} 4^{\frac{n-1}{5}}$. Hence, we may assume now that $q=1$.

First, we assume that the edge νw_{1} does not belong to any DIM of G. In this case, $\mu(G) \leq p \cdot \mu\left(G-\left\{u_{1}, \ldots, u_{p}, v\right\}\right)$. If the connected graph $G-\left\{u_{1}, \ldots, u_{p}, v\right\}$ is a star, then the result is easily verified. Hence, we may assume that $G-\left\{u_{1}, \ldots, u_{p}, v\right\}$ is not a star. By induction, this implies $\mu\left(G-\left\{u_{1}, \ldots, u_{p}, v\right\}\right) \leq 4 \frac{(n-(p+1))-1}{5}$ and hence $\mu(G) \leq$ $p \cdot \mu\left(G-\left\{u_{1}, \ldots, u_{p}, v\right\}\right) \leq p \cdot 4^{\frac{(n-(p+1))-1}{5}} \stackrel{(3)}{\leq} 4^{\frac{n-1}{5}}$. Furthermore, if $\mu(G)=4^{\frac{n-1}{5}}$, then, by (3), we have $p=4, n \equiv 1 \bmod 5$, and $\mu\left(G-\left\{u_{1}, \ldots, u_{p}, v\right\}\right)=4 \frac{(\underline{n-(p+1))-1}}{5}$. By induction, this implies $G-\left\{u_{1}, \ldots, u_{p}, v\right\}=H_{n-5}$, which easily implies $G=H_{n} \in \mathcal{H}$. Hence, we may assume that the edge $v w_{1}$ belongs to some DIM of G.

Next, we assume that some component S^{\prime} of $G-V(S)$ is a star of order s^{\prime}. Since, by Claim 9, the edge $u_{1} v$ belongs to some DIM of G, we obtain that $s \geq 2$. Since the edge νw_{1} belongs to some DIM of G, we obtain that $s \geq 3$ and that w_{1} is adjacent to a leaf z^{\prime} of S^{\prime}. If w_{1} has degree 2 , then the graph is completely determined and it is easy to verify that $\mu(G)<h(n)$. Hence, we may assume that w_{1} has degree at least 3. Since νw_{1} belongs to some DIM of G, the graph $G-V\left(S^{\prime}\right)$ does not belong to \mathcal{H} and $n-s^{\prime} \geq 6$. By induction, this implies $\mu\left(G-V\left(S^{\prime}\right)\right) \leq 4 \frac{\left(\frac{\left(n-s^{\prime}\right)-1}{5}\right.}{}$. Since every DIM of G contains an edge of S^{\prime}, we obtain

$$
\begin{aligned}
\mu(G) & =\mu\left(G ;\left\{z^{\prime}\right\}, \emptyset\right)+\mu\left(G ; \emptyset,\left\{z^{\prime}\right\}\right) \\
& \stackrel{(1)}{=} \mu\left(G ;\left\{z^{\prime}\right\},\left\{w_{1}\right\}\right)+\mu\left(G ;\left\{w_{1}\right\},\left\{z^{\prime}\right\}\right) \\
& \leq \mu\left(G-V\left(S^{\prime}\right) ; \emptyset,\left\{w_{1}\right\}\right)+\left(s^{\prime}-2\right) \cdot \mu\left(G-V\left(S^{\prime}\right) ;\left\{w_{1}\right\}, \emptyset\right) \\
& \leq\left(s^{\prime}-2\right) \cdot \mu\left(G-V\left(S^{\prime}\right)\right) \\
& \leq\left(s^{\prime}-2\right) \cdot 4^{\frac{\left(n-s^{\prime}\right)-1}{5}} \\
& \stackrel{(3)}{<} 4^{\frac{n-1}{5}} .
\end{aligned}
$$

Hence, we may assume that no component of $G-V(S)$ is a star. By induction, this implies $\mu(G-V(S)) \leq 4 \frac{\left(\frac{(n-(p+2))-1}{5}\right.}{5}$ and we obtain $\mu(G) \leq p \cdot \mu(G-V(S)) \leq p \cdot 4 \stackrel{(n-(p+2))-1}{5} \stackrel{(3)}{<}$ $4^{\frac{n-1}{5}}$, which completes the proof of the claim.

By Claims $8-11$, the graph G is a $\left\{C_{3}, C_{4}\right\}$-free graph of minimum degree at least 2 . Since $0.928 \cdot \phi^{\frac{n}{2}}<4^{\frac{n-1}{5}}$ for $n \geq 9$, Lemma 5 implies $\mu(G)<h(n)$, which completes the proof.

REFERENCES

[1] A. Brandstädt, C. Hundt, and R. Nevries, Efficient edge domination on holefree graphs in polynomial time, Lect Notes Comput Sci 6034 (2010), 650-661.
[2] A. Brandstädt, A. Leitert, and D. Rautenbach, Efficient dominating and edge dominating sets for graphs and hypergraphs, Lect Notes Comput Sci 7676 (2012), 267-277.
[3] A. Brandstädt and R. Mosca, Dominating induced matching for P_{7}-free graphs in linear time, Lect Notes Comput Sci 7074 (2011), 100-109.
[4] D. M. Cardoso, J. O. Cerdeira, C. Delorme, and P. C. Silva, Efficient edge domination in regular graphs, Discrete Appl Math 156 (2008), 3060-3065.
[5] D. M. Cardoso, N. Korpelainen, and V. V. Lozin, On the complexity of the dominating induced matching problem in hereditary classes of graphs, Discrete Appl Math 159 (2011), 521-531.
[6] D. M. Cardoso and V. V. Lozin, Dominating induced matchings, Lect Notes Comput Sci 5420 (2009), 77-86.
[7] D. L. Grinstead, P. J. Slater, N. A. Sherwani, and N. D. Holmes, Efficient edge domination problems in graphs, Inform Process Lett 48 (1993), 221-228.
[8] N. Korpelainen, A polynomial-time algorithm for the dominating induced matching problem in the class of convex graphs, Electron Notes Discrete Math 32 (2009), 133-140.
[9] M. C. Lin, M. J. Mizrahi, and J. L. Szwarcfiter, An $O^{*}\left(1.1939^{n}\right)$ time algorithm for minimum weighted dominating induced matching, Lect Notes Comput Sci 8283 (2013), 558-567.
[10] M. Livingston and Q. F. Stout, Distributing resources in hypercube computers, Proceedings of the 3rd Conference on Hypercube Concurrent Computers and Applications, ACM, 1988, pp. 222-231.
[11] C. L. Lu, M.-T. Ko, and C. Y. Tang, Perfect edge domination and efficient edge domination in graphs, Discrete Appl Math 119 (2002), 227-250.
[12] C. L. Lu and C. Y. Tang, Solving the weighted efficient edge domination problem on bipartite permutation graphs, Discrete Appl Math 87 (1998), 203-211.

[^0]: Contract grant sponsor: UBACyT; contract grant numbers: 20020100100754 and 20020090100149 (to M.C.L. and V.A.M.); contract grant sponsor: PICT ANPCyT; contract grant number: 1970 (to M.C.L. and V.A.M.); contract grant sponsor: PIP CONICET; contract grant number: 11220100100310 (to M.C.L. and V.A.M.); contract grant sponsor: CAPES/DAAD Probral Project Cycles, Convexity, and Searching in Graphs (to D.R.); contract grant sponsor: CNPq (to J.L.S.); contract grant sponsor: CAPES (to J.L.S.); contract grant sponsor: FAPERJ (to J.L.S.).
 Journal of Graph Theory
 © 2014 Wiley Periodicals, Inc.

