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ON A CONJECTURE OF ERDŐS, GALLAI, AND TUZA

GREGORY J. PULEO

Abstract. Erdős, Gallai, and Tuza posed the following problem: given an
n-vertex graph G, let τ1(G) denote the smallest size of a set of edges whose
deletion makes G triangle-free, and let α1(G) denote the largest size of a set
of edges containing at most one edge from each triangle of G. Is it always the
case that α1(G) + τ1(G) ≤ n2/4?

We have two main results. We first obtain the upper bound α1(G)+τ1(G) ≤
5n2/16, as a partial result towards the Erdős–Gallai–Tuza conjecture. We also
show that always α1(G) ≤ n2/2 − m, where m is the number of edges in G;
this bound is sharp in several notable cases.

1. Introduction

Given an n-vertex graph G, say that a set A ⊆ E(G) is triangle-independent if
it contains at most one edge from each triangle of G, and say that X ⊆ E(G) is a
triangle edge cover if G \X is triangle-free. Throughout this paper, α1(G) denotes
the maximum size of a triangle-independent set of edges in G, while τ1(G) denotes
the minimum size of a triangle edge cover in G.

Erdős [4] showed that every n-vertex graph G has a bipartite subgraph with at
least |E(G)| /2 edges, which implies that τ1(G) ≤ |E(G)| /2 ≤ n2/4. Similarly,
if A is triangle-independent, then the subgraph of G with edge set A is clearly
triangle-free; by Mantel’s Theorem, this implies that α1(G) ≤ n2/4.

Intuitively, α1(G) and τ1(G) cannot both be large: if τ1(G) is close to n2/4, then
|E(G)| is close to n2/2, which makes it difficult to find a large triangle-independent
set of edges. Erdős, Gallai, and Tuza formalized this intuition with the following
conjecture.

Conjecture 1.1 (Erdős–Gallai–Tuza [7]). For every n-vertex graph G, α1(G) +
τ1(G) ≤ n2/4.

The conjecture is sharp, if true: consider the graphsKn and Kn/2,n/2, where n is

even. We have α1(Kn) = n/2 and τ1(Kn) =
(

n
2

)

−n2/4, while α1(Kn/2,n/2) = n2/4

and τ1(Kn/2,n/2) = 0. In both cases, α1(G) + τ1(G) = n2/4, but a different term
dominates in each case. As observed by Erdős, Gallai, and Tuza, the difficulty of
the conjecture lies in the variety of graphs for which the conjecture is sharp: any
proof of the conjecture would need to account for both Kn and Kn/2,n/2 without
any waste.

Erdős, Gallai, and Tuza [7] considered the conjecture on graphs for which every
edge lies in a triangle, and proved that there is a positive constant c such that

α1(G) + τ1(G) ≤ |E(G)| − c |E(G)|
1/3

and α1(G) + τ1(G) ≤ |E(G)| − c |V (G)|
1/2

for such graphs. Aside from the original paper of Erdős, Gallai, and Tuza, no other
work appears to have been done on the conjecture. The conjecture also appears as
Problem 46 in [9], a list of unsolved combinatorial problems.
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In this paper, we present two partial results towards Conjecture 1.1.
In Section 2, we extend some ideas of Erdős, Faudree, Pach and Spencer [6] in

order to obtain the bound α1(G) + τ1(G) ≤ 5n2/16. In Section 3, we obtain the
bound α1(G) ≤ n2/2−m, where m = |E(G)|, and characterize the graphs for which
equality holds. When n is even, this bound is sharp for bothKn andKn/2,n/2, which
makes it an encouraging step towards the Erdős–Gallai–Tuza Conjecture.

2. Induced Bipartite Subgraphs

In this section, we will focus on the relationship between triangle-free subgraphs
of G and bipartite subgraphs of G. The problem of finding a largest bipartite
subgraph of a graph G is well-studied, and clearly any bipartite subgraph of G is
triangle-free, so we can reasonably hope to apply some of the existing literature
on bipartite subgraphs to our current problem (see [2] and [8] for surveys of this
literature).

We define some useful notation. For any graph G, let τB(G) denote the smallest
size of an edge set X such that G \X is bipartite, and let b(G) denote the largest
size of a vertex set B such that G[B] is bipartite. Clearly, τ1(G) ≤ τB(G), so we
seek bounds on α1(G) + τB(G). When A ⊆ E(G), we will abuse notation slightly
by identifying A with the spanning subgraph of G having edge set A. This yields
notation like NA(v), referring to the neighborhood of a vertex v in the spanning
subgraph of G with edge set A.

The relationship between τ1(G) and τB(G) has been studied before. Erdős
[5] asked which graphs G satisfy τ1(G) = τB(G). The question was pursued by
Bondy, Shen, Thomassé and Thomassen [3], who proved that τ1(G) = τB(G) when
δ(G) ≥ 0.85 |V (G)|, and later by Balogh, Keevash, and Sudakov [1], who proved
that τ1(G) = τB(G) when δ(G) ≥ 0.79 |V (G)|.

Erdős, Faudree, Pach, and Spencer [6] studied the problem of finding a largest
bipartite subgraph of a triangle-free graph, using the observation that if uv is an
edge of a triangle-free graph, then G[N(u)∪N(v)] is an induced bipartite subgraph
of G. Here, we use a similar observation:

Lemma 2.1. For any graph G, any triangle-independent set A ⊆ E(G), and any

edge uv ∈ E(G),
dA(u) + dA(v) ≤ b(G).

Proof. Since A is triangle-independent, the sets NA(u) and NA(v) are independent
and disjoint. Hence G[NA(u)∪NA(v)] is bipartite with dA(u)+ dA(v) vertices. �

Lemma 2.2. For any graph G,

α1(G) ≤
nb(G)

4.

Proof. Let A be any triangle-independent subset of E(G). Applying Lemma 2.1 to
all edges in A and summing together the resulting inequalities gives

∑

u∈V (G)

dA(u)
2 =

∑

uv∈A

[dA(u) + dA(v)] ≤ |A| b(G).

By the Cauchy–Schwarz Inequality, we have

∑

uv∈A

dA(u)
2 ≥

4 |A|
2

n.
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The desired inequality follows. �

Lemma 2.3. For any graph G,

τB(G) ≤
n2

4
−

b(G)2

4.

Proof. This is essentially the δ = 0 case of Proposition 2.5 of [6]. We sketch a
probabilistic proof here. Let B be the vertex set of a largest bipartite induced
subgraph of G. If we randomly place the vertices of V (G) \B into the partite sets
of B and delete all edges within the partite sets, the expected number of deleted
edges is 1

2 |E(G) \ E(G[B])|; hence G can be made bipartite by deleting at most
this many edges. Thus,

τB(G) ≤
1

2
|E(G) \ E(G[B])| ≤

1

2

[(

n

2

)

−

(

b(G)

2

)]

≤
n2

4
−

b(G)2

4,

where the second inequality uses the fact that for any vertex set T ⊆ V (G), there

are at most
(

n
2

)

−
(

|T |
2

)

edges in E(G) \ E(G[T ]). �

Corollary 2.4. For any graph G,

α1(G) + τ1(G) ≤ α1(G) + τB(G) ≤
5n2

16.

Proof. From Lemma 2.2 and Corollary 2.3 we immediately have

α1(G) + τB(G) ≤
n2

4
+

nb(G)

4
−

b(G)2

4.

Since the product x(n− x) is maximized when x = n/2, this implies

α1(G) + τB(G) ≤
5n2

16,

as desired. �

While the parameter τB(G) has been extensively studied, the sum α1(G)+τB(G)
has not, to our knowledge, been previously studied. We have not found any graph

G with α1(G) + τB(G) > |V (G)|
2
/4, so we close with the following conjecture,

which strengthens Conjecture 1.1.

Conjecture 2.5. For every n-vertex graph G, α1(G) + τB(G) ≤ n2/4.

Computer search suggests that Conjecture 2.5 is true for all graphs on at most
8 vertices.

3. Bounding α1(G)

In this section, we will obtain the bound α1(G) ≤ n2/2−m, where m = |E(G)|.
We first need one quick lemma.

Lemma 3.1. Let G be an n-vertex graph, and let A ⊆ E(G) be triangle-independent.
For every edge uv ∈ A, we have dA(u) ≤ n− dG(v).

Proof. The set A cannot contain any edge uw where w ∈ NG(v), since then A
would contain two edges of the triangle uvw. Hence NA(u) ⊆ V (G) \NG(w). �

The join of the graphs G1, . . . , Gt, written G1 ∨ · · · ∨Gt, is the graph obtained
from the disjoint union G1 + · · · + Gt by adding all edges between vertices from
different Gi.
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Theorem 3.2. For an n-vertex graph G with m edges,

(1) α1(G) ≤
n2

2
−m.

Equality holds if and only if there exist r1, . . . , rt ≥ 1 such that G ∼= Kr1,r1 ∨ · · · ∨
Krt,rt .

Proof. Let A ⊆ E(G) be triangle-independent, and let M be a maximal match-
ing in A. We study the degree sum

∑

v∈V (G) dA(v) by splitting it into the sum
∑

v∈V (M) dA(v) +
∑

v/∈V (M) dA(v).

For each v covered by M , let v′ be its mate in M . Applying Lemma 3.1 to both
endpoints of each edge in M , we obtain the bound

∑

v∈V (M)

dA(v) ≤
∑

v∈V (M)

[n− dG(v
′)] =

∑

v∈V (M)

[n− dG(v)].

To bound
∑

v/∈V (M) dA(v), we first observe that the vertices not covered by M

form an independent set in A, since any edge joining such vertices could be added
to obtain a larger matching.

Now let v be any vertex not covered by M . For each edge ww′ ∈ M , if vw ∈ A
then vw′ /∈ E(G), since otherwise A contains two edges of the triangle vww′. Hence
dA(v) ≤ n − 1 − dG(v), since each A-edge vw is witnessed by a non-G-edge vw′

where w′ 6= v. Summing this inequality over all uncovered v yields

(2)
∑

v/∈V (M)

dA(v) ≤
∑

v/∈V (M)

[n− 1− dG(v)] ≤
∑

v/∈V (M)

[n− dG(v)].

Combining this with the bound on
∑

v∈V (M) dA(V ) and applying the degree-sum

formula for G yields
∑

v∈V (G)

dA(v) ≤
∑

v∈V (G)

[n− dG(v)] = n2 − 2m.

Applying the degree-sum formula for A completes the proof of the first claim.

Now we characterize the graphs for which equality holds. First we argue that

if G ∼= Kr1,r1 ∨ · · · ∨Krt,rt , then α1(G) ≥ n2

2 −m. Let Vi be the subset of V (G)
containing the vertices of the ith graph in this join, and let A = E(G[V1]) ∪ · · · ∪
E(G[Vt]). The set A is triangle-independent: if uvw is a triangle in G with uv ∈ A,
then uv ∈ E(G[Vi]) for some i, so u and v have no common neighbors in G[Vi], so
that uw ∈ A implies vw /∈ E(G) and vice versa. Thus,

α1(G) ≥ |A| =

t
∑

i=1

(ri)
2 =

t
∑

i=1

(

ri + 2

(

ri
2

))

=
n

2
+ 2

∑

(

ri
2

)

=
n2

2
−m.

Next we show that these are the only graphs for which equality holds. Let A be a
triangle-independent subset of G with |A| = n2/2−m. Since equality holds in (1),
equality must also hold in (2) for every maximal matching M ⊆ A. This is only
possible if the sum

∑

v/∈V (M)[n− 1−dG(v)] is empty. Thus, all maximal matchings

in A are perfect matchings.
Let P4 denote the path on four vertices. We claim that if A contains an induced

subgraph isomorphic to P4, then A contains a nonperfect maximal matching. Let
v1, . . . , v4 be the vertices of an induced copy of P4 in A, written in order, and let M
be any maximal matching containing the edges v1v2 and v3v4; we may assume that
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M is a perfect matching. Now (M \ {v1v2, v3v4})∪{v2v3} is a nonperfect maximal
matching, since v1v4 /∈ A.

Thus, if equality holds in (1), then A is a triangle-free graph with a perfect
matching and no induced P4. This implies that every component of A is a balanced
complete bipartite graph.

Next we claim that if u and v are vertices in different components of A, then
uv ∈ E(G). Suppose uv /∈ E(G), and let G′ = G + uv. Now A still contains
at most one edge from any triangle of G′: if not, then A contains two edges of
uvz, for some z ∈ V (G′). Since uv /∈ A, this implies that uz ∈ A and vz ∈ A,
contradicting the hypothesis that u and v are in different components of A. It
follows that |A| ≤ n2/2 − |E(G′)| < n2/2 −m, contradicting the assumption that
|A| = n2/2−m.

We have shown that the vertices of G can be covered by vertex-disjoint complete
bipartite graphs, and that if u and v are covered by different graphs, then uv ∈
E(G). This implies that G ∼= Kr1,r1 ∨ · · · ∨Krt,rt . �
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7. Paul Erdős, Tibor Gallai, and Zsolt Tuza, Covering and independence in triangle structures,
Discrete Math. 150 (1996), no. 1-3, 89–101, Selected papers in honour of Paul Erdős on the
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