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Abstract

Let G be a planar triangle-free graph and let C be a cycle in G of
length at most 8. We characterize all situations where a 3-coloring of
C does not extend to a proper 3-coloring of the whole graph.

Graphs in this paper may have loops or parallel edges. A (proper) k-
coloring of a graph G = (V,E) is a mapping ϕ : V → {1, . . . , k} such that
ϕ(u) 6= ϕ(v) whenever uv is an edge of G. A graph G is k-colorable if there
exists a k-coloring of G.

Deciding whether a graph is k-colorable is NP-complete [14] for every
k ≥ 3. The situation is somewhat different for planar graphs, which are
4-colorable by the well-known Four Color Theorem [4, 5, 18]. However, 3-
colorability of planar graphs is NP-complete [6], which motivates study of
additional assumptions guaranteeing 3-colorability. For instance, Grötzsch
theorem [16] states that every triangle-free planar graph is 3-colorable, in-
spiring many related results.

Gimbel and Thomassen [15] proved that a triangle-free projective-planar
graph is 3-colorable unless it contains a non-bipartite quadrangulation. We
say that a graph G is k-critical if it is not (k− 1)-colorable but every proper
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subgraph of G is (k − 1)-colorable; thus, the previous result could be re-
stated as the claim that every 4-critical triangle-free projective-planar graph
is a non-bipartite quadrangulation. Critical graphs and study of their prop-
erties give important tools for both theory and algorithms for graph coloring.
For example, many coloring algorithms (especially for embedded graphs) are
based on detection of particular critical subgraphs.

Let us give a quick overview of results regarding embedded critical graphs.
While there are infinitely many 5-critical graphs embeddable in any fixed
surface except for the sphere, Thomassen [20] proved that for every g ≥ 0
and k ≥ 6, there are only finitely many k-critical graphs of Euler genus g.
This result was later improved by Postle and Thomas [17] by showing that
such 6-critical graphs have size O(g). For graphs of girth at least five, there
are only finitely many k-critical graphs of Euler genus g for every g ≥ 0 and
k ≥ 4, as proved by Thomassen [21]; the bound on the size of such graphs
was later improved to O(g) by Dvořák et al. [10]. For triangle-free graphs,
there are only finitely many k-critical graphs of Euler genus g for every g ≥ 0
and k ≥ 5. There are infinitely many triangle-free 4-critical graphs of genus
g for every g ≥ 1, however their structure is restricted as shown by Dvořák
et al. [11]; in particular, one can design a linear-time algorithm to decide
3-colorability of triangle-free graphs of bounded genus [12].

A problem that commonly arises in study of critical graphs is as follows.
Suppose that F is a k-critical graph and C is a (usually small) subgraph
of F whose removal disconnects F . What can one say about the arising
components? This motivates the following definition. Let G be a graph and
C its (not necessarily induced) proper subgraph. We say that G is C-critical
for k-coloring if for every proper subgraph H ⊂ G such that C ⊆ H, there
exists a k-coloring of C that extends to a k-coloring of H, but not to a
k-coloring of G.

Notice that (k + 1)-critical graphs are exactly C-critical graphs for k-
coloring with C = ∅. Furthermore, it is easy to see that if F is a (k + 1)-
critical graph and F = G∪G′, where C = G∩G′, then either G = C or G is
C-critical for k-coloring. A variation on this claim that is often useful when
dealing with embedded graphs is as follows.

Lemma 1 (Dvořák et al. [9]). Let G be a plane graph with outer face K. Let
C be a cycle in G that does not bound a face, and let H be the subgraph of
G drawn in the closed disk bounded by C. If G is K-critical for k-coloring,
then H is C-critical for k-coloring.
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Another way to view C-critical graphs is the precoloring extension per-
spective. Suppose that we are given a coloring ψ of a proper subgraph C of
G, does there exist a coloring of G that matches ψ on C? To answer this
question, it suffices to consider the colorings of a maximal C-critical subgraph
of G.

As suggested by Lemma 1, an important case of the precoloring extension
problem is the one where all precolored vertices are incident with one face
of a plane graph (without loss of generality the outer one). From now on,
we only deal with 3-colorings in this paper, and thus we usually omit the
qualifier “for 3-coloring” when speaking about C-critical graphs.

Plane critical graphs of girth 5 with a precolored face of length at most 11
were enumerated by Walls [23] and independently by Thomassen [21], who
also gives some necessary conditions for plane graphs of girth 5 with a precol-
ored face of length 12. The exact enumeration of plane graphs of girth 5 with
a precolored face of length 12 appears in Dvořák and Kawarabayashi [8]. The
number of critical graphs grows exponentially with the length of the precol-
ored face, and enumerating all the plane critical graphs becomes increasingly
difficult. Dvořák and Lidický [13] implemented an algorithm to generate such
plane graphs of girth 5 based on the results of Dvořák and Kawarabayashi [8],
and used the computer to enumerate the plane critical graphs of girth 5 with
the outer face of length at most 16.

In this paper, we consider the same question in the setting of triangle-
free graphs. Aksenov [3] showed that any precoloring of a face of length at
most 5 in a plane triangle-free graph extends to the whole graph. Gimbel
and Thomassen [15] characterized plane critical graphs of girth 4 with a
precolored face of length 6. The faces of a plane graph distinct from the
outer one are called internal.

Theorem 2 (Gimbel and Thomassen [15]). Let G be a plane triangle-free
graph with outer face bounded by a cycle C = c1c2 . . . of length at most 6.
The graph G is C-critical if and only if C is a 6-cycle, all internal faces of G
have length exactly four and G contains no separating 4-cycles. Furthermore,
if ϕ is a 3-coloring of G[V (C)] that does not extend to a 3-coloring of G, then
ϕ(c1) = ϕ(c4), ϕ(c2) = ϕ(c5) and ϕ(c3) = ϕ(c6).

The previous result was independently obtained by Aksenov, Borodin,
and Glebov [1]. The characterization was further extended by Aksenov,
Borodin, and Glebov [2] to a precolored face of length 7, see Corollary 10
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below. In this paper, we give a simpler proof of this result by exploiting
properties of nowhere-zero flows.

Furthermore, as the main result, we extend the characterization to the
case of a precolored face of length 8. For a plane graph G, let S(G) denote
the multiset of lengths of the internal (≥5)-faces of G.

Theorem 3. Let G be a connected plane triangle-free graph with outer face
bounded by a cycle C of length 8. The graph G is C-critical if and only if
G contains no separating cycles of length at most five, the interior of every
non-facial 6-cycle contains only faces of length four and one of the following
propositions is satisfied (see Figure 1 for an illustration).

(a) S(G) = ∅, or

(b) S(G) = {6} and the 6-face of G intersects C in a path of length at least
one, or

(c) S(G) = {5, 5} and each of the 5-faces of G intersects C in a path of
length at least two, or

(d) S(G) = {5, 5} and the vertices of C and the 5-faces f1 and f2 of G
can be labelled in clockwise order along their boundaries so that C =
c1c2 . . . c8, f1 = c1v1zv2v3 and f2 = zw1c5w2w3 (where w1 can be equal
to v1, v1 can be equal to c2, etc.)

We describe a connection between nowhere-zero flows and 3-colorings in
Section 1. We follow with Section 2 constraining lengths of faces in critical
graphs. Section 3 is devoted to the special case where the precolored face has
length k, one other face has length k− 2 and the rest are 4-faces. Finally, in
Section 4 we give a proof of Theorem 3.

1 3-colorings and nowhere-zero flows

Let H be a connected plane graph without loops and let H? be the dual
of H. Let ϕ be a 3-coloring ϕ of H by colors {1, 2, 3}. Let us define an
orientation of H? as follows. Let e ∈ E(H) be an edge incident with a vertex
u ∈ V (H) and let f and h be the faces incident with e, appearing as f, e, h in
the clockwise order around u in the drawing of H. Let v be the other vertex
of G incident with e and let e? be the edge of H? corresponding to e. The
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Figure 1: Graph described by Theorem 3 and examples of 3-colorings of C
that do not extend.
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edge e? is oriented towards h if and only if ϕ(u)− ϕ(v) ∈ {1,−2}. Suppose
that h is the outer face of H and h is bounded by a cycle; if e? is oriented
towards h, then we say that e is a sink edge, otherwise e is a source edge.
Note that whether an edge is source or sink depends only on the restriction
of ϕ to the boundary of the outer face.

Since ϕ is a proper coloring, every edge of H? has an orientation. As
shown by Tutte [22], this orientation of H? defines a nowhere-zero Z3-flow
that is, for each f ∈ V (H?), the in-degree and the out-degree of f differ by
a multiple of 3; and conversely, each nowhere-zero Z3-flow in H? defines a
3-coloring of H, uniquely up to a rotation of colors. See e.g. [7] for more
details.

Consider a face f of H, and let δ(f) be the difference between its in-
degree and out-degree when considered as a vertex of H?. Clearly, δ(f) and
|f | have the same parity and |δ(f)| ≤ |f |. Since δ(f) is a multiple of 3, if f
is a 4-face, then δ(f) = 0. Similarly, if |f | = 5 or |f | = 7, then |δ(f)| = 3,
and if |f | = 6 or |f | = 8, then |δ(f)| ∈ {0, 6}.

Let G be a connected plane triangle-free graph with the outer face C
bounded by a cycle. We say that a function q assigning an integer to each
internal face of G is a layout if each internal face f satisfies |q(f)| ≤ |f |,
q(f) is divisible by 3 and has the same parity as |f |. In particular, q(f) = 0
for every 4-face, and thus it suffices to specify the values of q for (≥5)-faces
of G. Consider a proper 3-coloring ψ of C, let ns be the number of source
edges and nt the number of sink edges of C with respect to ψ and let m
be the sum of the values of q over all internal faces of G. We say that q is
ψ-balanced if ns + m = nt. We define a graph Gq,ψ as follows. The vertex
set of Gq,ψ consists of the internal faces of G and of two new vertices s and
t. The adjacencies between vertices of V (Gq,ψ) \ {s, t} are the same as in the
dual of G. For each internal face f with q(f) > 0, s is joined to f by q(f)
parallel edges. For each internal face f with q(f) < 0, t is joined to f by
−q(f) parallel edges. For each edge e ∈ E(C) incident with an internal face
f , f is joined to t if e is a sink edge with respect to ψ, and f is joined to
s otherwise. See Figure 2 for an illustration. We say that s and t are the
terminals of Gq,ψ and we write c(q, ψ) for the degree of s in Gq,ψ. Note that
q is ψ-balanced if and only if s and t have the same degree.

Lemma 4. Let G be a connected plane triangle-free graph with the outer face
C bounded by a cycle and let ψ be a 3-coloring of C. The coloring ψ extends
to a 3-coloring of G if and only if there exists a ψ-balanced layout q such that

6



1 2

12

2

3

1 3

1

0
-3

0

(a)

t

s

(b)

t

s

(c)

Figure 2: (a): A 3-coloring ψ of a graph G with the corresponding orientation
of edges of G? and the balanced layout q. (b): the corresponding graph Gq,ψ.
(c) Gq,ψ together with G.
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the terminals of Gq,ψ are not separated by an edge-cut smaller than c(q, ψ).

Proof. Suppose first that ψ extends to a 3-coloring ϕ of G. Let us orient G?

according to ϕ as described at the beginning of the section. For each internal
face f of G, let q(f) be the difference between the in-degree and the out-
degree of f . Clearly, q is a layout. Let s and t be the terminals of Gq,ψ, let us
orient the edges of Gq,ψ incident with s away from s and the edges incident
with t towards t, and orient all the other edges of Gq,ψ in the same way as
in the orientation of G?. Note that for each vertex f ∈ V (Gq,ψ) \ {s, t}, the
in-degree of f in Gq,ψ is equal to its out-degree. Consequently, s and t have
the same degree and the orientation of edges of Gq,ψ defines a flow of size
c(q, ψ) from s to t. Therefore, every edge-cut between s and t in Gq,ψ has
capacity at least c(q, ψ).

Let us now conversely assume that there exists a ψ-balanced layout q such
that the terminals of Gq,ψ are not separated by an edge-cut smaller than
c(q, ψ). By Menger’s theorem, Gq,ψ contains c(q, ψ) pairwise-edge disjoint
paths P1, . . . , Pc(q,ψ) from s to t. Let G′ = Gq,ψ − E(P1 ∪ . . . ∪ Pc(q,ψ)).
Since q(f) has the same parity as |f | for every internal face f of G, each
vertex of G′ has even degree, and thus G′ is a union of pairwise edge-disjoint
cycles. For each such cycle, orient all its edges in one (arbitrary) direction.
For each path Pi (1 ≤ i ≤ c(q, ψ)), orient its edges towards t. This defines
an orientation of Gq,ψ, which gives an orientation of G? corresponding to a
nowhere-zero Z3-flow consistent with the coloring ψ. By the correspondence
between flows and colorings, this defines a 3-coloring of G that extends ψ.

Let us remark that for plane triangle-free graphs G such that∑
f internal face of G

(|f | − 4)

is bounded by a constant c, Lemma 4 can be used to decide in polynomial
time whether a given precoloring ψ of the outer face extends to a 3-coloring
of G: try all possible ψ-balanced layouts q for G (whose number is bounded
by a function of c) and for each of them, decide whether the terminals of
Gq,ψ are separated by an edge-cut of size less than c(q, ψ) using a maximum
flow algorithm.

In order to apply Lemma 4 efficiently, we describe the structure of small
edge-cuts separating the terminals in Gq,ψ.
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Figure 3: Possibilites in Lemma 5.

Lemma 5. Let G be a connected plane triangle-free graph with the outer face
C bounded by a cycle and let ψ be a 3-coloring of C that does not extend to a
3-coloring of G. If q is a ψ-balanced layout in G, then there exists a subgraph
K0 ⊆ G such that either

(a) K0 is a path with both ends in C and no internal vertex in C, and if P
is a path in C joining the endvertices of K0, ns is the number of source
edges of P , nt is the number of sink edges of P and m is the sum of the
values of q over all faces of G drawn in the open disk bounded by the
cycle P +K0, then |ns+m−nt| > |K0|. In particular, |P |+ |m| > |K0|.
Or,

(b) K0 is a cycle with at most one vertex in C, and if m is the sum of the
values of q over all faces of G drawn in the open disk bounded by K0,
then |m| > |K0|.

See Figure 3 for an illustration.

Proof. By Lemma 4, there exists an edge-cut in Gq,ψ smaller than c(q, ψ) and
separating the terminals. Let us choose such an edge-cut K so that K has as
few edges not incident with the terminals as possible, and subject to that |K|
is minimal. Let s and t be the terminals of Gq,ψ and let S and T be the sets
of edges of Gq,ψ incident with s and t, respectively. Let K0 = K \ (S ∪ T );
note that since |K| < c(q, ψ) and Gq,ψ−{s, t} is connected, the set K0 is not
empty. Therefore, the minimality of K0 implies that Gq,ψ − {s, t} −K has
at least two components.

Consider a connected component A of Gq,ψ − {s, t} − K. Let Y be the
set of edges of Gq,ψ connecting a vertex of A with a vertex of V (Gq,ψ)\A, let
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Y0 = Y ∩K0, Ys = Y ∩S and Yt = Y ∩T . As Gq,ψ−{s, t} is connected, the set
Y0 is not empty. By the minimality of K, either Ys is non-empty, Ys ∩K = ∅
and Yt ⊆ K, or Yt is non-empty, Yt ∩K = ∅ and Ys ⊆ K. In the former case
we say that A is an s-component, in the latter case a t-component.

By symmetry, we can assume that A is a t-component. Suppose that
|Yt| ≤ |Ys| + |Y0|. By the minimality of K0, each edge of Y0 is incident with
an s-component, and thus K ′ = (K \ (Ys∪Y0))∪Yt is an edge-cut separating
s from t of size at most |K|. Furthermore, since Y0 is nonempty, K ′ would
contradict the assumption that K was chosen with K0 as small as possible.

It follows that

(1) each t-component satisfies |Yt| > |Ys| + |Y0|, and each s-component
satisfies |Ys| > |Yt|+ |Y0|.

Note that K ′′ = Ys ∪ Y0 ∪ (T \ Yt) is an edge-cut separating s from t of
size |Ys| + |Y0| + |T | − |Yt| < |T | = c(q, ψ). By the minimality of K0, we
have Y0 = K0. As this observation applies to every connected component
of Gq,ψ − {s, t} − K, we conclude that Gq,ψ − {s, t} − K has exactly two
connected components (an s-component and a t-component).

We can interpret K0 as a subgraph of G by duality. Thus, the conclusion
of the previous paragraph is equivalent to the claim that the subgraph of G
consisting of C and K0 has exactly two internal faces. It follows that the
edges of K0 form either a path joining two distinct vertices of C, or a cycle
intersecting C in at most one vertex.

In the former case, let P be a path in C joining the endvertices of C, and
let ns, nt and m be defined as in the statement (a) of the lemma. Let A be
the component of Gq,ψ−{s, t}−K whose vertices correspond to the faces of G
drawn in the open disk bounded by P+K0. Note that |Ys|−|Yt| = ns−nt+m.
By (1), we have |ns − nt +m| > |K0|.

In the latter case, Gq,ψ−{s, t}−K has a component A not incident with
any edges of C; its vertices correspond to the faces of G drawn in the open
disk bounded by K0. Let Y0, Ys and Yt be defined as before, and note that
m = |Ys| − |Yt|. By (1), we have |m| = ||Ys| − |Yt|| > |Y0| = |K0|.

2 Faces in critical graphs

Note that Lemma 4 is most useful for graphs with almost all faces of length
4, as then there are only a few choices for the layout. Recall that for a
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plane graph G, we use S(G) to denote the multiset of lengths of the internal
(≥ 5)-faces of G. Let Gg,k denote the set of plane graphs of girth at least g
and with outer face formed by a cycle C of length k that are C-critical. Let
Sg,k = {S(G) : G ∈ Gg,k}.

Note that S5,k is finite for every k by Thomassen [21]. However, we only
need to know the sets S5,k for k ≤ 8.

Theorem 6 (Thomassen [19]). Let G be a plane graph of girth at least five
with outer face bounded by a cycle C of length at most 8. The graph G is
C-critical if and only if G is an 8-cycle with a chord.

This implies that S5,k = ∅ for k ≤ 7 and that S5,8 = {{5, 5}}. Dvořák et
al. [11] proved that S4,k is finite for every k (actually, the sum of each multiset
in S4,k is bounded by a linear function of k). Furthermore, they proved that
{k−2} belongs to S4,k and every other element of S4,k has maximum at most
k − 3.

Let S1 and S2 be multisets of integers. We say that S2 is a one-step
refinement of S1 if there exist k ∈ S1 and a set Z ∈ S4,k ∪ S4,k+2 such that
S2 = (S1\{k})∪Z. We say that S2 is a refinement of S1 if it can be obtained
from S2 by a (possibly empty) sequence of one-step refinements.

Lemma 7 (Dvořák et al. [11]). For every k ≥ 7, each element of S4,k other
than {k − 2} is a refinement of an element of S4,k−2 ∪ S5,k.

In particular, together with Theorems 2 and 6 this implies that S4,k = ∅
for k ≤ 5, S4,6 = {∅}, S4,7 ⊆ {{5}} and S4,8 ⊆ {∅, {5, 5}, {6}}.

3 Quadrangulations and graphs with a (k−2)-
face

As a first application of Lemma 4, let us consider quadrangulations.

Theorem 8. Let G be a connected triangle-free plane graph with outer face
bounded by a cycle C of length k ≥ 6. Suppose that all internal faces of
G have length 4. The graph G is C-critical if and only if G contains no
separating 4-cycles.

Proof. If G is C-critical, then it does not contain separating 4-cycles by
Lemma 1 and Theorem 2.
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Suppose now conversely that G does not contain separating 4-cycles. Let
G0 be a proper subgraph of G containing C. Since G does not contain
separating 4-cycles, it follows that G0 has a face f of length at least 6. Let
G1 ⊇ G0 be the subgraph of G consisting of all vertices and edges not drawn
in the interior of f . As G is bipartite, it does not contain separating (≤ 5)-
cycles, and thus the dual G?

1 of G1 does not contain an edge-cut of size at most
5 separating C from f . Therefore, there exist 6 pairwise edge-disjoint paths
P1, . . . , P6 from f to C in G?

1. Note that all vertices of G?
1−E(P1∪ . . .∪P6)

have even degree, and thus G?
1−E(P1∪ . . .∪P6) is a union of pairwise edge-

disjoint cycles. We orient the edges of each of the cycles in one (arbitrary)
direction and direct the edges of P1, . . . , P6 towards C. This orientation of
G?

1 corresponds to a nowhere-zero Z3-flow, giving a 3-coloring ϕ of G1. Let ψ
be the restriction of ϕ to C, and observe that C contains k/2 + 3 sink edges
and k/2− 3 source edges with respect to this coloring.

Note that G has only one layout (assigning 0 to every internal face),
and this layout is not ψ-balanced. By Lemma 4, ψ does not extend to a
3-coloring of G. On the other hand, ψ extends to a 3-coloring of G0, since
G0 is a subgraph of G1. We conclude that for every proper subgraph of G
containing C, there exists a precoloring of C that extends to this subgraph
but not to G, and thus G is C-critical.

Next, we deal with the graphs with an internal face of length k − 2. Let
r(k) = 0 if k ≡ 0 (mod 3), r(k) = 2 if k ≡ 1 (mod 3) and r(k) = 1 if k ≡ 2
(mod 3).

Theorem 9. Let G be a connected triangle-free plane graph with outer face
bounded by a cycle C of length k ≥ 7. Suppose that f is an internal face of
G of length k − 2 and that all other internal faces of G have length 4. The
graph G is C-critical if and only if

(a) f ∩ C is a path of length at least r(k) (possibly empty if r(k) = 0),

(b) G contains no separating 4-cycles, and

(c) for every (≤k−1)-cycle K 6= f in G, the interior of K does not contain
f .

Furthermore, in a graph satisfying these conditions, a precoloring ψ of C
extends to a 3-coloring of G if and only if E(C) \ E(f) contains both a
source edge and a sink edge with respect to ψ.

12



Proof. If G is C-critical, then it does not contain separating 4-cycles by
Lemma 1 and Theorem 2. Furthermore, by Lemma 7, if m ≤ k − 1, then
no element of S4,m contains k − 2, and thus Lemma 1 implies that if G is
C-critical, then it satisfies (c). Assume from now on that G satisfies (b) and
(c).

Suppose that ψ is a 3-coloring of C that does not extend to a 3-coloring
of G. Let d be the difference between the number of sink and source edges of
C with respect to ψ. If |d| > k− 2, then since k and d have the same parity,
it follows that |d| = k. In this case k ≡ 0 (mod 3) and r(k) = 0, and thus
(a) is trivially true. Furthermore, either all edges of C are source or all of
them are sink.

If d ≤ k − 2, then let q be the layout for G such that q(f) = d. Note
that q is ψ-balanced. Let K0 be the subgraph of G obtained by Lemma 5.
As G satisfies (c), K0 is not a cycle. Therefore, K0 is a path joining two
distinct vertices of C. Let P be the subpath of C joining the endvertices of
K0 such that the open disk bounded by P +K0 does not contain f , let ns be
the number of source edges in P and nt the number of sink edges in P . By
Lemma 5, we have |P | > |K0|. Let R be the path C − P and consider the
cycle Z = R+K0. Note that |Z| = k + |K0| − |P | < k. By (c), we conclude
that Z is the boundary of f . As |f | = k − 2, it follows that |K0| = |P | − 2,
and since ns +nt = |P | and |ns−nt| > |K0|, it follows that ns = 0 or nt = 0,
i.e., either all edges of E(C) \ E(f) are source or all of them are sink.

Let ms be the number of source edges of C and mt the number of sink
edges of C. Note that mt−ms = d ≡ 0 (mod 3), and thus ms+mt ≡ 2ms ≡
2mt (mod 3). It follows that ms ≡ mt ≡ r(k) (mod 3). Since R = f ∩ C
contains either all source edges or all sink edges of C, it follows that f ∩ C
is a path of length at least r(k).

Therefore, if G is C-critical, then it satisfies (a). Furthermore, if G is a
graph satisfying (b) and (c), then every precoloring of C such that E(C) \
E(f) contains both a source edge and a sink edge extends to a 3-coloring of
G.

Suppose now that G satisfies (a), (b) and (c). Let ψ be a 3-coloring of C
such that all edges of E(C) \E(f) are source (such a coloring exists by (a)).
Let q be the unique ψ-balanced layout for G and let K consist of E(f)\E(C)
and of all edges of Gq,ψ joining f with s. Note that |E(C) \E(f)| = |E(f) \
E(C)|+ 2, and thus K is an edge-cut separating the terminals in Gq,ψ of size
c(q, ψ)− 2. By Lemma 4, ψ does not extend to a 3-coloring of G.

It follows that G contains a C-critical subgraph G0. By (c), G0 has an
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Figure 4: Critical graphs with a precolored 7-face.

internal face of length at least k − 2. By Lemma 7, the only element of
S4,k whose maximum is at least k − 2 is {k − 2}, and thus all other internal
faces of G0 have length four. By (b), it follows that G = G0, and thus G is
C-critical.

Since S4,7 ⊆ {{5}}, Theorem 9 fully characterizes plane triangle-free
graphs critical with respect to a precolored 7-face. The following corollary
additionally discusses the three possible cases of the intersection of the 5-face
with the 7-face in such a graph.

Corollary 10. Let G be a plane triangle-free graph with outer face bounded
by a cycle C = c1 . . . c7 of length 7. The graph G is C-critical and ψ is a
3-coloring of C that does not extend to a 3-coloring of G if and only if G
contains no separating cycles of length at most five and one of the follow-
ing propositions is satisfied up to relabelling of vertices (see Figure 4 for an
illustration).

(a) The graph G consists of C and the edge c1c5, and ψ(c1) = ψ(c5).

(b) The graph G contains a vertex v adjacent to c1 and c4, the cycle c1c2c3c4v
bounds a 5-face and every face drawn inside the 6-cycle vc4c5c6c7c1 has
length four; furthermore, ψ(c4) = ψ(c7) and ψ(c5) = ψ(c1).

(c) The graph G contains a path c1uvc3 with u, v 6∈ V (C), the cycle c1c2c3vu
bounds a 5-face and every face drawn inside the 8-cycle uvc3c4c5c6c7c1
has length four; furthermore, ψ(c3) = ψ(c6), ψ(c2) = ψ(c4) = ψ(c7)
and ψ(c1) = ψ(c5).
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4 Graphs with precolored 8-face

Finally, we consider the plane triangle-free graphs critical with respect to a
precolored face of length 8.

Proof of Theorem 3. Suppose that G is C-critical. By Lemma 1 and Theo-
rem 2, G does not contain any separating cycles of length at most five and
the interior of every non-facial 6-cycle contains only faces of length four. By
Lemma 7, we have S(G) = ∅ or S(G) = {6} or S(G) = {5, 5}. If S(G) = ∅,
then G satisfies (a). If S(G) = {6}, then G satisfies (b) by Theorem 9.
Therefore, suppose that S(G) = {5, 5}, and let f1 and f2 be the 5-faces of G.

Let ψ be a 3-coloring of C by colors {1, 2, 3} that does not extend to
a 3-coloring of G. By symmetry, we can assume that C contains at least
as many source edges as sink ones. It follows that C contains either 4 or
7 source edges. If C has 7 source edges, then let q be the layout for G
such that q(f1) = q(f2) = −3. Note that q is ψ-balanced, and consider the
subgraph K0 of G obtained by Lemma 5. As |q(f1) + q(f2)| = 6 and neither
f1 nor f2 are contained inside a separating (≤6)-cycle, it follows that K0 is a
path joining two distinct vertices of C. Let P be a subpath of C joining the
endpoints of K0 such that the open disk ∆ bounded by P + K0 contains at
most one of f1 and f2. Let ns be the number of source edges in P and nt the
number of sink edges in P . If ∆ does not contain any 5-face, then |P | > |K0|
by Lemma 5. Since all faces in ∆ have length 4, it follows that |P | + |K0|
is even, and thus |P | ≥ |K0| + 2. If ∆ contains a 5-face (say f1), then since
C has 7 source edges, we can by symmetry between f1 and f2 assume that
ns ≥ 4, and thus |P |−3 ≥ ns−nt−3 = |ns−nt+q(f1)| > |K0| by Lemma 5.
In both cases, we have |P | ≥ |K0|+ 2. Let R = C −P and note that R+K0

is a cycle of length at most |C| − |P |+ |K0| ≤ |C| − 2 = 6. However, by the
choice of P , the open disk bounded by R+K0 contains a 5-face, contrary to
the assumptions of Theorem 3.

Therefore, C has 4 source edges, and G has two ψ-balanced layouts q1 and
q2 such that qi(fi) = 3 and qi(f3−i) = −3 for i ∈ {1, 2}. Let K1 and K2 be the
subgraphs of G obtained by Lemma 5 applied to q1 and q2, respectively. As
|qi(fj)| = 3 and qi(f1) + qi(f2) = 0 for i, j ∈ {1, 2}, the case (b) of Lemma 5
cannot apply, and thus both K1 and K2 are paths. Let v1 and w1 be the
endpoints of K1 and let v2 and w2 be the endpoints of K2.

Suppose that there exists a path P ⊂ C joining vi with wi for some
i ∈ {1, 2} such that all faces drawn in the open disk bounded by P + Ki
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Figure 5: Possible cuts in G.

have length 4. By Lemma 5, we have |P | > |Ki|, and since P +Ki has even
length, |P | ≥ |Ki|+2. We conclude that the cycle (C−P )+Ki has length at
most |C| − |P |+ |Ki| ≤ 6, and since the open disk bounded by (C −P ) +Ki

contains two 5-faces, it contradicts the assumptions of Theorem 3.
Consequently, there is no such path. For i ∈ {1, 2}, let Pi ⊂ C be the path

joining vi with wi such that the open disk ∆i bounded by Pi + Ki contains
fi. Let nsi and nti denote the number of source and sink edges, respectively,
of Pi, for i ∈ {1, 2}. By Lemma 5, we have |nsi − nti + 3| > |Ki|. Since nti ≤ 4
and |Ki| ≥ 1, we have |nsi −nti + 3| = nsi −nti + 3, and thus nsi −nti + 2 ≥ |Ki|.
As ∆i contains one 5 face and all other faces in ∆i have length 4, the cycle
Ki + Pi has odd length, and thus |Pi| and |Ki| have opposite parity. Since
|Pi| and nsi − nti have the same parity, we can improve the inequality to

(2) nsi − nti + 1 ≥ |Ki|.

Suppose first that we can choose the labels so that the order of the end-
points along C is v1, w1, v2, w2 (this is always the case if the endpoints of
K1 and K2 are not pairwise distinct). Let ψ′ be the 3-coloring of C defined
by ψ′(x) = 4 − ψ(x). The source edges with respect to ψ are sink edges
with respect to ψ′ and vice versa. Consequently, replacing ψ with ψ′ swaps
the roles of the paths K1 and K2. Therefore, by making this replacement if
necessary, we can assume that P1 and P2 are edge-disjoint, as in Figure 5(a).
For i ∈ {1, 2}, the cycle Ki + Pi has length at least five, i.e.,

(3) nsi + nti + |Ki| ≥ 5.

Summing this inequality with (2), we obtain nsi ≥ 2. However, since P1

and P2 are edge-disjoint and C has exactly 4 source edges, we have ns1 +ns2 ≤
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4. We conclude that nsi = 2 for i ∈ {1, 2} and that equality holds in (2)
and (3). In particular, Ki + Pi is a 5-cycle, and since G does not contain
separating 5-cycles, it follows that Ki + Pi = fi. Therefore, fi ∩ C = Pi is a
path of length at least nsi = 2, and G satisfies (c).

Finally, consider the case that the endpoints of K1 and K2 are pairwise
distinct and their order along C is v1, v2, w1, w2. Let α, β, γ and δ be the
subpaths of C between v1 and v2, between v2 and w1, between w1 and w2

and between w2 and v1, respectively, chosen so that the paths α, β, γ and
δ are pairwise edge-disjoint. By planarity, the paths K1 and K2 intersect.
Let Qα denote the walk between v1 and v2 such that the concatenation of α
with Qα is the boundary walk of the internal face of the graph C +K1 +K2

incident with α. Let αs and αt denote the number of source and sink edges
of α, respectively. Define Qx, xs and xt for x ∈ {β, γ, δ} analogously. By
symmetry, we can assume that f1 is contained in the open disk bounded by
α + Qα and f2 is contained in the closed disk bounded by γ + Qγ, as in
Figure 5(b). Note that P1 = α+β and P2 = β+ γ, and thus by (2), we have
αs+βs−αt−βt+1 ≥ |K1| and βs+γs−βt−γt+1 ≥ |K2|. Furthermore, α+Qα

and γ+Qγ have length at least 5, and |Qα|+|Qγ| ≤ |K1|+|K2|, implying that
αs + αt + γs + γt + |K1|+ |K2| ≥ 10. Summing these inequalities, we obtain
αs + βs + γs − βt ≥ 4. As αs + βs + γs + δs = 4, this implies that −βt ≥ δs,
and as βt and δs are nonnegative, we have βt = δs = 0. Furthermore, all the
inequalities must hold with equality, and in particular α+Qα and γ+Qγ have
length 5. As G does not contain separating 5-cycles, we have f1 = α + Qα

and f2 = γ + Qγ. Also, |Qα| + |Qγ| = |K1| + |K2|, and thus every edge of
K1∪K2 is incident with f1 or f2. We conclude that the boundaries of f1 and
f2 intersect; let z be an arbitrary common vertex of f1 and f2.

Since βt = 0 = δs = 0, all edges of β are source and all edges of δ are
sink. Let c1 be the vertex of α at distance αs from v2, and c5 the vertex
of γ at distance γs from w1. Note that the distance between c1 and c5 in
C is αs + βs + γs = 4 − δs = 4, and thus we can label the vertices of C
as c1c2 . . . c8 in order. Let W1 be the path between c1 and z in α ∪ K1, let
Z1 be the path between c1 and z in α ∪ K2, let W2 be the path between
c5 and z in γ ∪ K2 and let Z2 be the path between c5 and z in γ ∪ K1.
Note that W1 + Z1 = f1 and W2 + Z2 = f2, and thus |W1| + |Z1| = 5 and
|W2| + |Z2| = 5. As αs + βs − αt − βt + 1 = |K1| and αs + βs + γs = 4,
we have αt + |K1| + γs = 5 − βt = 5, i.e., |W1| + |Z2| = 5. Symmetrically,
|Z1| + |W2| = 5. It follows that |W1| = |W2| and |Z1| = |Z2|. As the disk
bounded by the closed walkW1+W2+c1c2c3c4c5 contains 5-faces f1 and f2, we
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have |W1|+|W2|+4 > 6. Consequently, |W1| > 1, and symmetrically |Z1| > 1.
By symmetry, we can assume that |W1| = |W2| = 2 and |Z1| = |Z2| = 3, and
we conclude that G satisfies (d).

Suppose now that G is a graph satisfying (a), (b), (c) or (d). If G satisfies
(a), then it is C-critical by Theorem 8. If G satisfies (b), then it is C-critical
by Theorem 9. Let us consider the case that G satisfies (c) or (d). If G
satisfies (c), then let ψ be a 3-coloring of C with exactly 4 source edges, two
of them incident with f1 and two of them incident with f2. If G satisfies (d),
then let ψ be a 3-coloring of C with exactly 4 source edges c1c2, c2c3, c3c4
and c4c5. Note that q1 and q2 are the only ψ-balanced layouts for G. Observe
that both Gq1,ψ and Gq2,ψ contain an edge-cut of size at most 5 separating the
terminals, while c(q1, ψ) = c(q2, ψ) = 7. By Lemma 4, ψ does not extend to
a 3-coloring of G, and thus G has a C-critical subgraph G0. By Lemma 7, we
have S(G0) ∈ {∅, {6}, {5, 5}}. As G does not contain separating (≤5)-cycles
and the interior of every 6-cycle of G contains only 4-faces, we conclude that
G = G0, and thus G is C-critical.
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