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Abstract. We collect some of our favorite proofs of Brooks’ Theorem, highlighting ad-
vantages and extensions of each. The proofs illustrate some of the major techniques in
graph coloring, such as greedy coloring, Kempe chains, hitting sets, and the Kernel Lemma.
We also discuss standard strengthenings of vertex coloring, such as list coloring, online list
coloring, and Alon–Tarsi orientations, since analogues of Brooks’ Theorem hold in each con-
text. We conclude with two conjectures along the lines of Brooks’ Theorem that are much
stronger, the Borodin–Kostochka Conjecture and Reed’s Conjecture.

Brooks’ Theorem is among the most fundamental results in graph coloring. In short, it
characterizes the (very few) connected graphs for which an obvious upper bound on the
chromatic number holds with equality. It has been proved and reproved using a wide range
of techniques, and the different proofs generalize and extend in many directions. In this
paper we share some of our favorite proofs. In addition to surveying Brooks’ Theorem, we
aim to illustrate many of the standard techniques in vertex coloring1; furthermore, we prove
versions of Brooks’ Theorem for standard strengthenings of vertex coloring, including list
coloring, online list coloring, and Alon–Tarsi orientations. We present the proofs roughly in
order of increasing complexity, but each section is self-contained and the proofs can be read
in any order. Before we state the theorem, we need a little background.

A proper coloring assigns colors, denoted by positive integers, to the vertices of a graph so
that endpoints of each edge get different colors. A graph G is k-colorable if it has a proper
coloring with at most k colors, and its chromatic number χ(G) is the minimum value k such
that G is k-colorable. If a graph G has maximum degree ∆, then χ(G) ≤ ∆ + 1, since
we can repeatedly color an uncolored vertex with the smallest color not already used on its
neighbors. Since the proof of this upper bound is so easy, it is natural to ask whether we
can strengthen it. The answer is yes, nearly always.

A clique is a subset of vertices that are pairwise adjacent. If G contains a clique Kk on k
vertices, then χ(G) ≥ k, since all clique vertices need distinct colors. Similarly, if G contains
an odd length cycle, then χ(G) ≥ 3, even when ∆ = 2. In 1941, Brooks [10] proved that
these are the only two cases in which we cannot strengthen our trivial upper bound on χ(G).
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Brooks’ Theorem. Every graph G with maximum degree ∆ has a ∆-coloring unless either
(i) G contains K∆+1 or (ii) ∆ = 2 and G contains an odd cycle.

We typically emphasize the case ∆ ≥ 3, and often write: “Every graph G satisfies χ ≤
max{3, ω,∆},” where ω is the size of the largest clique in G. This formulation follows Brooks’
original paper, and it has the benefit of saving us from considering odd cycles in every proof.

Before the proofs, we introduce our notation, which is fairly standard. The neighborhood
N(v) of a vertex v is the set of vertices adjacent to v. The degree d(v) of a vertex v is |N(v)|.
For a graph G with vertex set V (G), we often write |G| to denote |V (G)|. The clique number
ω(G) of G is the size of its largest clique. We denote the maximum and minimum degrees
of G by ∆(G) and δ(G). We write simply ω, ∆, δ, or χ when refering to the original graph
G, rather than to any subgraph. The subgraph of G induced by vertex set V1 is denoted
G[V1], and the subgraph induced by a clique is complete. To color greedily is to consider
the vertices in some order, and color each vertex v with the smallest color not yet used
on any of its neighbors. For every graph, there exists a vertex order under which greedy
coloring is optimal (given an optimal coloring, consider the vertices in order of increasing
color). However, considering each of the n! vertex orderings for an n-vertex graph is typically
impractical.

In our proofs, we often assume that a counterexample exists, and this assumption leads
us to a contradiction. A minimum counterexample G to Brooks Theorem is one minimizing
|G|. To avoid repetition later, we note the following here, which is useful in multiple proofs.
Any minimum counterexample G must satisfy χ > max{ω,∆}, and thus χ = ∆ + 1. If H is
a proper induced subgraph of G, then minimality of G gives χ(H) ≤ max{3, ω(H),∆(H)} ≤
∆. So for every vertex v, G − v is ∆-colorable; since G is not ∆-colorable, v must have a
neighbor in all ∆ color classes in any ∆-coloring of G− v. Since this is true for every vertex
v, it follows that G must be ∆-regular.

1. Greedy coloring

To motivate our first two proofs, we return to the observation that every graph satisfies
χ ≤ ∆ + 1. The idea is to color the vertices greedily in an arbitrary order. To prove χ ≤ ∆,
it suffices to order the vertices so that at the point when each vertex gets colored, it still
has an uncolored neighbor. Of course, this is impossible, since in any order the final vertex
will have no uncolored neighbors. Nonetheless, we can find an order such that every vertex
except the last still has an uncolored neighbor when it gets colored. Such an order yields a
∆-coloring of G−v for each choice of a final vertex v. Our first two proofs show two different
ways to ensure that we can extend this ∆-coloring to G.

In 1975, Lovász published a 3-page article [43] entitled “Three Short Proofs in Graph
Theory.” It included the following proof of Brooks’ Theorem by coloring greedily in a good
order. The proof needs a few notions of connectedness. A cutset is a subset V1 ⊂ V such
that G \ V1 is disconnected. If a single vertex is a cutset, then it is a cutvertex. A graph is
k-connected if every cutset has size at least k. A block is a maximal 2-connected subgraph.
The block graph of a graph G has the blocks of G as its vertices and has two blocks adjacent
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if they intersect. It is easy to see that every block graph is a forest; each leaf of a block
graph corresponds to an endblock in the original graph.

Lemma 1. Let G be a 2-connected graph with δ(G) ≥ 3. If G is not complete, then G
contains an induced path on 3 vertices, say uvw, such that G \ {u,w} is connected.

Proof. Since G is connected and not complete, it contains an induced path on 3 vertices. If
G is 3-connected, any such path will do. Otherwise, let {v, x} ⊂ V (G) be a cutset. Since
G− v is not 2-connected, it has at least two endblocks B1, B2. Since G is 2-connected, each
endblock of G− v has a noncutvertex adjacent to v (see Figure 1). Let u ∈ B1 and w ∈ B2

be such vertices. Now G \ {u,w} is connected since d(v) ≥ 3. So uvw is our desired induced
path. �

v

u

w

B1

B2

Figure 1. G contains an induced path uvw such that G \ {u,w} is connected.

Proof 1 of Brooks’ Theorem. Let G be a connected graph. First suppose that G has a vertex
v with d(v) < ∆. We color greedily in order of decreasing distance to v (breaking ties
arbitrarily). For each vertex u other than v, when u gets colored, some neighbor w on a
shortest path in G from u to v is uncolored, so we use at most ∆ colors. Since d(v) < ∆,
we can color v last. Similarly, suppose G has a cutvertex v. Now for each component H of
G− v, we can ∆-color H + v, since v has fewer than ∆ neighbors in H. By permuting the
color classes to agree on v, we get a ∆-coloring of G.

Now assume that G is ∆-regular, 2-connected, and not complete. Let uvw be the induced
path guaranteed by Lemma 1. Color u and w with color 1; now as before, color the remaining
vertices greedily in order of decreasing distance in G \ {u,w} from v. Again we can color v
last, this time because it has two neighbors with the same color. �

Lovász’s proof has many variations. Bondy [5] used a depth-first-search tree to construct
the path in Lemma 1, and Bryant [11] used yet another method. Schrijver’s proof [58] skips
Lemma 1 by using greedy coloring only for 3-connected graphs and handling two-vertex
cutsets by patching together colorings of the components.

2. Kempe chains

The most famous theorem in graph theory is the 4 Color Theorem: Every planar graph
is 4-colorable. In 1852, Guthrie asked whether this was true. Two years later the problem
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appeared in Athenæum [28, 44], a London literary journal, where it attracted the attention of
mathematicians. In 1879, Kempe published a proof. Not until 1890 did Heawood highlight a
flaw in Kempe’s purported solution.2 Fortunately, Heawood largely salvaged Kempe’s ideas,
and proved the 5 Color Theorem. The key tool in this work is now called a Kempe chain.
This technique is among the most well-known in graph coloring. It yields a short proof that
every bipartite graph has a proper ∆-edge-coloring, and similar ideas show that every graph
has a proper (∆ + 1)-edge-coloring (see Section 5.3 of Diestel [18]).

In 1969 Mel’nikov and Vizing [45] used Kempe chains to give the following elegant proof
of Brooks’ Theorem. We phrase this proof in terms of a minimal counterexample G, and for
an arbitrary vertex v, we color G − v by minimality. To turn the proof into an algorithm,
we can simply color greedily toward v, as in our first proof; thus, the “hard part” is once
again showing how to color this final vertex v.

vi

v

vj

u

Ci,j

· · ·

· · ·

· · ·
· · ·vi

u

· · ·

· · ·

vj

v

vk

Ci,j

Ci,k

Figure 2. The left figure shows Claim 2 and the right figure shows Claim 3
in Proof 2 of Brooks’ Theorem.

For a proper coloring of a graph G, an (i, j)-Kempe chain is a component of the subgraph
of G induced by the vertices of colors i and j. A swap in an (i, j)-Kempe chain H swaps the
colors on H; each vertex in H colored i is recolored j and vice versa. Such a swap yields
another proper coloring.

Proof 2 of Brooks’ Theorem. Suppose the theorem is false and let G be a minimum coun-
terexample. Choose an arbitrary vertex v. By minimality, G is ∆-regular. Further, in each
∆-coloring of G− v, each color appears on some neighbor of v. Fix an arbitary ∆-coloring
C of G− v. For each i ∈ {1, . . . ,∆}, let vi be the neighbor of v using color i. By a similar
argument, for each vi, each color other than i appears on a neighbor of vi; for otherwise
we could recolor vi and color v with i. For each pair of colors i and j, let Ci,j denote the
(i, j)-Kempe chain containing vi.
Claim 1. For all i and j, Ci,j = Cj,i. If not, then after a swap in Ci,j, two neighbors of v

use j and none use i, so we can color v with i.
Claim 2. For all i and j, the (i, j)-Kempe chain Ci,j containing vi and vj is a path. If

not, then Ci,j has a vertex of degree at least 3 (since vi and vj have degree 1); let u be the

2In 1880, Tait published a second proof. But, alas, it, too, was founding wanting.
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unique such vertex in Ci,j that is closest to vi. At most ∆− 2 colors appear on neighbors of
u, so we can recolor u. Now i and j violate Claim 1.

Claim 3. For all i, j, k, we have Ci,j ∩Ci,k = vi. Suppose not and choose u ∈ Ci,j ∩Ci,k,
with u 6= vi. Since u has color i, colors j and k each appear on two neighbors of u; so we
can recolor u. Now i and j (and also i and k) violate Claim 1.
Claim 4. Brooks’ Theorem is true. If the neighbors of v form a clique, then G = K∆+1

and there is nothing to prove. So instead there exist some nonadjacent vi and vj, say v1

and v2 by symmetry. Let u be the neighbor of v1 in C1,2. Now perform a swap in C1,3.
Call this new coloring C ′, and define v′i and C ′i,j analogously to vi and Ci,j for C. Since
u still uses color 2, clearly u ∈ C ′2,3. By Claim 3, the swap on C1,3 did not disrupt C1,2

except at v1; so u ∈ C ′1,2. Now u ∈ C ′1,2 ∩C ′2,3, which violates Claim 3, and gives the desired
contradiction. �

Kostochka and Nakprasit [40] took this Kempe chain proof further by showing that when
extending the coloring to v, we can ensure that only one color class changes size.3 Catlin [13]
proved that the ∆-coloring given by Brooks’ Theorem can be chosen so that one of the color
classes is a maximum independent set, and this result is a quick corollary of the theorem of
Kostochka and Nakprasit. Much earlier, Mitchem [46] gave a short proof of Catlin’s result
by modifying an existing ∆-coloring via Kempe chains.

3. Reducing to the cubic case

A natural idea for proving Brooks’ Theorem is induction on the maximum degree. For
a graph G with maximum degree ∆ and clique number at most ∆, suppose we have some
independent set I such that G − I has maximum degree and clique number each at most
∆− 1. If we can color G− I with ∆− 1 colors, then we can extend the coloring to G with
one extra color. This approach forms the basis for our proofs in the next two sections. Of
course we must provide a base case for the induction, and we must also show how to find
this very useful set I.

Before again proving Brooks’ Theorem, we give an easy lemma, which covers the base case
in our inductive proof. We often prove coloring results by repeatedly extending a partial
coloring. During this process, the lists of valid colors for two uncolored vertices may differ,
depending on the colors already used on their neighbors. This motivates the notion of list
coloring. Later we develop this idea further, but for now we need only the following lemma.

Lemma 2. If each vertex of a cycle C has a list of 2 colors, then C has a proper coloring
from its lists unless C has odd length and all lists are identical.

Proof. Denote the vertices by v1, . . . , vn and let the lists be as specified. If all lists are
identical and n is even, then we alternate colors on C. So suppose that two lists differ. This
implies that the lists differ on some pair of adjacent vertices, say on v1 and vn. Color v1 with
a color not in the list for vn. Now color the vertices greedily in order of increasing index. �

3 They proved the following. For k ≥ 3, let G be a Kk+1-free graph with ∆(G) ≤ k. Suppose that G− v
has a k-coloring with color classes M1, . . . ,Mk. Then G has a k-coloring with color classes M ′1, . . . ,M

′
k such

that |Mi| 6= |M ′i | for exactly one i.
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The following proof is due to the second author [50]. In some ways it is simpler than the
first two proofs, since this one needs neither connectivity concepts nor recoloring arguments.

Proof 3 of Brooks’ Theorem. Suppose the theorem is false and let G be a minimum coun-
terexample. Recall that G must be ∆-regular.

First, suppose G is 3-regular. A diamond is K4 minus an edge. If G contains an induced
diamond D, then by minimality we 3-color G−D. The two nonadjacent vertices in D each
still have two colors available, so we color them with a common color, and then finish the
coloring. So G cannot contain diamonds. Since δ(G) ≥ 2, G contains an induced cycle C.
Each vertex of C has one neighbor outside of C. Since ∆ = 3 and G does not contain K4, two
vertices of C have distinct neighbors outside of C; call the neighbors x and y (see Figure 3).
When x and y are adjacent, let H = G−C; otherwise, let H = (G−C) + xy. Since G does
not contain diamonds, H does not contain K4. Since G is minimum, H is 3-colorable. That
is, G − C has a 3-coloring where x and y get different colors. Each vertex of C loses one
color to its neighbor outside of C, and so still has two colors available. Since x and y use
different colors, by Lemma 2 we can extend the coloring to V (C), and hence to all of G.

Now instead suppose ∆ ≥ 4. Since G is not complete, it has an induced 3-vertex path,
uvw. By minimality, G− v has a ∆-coloring; choose a color class I of this ∆-coloring with
u,w 6∈ I. Now ω(G − I) ≤ ∆ − 1; this is because any K∆ in G − I would have to contain
v and all of its neighbors in G− I, but its neighbors u and w are nonadjacent. Form I ′ by
expanding I to a maximal independent set, and let H = G − I ′. Since I ′ is maximal, each
vertex in H has a neighbor in I ′, so ∆(H) ≤ ∆− 1. If ∆(H) = ∆− 1, then ω(H) ≤ ∆(H),
so Brooks’ Theorem holds for H, and χ(H) ≤ ∆ − 1. Otherwise, ∆(H) ≤ ∆ − 2. Now a
greedy coloring gives χ(H) ≤ ∆(H) + 1 ≤ ∆ − 1. In each case χ(H) ≤ ∆ − 1; now we use
one more color on I ′ to get χ(G) ≤ χ(H) + 1 ≤ ∆. �

x

y

G

C

x

y

G− C + xy

Figure 3. How to ∆-color a graph with no K∆+1 when ∆ = 3.

In one variation of Proof 3 we do not reduce to the cubic case [51]. Instead, we note that,
similarly to Lemma 2, a Kk has a proper coloring from lists of size k−1 unless all the lists are
identical. Hence if G contains a K∆ (or an odd cycle when ∆ = 3), then we get a ∆-coloring
of G by minimality in the same way as in the 3-regular case of Proof 3. Otherwise, removing
any maximal independent set yields a smaller counterexample.

A hitting set is an independent set that intersects every maximum clique. The reduction
to the cubic case in the previous proof is an immediate consequence of more general lemmas
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on the existence of hitting sets [38, 52, 33, 61]. Schmerl [57] extended Brooks’ Theorem to
all locally finite graphs, by constructing a recursive hitting set4. Tverberg also modified his
earlier proof [61] to give a shorter constructive proof [62] of Brooks’ Theorem for locally
finite graphs. We will see this earlier proof in Section 4.

4. k-trees

Tverberg used k-trees [61] to give a short proof of Brooks’ Theorem. Similar to the proof
in Section 3, this one inductively colors G − I by minimality, where I is a hitting set. The
differences in the two proofs lie in how we find I and how we handle the base case.

We define k-trees as follows. For k = 3, an odd cycle is a k-tree and for k ≥ 4, a Kk is a
k-tree. Additionally, any graph formed by adding an edge between vertices of degree k − 1
in disjoint k-trees is again a k-tree. For convenience, we write Tk to mean Kk when k ≥ 4
and to mean an odd cycle when k = 3.

The name k-tree comes from the fact that contracting each Tk to a single vertex yields a
tree T . A leaf in a k-tree is a Tk corresponding to a leaf in T . Each leaf in a k-tree has only
one vertex of degree k in G, so it is easy to show by induction that each k-tree other than
Tk has at least k + 1 vertices of degree k − 1. Now we can state Tverberg’s lemma.

Lemma 3. Let G be a connected graph and let k = ∆(G). If k ≥ 3 and G is neither a k-tree
nor Kk+1, then G has a vertex v of degree k such that no component of G− v is a k-tree.

Proof. Suppose the lemma is false and let G be a counterexample. Now G contains a Tk,
for otherwise any vertex v of degree k suffices. Let H be a copy of Tk with the minimum
number of vertices of degree k in G. First, suppose H has only one vertex v of degree k, and
note that v is a cutvertex. Since G is not a k-tree and H is a k-tree, G−H is not a k-tree.
Since neither G−H nor H − v is a k-tree, v is the desired vertex, which is a contradiction.

So instead H has at least two vertices of degree k. Pick neighbors v, w ∈ V (H), where
v has degree k and w has degree as small as possible. When G − v is connected, let A =
G − v; otherwise G − v has two components, A and B, where H − v ⊆ A. Since G is a
counterexample, either A or B is a k-tree.

B H Av

w

Figure 4. Components A and B of G− v in the final case of Lemma 3.

4By recursive hitting set, we mean an infinite set S of vertices, which is both a hitting set and a recursive
set; more formally, S is recursive if for any vertex v, we can decide whether v is in S in finite time.
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Suppose B is a k-tree. Now we find a copy of Tk with at most one vertex of degree k,
which contradicts the minimality of H. If B = Tk, then B will do. Otherwise, we choose a
leaf of B with no vertex adjacent to v in G. Thus B is not a k-tree; so instead A is a k-tree.

Since A is a k-tree, w has degree at least k − 1 in A and hence at least k in G. By our
choice of w, every vertex in H has degree k in G. Hence, by the minimality of H, every
vertex in a Tk in G has degree k. But every vertex of A is in a Tk and hence has degree k in
A unless it is a neighbor of v. So, A is a k-tree with at most k vertices of degree k− 1. The
only such k-tree is Tk, so A = Tk and G = Kk+1, a contradiction. �

Proof 4 of Brooks’ Theorem. Suppose the theorem is false and choose a minimum counterex-
ample G. If G is a ∆-tree, then let v be a cutvertex. For each component H of G − v, we
can ∆-color H + v, and then permute the colors so the colorings agree on v. So G is not a
∆-tree. Now apply Lemma 3 with k = ∆ recursively on components until all components
have maximum degree less than k; let v1, . . . , vr be the vertices used by the lemma and let
I = {v1, . . . , vr}. Note that I is independent. If k = 3, then G− I consists of even cyles and
paths, so we can 2-color it. If k ≥ 4, then by minimality of |G|, we can (k − 1)-color G− I.
Now we finish by coloring I with a new color, a contradiction. �

5. Partitioned coloring

The coloring number col(G) is defined by col(G) = 1+maxH⊆G δ(H), where H ranges over
all subgraphs of G. Suppose we color a graph G as follows: delete a vertex v of minimum
degree, recursively color G−v, and greedily color v. This method shows that χ(G) ≤ col(G).
In 1976, Borodin [6] proved the following generalization of Brooks’ Theorem.

Theorem 4. Let G be a graph not containing a K∆+1. If s ≥ 2 and r1, . . . , rs are positive
integers with r1 + · · · + rs ≥ ∆ ≥ 3, then V (G) can be partitioned into sets V1, . . . , Vs such
that ∆(G[Vi]) ≤ ri and col(G[Vi]) ≤ ri for all i ∈ {1, . . . , s}.

Brooks’ Theorem follows from Theorem 4 by taking s = ∆ and r1 = · · · = rs = 1.5 One
way to prove Theorem 4 is to extend the idea of the fundamental result of Lovász [42] along
the lines of Catlin [14] and Bollobás and Manvel [4], where a partition is repeatedly modified
by moving vertices from one part to another. In his dissertation the second author gave
the following proof of Brooks’ Theorem, where this dynamic process is specialized and made
static. (The heart of this proof is Lemma 5, which is similar to the special case of Theorem 4
when s = 2, r1 = 1, and r2 = ∆− 1.)

Let G be a graph. A partition P = (V1, V2) of V (G) is normal if it minimizes the value
of (∆− 1) ‖V1‖+ ‖V2‖, where ‖Vi‖ denotes |E(G[Vi])|. Note that if P is a normal partition,
then ∆(G[V1]) ≤ 1 and ∆(G[V2]) ≤ ∆ − 1, since if some vertex v has degree that is too
high in its part, then we can move it to the other part. The P -components of G are the
components of G[V1] and G[V2]. A P -component is an obstruction if it is a K2 in G[V1] or a
K∆ in G[V2] or an odd cycle in G[V2] when ∆ = 3. (Note that if a P -component contains
an obstruction, then the obstruction is the whole P -component.)

5 Section 8 gives another extension of Brooks’ Theorem (also due to Borodin [7]) that classifies the graphs
that are colorable when each vertex v is allowed a list of colors L(v) and |L(v)| = d(v). Borodin, Kostochka,
and Toft [9] proved an intruiging common generalization of these two, seemingly unrelated, results.
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A path v1 . . . vk is P -acceptable (see Figure 5) if v1 is in an obstruction and for all i, j ∈
{1, . . . , k}, vi and vj are in different P -components. A P -acceptable path is maximal if it is
not contained in a larger P -acceptable path. This means that a P -acceptable path v1 . . . vk
is maximal if and only if every neighbor of vk is in the same P -component as some vertex
in the path. Given a partition P , to move a vertex u is to move it to the other part of P .
Note that if P is normal and u is in an obstruction, then the partition formed by moving u
is again normal since u had maximum degree in its original part. For a subgraph H of G
and vertex u ∈ V (G), let NH(u) = N(u) ∩ V (H).

Lemma 5. Let G be a graph with ∆ ≥ 3. If G does not contain K∆+1, then V (G) has an
obstruction-free normal partition.

Proof. Suppose the lemma is false and let G be a counterexample. Among the normal
partitions ofG with the minimum number of obstructions, choose P = (V1, V2) and a maximal
P -acceptable path v1 . . . vk so as to minimize k. Throughout the proof, we often move some
vertex u in an obstruction A. Since this destroys A, the minimality of P implies that the
move creates a new obstruction, which must contain u. So if u has a neighbor w, initially
in the other part, then w is in this new obstruction. Finally, the new partition has the
minimum number of obstructions.

Let A and B be the P -components containing v1 and vk respectively. Let X = NA(vk). If
|X| = 0, then moving v1 creates a new normal partition P ′. Since v1 is adjacent to v2, the
new obstruction contains v2. So v2v3 . . . vk is a maximal P ′-acceptable path, violating the
minimality of k. Hence |X| ≥ 1.

Pick any vertex x ∈ X, and form P ′ by moving x. The new obstruction contains vk and
hence all of B, since each obstruction is a whole P ′-component. So {x} ∪ V (B) induces an
obstruction. Let Y = NB(x); see Figure 5. Since x ∈ X was arbitrary, the argument works
for all z ∈ X. Since obstructions are regular, NB(z) = Y for all z ∈ X, which implies that
X is joined to Y in G. Also since obstructions are regular, |Y | = δ(B) + 1.

v1

vk

V1

V2 X

A

x
Y

B

vk

v1

Figure 5. The left figure shows an example of a P -acceptable path. The
right figure shows sets X and Y constructed from components A and B.

First, suppose |X| ≥ 2. Similar to above, form P ′ from P by moving x and vk. Now
{vk}∪V (A−x) induces an obstruction (vk is in a P ′-component with v1, since |X−x| ≥ 1).
Because obstructions are regular, |NA−x(vk)| = ∆(A) and hence |X| ≥ ∆(A) + 1. Since X
and Y are disjoint, |X ∪ Y | ≥ (∆(A)+1)+(δ(B)+1) = ∆(G)+1; the equality holds because
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A and B + x are obstructions. (If ∆ > 3, then ∆(A) + 1 = |A| and δ(B) + 1 = |B| and the
sizes of obstructions in distinct parts sums to ∆ + 2; the case ∆ = 3 is a little different, since
now one obstruction is an odd cycle.)

Suppose X is not a clique and pick nonadjacent x1, x2 ∈ X. It is easy to check that moving
x1, vk, x2, violates the normality of P . Hence X is a clique. Similarly, suppose Y is not a
clique and pick nonadjacent y1, y2 ∈ Y and any x′ ∈ X−{x}. Now moving x, y1, x′, y2 again
violates the normality of P . Hence Y is a clique. But X is joined to Y , so X ∪ Y induces
K∆+1 in G, a contradiction.

So instead |X| = 1. Suppose X 6= {v1}, and first suppose A is K2. Now moving x creates
another normal partition P ′ with the minimum number of obstructions. In P ′, the path
vkvk−1 . . . v1 is a maximal P ′-acceptable path, since the P ′-components containing v2 and vk
contain all neighbors of v1 in that part. Repeating the above argument using P ′ in place of
P gets us to the same point with A not K2. Hence we may assume A is not K2.

Move each of v1, . . . , vk in turn. The obstruction A is destroyed by moving v1, and for
1 ≤ i < k, the obstruction created by moving vi is destroyed by moving vi+1. So after the
moves, vk is in an obstruction. The minimality of k implies that {vk} ∪ V (A − v1) induces
an obstruction and hence |X| ≥ 2, since A is not K2. This contradicts |X| = 1.

Therefore X = {v1}. Now moving v1 creates an obstruction containing both v2 and vk,
so k = 2. Since v1v2 is maximal, v2 has no neighbor in the other part besides v1. But now
moving v1 and v2 creates a partition violating the normality of P . �

Proof 5 of Brooks’ Theorem. Suppose Brooks’ Theorem is false and choose a counterexample
G minimizing ∆. Clearly ∆ ≥ 3. By Lemma 5, V (G) has an obstruction-free normal
partition (V1, V2). Note that V1 is an independent set, since ∆(G[V1]) ≤ 1 and G[V1] contains
no K2. Since G[V2] is obstruction-free, the minimality of ∆ gives χ(G[V2]) ≤ ∆(G[V2]) ≤
∆− 1. Using one more color on V1 gives χ(G) ≤ 1 + χ(G[V2]) ≤ ∆, a contradiction. �

6. Spanning trees with independent leaf sets

In this section, we take a scenic route. We combine two lemmas of independent interest,
to give an unexpected proof of Brooks’ Theorem. The union of two forests F1 and F2 (on the
same vertex set) is 4-colorable, since we can color each vertex v with a pair (a1, a2), where ai
is the color of v in a proper 2-coloring of Fi. A star forest is a disjoint union of stars. Sauer
conjectured that the union of a forest and a star forest is always 3-colorable, and Stiebitz
[59] verified this conjecture. The main component of his proof is a lemma that allows for
extending a k-coloring of an induced subgraph to the whole graph when it has a spanning
forest with certain properties.

Böhme et al. [3] classified the graphs with a spanning tree whose leaves form an indepen-
dent set; by combining this result with Stiebitz’s coloring lemma, they gave an alternative
proof of Brooks’ Theorem. In this section, we prove both the lemma of Stiebitz and that of
Böhme et al., as well as show how they easily yield Brooks’ Theorem.

We need two definitions. An independency tree is a spanning tree in which the leaves form
an independent set. Let v1, . . . , vn be an order of the vertices of a graph G; call it σ. We
define a depth-first-search tree, or DFS tree, with respect to σ as follows. We iteratively grow
a tree. At each step i, we have a tree Ti and an active vertex xi. Let T1 = v1 and x1 = v1. We
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grow the tree as follows. If xi has a neighbor not in Ti, then choose the first such neighbor w,
with respect to σ. Now let Ti+1 = Ti + xiw and xi+1 = w. If xi has no neighbor outside the
tree, then let w be the neighbor of xi on a path in Ti to v1. Now let Ti+1 = Ti and xi+1 = w.
This algorithm terminates only when xk = v1 and all neighbors of v1 are in the tree. It is
easy to check that when this happens Tk is a spanning tree. A DFS independency tree is
both a DFS tree and an independency tree. We begin with the following elegant lemma,
from Böhme et al. [3]; about 25 years earlier, Dirac and Thomassen [19] proved a variation
containing (1) and (4), as well as other equivalent conditions (but not (2) or (3)).

Lemma 6. For a connected graph G, the following four conditions are equivalent.

(1) G is Cn, Kn, or Kn/2,n/2 for n even.
(2) G has no independency tree.
(3) G has no DFS independency tree.
(4) G has a Hamiltonian path, and every Hamiltonian path is contained in a Hamiltonian

cycle.

Proof. (1) =⇒ (2): If G is Cn or Kn, then any spanning tree has all leaves pairwise adjacent,
so G has no independency tree. So Let G be Kn/2,n/2. If all leaves are in the same part, then
each vertex in the other part has degree at least 2. This requires at least n edges, which is
too many for an n-vertex tree; so we get a contradiction.

(2) =⇒ (3): This implication is immediate from the definitions.
(3) =⇒ (4): We prove the contrapositive. If G has a Hamiltonian path P that is not

contained in a Hamiltonian cycle, then P is an independency tree. Considering the vertices
in the order in which they appear in P shows that P is a DFS independency tree. So suppose
instead that G has no Hamiltonian path. Let P = v1 . . . vk be a maximum path in G. The
maximality of P implies that v1 and vk are nonadjacent to each u ∈ V \ V (P ). Similarly
v1 and vk are nonadjacent (if not, let u be a neighbor of some vi not on P ; now the path
vi+1 . . . vkv1 . . . viu is longer than P ). Now consider a DFS tree T that begins with v1, . . . , vk.
Since it has an independent leaf set, T is a DFS independency tree.

n 1n− 1

k − 1kk + 1

n 1 2n− 1

k − 2k − 1kk + 1

n 1n− 1

k − 1kk + 1

Figure 6. Key steps in the proof that (4) =⇒ (1): On the left, G must
contain v1vk+1. In the center, G must contain vnvk−2. A symmetric argument
shows that G must contain vnvk+2. On the right, G must contain vnvk+1.
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(4) =⇒ (1): Suppose that G has a Hamiltonian path P , and P is contained in a
Hamiltonian cycle C, where C = v1 . . . vn. If C has no chords, then G = Cn, and (1) holds.
So assume C has a chord. The length of a chord vivj is min(|i− j|, n− |i− j|).

The left part of Figure 6 shows that if G contains a chord of C of a given length, then G
contains all chords of C of that length; the central part shows that if G contains a chord of
C of odd (even) length, then it contains all chords of C of odd (even) length.

Suppose n is odd. If G has a chord, then it has either vnv(n+3)/2 or vnv(n−1)/2 (since one
chord has odd length and the other even length). By the middle of Figure 6, the presence
of one of these chords implies the presence of the other. So G has all chords and G = Kn.
Suppose instead that n is even. If G has an even chord, then G has a chord of length 2. For
any chord vnvk of length at least 3, the right part of Figure 6 shows that G also contains
vnvk+1; hence G contains chords of both parities, so G = Kn. In the final case, with n even
and no even chord, all odd chords exist, so G = Kn/2,n/2. �

Next we state Stiebitz’s lemma for extending a k-coloring of a subgraph to the whole
graph.

Lemma 7. Let H be an induced subgraph of a graph G with χ(H) ≤ k for some k ≥ 3.
Then χ(G) ≤ k if G has a spanning forest F where

(1) for each component C of H, F [V (C)] is a tree; and
(2) dG(v) ≤ dF (v) + k − 2 for every v ∈ V (G−H).

Before proving Lemma 7, we use Lemmas 6 and 7 to give a short proof of Brooks’ Theorem.

Proof 6 of Brooks’ Theorem. It suffices to consider connected graphs. If a graph G is Cn, Kn,
or Kn/2,n/2 for n even, then χ(G) satisfies the desired bound. So suppose G is none of these
graphs. By Lemma 6, G has an independency tree T . Let I denote the independent leaf set
of T . To apply Lemma 7, let H = G[I], let F = T , and let k = ∆. Clearly χ(H) = 1 ≤ k.
Each component C of H is an isolated vertex, which is a tree, so (1) holds. Finally, each
vertex v ∈ V (G−H) is a nonleaf in F , so dF (v) ≥ 2. Thus dG(v) ≤ k ≤ dF (v) + (k− 2). So
Lemma 7 implies that χ(G) ≤ k = ∆. �

The proof of Lemma 7 yields an algorithm which extends the coloring of H to one of G,
by adding vertices to H one at a time (this is a rough approximation; we give more precise
details below). The proof is by contradiction and it relies on fives claims; any vertex v
violating a claim allows us to make progress in extending the coloring. One obvious route is
to color v immediately and add it to H. When this is not possible, we form a smaller graph
G′ from G− v by identifying some vertices, and we color G′ recursively; afterwards, we color
v greedily. Clearly G′ (and F ′ and H ′) must satisfy the hypotheses of the lemma. We also
must ensure that the resulting coloring of G− v uses at most k− 1 colors on neighbors of v,
so that we can extend the coloring to v.

Proof of Lemma 7. For any graphs U and W , we write U−W for the subgraph of U induced
by V (U) \ V (W ). If uv ∈ E(F ), then u is an F -neighbor of v, and u and v are F -adjacent.
Suppose the lemma is false and choose a counterexample pair G,H minimizing |G − H|.
Note that each vertex v in G−H must have a neighbor in H, since otherwise we can add v
to H. Thus |H| ≥ 1.
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Claim 1. If there exists v ∈ V (G − H) adjacent to components A1, . . . , As of H with
dG(v) ≤ s+ k − 2, then there exist i and j, with i 6= j, and a path in F − v from Ai to Aj.

Suppose not and choose such a v ∈ V (G −H). We will find a k-coloring of G. For each
i ∈ {1, . . . , s}, let zi be a neighbor of v in Ai. Form G′, F ′, H ′ from G, F , H (repectively)
by deleting v and identifying all zi as a single new vertex z. Now χ(H ′) ≤ k, since by
permuting colors in each component we can get a k-coloring of H where all the zi use the
same color. Also, F ′ is a spanning forest in G′ since we are assuming there is no path in
F − v from Ai to Aj whenever i 6= j. It is easy to check that Conditions (1) and (2) hold
for G′, F ′, H ′. Now |G′ −H ′| < |G−H|, so by minimality of |G−H|, we have a k-coloring
of G′. This gives a k-coloring of G − v where z1, . . . , zs all get the same color. So v has at
most dG(v)− (s− 1) ≤ k − 1 colors used on its neighborhood, leaving a color free to finish
the k-coloring on G, a contradiction.

v
G−H

A1z1

As
zs

v
G−H

H

A

Figure 7. The left figure shows Claim 1. The right figure shows Claim 3.

Claim 2. Every leaf of F is in H and every vertex not in H has an F -neighbor not in H.
We can rewrite this formally: dF (v) ≥ 2 and dF−H(v) ≥ 1 for all v ∈ V (G −H). Applying
Claim 1 with s = 1 implies dG(v) ≥ k. Now

Condition (2) gives dF (v) ≥ dG(v) + 2 − k ≥ 2. Suppose dF−H(v) = 0 for some v ∈
V (G −H). Since F is a forest, Condition (1) implies that all F -neighbors of v must be in
different components of H. Moreover there can be no path between two of these components
in F − v. Condition (2) gives dG(v) ≤ dF (v) + k − 2, so applying Claim 1 with s = dF (v)
gives a contradiction. Thus dF−H(v) ≥ 1 for all v ∈ V (G−H).
Claim 3. There exists v in G − H with dF−H(v) = 1 such that every component of H

that is F -adjacent to v is not F -adjacent to any other vertex in G−H.
Form a bipartite graph F ′ from F by contracting each component ofH and each component

of F −H to a single vertex. Since F is a forest, Condition (1) implies that F ′ is also a forest.
So some vertex contracted from a component A of F −H has at most one neighbor of degree
at least 2; say this neighbor is contracted from B, where B ⊆ (F ∩H). (If not, then we can
walk between components of H and F −H until we get a cycle in F .) Let v be a leaf of A
that is not F -adjacent to B; this gives dF−H(v) = dA(v) ≤ 1. Claim 2 gives dF−H(v) ≥ 1, so
in fact dF−H(v) = 1 as desired.

Claim 4. If the v in Claim 3 is adjacent to a component of H, then it is F -adjacent to
that component.
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Let A1, . . . , Ar be the components of H that are F -adjacent to v, where r = dF (v) − 1.
Suppose there is another component Ar+1 of H that is adjacent to v. Since no vertex of
G − H besides v is F -adjacent to any of A1, . . . , Ar, there can be no F -path in F − v
between any pair among A1, . . . , Ar, Ar+1. Now the contrapositive of Claim 1 implies that
dG(v) > (r + 1) + k − 2 = dF (v) + k − 2; this inequality contradicts Condition (2).

Claim 5. The lemma holds.
Let H ′ = G[V (H) ∪ {v}], with v as in Claims 3 and 4. By Claim 4, Condition (1) of

the hypotheses holds for H ′. Condition (2) clearly holds and F is still a forest. Also, by
permuting colors in the components we can get a k-coloring of H where all F -neighbors of
v get the same color. Hence v has at most dH(v)− (dF (v)− 2) ≤ dG(v)− 1− (dF (v)− 2) =
dG(v) − dF (v) + 1 ≤ k − 1 colors on its neighborhood. Hence H ′ is k-colorable. But then,
by minimality of |G−H|, G is k-colorable, a contradiction. �

7. Kernel perfection

In the late 1970s, Vizing [63] and, independently, Erdős, Rubin, and Taylor [26] introduced
the notion of list coloring, which is the subject of Sections 7 and 8. An f -list assignment
gives to each vertex v a list L(v) of f(v) allowable colors. A proper L-coloring is a proper
coloring where each vertex gets a color from its list. A graph G is f -choosable (or f -list
colorable) if it has a proper L-coloring for each f -list assignment L. We are particularly
interested in two cases of f . If G is f -choosable and f is constant, say f(v) = k for all v,
then G is k-choosable. The minimum k such that G is k-choosable is its choice number χ`.

6

If f(v) = d(v) for all v and G is f -choosable, then G is degree-choosable. All our remaining
proofs show that Brooks’ Theorem is true even for list coloring7, which is a stronger result.

In 2009, Schauz [56] and Zhu [64] introduced online list coloring. In this variation, list
sizes are fixed (each vertex v gets f(v) colors), but the lists themselves are provided online
by an adversary. In round 1, the adversary reveals the set of vertices whose lists contain
color 1. The algorithm then uses color 1 on some independent subset of these vertices (and
cannot change this set later). In each subsequent round k, the adversary reveals the subset
of uncolored vertices with lists containing k. Again the algorithm chooses an independent
subset of these vertices to use color k. The algorithm wins if it succeeds in coloring all
vertices. And the adversary wins if it reveals a vertex v on each of f(v) rounds, but the
algorithm never colors it. A graph is online k-list colorable (or k-paintable) if some algorithm
can win whenever f(v) = k for all v. The minimum k such that a graph G is online k-list
colorable is its online list chromatic number, denoted χOL, (or paint number).8

Any proof of the following lemma yields a proof of Brooks’ Theorem for coloring, list
coloring, and even online list coloring using the kernel ideas below (we write α(G) to denote
the maximum size of an independent set, or stable set, in G). Note that this lemma follows

6Erdős, Rubin, and Taylor noted that bipartite graphs can have arbitrarily large choice number. Let m =(
2k−1

k

)
and let G = Km,m. If we assign to the vertices of each part the distinct k-subsets of {1, . . . , 2k − 1},

then G has no good coloring. Thus χ`(G) > k.
7Formally: If G is a connected graph other than an odd cycle or a clique, then χ`(G) ≤ ∆.
8At first glance, an adversary assigning lists to vertices seems to have much more power in the context of

online list coloring than in list coloring. However, in practice the choice number and paint number are often
equal. In fact, it is unknown [12] whether there exists a graph with χOL > χ` + 1.
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immediately from Brooks’ Theorem for coloring and also from Brooks’ Theorem for fractional
coloring (defined below). Surprisingly, all known short proofs of Lemma 8 rely on some
version of Brooks’ Theorem.

Lemma 8. If G is a graph not containing K∆+1, then α(G) ≥ |G|
∆

.

It’s natural to ask when we can improve the bound in Lemma 8. When G can be parti-
tioned into disjoint copies of K∆, clearly we cannot. But Albertson, Bollobas, and Tucker [1]
did improve the bound when G is connected and K∆-free, except when G is one of the two
exceptional graphs shown in Figure 8. Along these lines, Fajtlowicz [27] proved that every

graph G satisfies α(G) ≥ 2|G|
ω+∆+1

. In general, this bound is weaker than Lemma 8, but when
ω ≤ ∆− 2 it is stronger.

Figure 8. The only two connected K∆-free graphs where α = |G|
∆

.

A closely related problem is fractional coloring, where independent sets are assigned non-
negative weights so that for each vertex v the sum of the weights on the sets containing
v is 1. In a fractional k-coloring, the sum of all weights on the independent sets is k; the
fractional chromatic number is the minimum value k allowing a fractional k-coloring. (A
standard vertex coloring is the special case when the weight on each set is 0 or 1.) King, Lu,
and Peng [34] strengthened the result of Albertson et al. by showing that every connected
K∆-free graph with ∆ ≥ 4 (except for the two graphs in Figure 8) has fractional chromatic
number at most ∆− 2

67
; this result was further strengthened by Edwards and King [23, 22].

Recently Dvořák, Sereni, and Volec [21] proved fascinating results on fractional coloring
of triangle-free cubic graphs. Specifically, they proved that all such graphs have fractional
chromatic number at most 14

5
, which is best possible.

Kostochka and Yancey [37] gave a simple, yet powerful, application of the Kernel Lemma
to a list coloring problem. A kernel in a digraph D is an independent set I ⊆ V (D) such that
each vertex in V (D)−I has an edge into I. A digraph in which every induced subdigraph has
a kernel is kernel-perfect, and kernel-perfect orientations can be very useful for list coloring;
Alon and Tarsi [2, Remark 2.4] attribute this result to Bondy, Boppana, and Siegel (here
d+(v) denotes the out-degree of v in D).

Kernel Lemma. Let G be a graph and f : V (G)→ N. If G has a kernel-perfect orientation
such that f(v) ≥ d+(v) + 1 for each v ∈ V (G), then G is f -choosable.

The proof of the Kernel Lemma is by induction on the total number of colors in the union
of all the lists. For an arbitrary color c, let H be the subdigraph induced by the vertices
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with c in their lists. We use c on the vertices of some kernel of H, and invoke the induction
hypothesis to color the remaining uncolored subgraph. The same proof works for online list
coloring, since we simply choose c to be color 1.

All bipartite digraphs are kernel-perfect, and the next lemma [37] generalizes this fact.

Lemma 9. Let A be an independent set in a graph G and let B = V (G)− A. Any digraph
D created from G by replacing each edge in G[B] by a pair of opposite arcs and orienting
the edges between A and B arbitrarily is kernel-perfect.

Proof. Let G be a minimum counterexample, and let D be a digraph created from G that is
not kernel-perfect. To get a contradiction it suffices to construct a kernel in D, since each
subdigraph has a kernel by minimality. Either A is a kernel or there is some v ∈ B which
has no outneighbors in A. In the latter case, each neighbor of v in G has an inedge to v, so
a kernel in D − v −N(v) together with v is a kernel in D. �

Now we can show that Lemma 8 implies Brooks’ Theorem. For simplicity we only prove
this for list coloring, but a minor modification of the proof works for online list coloring.
This proof is a special case of a result of the second author and Kierstead [32].

AH

BH

Figure 9. The bipartite graph H with parts AH and BH .

Theorem 10. Every graph satisfies χl ≤ max {3, ω,∆}.

Proof 7 of Brooks’ Theorem. Suppose the theorem is false and let G be a minimum coun-
terexample. The minimality of G implies χl(G − v) ≤ ∆ for all v ∈ V (G). So G is

∆-regular. Lemma 8 implies α(G) ≥ |G|
∆

. Let A be a maximum independent set in G and let
B = V (G)−A. For each subgraph H, let AH = A∩ V (H) and BH = B ∩ V (H). The num-
ber of edges between A and B is α(G)∆, which is at least |G|. So there exists a nonempty
induced subgraph H of G with at least |H| edges between AH and BH , since H = G is one
example. Pick such an H minimizing |H|. See Figure 9.

For all v ∈ V (H), let dv be the number of edges incident to v between AH and BH .
We show that dv = 2 for all v. If dv ≤ 1 for some v, then H − v violates the minimality
of H. The same is true if dv < dw for some v and w, as we now show. Let k be the
minimim degree in H, and choose v and w with dv = k and dw > dv. Let ‖H‖ denote
the number of edges in H. Since dw > k, we have 2 ‖H‖ ≥ k|H| + 1. Deleting v gives
2 ‖H − v‖ ≥ k |H|+ 1− 2k = k(|H| − 1) + (1− k) = 2(|H| − 1) + (1− k) + (k− 2)(|H| − 1).
When k ≥ 3 the final term is at least k, since |H| ≥ k + 1; so ‖H − v‖ ≥ |H − v|, a
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contradiction. If instead k = 2, then 2 ‖H − v‖ ≥ 2(|H| − 1)− 1. Since the left side is even,
we conclude 2 ‖H − v‖ ≥ 2(|H| − 1), again reaching a contradiction.

So dv = dw for all v and w; we call this common value d, and note that d ≥ 2. Now there
are (d/2)|H| edges between AH and BH . It is easy to check that (d/2)|H| − d ≥ |H| − 1
for d > 2, so the minimality of |H| shows that d = 2. Thus the edges between AH and BH

induce a disjoint union of cycles.
Create a digraph D from H by replacing each edge in H[BH ] by a pair of opposite arcs

and orienting the edges between AH and BH consistently along the cycles. By Lemma 9, D
is kernel-perfect. Since d+(v) ≤ d(v)− 1 for each v ∈ V (H), the Kernel Lemma shows that
H is f -choosable where f(v) = d(v) for all v ∈ V (H). Now given any ∆-list-assignment on
G, we can color G −H from its lists by minimality of |G|, and then extend the coloring to
H, which is a contradiction. �

8. Degree-choosable graphs

The option to give different vertices lists of different sizes allows us to refine Theorem 10.
A graph G is degree-choosable if it is f -choosable where f(v) = d(v) for all v ∈ V (G). The
degree-choosable graphs were classified by Borodin [7] and independently by Erdős, Rubin,
and Taylor [26]. A graph is a Gallai tree if each block is a complete graph or an odd cycle.

Figure 10. A Gallai tree with 15 blocks.

Theorem 11. A connected graph is degree-choosable if and only if it is not a Gallai tree.

A minimal counterexample to Brooks’ Theorem is regular, and hence degree-choosable if
and only if ∆-choosable. So Brooks’ Theorem follows immediately from Theorem 11, since
the only ∆-regular Gallai tree is K∆+1. We give two proofs of Theorem 11. The first uses
a structural lemma from Erdős, Rubin, and Taylor [26] known as “Rubin’s Block Lemma,”
but the second does not.

Lemma 12. No Gallai tree is degree-choosable.
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Proof. Assign disjoint lists to the blocks as follows. For each block B, let LB be a list of size
2 if B is an odd cycle and size k if B is Kk+1. The list for each vertex v is the union of the
lists for blocks containing it: L(v) = ∪B3vLB. Note that |L(v)| = d(v) for all v.

We show that G has no coloring from these lists, by induction on the number of blocks. For
the base case, G is complete or an odd cycle, and the proposition clearly holds. Otherwise,
let B be an endblock of G, and let v ∈ B be a cutvertex. If G has an L-coloring, then each
vertex in B − v gets colored from LB, so each color in LB appears on a neighbor of v. Now
G \ (B− v) is again a Gallai tree, with lists as specified above; by hypothesis it has no good
coloring from its lists. �

The following lemma has many different proofs [26, 25, 31, 53]. We follow the presentation
of Hladký, Krá

,
l, and Schauz [31]. Although it is known as Rubin’s Block [26], the result was

implicit in the much earlier work of Gallai [29, 30] and Dirac.

Rubin’s Block Lemma. If G is a 2-connected graph that is not complete and not an odd
cycle, then G contains an induced even cycle with at most one chord.

Proof. Let G be a 2-connected graph that is neither complete nor an odd cycle. Since G is
not complete, it has a minimal cutset S, with |S| ≥ 2. Choose u, v ∈ S and let C be a cycle
formed from the union of shortest paths P1 and P2 joining u and v in two components of
G \ S (see Figure 11). Now C has at most one chord, the edge uv. If C has even length,
then we are done. If C has odd length, then one of the paths joining u and v in C has odd
length; call it P . If uv is present, then P + uv is a chordless even cycle. Thus, uv is absent
and C is an induced odd cycle of length at least 5. Since G is not an odd cycle, there exists
w ∈ V (G \ C).

Suppose first that no vertex w ∈ V (G\C) has two neighbors on C. Since G is 2-connected,
there is a shortest path R with endpoints on C and interior disjoint from C, and R has length
at least 3. Now V (C)∪V (R) induces two 3-vertices with three vertex disjoint paths between
them. Two paths have the same parity, so together they induce a chordless even cycle.

So instead some vertex w ∈ V (G\C) has two or more neighbors on C; call them v1, . . . , vk
(see Figure 11). The vi split C into paths Pi with each vi the endpoint of two paths. If any
Pi has even length, then V (Pi) ∪ {w} induces a chordless even cycle. So each Pi has odd
length; since C has odd length, k ≥ 3. If k > 3, then V (P1) ∪ V (P2) ∪ {w} induces an even
cycle with one chord. If k = 3, then some path Pi, say P3 by symmetry, has length at least
3, since C has length at least 5. Now again V (P1)∪ V (P2)∪{w} induces an even cycle with
exactly one chord. �

The following proof is similar to Lovasz’s proof of Brooks’ Theorem, which we saw in
Section 1. In the list coloring context, two parts of that proof break down: (i) nonadjacent
neighbors of a common vertex v need not have a common color and (ii) we cannot permute
colorings on different blocks to agree on a cutvertex. The first problem has an easy solution,
but the second is more serious. If in our induced path uvw either u or w is a cutvertex, then
when we color u and w first we disconnect the graph of uncolored vertices. So rather than
coloring toward a subgraph that we colored first, we instead color toward a subgraph that
we can color last—any degree-choosable subgraph will do.
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u

v

P1 P2

v1 vk

w

Figure 11. The figure on the left shows an induced cycle C formed from P1

and P2. The figure on the right shows w, not on C, and its neighbors on C.

Proof 1 of Theorem 11. Lemma 12 shows that no Gallai tree is degree-choosable. So now
suppose G is not a Gallai tree. By Rubin’s Block Lemma, G has an induced even cycle with
at most one chord; call this subgraph H. We can greedily color the vertices of G − H in
order of decreasing distance from H, since each vertex has an uncolored neighbor when we
color it. Now we extend the coloring to H. If H is an even cycle, we use Lemma 2. So
assume instead that H is an even cycle with one chord; label the vertices v1, . . . , vn around
the cycle so that dH(v1) = 3. Since v1 has 3 colors, we color it with some color not available
for vn. Now we greedily color the vertices in order of increasing index. �

Many proofs of list coloring theorems can be easily extended to prove their analogues
for online list coloring. The classification of degree-choosable graphs illustrates this idea
well. The analogue of degree-choosable is degree-paintable, and a connected graph is degree-
paintable precisely when it is not a Gallai tree. Suppose that H is a connected degree-
paintable induced subgraph of G. Let σ be an order of the vertices by decreasing distance
from H. If Sk denotes the vertices available on round k, then the algorithm greedily forms a
maximal independent set Ik by adding vertices from (V (G)−V (H))∩Sk in the order σ. For
the vertices in Sk with no neighbor in Ik, the algorithm then plays on H the strategy that
shows it is degree-paintable. This produces a valid coloring. To complete the classification
of degree-paintable graphs, we need only verify that every even cycle with at most one chord
is degree-paintable.

Alon and Tarsi [2] developed a powerful tool, which gives an alternate short proof of
Theorem 11 from Rubin’s Block Lemma. A subgraph H of a directed graph D is Eulerian
if in H each vertex v has indegree d−H(v) equal to outdegree d+

H(v). Let EE and EO denote
the sets of Eulerian subgraphs of D where the number of edges is even and odd, respectively.

Alon–Tarsi Theorem. Let D be an orientation of a graph G, and let L be a list assignment
such that |L(v)| ≥ 1 + d+(v) for all v. If |EE| 6= |EO|, then G is L-colorable.

Let G be a graph that is not a Gallai Tree, and let H be an induced even cycle with at
most one chord in G, as guaranteed by Rubin’s Block Lemma. Order the vertices outside of
H by increasing distance from H (breaking ties arbitrarily); call this order σ. Now orient
each edge uv as u → v if u precedes v in σ. Orient the cycle edges in H consistently, and
orient the chord, if it exists, arbitrarily. It is easy to see that each vertex v has indegree as
least 1, and hence outdegree at most d(v) − 1. So the Alon–Tarsi Theorem implies that G
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is degree-choosable if |EE| 6= |EO|. Every Eulerian subgraph J must be a subgraph of H,
for otherwise the vertex of J that comes last in σ has outdegree 0. If H is an even cycle,
then |EO| = 0 and |EE| = 2, since both the empty subgraph and all of H are in EE. If H
is a cycle with a chord, then either |EE| = 3 and |EO| = 0 or else |EE| = 2 and |EO| = 1.
In both cases, the Alon–Tarsi Theorem shows that G is degree-choosable. This is essentially
the proof given by Hladký, Král, and Schauz [31].

After our first proof of Theorem 11, we outlined how to extend the result to characterize
degree-paintable graphs. However, we omitted the tedious proof that an even cycle with at
most one chord is degree-paintable. One advantage of the Alon–Tarsi proof of Theorem 11 is
that it extends easily to paintability. Schauz proved an analogue of the Alon–Tarsi Theorem
for online list coloring9, so in fact the proof of the paintability result is nearly identical.

We extend this idea [17] to show that G2 is online (∆2− 1)-choosable unless ω(G2) ≥ ∆2;
here G2 is formed from G by adding edge uv for each pair u and v at distance 2 in G.
Our approach in that proof is quite similar to method used above to prove Theorem 11 via
the Alon–Tarsi Theorem. Applying these techniques to G2 gives d−(v) ≥ 2 for all v. Now
however, we seek a subgraph H that is online “degree-1”-choosable, that is, H is online f -
choosable, where f(v) = d(v)− 1. So the bulk of the work lies in showing that every square
graph contains either such an induced subgraph or else a large clique.

We now conclude our digression into online list coloring and the Alon–Tarsi Theorem, and
we finish the section with a second proof of Theorem 11. Kostochka, Stiebitz, and Wirth [41]
gave a short proof of Theorem 11, which we reproduce below. Further, they extended the
result to hypergraphs.

Proof 2 of Theorem 11. Lemma 12 shows that no Gallai tree is degree-choosable. So now
suppose there exists a graph that is not a Gallai tree, but is also not degree-choosable. Let
G be a minimum such graph. Since G is not degree-choosable, no induced subgraph H of
G is degree-choosable (if such an H exists, then we color G − H greedily towards H, and
extend the coloring to H since it is degree-choosable). Hence for any v ∈ V (G) that is not
a cutvertex, G− v must be a Gallai tree by minimality of |G|.

If G has more than one block, then for endblocks B1 and B2, choose noncutvertices w ∈ B1

and x ∈ B2. By the minimality of |G|, both G−w and G−x are Gallai trees, so every block
of G is either complete or an odd cycle, and thus G is a Gallai tree. So instead G has only
one block, that is, G is 2-connected. Further, G− v is a Gallai tree for all v ∈ V (G).

Now let L be a list assignment on G such that |L(v)| = d(v) for all v ∈ V (G) and G is
not L-colorable. Suppose two vertices in G get different lists. Since G is connected, we have
adjacent v, w ∈ V (G) such that L(v)− L(w) 6= ∅. Pick c ∈ L(v)− L(w) and color v with c.
Now we can finish by coloring in order of decreasing distance from w in G − v. So instead
L(v) = L(w) for all v, w ∈ V (G); in particular, G is regular.

Pick v ∈ V (G) and consider the Gallai tree G− v. Since G is regular and 2-connected, v
must be adjacent to all noncutvertices in all endblocks of G − v. So, if G − v has at least
two endblocks, then d(v) ≥ 2(∆(G) − 1). Since 2(∆(G) − 1) > ∆(G) when ∆(G) ≥ 3, we

9Let D be an orientation of a graph G, and let f be a list size assignment such that f(v) ≥ 1 + d+(v) for
all v. If |EE| 6= |EO|, then G is online f -choosable.
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must have ∆(G) = 2. Since G is not L-colorable it is not 2-colorable and hence is an odd
cycle, a contradiction. Therefore G− v has only one endblock and thus G is complete, again
a contradiction. �

9. Further Directions

In this final section, we conclude our survey by discussing two conjecture that strengthen
Brooks’ Theorem. Determining the chromatic number of a graph is well-known to be NP-
hard. However, Brooks’ Theorem shows that determining whether a graph has χ = ∆ + 1
is easy. If ∆ = 2, look for odd cycles; otherwise, look for a K∆+1. It is natural to ask how
close t must be to ∆ so that we can easily check whether χ = t. Emden-Weinert, Hougardy,
and Kreuter [24] gave the following lower bound on this threshold.

Theorem 13. For any fixed ∆, deciding whether a graph G with maximum degree ∆ has a
(∆ + 1− k)-coloring is NP-complete for any k such that k2 + k > ∆, when ∆ + 1− k ≥ 3.

Molloy and Reed [47] then proved a matching upper bound, for sufficiently large ∆.

Theorem 14. For any fixed sufficiently large ∆, deciding whether a graph G with maximum
degree ∆ has a (∆ + 1− k)-coloring is in P for every k such that k2 + k ≤ ∆.

Further, they conjectured that the same result holds for all values of ∆. (Section 15.4
of Molloy and Reed [48] has more on this question.) Viewed in this framework, Brooks’
Theorem describes the case k = 1. Now we consider the case k = 2. In 1977, Borodin and
Kostochka [8] posed the following conjecture.

Borodin–Kostochka Conjecture. If G has ∆ ≥ 9 and ω ≤ ∆− 1, then χ ≤ ∆− 1.

If true, the conjecture is best possible in two ways. First, even when we require ω ≤ ∆−2,
we cannot conclude χ ≤ ∆ − 2. For example, form G from a disjoint 5-cycle and K∆−4 by
adding all edges with one endpoint in each graph (this is the join of C5 and K∆−4). Now
ω = ∆− 2, but χ = ∆− 1, since every proper coloring uses at least 3 colors on the 5-cycle
and cannot reuse any color on the clique.

Figure 12. A construction showing that the hypothesis ∆ ≥ 9 in the
Borodin–Kostochka Conjecture is necessary and best possible.

Second, the lower bound on ∆ cannot be reduced, as shown by the following construction.
Form G from five disjoint copies of K3, say D1, . . . , D5, by adding edge uv if u ∈ Di, v ∈ Dj,
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and |i− j| ≡ 1 mod 5. This graph is 8-regular with ω = 6. Each color class has size at most
2, so χ = d15/2e = 8. Thus χ = ∆, but ω = ∆− 2. For ∆ ≤ 8, various other examples are
known [16] where χ = ∆ and ω < ∆.

Reed [55] proved the Borodin–Kostochka Conjecture when ∆ ≥ 106 and the present au-
thors [16] proved it for claw-free graphs (those where no vertex has three pairwise nonadjacent
neighbors). Although this question remains open, stronger versions of the conjecture are be-
lieved true. Already in 1977, Borodin and Kostochka were convinced that the same upper
bound holds for the list chromatic number. Recently, we conjectured [17] that the bound
holds even for the online list chromatic number.

Reed posed the following conjecture, which is along similar lines, but much more far-
reaching.

Reed’s Conjecture. Every graph G satisfies χ ≤
⌈
ω+∆+1

2

⌉
.

In 1998, Reed proved [54] that there exists a positive ε such that χ ≤ dωε+ (∆ + 1)(1− ε)e.
The original conjecture is that this upper bound holds when ε = 1

2
. In 2012, King and

Reed [35] gave a much shorter proof of the same result. A key ingredient of their proof is

the result of King [33] that every graph with ω > 2(∆+1)
3

has a hitting set (recall that a
hitting set is independent and intersects every maximum clique). About the same time, they
used the Claw-free Structure Theorem of Chudnovsky and Seymour to prove that Reed’s
Conjecture holds for all claw-free graphs [36]. Section 21.3 of Molloy and Reed [48] gives
further evidence for Reed’s Conjecture by showing that the desired upper bound holds for
the fractional chromatic number, even without rounding up.

We conclude this section by showing that Reed’s Conjecture is best possible, using random
graphs. Specifically, we show that if ε > 1

2
, then the bound χ ≤ dωε+ (∆ + 1)(1− ε)e fails

for some graph G. The proof we present is from the end of [54]. Kostochka [39] also
showed this using the explicit examples that Catlin [15] constructed to disprove the Hajós
Conjecture. Let Ht = t · C5 (i.e. C5 where each edge has multiplicity t) and let Gt be the
line graph of Ht; Figure 12 shows G3. Catlin showed that for odd t we have χ(Gt) = 5t+1

2
,

∆(Gt) = 3t − 1, and ω(Gt) = 2t. So, for any ε > 1
2
, we can choose t large enough to make

the bound fail.
We will randomly construct a graph H on n vertices such that χ(H) ≥ 1

2
n − n3/4 and

ω(H) ≤ 8n3/4 log n. When we form G by joining H to K∆+1−n, we see that the desired bound
fails for G when ε > 1

2
. Let H be a random graph on n vertices, where each edge appears

independently with probability p and let p = 1 − n−3/4. The expected number of cliques

of size k is
(
n
k

)
p(

k
2). So when k ≥ 8n3/4 lg n, the expected number of k-cliques is arbitrarily
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small for sufficiently large n. (
n

k

)
p(

k
2) =

(
n

k

)(
1− n−3/4

)(k
2)

≤ nk
(
1− n−3/4

)k2/4

≤ 2k lgn
(
e−n

−3/4
)k2/4

≤ ek lgn−k2n−3/4/4

≤ e−k lgn.

The expected number of independent sets of size 3 is
(
n
3

)
p3 =

(
n
3

)
(1−(1−n−3/4))3 ≤ 1

6
n3/4. By

deleting one vertex from each independent set of size 3, we get a graph H on n− 1
6
n3/4 vertices

with independence number 2. So χ(H) ≥ n
2
− 1

12
n3/4 and ω(H) ≤ 8n3/4 lg n. Now χ(G) ≥

(∆ + 1−n) + (1
2
n− 1

12
n3/4) = ∆ + 1− 1

2
n− 1

12
n3/4. Similarly ω(G) ≤ (∆ + 1−n) + 8n3/4 lg n.
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