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Abstract

The clique number of an undirected graph G is the maximum order of a complete subgraph
of G and is a well-known lower bound for the chromatic number of G. Every proper k-coloring
of G may be viewed as a homomorphism (an edge-preserving vertex mapping) of G to the
complete graph of order k. By considering homomorphisms of oriented graphs (digraphs
without cycles of length at most 2), we get a natural notion of (oriented) colorings and
oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph
whose number of vertices and oriented chromatic number coincide. However, the structure
of oriented cliques is much less understood than in the undirected case.

In this paper, we study the structure of outerplanar and planar oriented cliques. We
first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as
an oriented clique if and only if it contains one of these graphs as a spanning subgraph.
Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at
most 15, which was later proved by Sen. We show that any planar oriented clique on 15
vertices must contain a particular oriented graph as a spanning subgraph, thus reproving
the above conjecture. We also provide tight upper bounds for the order of planar oriented
cliques of girth k for all k ≥ 4.

1 Introduction and statement of results

An oriented graph is a digraph with no cycle of length 1 or 2. By replacing each edge of a simple

graph G with an arc (ordered pair of vertices) we obtain an oriented graph
−→
G ; we say that

−→
G is

an orientation of G and that G is the underlying graph of
−→
G . We denote by V (

−→
G) and A(

−→
G)

the set of vertices and arcs of
−→
G , respectively. An arc (u, v) (where u and v are vertices) is

denoted by −→uv. Two arcs −→uv and −→vw of an oriented graph are together called a directed 2-path,
or a 2-dipath, where u and w are terminal vertices and v is an internal vertex.

Colorings of oriented graphs first appeared in the work of Courcelle [3] on the monadic second
order logic of graphs. Since then it has been considered by many researchers, following the work
of Raspaud and Sopena [9] on oriented colorings of planar graphs.

An oriented k-coloring [12] of an oriented graph
−→
G is a mapping φ from V (

−→
G) to the set

{1, 2, ...., k} such that:

(i) φ(u) 6= φ(v) whenever u and v are adjacent, and

(ii) if −→uv and −→wx are two arcs in
−→
G , then φ(u) = φ(x) implies φ(v) 6= φ(w).
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We say that an oriented graph
−→
G is k-colorable whenever it admits an oriented k-coloring.

The oriented chromatic number χo(
−→
G) of an oriented graph

−→
G is the smallest integer k such

that
−→
G is k-colorable.

Alternatively, one can define the oriented chromatic number by means of homomorphisms of

oriented graphs. Let
−→
G and

−→
H be two oriented graphs. A homomorphism of

−→
G to

−→
H is a mapping

φ : V (
−→
G) → V (

−→
H ) which preserves the arcs, that is, uv ∈ A(

−→
G) implies φ(u)φ(v) ∈ A(

−→
H ). The

oriented chromatic number χo(
−→
G) of an oriented graph

−→
G is then the minimum order (number

of vertices) of an oriented graph
−→
H such that

−→
G admits a homomorphism to

−→
H .

Notice that the terminal vertices of a 2-dipath must receive distinct colors in every oriented
coloring because of the second condition of the definition. In fact, for providing an oriented
coloring of an oriented graph, only the pairs of vertices which are either adjacent or connected
by a 2-dipath must receive distinct colors (that is, for every two non-adjacent vertices u and
v which are not linked by a 2-dipath, there exists an oriented coloring which assigns the same
color to u and v). Motivated by this observation, the following definition was proposed.

An absolute oriented clique, or simply an oclique — a term coined by Klostermeyer and

MacGillivray in [6] —, is an oriented graph
−→
G for which χo(

−→
G) = |V (

−→
G)|. Note that ocliques

can hence be characterized as those oriented graphs whose any two distinct vertices are at (weak)
directed distance at most 2 from each other, that is, either adjacent or connected by a 2-dipath
in either direction. Note that an oriented graph with an oclique of order n as a subgraph

has oriented chromatic number at least n. The absolute oriented clique number ωao(
−→
G) of an

oriented graph
−→
G is the maximum order of an oclique contained in

−→
G as a subgraph.

The oriented chromatic number χo(G) (resp. absolute oriented clique number ωao(G)) of
a simple graph G is the maximum of the oriented chromatic numbers (resp. absolute oriented
clique numbers) of all the oriented graphs with underlying graph G. The oriented chromatic
number χo(F) (resp. absolute oriented clique number ωao(F)) of a family F of graphs is the
maximum of the oriented chromatic numbers (resp. absolute oriented clique numbers) of the
graphs from the family F .

From the definitions, clearly we have the following:

Lemma 1.1. For any oriented graph
−→
G , ωao(

−→
G) ≤ χo(

−→
G).

One of the first major results proved regarding the oriented chromatic number of planar
graphs is the following by Raspaud and Sopena [9].

Theorem 1.2 (Raspaud and Sopena, 1994). Every planar graph has oriented chromatic number
at most 80.

In the same paper, they also proved that every oriented forest is 3-colorable.

Theorem 1.3 (Raspaud and Sopena, 1994). Every forest has oriented chromatic number at
most 3.

Later, Sopena [11] proved that every oriented outerplanar graph is 7-colorable and provided
an example of an outerplanar oclique of order 7 (Figure 1) to prove the tightness of the result.

Theorem 1.4 (Sopena, 1997). Every outerplanar graph has oriented chromatic number at
most 7.

The structure of ocliques is much less understood than in the undirected case, where a clique
is nothing but a complete graph. For instance, the exact value of the minimum number of arcs
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Figure 1: The outerplanar oclique ~O of order 7.

in an oclique of order k is not known yet. Füredi, Horak, Pareek and Zhu [4], and Kostochka,
 Luczak, Simonyi and Sopena [7], independently proved that this number is (1 + o(1))k log2 k.

The questions related to the absolute oriented clique number of planar graphs have been first
asked by Klostermeyer and MacGillivray [6] in 2002. In their paper they asked: “what is the
maximum order of a planar oclique?”, which is equivalent to asking “what is the absolute oriented
clique number of planar graphs?”. In order to find the answer to this question, Sopena [13] found
a planar oclique of order 15 (Figure 3) while Klostermeyer and MacGillivray [6] showed that
there is no planar oclique of order more than 36, improving the upper bound of 80 which can be
obtained by using Lemma 1.1 and Theorem 1.2, and conjectured that the maximum order of a
planar oclique is 15. Later in 2011, the conjecture was positively settled [10] and we will state
it as Theorem 1.8(a) in this article.

Klostermeyer and MacGillivray also showed that any outerplanar oclique of order 7 must
contain a particular unique spanning subgraph (oriented).

Theorem 1.5 (Klostermeyer and MacGillivray, 2002). An oriented outerplanar graph of order

at least 7 is an oclique if and only if it contains the outerplanar oclique
−→
O depicted in Figure 1

as a spanning subgraph.

Bensmail, Duvignau and Kirgizov [1] showed that given an undirected graph G it is NP-hard

to decide if G has an orientation
−→
G such that

−→
G is an oclique (the similar problem, but using

the directed distance instead of the weak directed distance, was shown to be also NP-complete
by Chvátal and Thomassen in [2]). Now it is easy to notice from Theorem 1.5 that an undirected
outerplanar graph of order at least 7 can be oriented as an oclique if and only if it contains the

graph O (the underlying undirected graph of the oriented graph
−→
O from Figure 1) as a spanning

subgraph. We extend this idea to characterize every outerplanar graph that can be oriented as
an oclique in the following result.

Theorem 1.6. An undirected outerplanar graph can be oriented as an oclique if and only if it
contains one of the graphs depicted in Figure 2 as a spanning subgraph.

We also prove a result similar to Theorem 1.5 for planar graphs which implies Theorem 1.8(a)
(that is, the absolute oriented clique number of the family of planar graphs is 15).

Theorem 1.7. A planar oclique has order at most 15 and every planar oclique of order 15

contains the planar oclique
−→
P depicted in Figure 3 as a spanning subgraph.

The question regarding the upper bound for the absolute oriented clique number of the
families of planar graphs with given girth (length of the smallest cycle in a graph) is also of
interest and was asked by Klostermeyer and MacGillivray in [6]. We answer these questions and
provide tight bounds.

Let Pk denote the family of planar graphs with girth at least k. We will prove the following.
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(a) (b) (c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 2: List of edge-minimal oclique spanning subgraphs of all outerplanar ocliques

Theorem 1.8.

(a) ωao(P3) = 15.

(b) ωao(P4) = 6.

(c) ωao(P5) = 5.

(d) ωao(Pk) = 3 for k ≥ 6.

In Section 2 we fix the notation to be used in this article and state some useful results. We
also define the relative oriented clique number of an oriented graph, which will be used later
in a proof. In Section 3, 4 and 5 we prove Theorem 1.6, 1.7 and 1.8, respectively. Finally, we
mention in Section 6 some future directions for research on this topic.

2 Preliminaries

For an oriented graph ~G, every parameter we introduce below is denoted using ~G as a subscript.
In order to simplify notation, this subscript will be dropped whenever there is no chance of
confusion.

The set of all adjacent vertices of a vertex v in an oriented graph
−→
G is called its set of

neighbors and is denoted by N−→
G

(v). If −→uv is an arc, then u is an in-neighbor of v and v is an
out-neighbor of u. The set of all in-neighbors and the set of all out-neighbors of v are denoted

by N−
−→
G

(v) and N+
−→
G

(v), respectively. The degree of a vertex v in an oriented graph
−→
G , denoted

by deg−→
G

(v), is the number of neighbors of v in
−→
G . Naturally, the in-degree (resp. out-degree)
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Figure 3: The planar oclique ~P of order 15.

of a vertex v in an oriented graph
−→
G , denoted by deg−−→

G
(v) (resp. deg+−→

G
(v)), is the number of

in-neighbors (resp. out-neighbors) of v in
−→
G . The order |

−→
G | of an oriented graph

−→
G is the

cardinality of its set of vertices V (
−→
G).

We say that two vertices u and v of an oriented graph agree on a third vertex w of that graph
if w ∈ Nα(u) ∩Nα(v) for some α ∈ {+,−} and that they disagree on w if w ∈ Nα(u) ∩Nβ(v)
for {α, β} = {+,−}.

A directed path of length k, or a k-dipath, from v0 to vk is an oriented graph with ver-
tices v0, v1, ..., vk and arcs −−→v0v1,

−−→v1v2, ...,
−−−−→vk−1vk where v0 and vk are the terminal vertices and

v1, ..., vk−1 are internal vertices. A 2-dipath with arcs −→uv and −→vw is denoted by −−→uvw. More
generally, a 2-dipath with terminal vertices u,w and internal vertex v is denoted by uvw (this
denotes either the 2-dipath −−→uvw or the 2-dipath −−→wvu). A directed cycle of length k, or a directed
k-cycle, is an oriented graph with vertices v1, v2, ..., vk and arcs −−→v1v2,

−−→v2v3, ...,
−−−−→vk−1vk and −−→vkv1.

The directed distance
−→
d −→

G
(u, v) between two vertices u and v of an oriented graph

−→
G is

the smallest length of a directed path from u to v in
−→
G . We let

−→
d −→

G
(u, v) = ∞ if no such

directed path exists. The weak directed distance d−→
G

(u, v) between u and v is then given by

d−→
G

(u, v) = min{
−→
d −→

G
(u, v),

−→
d −→

G
(v, u)}.

Let now G be an undirected graph. A path of length k, or a k-path, from v0 to vk is a
graph with vertices v0, v1, ..., vk and edges −−→v0v1,

−−→v1v2, ...,
−−−−→vk−1vk. The distance dG(x, y) between

5



w u v

b c

a

Figure 4: List of all triangle-free planar graphs with diameter 2 (Plesńık (1975)).

two vertices x and y of G is the smallest length of a path connecting x and y. The diameter
diam(G) of a graph G is the maximum distance between pairs of vertices of the graph.

Triangle-free graphs with diameter 2 have been characterized by Plesńık in [8].

Theorem 2.1 (Plesńık, 1975). The triangle-free graphs with diameter 2 are precisely the graphs
listed in Figure 4.

The graphs depicted in Figure 4 are the stars, the complete bipartite graphs K2,n for some
natural number n, and the graph obtained by adding copies of two non-adjacent vertices of the
5-cycle.

A vertex subset D is a dominating set of a graph G if every vertex of G is either in D
or adjacent to a vertex of D. The domination number γ(G) of a graph G is the minimum
cardinality of a dominating set of G.

We now define a new parameter for oriented graphs which will be used in our proof. A

relative oriented clique of an oriented graph
−→
G is a set R ⊆ V (

−→
G) of vertices such that any

two vertices from R are at weak directed distance at most 2 in
−→
G . The relative oriented clique

number ωro(
−→
G) of an oriented graph

−→
G is the maximum order of a relative oriented clique of

−→
G .

The relative oriented clique number ωro(G) of a simple graph G is the maximum of the
relative oriented clique numbers of all the oriented graphs with underlying graph G. The relative
oriented clique number ωro(F) of a family F of graphs is the maximum of the relative oriented
clique numbers of the graphs from the family F .

From the definitions, we clearly have the following extension of Lemma 1.1.

Lemma 2.2. For any oriented graph
−→
G , ωao(

−→
G) ≤ ωro(

−→
G) ≤ χo(

−→
G).

The relative oriented clique number of outerplanar graphs is at most 7 and this bound is
tight.

Theorem 2.3. Let O be the family of outerplanar graphs. Then, ωro(O) = 7.

Proof. Note that the oriented outerplanar graph depicted in Figure 1 is an oclique. Hence, by
Theorem 1.4 and Lemma 2.2 the result follows.

3 Proof of Theorem 1.6

It is easy to verify that each graph in Figure 2 is outerplanar and can be oriented as an oclique.
If G is an outerplanar graph which contains any of the graphs from Figure 2 as a spanning
subgraph, then we can orient the edges of that spanning subgraph to obtain an oclique and
orient all the other edges arbitrarily. Note that with such an orientation G is an outerplanar
oclique. This proves the “if” part.
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For the “only if” part, first note that a graph cannot be oriented as an oclique if it is
disconnected. Now there are only two connected graphs with at most two vertices, namely,
the complete graphs K1 (single vertex) and K2 (an edge). Both of them are outerplanar and
can be oriented as ocliques. Hence, any outerplanar graph on at most two vertices that can be
oriented as an oclique must contain one of the graphs depicted in Figure 2(a) and Figure 2(b)
as a spanning subgraph.

If G is connected and has 3 vertices it must contain a 2-path as a spanning subgraph. We
know that a 2-path is outerplanar and can be oriented as an oclique. Hence, any outerplanar
graph on three vertices that can be oriented as an oclique must contain a 2-path (Figure 2(c))
as a spanning subgraph.

If G has at least 4 vertices and is a minimal (with respect to spanning subgraph inclusion)
outerplanar graph that can be oriented as an oclique, then ∆(G) ≥ 2 as every oriented tree is
3-colorable. Now we will do a case analysis to prove the remaining part.

For the remainder of the proof assume that V (G) = {v1, v2, v3, ..., v|G|} where G is a minimal
(with respect to spanning subgraph inclusion) outerplanar graph of order at least 4 that can be
oriented as an oclique.

(i) For |G| = 4 and ∆(G) = 2: A triangle would force one vertex to have degree zero and
hence G can not be oriented as an oclique. So, G must contain a 4-cycle (Figure 2(d)).

(ii) For |G| = 4 and ∆(G) = 3: G can not be K1,3 since it is 3-colorable (as it is a tree). So
we need to add at least one more edge to it. By adding one more edge to it, without loss
of generality, we obtain the graph depicted in Figure 2(e).

(iii) For |G| = 5 and ∆(G) = 2: G must contain a C5 (Figure 2(e)) as any other connected
graph on five vertices is either a tree or has maximum degree greater than 2.

(iv) For |G| = 5 and ∆(G) = 3: Without loss of generality assume that deg(v1) = 3 and
N(v1) = {v2, v3, v4}. If |N(v1) ∩N(v5)| < 2, then there cannot be a 2-dipath between v5
and a vertex from N(v1) \N(v5). If |N(v1) ∩N(v5)| > 2, that is, N(v1) = N(v5), then G
will contain K2,3 as a subgraph which contradicts the outerplanarity of G. Hence we must
have |N(v1) ∩N(v5)| = 2.

Without loss of generality assume that N(v5) = {v2, v3}. Since ∆(G) = 3, v4 must be
adjacent to either v2 or v3 to allow a 2-dipath between v4 and v5. But then C5 is a
spanning subgraph of G contradicting the minimality of G.

(v) For |G| = 5 and ∆(G) = 4: First note that G cannot have four edges as then it will be a
tree and hence 3-colorable. Assume first that G has five edges. Without loss of generality
assume that N(v1) = {v2, v3, v4, v5} and that the fifth edge in G is v2v3. Now assume the
arc −−→v2v1 without loss of generality. This implies the arcs −−→v1v4,

−−→v1v5 to have a 2-dipath
between the pair of vertices {v2, v4} and {v2, v5} respectively. But then it is not possible
to connect v4 and v5 by a 2-dipath. Therefore, G has at least six edges. If G has at least
six edges, then G will contain the graph depicted either in Figure 2(g) or in Figure 2(h)
as a spanning subgraph.

(vi) For |G| = 6 and ∆(G) = 2: The only two connected graphs on six vertices with ∆(G) = 2
are the cycle C6 on six vertices and the path on six vertices. None of them can be oriented
as an oclique as the oriented chromatic number of trees and cycles is bounded above by 3
and 5, respectively.

7



(vii) For |G| = 6 and ∆(G) = 3: Let N(v1) = {v2, v3, v4}. Since G is an outerplanar graph
we have |N(v1) ∩N(vi)| ≤ 2 for i ∈ {5, 6}. Now let |N(v1) ∩N(v5)| = 0. Then v2, v3 and
v4 must be connected by 2-dipaths to v5 through v6 contradicting |N(v1) ∩ N(v6)| ≤ 2.
Hence |N(v1) ∩N(v5)| ∈ {1, 2}.

First assume that |N(v1) ∩N(v5)| = 1 and without loss of generality let N(v1) ∩N(v5) =
{v2}. Since ∆(G) = 3, v2 can be adjacent to at most one of the vertices from {v3, v4}. If
v2 is adjacent to exactly one vertex from {v3, v4}, say v3 without loss of generality, then v4
must be connected to v5 by a 2-dipath through v6. Now for having weak directed distance
at most 2 between v3 and v6 we must either have the edge v3v4 or have the edge v3v6 (it is
not possible to have the edge v2v6 as ∆(G) = 3) creating a K4-minor or a K2,3 respectively,
contradicting the outerplanarity of G. Hence, v2 is non-adjacent to both v3 and v4. In
that case, v5 must be connected to v3 and v4 by 2-dipaths through v6. This will create a
K2,3-minor in G contradicting its outerplanarity.

Now assume that |N(v1) ∩ N(v5)| = 2 and let N(v1) ∩ N(v5) = {v2, v3}. Since G is
outerplanar, v4 cannot be connected to v5 by a 2-dipath through v6 as that will create a
K2,3-minor. So v4 must be connected to v5 by a 2-dipath through either v2 or v3. Note
that v4 cannot be adjacent to both v2 and v3 as it will create a K4-minor contradicting
the outerplanarity of G. Without loss of generality assume that v4 is connected to v5 by a
2-dipath through v3. Now v6 cannot be adjacent to v3 as ∆(G) = 3. To have weak directed
distance from v6 to v2 and v4 at most 2 we must have the edges v4v6 and v5v6. This will
create a K2,3-minor contradicting the outerplanarity of G. Hence we are done with this
case as well.

(viii) For |G| = 6 and ∆(G) = 4: Let N(v1) = {v2, v3, v4, v5}. Then we have |N(v1)∩N(v6)| ≤ 2
since G is outerplanar. Let N(v1) ∩N(v6) = N(v6) = {v2}. Then v2 can be a neighbor of
at most two vertices from {v3, v4, v5} in order to preserve outerplanarity of G and hence
the remaining vertex will not have any 2-dipath connecting it to v6. So we must have
|N(v6)| = 2. Without loss of generality assume that N(v6) = {v3, v4}. Now v6 must
be connected by 2-dipaths to v2 and v5. These two 2-dipaths must go through v3 or v4.
Both 2-dipaths cannot go through the same vertex v3 (or v4) as it will create a K2,3-minor
contradicting the outerplanarity of G. Therefore, one of the two 2-dipaths must go through
v3 while the other must go through v4. This will force the graph depicted in Figure 2(i)
to be a spanning subgraph of G contradicting its minimality.

(ix) For |G| = 6 and ∆(G) = 5: Assume that N(v1) = {v2, v3, v4, v5, v6} and let the vertices
v2, v3, v4, v5 and v6 be arranged in clockwise order around v1 in a fixed planar embedding
of G. Since G is outerplanar, the induced subgraph G[v2, v3, v4, v5, v6] cannot have a cycle
as it will create a K4-minor, contradicting the outerplanarity of G.

Now without loss of generality assume that |N+(v1)| > |N−(v1)|. Note that if |N+(v1)| ≥ 4
then we cannot have weak directed distance at most 2 between all the vertices of N+(v1)
keeping the graph outerplanar. Hence we must have |N+(v1)| = 3 and |N−(v1)| = 2. Now
to have weak directed distance at most 2 between all the vertices of N+(v1) and between
all the vertices of N−(v1), keeping the graph outerplanar, we must have the graph depicted
in Figure 2(j) as a spanning subgraph of G.

(x) For |G| = 7: It has been proved by Klostermeyer and MacGillivray in [6] that G must
contain the graph depicted in Figure 2(k) as a spanning subgraph.

This concludes the proof. �
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4 Proof of Theorem 1.7

Goddard and Henning [5] proved that every planar graph of diameter 2 has domination number
at most 2 except for a particular graph on nine vertices.

Let
−→
B be a planar oclique dominated by the vertex v. Sopena [12] showed that any oriented

outerplanar graph has an oriented 7-coloring (see Theorem 1.4). Hence let c be an oriented

7-coloring of the oriented outerplanar graph obtained from
−→
B by deleting the vertex v. For

u ∈ Nα(v) let us assign the color (c(u), α) to u for α ∈ {+,−} and the color 0 to v. It is easy

to check that this is an oriented 15-coloring of
−→
B . Hence any planar oclique dominated by one

vertex has order at most 15.

Lemma 4.1. Let
−→
H be a planar oclique of order 15 dominated by one vertex. Then

−→
H contains

the planar oclique depicted in Figure 3 as a spanning subgraph.

Proof. Suppose
−→
H is a triangulated planar oclique of order 15 dominated by one vertex v. Note

that Nα(v) is a relative oriented clique in
−→
H [N(v)] (that is, the oriented subgraph of

−→
H induced

by the neighbors of v, which is actually the oriented graph obtained by deleting the vertex v

from
−→
H ) for any α ∈ {+,−}. Also note that

−→
H [N(v)] is an outerplanar graph. Hence, by

Theorem 2.3, we have |Nα(v)| ≤ 7 for any α ∈ {+,−}. But we also have

|N+(v)| + |N−(v)| = 14.

Hence we get

|N+(v)| = |N−(v)| = 7.

Now assume N(v) = {x1, x2, ..., x14}. Moreover, fix a planar embedding of
−→
H and, without

loss of generality, assume that the vertices x1, x2, ..., x14 are arranged in a clockwise order around

v. The triangulation of
−→
H forces the edges x1x2, x2x3, . . . , x13x14 and x14x1. We know from the

above discussion that there should be two disjoint relative oriented cliques N+(v) and N−(v),

each of order 7, in the outerplanar graph
−→
H [N(v)]. We already have the cycle x1x2 . . . x14

forced in the outerplanar graph
−→
H [N(v)]. We will now prove some more structural properties

of
−→
H [N(v)].

As
−→
H [N(v)] is an outerplanar graph, it must have at least two vertices of degree at most 2.

As every vertex of the graph is part of a cycle, there is no vertex of degree at most 1. Hence

there are at least two vertices of degree exactly 2 in
−→
H [N(v)].

Without loss of generality, assume that deg−→
H [N(v)]

(x2) = 2 and x2 ∈ Nα(v) for some fixed

α ∈ {+,−} and let {α, ᾱ} = {+,−}. Since
−→
H is triangulated, we must have the edge x1x3. The

vertices of Nα(v) \ {x1, x2, x3} must then be connected to x2 by 2-dipaths with internal vertex
either x1 or x3.

Let four vertices of Nα(v) \{x1, x2, x3} be connected to x2 by 2-dipaths with internal vertex
x1. Then there will be two vertices, among the above mentioned four vertices, at weak directed
distance at most 3 which is a contradiction. So at most three vertices of Nα(v)\{x1, x2, x3} can
be connected to x2 by 2-dipaths with internal vertex x1. Similarly we can show that at most
three vertices of Nα(v) \ {x1, x2, x3} can be connected to x2 by 2-dipaths with internal vertex
x3.

Now suppose there are at least two vertices xi, xj ∈ Nα(v) \ {x1, x2, x3} that are connected
to x2 by 2-dipaths with internal vertex x1 and there are at least two vertices xk, xl ∈ Nα(v) \
{x1, x2, x3} that are connected to x2 by 2-dipaths with internal vertex x3.

9
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Figure 5: Structure of ~G (not a planar embedding)

Notice that, as the graph
−→
H is planar, with the given planar embedding of

−→
H we must have

i, j > k, l. Now, without loss of generality, we can assume that i > j and k > l. But it will
be impossible to have weak directed distance at most 2 between xi and xl keeping the graph
−→
H planar. So, at least one of the vertices x1 or x3 must be the internal vertex of at most one
2-dipath connecting a vertex of Nα(v) \ {x1, x2, x3} to x2.

If at least one of the vertices x1 or x3 belongs to Nα(v), then we have

|Nα(v) \ {x1, x2, x3}| ≥ 5.

But then, by the above discussion, we will have a contradiction (there will be at least two vertices
of Nα(v) \ {x1, x2, x3} connected by 2-dipaths with internal vertex x1 and at least two vertices
of Nα(v) \ {x1, x2, x3} connected by 2-dipaths with internal vertex x3).

Hence we must have x1, x3 ∈ Nα(v). Without loss of generality, we have three vertices
xi, xj , xk ∈ Nα(v) \ {x1, x2, x3} connected by 2-dipaths with internal vertex x1 and one vertex
xl ∈ Nα(v) \ {x1, x2, x3} connected by a 2-dipath with internal vertex x3. Without loss of
generality, we can assume i > j > k > l.

Now, to have d(xi, xs) ≤ 2 for s ∈ {2, 3, l}, the vertices x2, x3, xl must disagree with xi on
x1. Also, to have d(xi, xk) ≤ 2 and d(x2, xl) ≤ 2, we must have the 2-dipaths xixjxk and x2x3xl.

But then the induced oriented graph
−→
H [Nα(v)] contains the oriented graph induced by Nα(a0)

of the planar oclique depicted in Figure 3.

Further notice that no vertex of Nα(v), other than x2, has degree 2 in
−→
H [N(v)]. Hence we

can infer that a vertex of N ᾱ(v) has degree 2 in
−→
H [N(v)]. That will imply that the induced

oriented graph
−→
H [Nα(v)] contains the oriented graph induced by Nα(a0) of the planar oclique

depicted in Figure 3.

Hence the planar oclique depicted in Figure 3 is a subgraph of
−→
H . It is easy to check that,

regardless of the choice of
−→
H (it is a triangulation of the planar oclique depicted in Figure 3), if

we delete one arc of the oriented subgraph, isomorphic to the planar oclique depicted in Figure 3,

of
−→
H , the oriented graph

−→
H does no longer remain an oclique.

Now, to prove Theorem 1.7, it will be enough to prove that every planar oclique of order at
least 15 must have domination number 1. In other words, it will be enough to prove that any
planar oclique with domination number 2 must have order at most 14. More precisely, we need
to prove the following lemma.

Lemma 4.2. Let
−→
H be a planar oclique with domination number 2. Then |

−→
H | ≤ 14.
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Figure 6: A planar embedding of und( ~H)

Let
−→
G be a planar oclique with |

−→
G | > 14. Assume that

−→
G is triangulated and has domination

number 2.
We define a partial order ≺ on the set of all dominating sets of order 2 of

−→
G as follows: for

any two dominating sets D = {x, y} and D′ = {x′, y′} of order 2 of
−→
G , D′ ≺ D if and only if

|N(x′) ∩N(y′)| < |N(x) ∩N(y)|.

Let D = {x, y} be a maximal dominating set of order 2 of
−→
G with respect to ≺. Also,

for the remainder of this section, let t, t′, α, α, β, β be variables satisfying {t, t′} = {x, y} and
{α,α} = {β, β} = {+,−}.

Let us fix the following notations (see Figure 5):

C = N(x) ∩N(y), Cαβ = Nα(x) ∩Nβ(y), Cα
t = Nα(t) ∩C,

St = N(t) \ C, Sα
t = St ∩Nα(t), S = Sx ∪ Sy.

Hence we have
15 ≤ |

−→
G | = |D| + |C| + |S|. (1)

Let
−→
H be the oriented graph obtained from the induced subgraph

−→
G [D∪C] of

−→
G by deleting

all the arcs between the vertices of D and all the arcs between the vertices of C. Note that it is
possible to extend the planar embedding of und(

−→
H ) given in Figure 6 to a planar embedding of

und(
−→
G) for some particular ordering of the elements of, say C = {c0, c1, . . . , ck−1}.

Notice that und(
−→
H ) has k faces, namely the unbounded face F0 and the faces Fi bounded by

edges xci−1, ci−1y, yci and cix for i ∈ {1, . . . , k − 1}. Geometrically, und(
−→
H ) divides the plane

into k connected components. The region Ri of
−→
G is the ith connected component (corresponding

to the face Fi) of the plane. The boundary points of a region Ri are ci−1 and ci for i ∈
{1, . . . , k − 1}, and c0 and ck−1 for i = 0. Two regions are adjacent if they have at least one
common boundary point (hence, a region is adjacent to itself).

Now, for the different possible values of |C|, we want to show that und(
−→
H ) cannot be extended

to a planar oclique of order at least 15. Note that, for extending und(
−→
H ) to

−→
G , we can add new

vertices only from S. Any vertex v ∈ S will be inside one of the regions Ri. If there is at least
one vertex of S in a region Ri, then Ri is non-empty and empty otherwise. In fact, when there
is no chance of confusion, Ri might represent the set of vertices of S contained in the region Ri.

As any two distinct non-adjacent vertices of
−→
G must be connected by a 2-dipath, we have

the following three lemmas:
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Figure 7: For |C| = 1 while x and y are non-adjacent

Lemma 4.3. (a) If (u, v) ∈ Sx × Sy or (u, v) ∈ Sα
t × Sα

t , then u and v are in adjacent regions.

(b) If (u, c) ∈ Sα
t ×Cα

t , then c is a boundary point of a region adjacent to the region containing
u.

Lemma 4.4. Let R, R1 and R2 be three distinct regions such that R is adjacent to Ri with
common boundary point ci while the other boundary point of Ri is ci, for all i ∈ {1, 2}. If
v ∈ Sα

t ∩ R and ui ∈ ((Sα
t ∪ St′) ∩ Ri) ∪ ({ci} ∩ Cα

t ), then v disagrees with ui on ci, for all
i ∈ {1, 2}. Moreover, if both u1 and u2 exist, then |Sα

t ∩R| ≤ 1.

Lemma 4.5. For any arc −→uv in
−→
G , |Nα(u) ∩Nβ(v)| ≤ 3.

Now we ask the question “How small |C| can be?” and try to prove possible lower bounds
of |C|. The first result regarding the lower bound of |C| is proved below.

Lemma 4.6. |C| ≥ 2.

Proof. We know that x and y are either connected by a 2-dipath or by an arc. If x and y are

adjacent then, as
−→
G is triangulated, we have |C| ≥ 2. If x and y are non-adjacent, then |C| ≥ 1.

Hence it is enough to show that we cannot have |C| = 1 while x and y are non-adjacent.

If |C| = 1 and x and y are non-adjacent, then the triangulation of
−→
G will force the con-

figuration depicted in Figure 7 as a subgraph of und(
−→
G), where C = {co}, Sx = {x1, . . . , xnx

}
and Sy = {y1, . . . , yny

}. Without loss of generality, we may assume |Sy| ≥ |Sx|. Then, by
equation (1), we have

ny = |Sy| ≥ ⌈(15 − 2 − 1)/2⌉ = 6.

Clearly nx = |Sx| ≥ 3, as otherwise {c0, y} would be a dominating set with at least two common
neighbors {y1, yny

}, which contradicts the maximality of D.
For nx = 3, we know that c0 is not adjacent to x2 as otherwise {c0, y} would be a dominating

set with at least two common neighbors {y1, yny
}, contradicting the maximality of D. But then

x2 should be adjacent to yi for some i ∈ {1, . . . , ny}, as otherwise d(x2, y) > 2. Now the

triangulation of
−→
G forces x2 and yi to have at least two common neighbors. Also, x2 cannot

be adjacent to yj for any j 6= i, as it would create a dominating set {x2, y} with at least two
common neighbors {yi, yj}, contradicting the maximality of D. Hence, x2 and yi are adjacent
to both x1 and x3. Note that tℓt and tℓt+k are adjacent if and only if k = 1, as otherwise
d(tℓt+1, t

′) > 2 for 1 ≤ ℓt < ℓt + k ≤ nt. In this case, by equation (1), we have

ny = |Sy| ≥ 15 − 2 − 1 − 3 = 9.
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Assume i ≥ 5. Hence, c0 is adjacent to yj for all j = 1, 2, 3, as otherwise d(yj , x3) > 2. This
implies d(y2, x2) > 2, a contradiction. Similarly i < 5 would also force a contradiction. Hence
nx ≥ 4.

For nx = 4, c0 cannot be adjacent to both x3 and xnx−2 = x2 as it would create a dominating
set {c0, y} with at least two common neighbors {y1, yny

}, contradicting the maximality of D.
For nx ≥ 5, c0 is adjacent to x3 implies, either for all i ≥ 3 or for all i ≤ 3, xi is adjacent to
c0, as otherwise d(xi, y) > 2. Either of these cases would force c0 to become adjacent to yj, as
otherwise we would have either d(x1, yj) > 2 or d(xnx

, yj) > 2 for all j ∈ {1, 2, . . . , ny}. But
then we would have a dominating set {c0, x} with at least two common vertices, contradicting
the maximality of D. Hence, for nx ≥ 5, c0 is not adjacent to x3. Similarly we can show, for
nx ≥ 5, that c0 is neither adjacent to x3 nor to xnx−2.

So, for nx ≥ 4, we can assume without loss of generality that c0 is not adjacent to x3. We
know that d(y1, x3) ≤ 2. We have already noted that tlt and tlt+k are adjacent if and only if
k = 1 for any 0 ≤ lt < lt + k ≤ nt. Hence, to have d(y1, x3) ≤ 2, we must have one of the
following edges: y1x2, y1x3, y1x4 or y2x3.

The first edge would imply the edges x2yj as otherwise d(x1, yj) > 2 for all j = 3, 4, 5. These
three edges would then imply d(x4, y3) > 2. Hence we do not have the edge y1x2.

The other three edges, assuming we cannot have the edge y1x2, would force the edges x2c0 and
x1c0 for having d(x2, y) ≤ 2 and d(x1, y) ≤ 2. This would imply d(x1, y4) > 2, a contradiction.
Therefore, we cannot have the other three edges too.

Hence we are done.

We now prove that, for 2 ≤ |C| ≤ 5, at most one region of
−→
G can be non-empty. Later,

using this result, we will improve the lower bound of |C|.

Lemma 4.7. If 2 ≤ |C| ≤ 5, then at most one region of
−→
G is non-empty.

Proof. (For pictorial help, refer to Figure 6.) If |C| = 2 and x and y are adjacent, then the

region that contains the edge xy is empty, as otherwise the triangulation of
−→
G would force x

and y to have a common neighbor other than c0 and c1. So, for the rest of the proof, we can
assume x and y are non-adjacent if |C| = 2.

Step 0. We first show that it is not possible to have either Sx = ∅ or Sy = ∅ and have at
least two non-empty regions. Without loss of generality, assume that Sx = ∅. Then x and y are
non-adjacent, as otherwise y would be a dominating vertex which is not possible.

For |C| = 2, if both Sy ∩R0 and Sy ∩R1 are non-empty, then the triangulation of
−→
G forces

either two parallel edges c0c1 (one in each region) or a common neighbor of x and y other than
c0, c1, a contradiction.

For |C| = 3, 4 and 5, the triangulation of
−→
G implies the edges c0c1, . . . , ck−2ck−1 and ck−1c0.

Hence every v ∈ Sy must be connected to x by a 2-dipath through ci for some i ∈ {1, 2, . . . , k−1}.
Now assume |Sα

y | ≥ |Sα
y | for some α ∈ {+,−}. Then, by equation (1), we have

|Sα
y | ≥ ⌈(15 − 2 − 5)/2⌉ = 4.

By Lemma 4.3, we know that the vertices of Sα
y will be contained in two adjacent regions for

|C| = 4, 5. For |C| = 3, Sα
y ∩Ri 6= ∅ for all i ∈ {0, 1, 3} implies |Sα

y | ≤ 3 by Lemma 4.4. Hence,
without loss of generality, we may assume Sα

y ⊆ R1 ∪ R2. If both Sα
y ∩ R1 and Sα

y ∩ R2 are
non-empty then, by Lemma 4.4, each vertex of Sα

y ∩ R1 disagrees with each vertex of Sα
y ∩ R2

on c1. But then, {c1, y} becomes a dominating set with at least six common neighbors (namely
c0, c2, and four vertices from Sα

y ), which contradicts the maximality of D.
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Hence, all the vertices of Sα
y must be contained in one region, say R1. Each of them should

then be connected to x by a 2-dipath with internal vertex either c0 or c1. However, the vertices
that are connected to x by a 2-dipath with internal vertex c0 should have weak directed distance
at most 2 with the vertices connected to x by a 2-dipath with internal vertex c1. But it is not
possible to connect them unless they are all adjacent to either c0 or c1, in which case it would
contradict the maximality of D.

Hence both Sx and Sy are non-empty.

Step 1. We now prove that at most four sets out of the 2k sets St ∩Ri can be non-empty, for
all t ∈ {x, y} and i ∈ {0, 1, . . . , k − 1}. It is immediate for |C| = 2. For |C| = 4 and 5, the
statement follows from Lemma 4.3. For |C| = 3, we consider the following two cases:

(i) Assume St ∩ Ri 6= ∅ for all t ∈ {x, y} and for all i ∈ {0, 1, 2}. Then, by Lemma 4.4, we
have |St ∩Ri| ≤ 1 for all t ∈ {x, y} and for all i ∈ {0, 1, 2}. By equation (1), we have

15 ≤ |
−→
G | = 2 + 3 + 4 = 9.

This is a contradiction.

(ii) Assume that five out of the six sets St∩Ri are non-empty and that the other one is empty,
where t ∈ {x, y} and i ∈ {0, 1, 2}. Without loss of generality, we can assume Sx ∩R0 = ∅.
By Lemma 4.4, we have |St ∩ Ri| ≤ 1 for all (t, i) ∈ {(x, 1), (x, 2), (y, 0)}. In particular,
|Sx| ≤ 2.

Now, all vertices of St ∩ Ri are adjacent to c1 for i ∈ {1, 2}, for being at weak directed
distance at most 2 from each other, by Lemma 4.4. That means every vertex of Sx is
adjacent to c1. Hence, there can be at most three vertices in (Sy ∩ R1) ∪ (Sy ∩ R2)
as otherwise the dominating set {c1, y} would contradict the maximality of D. Hence,
|Sy| ≤ 4.

Therefore, by equation (1) we have

15 ≤ |
−→
G | = 2 + 3 + (2 + 4) = 11.

This is a contradiction.

Hence, at most four sets out of the 2k sets St ∩Ri can be non-empty, where t ∈ {x, y} and
i ∈ {0, 1, . . . , k − 1}.

Step 2. Assume now that exactly four sets out of the sets St ∩ Ri are non-empty, for all
t ∈ {x, y} and i ∈ {0, . . . , k − 1}. Without loss of generality, we have the following three cases
(by Lemma 4.3):

(i) Assume the four non-empty sets are Sx ∩R1, Sy ∩R0, Sy ∩R1 and Sy ∩R2 (only possible

for |C| ≥ 3). The triangulation of
−→
G then forces the edges c0ck−1 and c1c2. Lemma 4.4

implies that Sx ∩ R1 = {x1} and that the vertices of Sy ∩ R0 and the vertices of Sy ∩ R2

disagree with x1 on c0 and c1, respectively.

For |C| = 3, if every vertex from Sy ∩ R1 is adjacent to either c0 or c1, then {c0, c1} will
be a dominating set with at least four common neighbors {x, y, x1, c2}, contradicting the

maximality of D. If not, then the triangulation of
−→
G will force x1 to be adjacent to at

least two vertices, from Sy, say y1 and y2. But then, {x1, y} would be a dominating set
with at least four common neighbors {y1, y2, c0, c1}, contradicting the maximality of D.
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For |C| = 4 and 5, Lemma 4.3 implies that vertices of Sy ∩ R0 and vertices of Sy ∩ R2

disagree with each other on y. Now, by Lemma 4.4, any vertex of Sy∩R1 is adjacent either
to c0 (if it agrees with the vertices of Sy ∩R0 on y) or to c1 (if it agrees with the vertices of
Sy ∩R2 on y). Also, the vertices of Sy ∩R0 and Sy ∩R2 are connected to x1 by a 2-dipath
through c0 and c1 respectively. Hence, by Lemma 4.5, we have |Sy ∩R0|, |Sy ∩R2| ≤ 3.

Now, by equation (1), we have

|Sy| ≥ (15 − 2 − 5 − 1) = 7.

Hence, without loss of generality, at least four vertices y1, y2, y3, y4 of Sy are adjacent to
c0. But, in that case, {c0, y} is a dominating set with at least five common neighbors
{y1, y2, y3, y4, ck−1}, contradicting the maximality of D for |C| = 4.

For |C| = 5, each vertex of Sy ∩ R1 disagrees with c3 on y by Lemma 4.3 and therefore,
without loss of generality, all of them are adjacent to c0. Then, vertices of Sy∩R1 disagrees
with vertices of Sy ∩ R2 on y as well. This implies vertices of Sy ∩ R2 agrees with c3 on
y and must be connected to c3 by 2-dipaths with internal vertex c2. Now, by Lemma 4.4,
|Sy ∩R2| ≤ 1. So, |Sy| ≥ 7 implies |Sy ∩ (R0∪R1)| ≥ 6. But every vertex of Sy ∩ (R0∪R1)
are adjacent to c0. In that case, {c0, y} is a dominating set with at least six common
neighbors, contradicting the maximality of D for |C| = 5.

(ii) Assume the four non-empty sets are Sx∩R0, Sx∩R1, Sy∩R0 and Sy∩R1. For |C| = 2, every
vertex in S is adjacent either to c0 or to c1 (by Lemma 4.4). So, {c0, c1} is a dominating
set. Hence, no vertex w ∈ S can be adjacent to both c0 and c1 since otherwise {c0, c1}
would be a dominating set with at least three common neighbors {x, y, w}, contradicting
the maximality of D. By equation (1), we have

|S| ≥ 15 − 2 − 2 = 11.

Hence, without loss of generality, we may assume |Sx ∩ R0| ≥ 3. Suppose {x1, x2, x3} ⊆
Sx∩R0. In that case, all vertices of Sx∩R0 must be adjacent to c0 (or to c1), as otherwise
it would force all vertices of Sy ∩ R1 to be adjacent to both c0 and c1 (by Lemma 4.4).
Without loss of generality, assume that all vertices of Sx ∩R0 are adjacent to c0. Then, all
vertices w ∈ Sy will be adjacent to c0, as otherwise d(w, xi) > 2, for some i ∈ {1, 2, 3}. But
then {c0, x} would be a dominating set with at least three common vertices {x1, x2, x3},
contradicting the maximality of D.

For |C| = 3, 4, every vertex of S will be adjacent to c0 (by Lemma 4.4). By equation (1),
we have

|S| ≥ (15 − 2 − 4) = 9.

Hence, without loss of generality, |Sx| ≥ 5. In that case, {co, x} is a dominating set with
at least five common neighbors Sx ∪ {y}, contradicting the maximality of D for |C| = 3, 4.

For |C| = 5, every vertex of St ∩ Ri disagrees with ci+2 on t and, therefore, |St ∩ Ri| ≤
3 for i ∈ {0, 1} by Lemma 4.3. Assume |Sx ∩ R0| = 3 and Sx ∩ R0 = {x1, x2, x3}.
Moreover, assume without loss of generality that c2 ∈ Nα(x). In that case, we must have
{x1, x2, x3} ⊆ Nα(x).

Note that x1, x2 and x3 must agree on c0 in order to be at weak directed distance at most
2 with the vertices of Sy∩R1. Further, assume that {x1, x2, x3} ⊆ Nβ(c0). But then, as all
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the three vertices {x1, x2, x3} are adjacent to both x and c0, the only way each of them can
be at weak directed distance 2 from c3 is through a 2-dipath with internal vertex x. Hence,
we have c3 ∈ Nα(x). This implies x4 ∈ Nα(x) for any vertex x4 ∈ Sx ∩R1. But then, the
vertices of Sx ∩ R1 must disagree with vertices of Sx ∩R0 on c0, making it impossible for
the vertices of Sy ∩R0 to be at weak directed distance at most 2 from x1, x2, x3 and from
the vertices of Sx ∩R1. Therefore, we must have |Sx ∩R0| ≤ 2.

Similarly, we can prove |St ∩Ri| ≤ 2 for i ∈ {0, 1}.

We now show that it is not possible to have |St ∩ Ri| = 2 for all (t, i) ∈ {x, y} × {0, 1}.
Suppose on the contrary that this is the case. Then, clearly, the vertices of St∩Ri disagree
with ci+2 and ci+3 on t. Hence, the vertices of St ∩ R0 agree with the vertices of St ∩ R1

on t. Therefore, the vertices of St ∩R0 must disagree with the vertices of St ∩R1 on c0.

Then it will not be possible to have both the vertices of Sx ∩R0 at weak directed distance
at most 2 from all the four vertices of Sy.

Therefore, we have |S| ≤ 7. Hence, by equation (1), we have

15 ≤ |
−→
G | ≤ 2 + 5 + 7 = 14.

This is a contradiction and we are done.

(iii) Assume the four non-empty sets are Sx ∩R1, Sx ∩R2, Sy ∩R0 and Sy ∩R1 (only possible
for |C| = 3). In that case, Lemma 4.4 implies that every vertex of (Sx ∩R1) ∪ (Sy ∩R0) is
adjacent to c0 and that every vertex of (Sx ∩R2) ∪ (Sy ∩R1) is adjacent to c1.

Moreover, the triangulation of
−→
G forces the edges c0c2 and c1c2. It also forces some vertex

v1 ∈ Sy ∩ R1 to be adjacent to c0. But this would create the dominating set {c0, c1} with
at least four common neighbors {x, y, v1, c2} contradicting the maximality of D.

Hence at most three sets out of the 2k sets St ∩Ri can be non-empty, where t ∈ {x, y} and
i ∈ {0, 1, . . . , k − 1}.

Step 3. Now assume that exactly three sets out of the sets St ∩ Ri are non-empty, where
t ∈ {x, y} and i ∈ {0, . . . , k− 1}. Without loss of generality we have the following two cases (by
Lemma 4.3):

(i) Assume the three non-empty sets are Sx ∩R0, Sy ∩R0 and Sy ∩ R1. The triangulation of
−→
G implies that the edge c0c1 lies inside the region R1.

For |C| = 2, there exists u ∈ Sy ∪ R1 such that u is adjacent to both c0 and c1, by the

triangulation of
−→
G . Now, if |Sy ∪ R1| ≥ 2, then some other vertex v ∈ Sy ∪ R1 must be

adjacent to either c0 or c1. Without loss of generality, we may assume that v is adjacent
to c0. Then, every vertex w ∈ Sx ∩R0 will be adjacent to c0, in order to have d(v,w) ≤ 2.
But in that case {c0, y} would be a dominating set with at least three common neighbors
{c1, u, v}, contradicting the maximality of D.

So we must have |Sy ∪R1| = 1. Assume that Sy∪R1 = {u}. Then, any vertex w ∈ Sx∩R0

is adjacent to either c0 or c1. If |Sx| ≥ 5 then, without loss of generality, we can assume
that at least three vertices of Sx are adjacent to c0. Now, to have weak directed distance at
most 2 from all those three vertices, every vertex of Sy must be adjacent to c0. This would
create the dominating set {c0, x} with at least three common neighbors, contradicting the
maximality of D.
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Also |Sx| = 1 clearly creates the dominating set {c0, y} (as x1 is adjacent to c0 by the

triangulation of
−→
G) with at least three common neighbors (a vertex from Sy ∩ R0 by the

triangulation of
−→
G , u and c1), contradicting the maximality of D.

For 2 ≤ |Sx| ≤ 4, c0 (or c1) can be adjacent to at most two vertices of Sy∩R0 since otherwise
there would be one vertex v ∈ Sy ∩ R0 which would force c0 (or c1) to be adjacent to all
vertices of w ∈ Sx (in order to satisfy d(v,w) ≤ 2) and create a dominating set {c0, y} that
contradicts the maximality of D.

Also, not all vertices of Sx can be adjacent to c0 (or c1), as otherwise {co, y} (or {c1, y})
would be a dominating set with at least three common neighbors (u, c1 (or c0) and a vertex
from Sy ∩R0), contradicting the maximality of D.

Note that, by equation (1), we have

|Sy ∩R0| ≥ 10 − Sx.

Assume Sx = {x1, . . . , xn}, with the triangulation of
−→
G forcing the edges c0x1, x1x2, . . . ,

xn−1xn and xnc1 for n ∈ {2, 3, 4}.

For |Sx| = 2, at most four vertices of Sy ∩ R0 can be adjacent to c0 or c1. Hence, there
will be at least four vertices of Sy ∩ R0 each connected to x by a 2-dipath through x1 or
x2. Without loss of generality , x1 will be adjacent to at least 2 vertices of Sy, and hence
{x1, y} will be a dominating set contradicting the maximality of D.

For |Sx| = 3, without loss of generality, assume that x2 is adjacent to c0. To satisfy
d(x1, v) ≤ 2 for all v ∈ Sy ∩ R0, at least four vertices of Sy will be connected to x1 by
a 2-dipath through x2 (as, according to previous discussions, at most two vertices of Sy

can be adjacent to c0). This would create the dominating set {x2, y}, contradicting the
maximality of D.

For |Sx| = 4 we have the edges x2c0 and x3c1, as otherwise at least three vertices of Sx

would be adjacent to either c0 or c1, which is not possible (because it forces all vertices of
Sy to be adjacent to c0 or c1). Now, each vertex v ∈ Sy ∩ R0 must be adjacent either to
c0 or to x2 (to satisfy d(v, x1) ≤ 2) and also either to c1 or to x3 (to satisfy d(v, x4) ≤ 2),

which is not possible due to the planarity of
−→
G .

For |C| = 3, 4, 5, by Lemma 4.4, each vertex of Sx disagrees with each vertex of Sy ∩ R1

on c0. We also have the edge x1c2 for some x1 ∈ Sx by the triangulation of
−→
G . By

equation (1), we have

|S| ≥ (15 − 2 − |C|) = 13 − |C|.

Hence, |Sx| ≤ 2 for |C| = 3, 4, as otherwise every vertex u ∈ Sy would be adjacent to c0,
creating a dominating set {c0, t} with at least (|C| + 1) common neighbors St ∪ {c1} for
some t ∈ {x, y}, contradicting the maximality of D. For |C| = 5, since all the vertices in
Sx ∩R0 agree with each other on x (as they all must disagree with c2 on x) and on c0 (as
they all disagree with vertices of Sy ∩ R1 on c0), by Lemma 4.5, we have |Sx ∩ R0| ≤ 3.
But if |Sx ∩R0| = 3 then every vertex of Sy will be adjacent to c0, creating a dominating
set {c0, y} with at least six common neighbors Sy ∪ {c1}, contradicting the maximality of
D.

Hence |Sx| ≤ 2 for |C| = 3, 4, 5.
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Now for |C| = 3, we can assume that x and y are non-adjacent as otherwise {c0, y} would
be a dominating set with at least four common neighbors (x, c1 and two other vertices each
from the sets Sy ∩R0, Sy ∩R1 by triangulation) contradicting the maximality of D. Hence
triangulation will imply the edge c1c2. Now for |Sx| ≤ 2, either {c0, c2} is a dominating set
with at least four common neighbors {x, y, c1, x1} contradicting the maximality of D or x1
is adjacent to at least two vertices y1, y2 ∈ Sy ∩R0 creating a dominating set {x1, y} (the
other vertex in Sx must be adjacent to x1 by triangulation) with at least four common
neighbors {y1, y2, c0, c2} contradicting the maximality of D.

For |C| = 4 we have |Sy ∩ R1| ≤ 2 as otherwise we will have the dominating set {c0, y}
with at least five common neighbors (c1, vertices of Sy ∩R1 and one vertex of Sy ∩R0 by

the triangulation of
−→
G), contradicting the maximality of D. By equation (1), we have

|Sy ∩R0| ≥ (15 − |D| − |C| − |Sx| − |Sy ∩R1|)

≥ (15 − 2 − 4 − 2 − 2) = 5.

Now, at most two vertices of Sy ∩R0 can be adjacent to c0 as otherwise {c0, y} would be a
dominating set with at least five common neighbors (c1, vertices of Sy ∩R0 and one vertex

of Sy ∩R1 by the triangulation of
−→
G), contradicting the maximality of D.

Also, by the triangulation of
−→
G , in R3 we have either the edge xy or the edge c2c3. But,

if we have the edge xy, then |Sy ∩ R1| = 1 as otherwise the dominating set {c0, y} would

contradict the maximality of D. Hence, by the triangulation of
−→
G , and in order to have

weak directed distance at most 2 from the vertices of Sx ∪ {x}, each vertex of Sy ∩R0 will
be adjacent either to c3 or to x1. This will create a dominating set {x1, y} or {c3, y} that
contradicts the maximality of D. Hence, we do not have the edge xy (not even in other
regions) and we thus have the edge c2c3.

For |Sx| ≤ 2, the vertices of Sy ∩R0 will be adjacent to either c3, c0 or x1 in order to have

weak directed distance at most 2 from x. But then, the triangulation of
−→
G will force at

least two vertices of Sy ∩ R0 to be common neighbors of c3 and x1, or to have the edge
c0c3. It is not difficult to check, casewise (drawing a picture for individual cases will help
in understanding the scenario), that one of the sets {c0, y}, {c3, y} or {x1, y} would then
be a dominating set contradicting the maximality of D.

For |C| = 5, by Lemma 4.3, each vertex of Sy ∩ Ri must disagree with ci+2 on y. If the
vertices of Sy ∩R0 and the vertices of Sy ∩R1 agree with each other on y, then they must
disagree with each other on c0, which implies |Sy ∩Ri| ≤ 3 for all i ∈ {0, 1}. If the vertices
of Sy ∩ R0 and the vertices of Sy ∩ R1 disagree with each other on y, then the vertices of
Sy ∩ Ri must agree with c3−i on y. In that case, by Lemma 4.4, each vertex of Sy ∩ Ri

must be connected to c3−i by a 2-dipath through c4−3i, which implies |Sy ∩Ri| ≤ 3 for all
i ∈ {0, 1}.

Assume |Sy ∩R0| = 3 and |Sy ∩R1| = 3. Then, each vertex of Sy ∩Ri must disagree with
both ci+2 and ci+3 on y. This would imply that the vertices of Sy ∩R0 and the vertices of
Sy∩R1 disagree with each other on c0. Now, there would be no way to have weak directed
distance at most 2 between a vertex of Sx and all the six vertices of Sy.

Hence we must have |Sy| ≤ 5. Then, by equation (1), we have

15 ≤ |
−→
G | ≤ 2 + 5 + (2 + 5) = 14.

This is a contradiction, and this concludes this particular subcase.

18



(ii) Assume the three non-empty sets are Sx ∩ R1, Sy ∩ R0 and Sy ∩ R2 (only possible for
|C| ≥ 3). By Lemma 4.4, we have Sx = {x1} and the fact that each vertex of Sy ∩ Ri

disagrees with ci2/4 on x1 for i ∈ {0, 2}. Moreover, the triangulation of
−→
G implies the edges

x1c0, x1c1, ck−1c0, c0c1 and c1c2.

For |C| = 3, {c0, c1} is a dominating set with at least four common neighbors {x, y, c2, x1},
contradicting the maximality of D. For |C| = 4, 5, every vertex of Sy ∩ R0 disagrees with
every vertex of Sy ∩R2 on y. Hence, by Lemma 4.5, we have |Sy ∩Ri| ≤ 3 for all i ∈ {0, 2}.
By equation (1), we then have

15 ≤ |
−→
G | = |D| + |C| + |S|

≤ [2 + 5 + (1 + 3 + 3)] = 14.

This is a contradiction.

Step 4. Hence, at most two sets out of the 2k sets St ∩Ri can be non-empty, where t ∈ {x, y}
and i ∈ {0, 1, . . . , k − 1}.

Assume that exactly two sets out of the sets St ∩ Ri are non-empty, where t ∈ {x, y} and
i ∈ {0, . . . , k− 1}, yet there are two non-empty regions. Without loss of generality, assume that
the two non-empty sets are Sx ∩R0 and Sy ∩R1.

The triangulation of
−→
G would force x and y to have a common neighbor other than c0 and

c1 for |C| = 2 which is a contradiction. For |C| = 3, 4, 5 the triangulation of
−→
G forces the

edges ck−1c0 and c0c1. By Lemma 4.4, we know that each vertex of S is adjacent to c0. By
equation (1), we have

|S| ≥ (15 − 2 − 5) = 8.

Hence, without loss of generality, we may assume |Sx| ≥ 4. But then {c0, x} would be a
dominating set with at least six common neighbors Sx∪{ck−1, c1}, contradicting the maximality
of D.

This concludes the proof.

The lemma proved above was one of the key steps to prove the theorem. Now we will improve
the lower bound on |C|.

Lemma 4.8. |C| ≥ 6.

Proof. For |C| = 2, 3, 4, 5, without loss of generality by Lemma 4.7, we may assume R1 to be

the only non-empty region. The triangulation of
−→
G will then force the configuration depicted

in Figure 8 as a subgraph of und(
−→
G), where C = {co, . . . , ck−1}, Sx = {x1, . . . , xnx

} and Sy =
{y1, . . . , yny

}. Without loss of generality, we may assume

|Sy| = ny ≥ nx = |Sx|.

Then, by equation (1), we have

ny = |Sy| ≥ (15 − 2 − |C| − |Sx|) = 13 − |C| − |Sx|. (2)
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Figure 8: The only non-empty region is R1

First of all, assume nx = 0. Then x is not adjacent to y, as otherwise y would dominate the

whole graph. So we have the edges c0c1, c1c2, . . . , ck−1c0 by the triangulation of
−→
G . Then, by

equation 2, we have

|Sy| ≥ 13 − 5 = 8.

Now, to have d(x, yi) ≤ 2, every yi must be connected to x by a 2-dipath with internal vertex
either c0 or c1. Hence, at least four vertices of Sy must be adjacent to either c0 or c1. Note that
c0 is also adjacent to ck−1, c1 and that c1 is also adjacent to c0, c2. But then, the dominating set
{c0, y} or {c1, y} will contradict the maximality of D. Hence nx ≥ 1.

The proof will now directly follow from the four claims below.

Claim 1: |C| = 5 is not possible.

Proof of claim 1: Assume that |C| = 5. Then, by equation 2, we have

|Sy| ≥ 13 − 5 − nx = 8 − nx.

Therefore, as ny ≥ nx, we have ny ≥ 4. Now, every vertex of Sy disagrees with c3 on y. They
must also disagree with y on c2, as otherwise all of them would be connected to c2 by 2-dipaths
with internal vertex c1, which would imply d(y1, y4) > 2. For similar reasons, the vertices of Sy

must disagree with c4 on y.
Moreover, the edge c0c1 does not exist since it would force each vertex of Sy to be connected

to vertices of Sx by 2-dipaths with internal vertex either c0 or c1. In fact, for nx ≥ 2, as not
all vertices of Sx can be adjacent to both c0 and c1, every vertex of Sy would be connected to
the vertices of Sx by 2-dipaths with internal vertex being exactly one of c0, c1, thus implying
d(y1, y4) > 2. For nx = 1, as ny ≥ 7, at least four vertices of Sy would be connected to the vertices
of Sx by 2-dipaths with internal vertex being exactly one of c0, c1, implying d(yi, yi+3) > 2 for
some i ∈ {1, 2, . . . , ny}. Hence, the edge c0c1 does not exist.

Also, if we have the edge y1y4 and, without loss of generality, the edge y1y3 by the triangu-

lation of
−→
G , then every vertex of Sx must be connected to y2 by 2-dipaths with internal vertex

y1. In this case, {y1, y} is a dominating set with at least ny common neighbors (c0 and ny − 1
common neighbors from Sy). Hence, to avoid a contradiction with the maximality of D, we
must have ny ≤ 5. We must also have nx ≥ 3. But then, as every vertex of Sx agree with each
other on y1 and on x (as they all disagree with c3 on x), they must all disagree with c1 and c4
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on x to have weak directed distance at most 2 with them. Also the vertices of Sy must disagree
with c1 and c4 on y to have directed distance at most 2 with them. So, c1 and c4 agrees with
each other on both x and y, Therefore, to have weak directed distance at most 2 between c1
and c4 we must have the 2-dipath connecting c4 and c1 with internal vertex c0. But this is a
contradiction as we can not have the edge c0c1.

Similarly, we cannot have the edge y1y3 also. Therefore, y1 and y4 must be connected by a
2-dipath with an internal vertex xj from Sx for some j ∈ {1, 2, .., nx}. As we cannot have the
edge y1y4, this implies that every vertex of S \ {xj} is adjacent to xj to be at weak directed
distance at most 2 from each other. We can then reach a contradiction, exactly as in the case
described in the paragraph above.

This proves the claim. ♦

Claim 2: |C| = 4 is not possible.

Proof of claim 2: Assume that |C| = 4. Then, by equation 2, we have

|Sy| ≥ 13 − 4 − nx = 9 − nx.

Therefore, as ny ≥ nx, we have ny ≥ 5.
We now show that every vertex of Sy disagrees with c2 and c3 on y. First note that no vertex

can agree with both c2 and c3 on y as otherwise it would be adjacent to both c0 and c1, which
is impossible since ny ≥ 5. So, if the claim is not true, then some vertices of Sy will agree with
c2 on y and the other vertices of Sy will agree with c3 on y.

Also at most three vertices of Sy can agree with c2 (or c3) on y. So, ny ≤ 6. Hence, nx ≥ 3.
Now, three vertices of Sy agree on y with, say, c2. Then they will all disagree with c2 on

c1 and every vertex (there are at least three such vertices) of Sx will disagree with those three
vertices on c1. Then, to have weak directed distance at most 2 between the vertices of Sx, the
other vertices (there are at least two such vertices) of Sy should be adjacent to c1, which is not
possible as they are already connected to c3 with 2-dipaths with internal vertex c0.

The rest of the proof is similar to the proof of Claim 1. Using similar arguments, it is possible
to show that the edge c0c1 does not exist, that the edge y1y4 does not exist and that it is not
possible to have a 2-dipath with internal vertex from Sx connecting y1 and y4. ♦

Claim 3: |C| = 3 is not possible.

Proof of claim 3: Assume that |C| = 3. Then, by equation 2, we have

|Sy| ≥ 13 − 3 − nx = 10 − nx.

Therefore, as ny ≥ nx, we have ny ≥ 5.
First note that it is not possible to have the edge c0c1, as this will force some three vertices of

Sy to be connected to vertices of Sx by 2-dipaths with internal vertex c0 (or c1), making {c0, y}
(or {c1, y}) a dominating set that contradicts the maximality of D.

For ny ≥ 7, there are at least four vertices in Sy that agree with each other on y. We need
to have weak directed distance at most 2 between them. Let those four vertices be yi, yj , yk, yl
with i > j > k > l.

Now, assume that we have the edge yiyl. Then, every vertex of Sx will be adjacent to either
yi or yl. Without loss of generality, assume that every vertex of Sx is adjacent to yi. But
then, {yi, y} would be a dominating set with at least four common neighbors , contradicting the
maximality of D. Hence ny ≤ 6 and, therefore, we must have nx ≥ 4.
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For ny = 5, 6, one can show that these cases are not possible without creating a dominating
set that contradicts the maximality of D. If one just tries to have weak directed distance at
most 2 between the vertices of S, the proof will follow. The proof of this part is also similar to
the ones done before and, though a bit tedious, is not difficult to check. ♦

Claim 4: |C| = 2 is not possible.

Proof of claim 4: Assume that |C| = 2. Then, by equation 2, we have

|Sy| ≥ 13 − 2 − nx = 11 − nx.

Therefore, as ny ≥ nx, we have ny ≥ 6.
This is actually the easiest of the four claims. The case ny ≥ 7 can be argued as in the

previous proof. For ny = 6, we must have nx ≥ 5. If one just tries to have directed distance at
most 2 between the vertices of S, the proof will follow. The proof of this part is also similar to
the ones done before and, though a bit tedious, is again not difficult to check. ♦

This completes the proof of the lemma.

Up to now, we have proved that the value of |C| is at least 6. This is an answer to our
question “how small |C| can be?”. We will now consider the question “How big |C| can be?”
and try to provide upper bounds for the value of |C|. The following lemma will help us to do
so.

Lemma 4.9. If |C| ≥ 6, then the following holds:

(a) |Cαβ| ≤ 3, |Cα
t | ≤ 6, |C| ≤ 12. Moreover, if |Cαβ | = 3, then

−→
G [Cαβ] is a 2-dipath.

(b) |Cα
t | ≥ 5 (respectively 4, 3, 2, 1, 0) implies |Sα

t | ≤ 0 (respectively 1, 3, 4, 5, 6).

Proof. (a) If |Cαβ| ≥ 4, then there will be two vertices u, v ∈ Cαβ with d(u, v) > 2, which is a
contradiction. Hence we have the first inequality, which implies the other two.

If |Cαβ| = 3, then the only way to connect the two non-adjacent vertices u, v of Cαβ is to
connect them with a 2-dipath through the other vertex (other than u, v) of Cαβ.

(b) Lemma 4.3(b) implies that if all the elements of Cα
t do not belong to the set of four boundary

points of any three consecutive regions (like R,R1, R2 in Lemma 4.4), then |Sα
t | = 0. Hence, we

have |Cα
t | ≥ 5 implies |Sα

t | ≤ 0.

By Lemma 4.4, if all the elements of Cα
t belong to the set of four boundary points c1, c2, c1, c2

of three consecutive regions R,R1, R2 (like in Lemma 4.4) and contains both c1, c2, then |Sα
t | ≤ 1.

Also Sα
t ⊆ R by Lemma 4.4. Hence we have

|Cα
t | ≥ 4 implies |Sα

t | ≤ 1.

Assume now that all the elements of Cα
t belong to the set of three boundary points c1, c2, c1

of two adjacent regions R,R1 (like in Lemma 4.4) and contain both c1, c2. Then, by Lemma 4.3,
v ∈ Sα

t implies v is in R or R1.
Now, if both Sα

t ∩R and Sα
t ∩R1 are non-empty, then each vertex of (Sα

t ∩R)∪{c2} disagrees
with each vertex of (Sα

t ∩R1) ∪ {c1} on c1 (by Lemma 4.4).
Hence, by Lemma 4.5, we have

|(Sα
t ∩R) ∪ {c1}|, |(Sα

t ∩R1) ∪ {c2}| ≤ 3.
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This clearly implies

|Sα
t ∩R|, |Sα

t ∩R1| ≤ 2 and |Sα
t | ≤ 4.

Suppose now that we have |Sα
t | = 4 and, hence, also |Sα

t ∩ R|, |Sα
t ∩ R1| = 2. Then, St′ = ∅

as the only way for a vertex of St′ to be at weak directed distance at most 2 from every vertex
of St is by being connected by a 2-dipath with internal vertex c1, which is impossible as the
vertices of Sα

t ∩R disagree with the vertices of Sα
t ∩R1 on c1.

In fact, for the same reason, it is impossible to have weak directed distance at most 2 between
all the vertices of St and t′ unless we have the edge tt′ (that is the edge xy). But then, the edge
tt′ makes t a vertex that dominates the whole graph, contradicting the domination number of
the graph being 2. Therefore, it is not possible to have |Sα

t | = 4. Hence, we have |Sα
t | ≤ 3 in

this case.
Also, if one of Sα

t ∩R and Sα
t ∩R1 is empty then we must have |Sα

t | ≤ 3 by Lemmas 4.4 and
4.5. Hence, we have

|Cα
t | ≥ 3 implies |Sα

t | ≤ 3.

Let R,R1, R2, c1, c2, c1, c2 be as in Lemma 4.4 and assume Cα
t = {c1, c2}. By Lemma 4.3,

v ∈ Sα
t implies v is in R, R1 or R2, and also that both Sα

t ∩R1 and Sα
t ∩R2 cannot be non-empty.

Hence, without loss of generality, assume Sα
t ∩R2 = ∅.

By Lemma 4.4, the vertices of Sα
t ∩ R1 disagree with the vertices of (Sα

t ∩ R) ∪ {c2} on c1.
Hence, by Lemma 4.5, we have

|Sα
t ∩R1|, |(Sα

t ∩R) ∪ {c2}| ≤ 3.

This implies |Sα
t | ≤ 5.

Now, if Sα
t ∩ R1 = ∅ then Sα

t = Sα
t ∩ R. Let |Sα

t ∩ R| ≥ 6 and consider the induced graph
−→
O =

−→
G [(S ∩R)∪{c1, c2}]. In this graph, the vertices of (Sα

t ∩R)∪{c1, c2} are at weak directed

distance at most 2 from each other. Hence, χo(
−→
O ) ≥ 8. But this is a contradiction since

−→
O is

an outerplanar graph and every outerplanar graph has an oriented 7-coloring [12]. Hence,

|Cα
t | ≥ 2 implies |Sα

t | ≤ 5.

Suppose now that we have |Sα
t | = 5. Then we must have St′ = ∅ as otherwise it is not possible

to have weak directed distance at most 2 between the vertices of S.
We also do not have the edge xy as it would contradict the domination number of the graph

being 2 (t will dominate the graph). So, by the triangulation of
−→
G , we have the edges c1c2 and

c1c1. Hence, each vertex of St must be connected to t′ with a 2-dipath with internal vertices
from {c1, c1, c2}. But then, it will not be possible to have weak directed distance at most 2
between the five vertices of St.

Hence,

|Cα
t | ≥ 2 implies |Sα

t | ≤ 4.

In general, Sα
t is contained in two distinct adjacent regions by Lemma 4.3. Without loss

of generality, assume Sα
t ⊆ R1 ∪ R2. If both Sα

t ∩ R1 and Sα
t ∩ R2 are non-empty then, by

Lemma 4.4, we know that the vertices of Sα
t ∩ R1 disagree with the vertices of Sα

t ∩ R2 on c1.
Hence, |Sα

t ∩R1|, |S
α
t ∩R2| ≤ 3, which implies |Sα

t | ≤ 6.
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Assume now that only one of the two sets Sα
t ∩R1 and Sα

t ∩R2 is non-empty. Without loss
of generality, assume Sα

t ∩ R1 6= ∅. If c0, c1 /∈ Cα
t and |Cα

t | = 1 then we have |Sα
t ∩ R1| ≤ 3 by

Lemmas 4.4 and 4.5. In the induced outerplanar graph
−→
O =

−→
G [(S ∩R1)∪{c1, c2}], the vertices

of Sα
t ∪ (cαt ∩ {c1, c2}) are at weak directed distance at most 2 from each other.

Hence, 7 ≥ χo(
−→
O ) ≥ |Sα

t ∪ (cαt ∩ {c1, c2})|. Therefore,

|Cα
t | ≥ 1 (respectively 0) implies |Sα

t | ≤ 6 (respectively 7).

Now, when both the equalities hold, we must have St′ = ∅ as otherwise C∪St∪St′ would contain
an oriented outerplanar graph with oriented chromatic number at least 8, which is not possible,
in order to have all the vertices of S at weak directed distance at most 2 from each other.

Now, St′ = ∅ would imply that the edge xy is not there, as otherwise t would dominate
the whole graph. Hence, each vertex of Sα

t must be connected to t′ by a 2-dipath with internal
vertex ci for some i ∈ {0, 1, 2}. But this would force |Sα

t ∪ Cα
t | ≤ 6 as otherwise the vertices of

Sα
t ∪Cα

t would no longer be at weak directed distance at most 2 from each other.
Hence,

|Cα
t | ≥ 1 (respectively 0) implies |Sα

t | ≤ 5 (respectively 6),

and we are done.

We now prove that the value of |C| can be at most 5, which contradicts our previously proven
lower bound on |C|. That actually proves Lemma 4.2.

Lemma 4.10. |C| ≤ 5.

Proof. Without loss of generality, we can suppose |Cα
x | ≥ |Cβ

y | ≥ |Cβ
y | ≥ |Cα

x | (the last inequality
is forced). We know that |C| ≤ 12 and that |Cα

x | ≤ 6 (Lemma 4.9(a)). Therefore, it is enough

to show that |S| ≤ 12 − |C| for all possible values of (|C|, |Cα
x |, |C

β
y |), since it contradicts (1).

For (|C|, |Cα
x |, |C

β
y |) = (12, 6, 6), (11, 6, 6), (10, 6, 6), (10, 6, 5), (10, 5, 5), (9, 5, 5), (8, 4, 4) we

have |S| ≤ 12 − |C|, using Lemma 4.9(b).

For (|C|, |Cα
x |, |C

β
y |) = (8, 6, 6), (7, 6, 6), (7, 6, 5),(6, 6, 6), (6, 6, 5), (6, 6, 4), (6, 5, 5) we are

forced to have

|Cαβ| > 3.

This is a contradiction by Lemma 4.9(a).

So, (|C|, |Cα
x |, |C

β
y |) 6= (12, 6, 6), (11, 6, 6), (10, 6, 6), (10, 6, 5), (10, 5, 5), (9, 5, 5), (8, 4, 4),

(8, 6, 6), (7, 6, 6), (7, 6, 5),(6, 6, 6), (6, 6, 5), (6, 6, 4), (6, 5, 5).

We will be done if we prove that (|C|, |Cα
x |, |C

β
y |) cannot take the other possible values also.

That leaves us checking a lot of cases. We will check just a few cases and observe that the other
cases can be checked using similar arguments.

Case 1: Assume (|C|, |Cα
x |, |C

β
y |) = (9, 6, 6).

We are then forced to have |Cαβ | = |Cαβ| = |Cαβ| = 3 in order to satisfy the first inequality of

Lemma 4.9(a). So,
−→
G [Cαβ],

−→
G [Cαβ] and

−→
G [Cαβ] are 2-dipaths by Lemma 4.9(a). Without loss

of generality, we can assume Cαβ = {c0, c1, c2} and Cαβ = {c3, c4, c5}. Hence, by Lemma 4.3, we

have u ∈ R1∪R2 and v ∈ R4∪R5 for any (u, v) ∈ Sβ
y ×Sα

x . Now, by Lemma 4.3, either Sβ
y or Sα

x

is empty. Without loss of generality, assume Sβ
y = ∅. Therefore, we have |S| = |Sx| = |Sα

x | ≤ 3
(by Lemma 4.9(b)). So this case is not possible.
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Figure 9: Planar targets with girth at least 4

Case 2: Assume (|C|, |Cα
x |, |C

β
y |) = (7, 6, 4).

So, without loss of generality, we can assume that
−→
G [Cαβ] and

−→
G [Cαβ] are 2-dipaths, and

Cαβ = {c0, c1, c2}, Cαβ = {c3, c4, c5} and Cαβ = {c6}.
By Lemma 4.9, we have |Sx| ≤ 5 and |Sy| ≤ 3 + 1 = 4. So we are done if either Sx = ∅ or

Sy = ∅.

So assume both Sx and Sy are non-empty. First assume that Sβ
y 6= ∅. Then, by Lemma 4.3,

we have Sβ
y ⊆ R5, Sα

x ⊆ R5 ∪R6 and hence Sβ
y = ∅. By Lemma 4.4, the vertices of Sβ

y and the
vertices of Sα

x ∩R5 must disagree with c6 on c5 while disagreeing with each other on c5, which
is not possible. Hence, Sα

x ∩ R5 = ∅. Also, |Sα
x ∩ R6| ≤ 3 as they all disagree on c5 with the

vertices of Sβ
y . Hence, |S| ≤ 4 when Sβ

y 6= ∅.

Now assume Sβ
y = ∅ hence Sβ

y 6= ∅. Then, by Lemma 4.3, we have Sβ
y ⊆ R1∪R2, S

α
x ⊆ R0∪R1

and hence Sβ
y = ∅. Assume Sβ

y ∩ R2 = ∅, as otherwise the vertices of Sα
x would be adjacent

to both c0 and c1 (to be connected to c6 and to vertices of Sβ
y ∩ R2 by a 2-dipath), implying

|Sα
x | ≤ 1, implying |S| ≤ 5. If Sα

x ∩R0 6= ∅ then |Sβ
y ∩R1| = 1, |Sα

y ∩R1| ≤ 1 and |Sα
y ∩R0| ≤ 3,

by Lemma 4.4, and hence |S| ≤ 5. If Sα
x ∩R0 = ∅ then |Sβ

y ∩R1| ≤ 2, |Sα
y ∩R1| ≤ 3 and hence

|S| ≤ 5. So also this case is not possible.

Similarly one can handle the remaining cases.

From the above lemmas, we get that every planar oclique of order at least 15 is dominated
by a single vertex. Moreover, we also proved that a planar oclique dominated by one vertex
can have order at most 15. Hence, there is no planar oclique of order more than 15. We also
proved that every oclique of order 15 must contain the planar oclique depicted in Figure 3 as a
spanning subgraph.

This concludes the proof of Theorem 1.7. �

5 Proof of Theorem 1.8

(a) The proof directly follows from Theorem 1.7.

(b) In 1975, Plesńık [8] characterized and listed all triangle-free planar graphs with diameter
2 (see Theorem 2.1). They are precisely the graphs depicted in Figure 4. Now note that
every orientation of those graphs admits a homomorphism to the graphs depicted in Figure 9,
respectively (that is, any oriented graph with underlying graph from the first, second and third
family of graphs described in Figure 4 admits a homomorphism to the first, second and third
oriented graph depicted in Figure 9, respectively).
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To prove the homomorphisms, we map the vertices w, u, v and a from Figure 4 to the
corresponding vertices φ(w), φ(u), φ(v) and φ(a) in Figure 9, respectively. The vertices b and c
are mapped to the vertices φ(b) (or φ(c)) and φ(c) (or φ(b)) depending on the orientation of the

edge bc. Without loss of generality, we can assume the edge to be oriented as
−→
bc and assume

that the vertices b and c map to the vertices φ(b) and φ(c), respectively.
Now, to complete the first homomorphism, map the vertices of Nα(w) to the unique vertex

in Nα(φ(w)) for α ∈ {+,−}.
To complete the second homomorphism, map the vertices of Nα(u) ∩ Nβ(u) to the unique

vertex in Nα(φ(u)) ∩Nβ(φ(v)) for α, β ∈ {+,−}.
To complete the third homomorphism, map the vertices of Nα(a) ∩ Nβ(t) to the unique

vertex in Nα(φ(a)) ∩Nβ(φ(t)) for α, β ∈ {+,−} and t ∈ {b, c}.
Now, note that the first two oriented graphs depicted in Figure 9 are ocliques of order 3 and

6, respectively, while the third graph is not an oclique but clearly has absolute oriented clique
number 5.

Hence, there is no triangle-free planar oclique of order more than 6. Also, the only example
of a trianlge-free oclique of order 6 is the second graph depicted in Figure 9.

(c) From the proof above, we know that there is no triangle-free planar oclique of order more
than 6, and the only example of a triangle-free oclique of order 6 is the second graph depicted
in Figure 9, which is a graph with girth 4. Hence, there is no planar oclique with girth at least
5 on more than 5 vertices, while the directed cycle of length 5 is clearly a planar oclique with
girth 5.

(d) The 2-dipath is an oclique of order 3. From Plesńık’s characterization, the rest of the proof
follows easily. �

6 Conclusion

In this paper we proved three main results regarding the order of planar ocliques, that is oriented
planar graphs with weak directed diameter (that is, the maximum weak directed distance between
two vertices of an oriented graph) at most two. We provided an exhaustive list of spanning
subgraphs of outerplanar graphs that admits an orientation with weak directed diameter at
most two. Now the question is, can a similar result be proved for planar graphs also?

Question 6.1. Characterize the set L of graphs such that a planar graph can be oriented as an
oclique if and only if it contains one of the graphs from L as a spanning subgraph.

We partially answer the question by proving that every planar oclique of order 15 must
contain a particular oclique as a spanning subgraph. As the order of a planar oclique can at
most be 15, a similar study for planar ocliques of order less than 15 will answer the question.
We also proved tight upper bounds for the order of planar ocliques of girth at least k for all
k ≥ 4.

We defined the parameter oriented relative oclique number and used it for proving Theo-
rem 1.7. Determining oriented relative clique number for different families of graphs, such as
the family of planar graphs, seems to be an interesting direction of research.
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