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Abstract

Let f : V → N be a function on the vertex set of the graph G = (V, E). The graph G
is f-choosable if for every collection of lists with list sizes specified by f there is a proper
coloring using colors from the lists. The sum choice number, χsc(G), is the minimum of∑

f(v), over all functions f such that G is f -choosable. It is known (Alon 1993, 2000)
that if G has average degree d, then the usual choice number χ`(G) is at least Ω(log d),
so they grow simultaneously.

In this paper we show that χsc(G)/|V (G)| can be bounded while the minimum degree
δmin(G) → ∞. Our main tool is to give tight estimates for the sum choice number of the
unbalanced complete bipartite graph Ka,q.
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1 Average list sizes and planar graphs

Given a graph G and a list of colors L(v) for each vertex v ∈ V (G), we say that G is
L-choosable (or that L is sufficient) if it is possible to choose c(v) ∈ L(v) for all v so that
c : V (G) → ∪L(v) is a proper coloring of G. The choice number (or list chromatic number)
χ` is the minimum t such that for every assignment L with |L(v)| ≥ t for all v ∈ V , the graph
is L-choosable. It is well-known (Thomassen [8]) that

χ`(P ) ≤ 5 (1)

for every planar graph P , and this is the best possible ([9]).
However, if we allow distinct list sizes, then the average size can be smaller. For example,

Thomassen’s beautiful proof for (1) gives that if P is an n-vertex planar graph, v1, . . . , vt are
its external vertices (in this order) and the list sizes are

|L(v)| =


1 for v = v1,
2 for v = v2,
3 for v = v3, . . . , vt,
5 for the inner vertices,

(2)

then P is L-choosable.
Consider a function f : V (G) → N. An f -assignment is an assignment of lists L(v) to

the vertices v ∈ V (G) such that |L(v)| = f(v) for all v. The function f is sufficient if G
is L-choosable for all f -assignments L. We define the sum choice number of G, denoted by
χsc(G), as the minimum of

∑
v∈V (G) f(v) over all sufficient f .

Sum choice numbers were introduced by Isaak in [6] who proved that if G is the line-graph
of K2,q then χsc(G) = q2 +d5q/3e. Various classes of graphs were investigated by Isaak in [7],
by Berliner, Bostelmann, Brualdi, and Deaett [3] and by Heinold in [4] and [5].

Thomassen’s theorem (2) implies that χsc(P ) ≤ 5n − 9 for planer P (n ≥ 2). In fact,
more is true. It is easy to show (see, e.g., [7]) that for every graph

χsc(G) ≤ |V (G)| + |E(G)| (3)

holds. Hence χsc(P ) ≤ 4n − 6. Our first result is a slight improvement.

Theorem 1. Let P be an n-vertex planar graph. There exists an f : V (P ) → N such that∑
f(v) ≤ 4n − 6, max f(v) ≤ 6, and P is f -choosable. 2

Proof. Consider a linear order of the vertices of P , and let d̂(v) be the number of neighbors
of v that precede it. The function f(v) = d̂(v) + 1 is a sufficient function, so

∑
(d̂(v) + 1)

yields an upper bound on χsc(P ). Since every planar graph has a vertex of degree at most
5, it is possible to order the vertices so that d̂(v) ≤ 5 for all v. 2



Z. Füredi and I. Kantor: Sum-choice 2

2 Unbalanced complete bipartite graphs

Erdős, Rubin and Taylor (see, e.g., [1]) showed for the complete bipartite graph that

χ`(Kq,q) = Θ(log q). (4)

If one of the parts is substantially smaller than the other one, then allowing different list
sizes results in smaller average lists. It is easy to show χsc(K1,q) = 2q + 1 (as for every tree
on q + 1 vertices). Berliner, Bostelmann, Brualdi, and Deaettet [3] showed that for all q ≥ 1
we have

χsc(K2,q) = 2q + 1 + b
√

4q + 1c, (5)

and Heinold [5] proved
χsc(K3,q) = 2q + 1 + b

√
12q + 4c. (6)

Our main result deals with the sum choice number of Ka,q with arbitrary a.

Theorem 2. There exist positive constants c1 and c2 such that for all a ≥ 2 and q ≥ 4a2 log a

2q + c1a
√

q log a ≤ χsc(Ka,q) ≤ 2q + c2a
√

q log a.

It is known that χ` is not independent of the average degree. Alon [1, 2] proved that for
some constant c > 0, every graph G with average degree d has

χ`(G) ≥ c log d. (7)

An easy corollary of our Theorem 2 is that if different list sizes are allowed, then such
dependence does not exist. Indeed, we have

lim
a→∞,

q>>a2 log a

2|E(Ka,q)|
a + q

= ∞, lim
a→∞,

q>>a2 log a

χsc(Ka,q)
a + q

= 2.

So the structure of the graph plays a more important role in determining the sum choice
number than in the case of the list chromatic number.

3 Upper bound, there are sufficient short lists

Throughout this paper, the two parts of the complete bipartite graph Ka,q will be denoted
by A and Q, with |A| = a and |Q| = q.

Theorem 3. Suppose that a, q ∈ N with q ≥ a ≥ 2. Then

χsc(Ka,q) ≤ 2q + ad
√

32q(1 + log a)e.

Proof. To prove the upper bound, we present a function f with
∑

v∈A∪Q f(v) = 2q +
ad

√
32q(1 + log a)e such that every f -assignment is sufficient.
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Define f as

f(v) =
{

r for v ∈ A;
2 for v ∈ Q

where r will be defined later in (10) as any integer r ≥
√

32q(1 + log a). Let L be an arbitrary
f -assignment, i.e., |L(v)| = f(v) for all v.

Consider S :=
∪

v∈A∪Q L(v). The assignment L yields a (multi)hypergraph and a multi-
graph on the same vertex set S and with edge sets LA := {L(u) : u ∈ A} and LQ := {L(v) :
v ∈ Q}, respectively. Sufficiency of L means that one can find a set T ⊂ S meeting all
hyperedges of LA such that S \ T meets all edges of LQ, so T is an independent set in the
graph LQ. Given T the choice function c can be defined as

c(u) ∈ L(u) ∩ T, for u ∈ A

and
c(v) ∈ L(v) ∩ (S \ T ), for v ∈ Q.

We are going to construct such T by a 2-step random process.
Let us pick, randomly and independently, each element of S with probability p. Let B

be the random set of all elements picked. Define a random variable Xu for each u ∈ A as
Xu = |L(u) ∩ B|, and the random variable Y by

Y := |{v ∈ Q : L(v) ⊆ B}|,

so Y is the number of edges of LQ spanned by B. Remove an element c(v) ∈ L(v) for each
edge of LQ spanned by B, the remaining set T ⊂ B is certainly independent in LQ, and if
Y < Xu for each u ∈ A, then T meets all L(u) ∈ LA and we are done.

The expected value of Y is p2q, so Markov inequality gives

Prob (Y < 2p2q) ≥ 1
2
. (8)

The expected value of Xu is pr, so Chernoff inequality gives

Prob (Xu < EXu − t) < e−t2/2rp,

for any t > 0. Hence

Prob (Xu ≥ pr − t for all u ∈ A) > 1 − ae−t2/2rp, (9)

and this is at least 1/2 for t2 ≥ 2rp ln(2a). The sum of probabilities in (8) and (9) is larger
than 1, so there is an appropriate choice of B (and then T ) if t2 = 2rp(1 + log a) and
pr − t ≥ 2p2q. We can define, e.g.,

p :=

√
2(1 + log a)

q
and r ≥ 4pq =

√
32(1 + log a)q. (10)

2
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4 Lower bound, much shorter lists are not sufficient

To prove that χsc(G) ≥ k for a particular k, we need to show that for every f with∑
v∈G f(v) = k, there exists an insufficient f -assignment. First, we show how to construct

an insufficient assignment for some special f .

Lemma 1. Let t ≥ 2 and ` ≥ 1. For a = 2t and q = t`2, there exists an insufficient
assignment L with

|L(v)| =
{

t` for v ∈ A,
2 for v ∈ Q.

Proof. Take 2t pairwise disjoint sets Xi, Yi of size `, Z = ∪(Xi∪Yi). Identify the elements
of A by the set of 0-1 vectors of length t, A = {0, 1}t. For a vector (ε1, . . . , εt) ∈ A define
L(v) as (

∪
εi=1 Xi)∪(

∪
εj=0 Yj). So L(v) contains either Xi or Yi for all i. Let the graph G be

the union of t complete bipartite graphs on the vertex set Z by setting E(G) =
∪t

i=1(Xi×Yi)
and define the lists L(v) for v ∈ Q as the edges of G. The number of edges of G is t`2 = q,
so a one-to-one mapping can be done.

Every independent set T of G contains at most one vertex from each Xi ∪ Yi so it cannot
meet all hyperedges of LA, where LA := {L(v) : v ∈ A}. This means that this assignment L
is not sufficient. 2

Note that with this choice of a and q, we have |L(v)| =
√

q log2 a for v ∈ A. Also notice
that if we remove some elements from the lists in the above construction, the resulting list
assignment is still insufficient.

Theorem 4. If a ≥ 2 and q > 4a2 log a, then

χsc(Ka,q) ≥ 2q + 0.06a
√

q log a

Proof. Suppose that f : V (Ka,q) → N with
∑

v∈A∪Q f(v) = 2q + as where s ≤ 0.06
√

q log a.
We will find an insufficient f -assignment.

Let q1, q2 and q3 be the numbers of vertices v ∈ Q with f(v) = 1, f(v) = 2 and f(v) ≥ 3,
respectively. If f(u) ≤ q1 for some u ∈ A, then f is obviously insufficient. From now on, we
suppose that f(u) > q1 for each u ∈ A. We obtain

2q + as =
∑

v∈A∪Q

f(v) ≥ aq1 + (q1 + 2q2 + 3q3) ≥ 2q + q1 + q3. (11)

It follows that q1 + q3 ≤ as and Q has at least q − as vertices with lists of size 2. Let q∗ = q2

and let a∗ be the largest power of 2 not exceeding 1
2a.

If there are at least a∗ vertices u ∈ A with f(u) ≤
√

q∗ log2 a∗, then we can use Lemma 1
to construct an insufficient assignment.

If this does not hold, then A has more than a
2 vertices with lists of size greater than√

(q − as) log2 a∗. Using a∗ > a/4 we obtain∑
v∈A∪Q

f(v) ≥ 1
2
a
√

(q − as) log2(a/4) + 2q − as. (12)
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The rest is a little calculation to show that here the right hand side exceeds 2q+0.06a
√

q log a
for a ≥ 5, q > 4a2 log a and s < 0.06

√
q log a. Finally, the case a ≤ 4 (in fact a ≤ 30) follow

from (5) and (6), completing the proof. 2

Let us remark that if we choose the constants in the proof of Theorem 3 more carefully,
we can improve the constant

√
32 to 3.67. Using a randomized construction, it is possible to

improve the constant 0.06 in Theorem 4 to 0.87.

5 For fixed a, a limit exists as q → ∞
In this section we suppose that a ≥ 2 is a fixed integer. We have proved bounds for

αq := (χsc(Ka,q) − 2q)/
√

q. Now we show that in fact the limit exists when q tends to ∞.

Theorem 5. For fixed a, the limit limq→∞
χsc(Ka,q)−2q√

q exists.

First, we consider a simpler problem and consider only type II assignments of Ka,q which
means f(v) = 2 for all v ∈ Q. Define χsc2(Ka,q) to be the minimum of

∑
A∪Q f(v) where f

runs over all sufficient type II functions. Obviously χsc2(Ka,q) ≥ χsc(Ka,q).

Theorem 6. For fixed a, the limit limq→∞
χsc2(Ka,q)−2q√

q exists.

A type II f is not sufficient if and only if there exists a a hypergraph L with edges Li

satisfying |Li| = fi for i = 1, . . . , a and a graph G on V (L) with at most q edges, such that
no transversal of L is an independent set in G.

For I ⊆ [a], define XI = ∩i∈ILi. An insufficient II assignment is symmetric if for all pairs
I 6= J , the bipartite subgraph of G induced by XI and XJ is either empty of complete, and
for each I, XI induces the empty graph. Without loss of generality we may assume that an
insufficient type II assignment is symmetric, as the following lemma demonstrates. From now
on, in this section, all assignments are of type II, except when stated otherwise.

Lemma 2. Given a, q and f an insufficient type II assignment exists if and only if a sym-
metric insufficient assignment exists.

Proof. Suppose that (L, G) is an insufficient assignment. If u and v belong to the same
XI , then no minimal transversal of L contains both of them. We can therefore delete all
edges induced by XI .

Now suppose that u, v ∈ XI and |N(u)| ≤ |N(v)|. Replace the neighborhood of v by the
neighborhood of u. It is still true that every transversal of L induces an edge of G. Repeated
application of this procedure eventually produces a symmetric insufficient assignment. 2

Proof of Theorem 6. Consider a symmetric insufficient assignment f for Ka,q. Let L, G
and XI (for I ⊆ [a]) be as before, xI = |XI |. Let V := {vI : I ⊆ [a]} be a 2a-element set.
Let R be the reduced graph of the symmetric insufficient assignment, i.e., the graph with
V (R) = {vI ; xI 6= 0} and whose edges correspond to the complete bipartite subgraphs of G.
Similarly, the hypergraph L turns into the reduced hypergraph on the same vertex set, V (R).
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The graph R is blocking i.e., every vertex cover of the reduced hypergraph contains an edge
of R. The vector x = (xI) satisfies

∑
IJ∈E(R) xIxJ ≤ q, and xI = 0 whenever vI 6∈ V (R).

The set Aq
R of all such x lies in the non-negative orthant of R2[a]

and is bounded by a quadric
surface which depends on R and q.

Define the linear map ϕ : R2[a] → Ra by ϕ(x) = (f1, . . . , fa) where fi =
∑

i∈I xI . The
function f is insufficient for this q if and only if f is the image of some integer point x that
is in Aq

R for some blocking R.
If there exists an insufficient f -assignment for every integer vector f such that

∑
fi = k,

then we have χsc2(Ka,q) − 2q > k. We are therefore looking for the maximum k such that
every integer point on the hyperplane

∑
fi = k is the image (under ϕ) of some integer point

in
∪

Aq
R, where the union is taken over all (but finitely many) blocking R’s.

Let us normalize everything by
√

q. For every blocking R, define

AR := {x :
∑

IJ∈E(R)

xIxJ ≤ 1, and xI = 0 for vI 6∈ V (R)} and BR := ϕ(AR).

For every R we now have only one quadric surface, independent of q. We say that a vector
v is a q-grid point if

√
q · v is an integer point.

For every q, define kq to be the maximum k such that every q-grid point on the hyperplane∑
fi = k is the image of some q-grid point in

∪
AR. Also, define β to be the maximum k

such that the simplex Ck := {f :
∑

fi ≤ k} is a subset of
∪

BR.
We want to prove that the limit lim kq exists and equals β. That is, we want to prove

that for every ε, if q is large enough,

• every q-grid point in Cβ−ε is the image under ϕ of some q-grid point in
∪

AR, and

• there is a q-grid point in Cβ+ε which is not the image of any q-grid point in
∪

AR.

To prove the first claim, fix q and let f be a point on the hyperplane
∑

fi = β. The point
f is in

∪
BR, so it is the image of some x ∈

∪
AR. Each set AR is a downset in the sense that

with every x it also contains all points z such that zi ≤ xi for all i. It follows that y := b√q·xc√
q

is a q-grid point in
∪

AR. Each entry of y differs by at most 1√
q from the corresponding entry

of x, and a simple computation suffices to show that the distance of ϕ(y) and f is at most
c√
q , where c is a constant dependent only on a. That is, for each point f on the hyperplane∑
fi = β we have found, in distance at most εq := c√

q , an image of a q-grid point from
∪

AR.
Call this point f ′.

Note that, by definition of χsc, whenever a q-grid point f is the image of a q-grid point
in

∪
AR, the same is true for all q-grid points in the box Df := {g : gi ≤ fi for all i}.

Let h be a q-grid point such that
∑

hi ≤ β−εq ·
√

a. Let f be its perpendicular projection
on the hyperplane

∑
fi = β and find the corresponding f ′. Since the distance of f and f ′ is

at most εq, the point h belongs to Df ′ , and hence it is the image of a q-grid point in
∪

AR.
Choosing q large enough so that εq ·

√
a ≤ ε for our given ε concludes the proof.
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Now we prove the second claim. Let f be a point outside ∪BR, but within the distance ε
from Cβ . Take a bounded cube Q ⊆ Ra that contains f . Now take a bounded cube S in R2a

which contains all points x such that ϕ(x) ∈ Q. Then T := S ∩ (
∪

AR) is a compact set, so
ϕ maps it to a compact set. The complement of ϕ(T ) in ϕ(S) is open, and contains f . Note
that (

∪
BR) ∩ Q ⊆ ϕ(T ).

Therefore, for some small δ, the δ-ball around f is outside
∪

BR. If q is large enough, the
ball contains some q-grid point. This point not only has no q-grid preimages in ∪AR, it has
no preimages in

∪
AR whatsoever, and the claim is proven. 2

Proof of Theorem 5. Define sequences {αq}∞q=1 and {βq}∞q=1 as follows

αq =
χsc(a, q) − 2q

√
q

and βq =
χsc2(a, q) − 2q

√
q

.

It was already mentioned that αq ≤ βq for all q.
The argument in the proof of Theorem 4 shows that whenever we have an insufficient

function f for Ka,q, we can delete at most d(q) = O(
√

q) vertices of Q and get an insufficient
function for Ka,q−d(q) where f(v) = 2 for v ∈ Q. We therefore have αq

√
q = χsc(a, q) − 2q ≥

χsc2(q, q− d(q))− 2(q− d(q)) = βq−d(q)

√
q − d(q). We get the following relationship between

αq and βq:

βq ≥ αq ≥
√

q − d(q)
√

q
βq−d(q).

The limit limq→∞ βq exits by Theorem 6. Since d(q) = O(
√

q), we have

lim
q→∞

√
q − d(q)
√

q
βq−d(q) = lim

q→∞
βq,

which proves the claim. 2

6 Graphs with large independent sets and a generalization of
Turán’s theorem

Let Ga,q be the graph that we get from Ka,q by inserting an edge {u, v} for every pair of
distinct u, v ∈ A.

Theorem 7. There exist positive constants c1 and c2, independent of q and a, such that for
q > a ≥ 2 we have

2q + c1a
√

q(a − 1) ≤ χsc(Ga,q) ≤ 2q + c2a
√

q(a − 1).

We will use the following generalization of Turán theorem. For given positive integers
s and k, let t(s, k) = min

∑
1≤i≤k

(
di
2

)
, where the minimum is taken over all non-negative

integer sequences (x1, . . . , xk) such that
∑

di = s.
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Theorem 8. Let s, a ≥ 2 be integers and let G be a graph with less than t(s, a−1) edges. Let
L1, . . . , La ⊂ V (G) be sets of size s. Then there exists a system of distinct representatives
{u1, . . . , ua} of L1, . . . , La, (i.e., ui ∈ Li) which is an independent a-element set in G.

The case V (G) = L1 = · · · = La gives (the dual form of) Turán’s theorem.
Let us also remark that the result concerning |E(G)| is sharp: taking L1 = · · · = La =

V (G), |V (G)| = s with G being the disjoint union of a−1 cliques of almost equal sizes provide
a graph of t(s, a−1) edges and a family without any system of distinct representatives which
is independent in G (because G has no any independent set of size a).

Proof. We define the sequence of distinct vertices u1, . . . , ua one by one by an algorithm,
such that uk ∈ Lik , where {i1, i2, . . . , ia} is a permutation of {1, 2, . . . , a} and also the set
{u1, . . . , ua} is independent in G.

Let V1 = L1 ∪ · · · ∪ La and G1 = G[V1] (the restriction of G to V1). Let u1 be the vertex
of minimum degree in G1, D1 the closed neighborhood of u1 in G1, and d1 = |D1|. Let Li1

be one of the hyperedges containing u1.
If uj , Dj and Lij are already defined for j = 1, . . . , k, consider Vk+1 = (

∪
i6∈{i1,...,ik} Li) \

(D1 ∪ · · · ∪Dk), Gk+1 = G[Vk+1], and let uk+1 be a vertex of minimum degree in Gk+1, Dk+1

its closed neighborhood in Gk+1, dk+1 = |Dk+1|, and Lik+1
one of the hyperedges containing

uk+1, different from Li1 , . . . , Lik .
We claim that this algorithm only stops after a steps thus supplying the desired inde-

pendent set {u1, . . . , ua}. If we cannot define uk+1 for a k < a, then Vk+1 is empty, and
|D1| + · · · + |Dk| ≥ s. As D1, . . . , Dk are non-empty, disjoint sets we get the contradiction

2|E(G)| ≥
∑

u∈D1∪···∪Dk

deg(u) ≥ d1(d1 − 1) + · · · + dk(dk − 1) ≥ 2t(s, k) ≥ 2t(s, a − 1). 2

Proof of Theorem 7. Again, we will prove the upper bound (with c2 = 3) by presenting a
sufficient function f . Let

f(v) =
{

s for v ∈ A,
2 for v ∈ Q,

where s := b3
√

(a − 1)qc. Note that s ≥ a and t(s, a − 1) > q. Consider any f -assignment,
it provides sets L1, . . . , La and a graph G with |E(G)| = q. This assignment is sufficient by
Theorem 8.

For the lower bound, we proceed as in Section 4 and first consider f ’s with f(v) = 2 for
all v ∈ Q. Let {v1, . . . , va} be the vertices of A and let

f(v) =
{

si for v = vi ∈ A and
2 for v ∈ Q

such that s1 ≤ · · · ≤ sa. We claim that if f is sufficient, then q < t(si, i − 1) for all i ≥ 2.
These inequalities imply that si ≥

√
2(i − 1)q so

∑
f(v) ≥ 2q +

 ∑
1≤i≤a

√
i − 1

 √
2q ≥ 2q +

1
2
a
√

(a − 1)q.
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Suppose, on the contrary, that q ≥ t(si, i − 1) for some i ≥ 2. Let G be the graph consisting
of i − 1 disjoint cliques with sizes as equal as possible. Assign the pairs corresponding to
the edges of G as the lists for the vertices of Q and let L(v1) ⊂ · · · ⊂ L(vi) = V (G). This
assignment is not sufficient.

To finish the proof of the lower bound for an arbitrary sufficient f with
∑

f(v) = 2q + as
we use the inequality (11) to obtain that f(v) = 2 for all but at most q − as vertices v ∈ Q.
Then we conclude the proof with an argument analogous to (12). The details are omitted. 2

Problem 9. Suppose that

f(v) =
{

si for v = vi ∈ A and
2 for v ∈ Q

such that s1 ≤ · · · ≤ sa.
What conditions are sufficient and necessary for f being Ga,q-sufficient?

We already have seen that q < t(si, i− 1) for all i ≥ 2 are necessary. It is easy to see that
q ≥

(
s1

2

)
+ s1(s2 − s1) is also necessary, let G be the graph that we get by taking a clique of

order s2 and deleting edges of a clique of order s2 − s1. Assign its edges as the lists of Q, and
let L(v1) ⊂ L(v2) = V (G). One is tempted to conjecture that these conditions altogether are
already sufficient.

This is the same problem as to ask that how much the sizes of Li’s can be decreased in
Theorem 8.
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