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Abstract

An internal partition of an n-vertex graph G = (V,E) is a partition of V
such that every vertex has at least as many neighbors in its own part as in the
other part. It has been conjectured that every d-regular graph with n > N(d)
vertices has an internal partition. Here we prove this for d = 6. The case
d = n−4 is of particular interest and leads to interesting new open problems on
cubic graphs. We also provide new lower bounds on N(d) and find new families
of graphs with no internal partitions. Weighted versions of these problems are
considered as well.

1. Introduction

It is well-known that every finite graph G = (V,E) has an external partition,
i.e., a splitting of V into two parts such that each vertex has at least half of
its neighbors in the other part. This is, e.g., true for G’s max-cut partition.
Much less is known about the internal partition problem in which V is split into
two non-empty parts, such that each vertex has at least half of its neighbors in
its own part. Not all graphs have an internal partition and their existence is
proved only for certain classes of graphs. Several investigators have raised the
conjecture that for every d there is an n0 such that every d-regular graph with
at least n0 vertices has an internal partition. Here we prove the case d = 6 of
this conjecture.

A related intriguing concept in this area is the notion of external bisection.
This is an external partition in which the two parts have the same cardinality.
We conjecture that the Petersen graph is the only connected cubic graph with
no external bisection. We take some steps in resolving this problem.

These concepts have emerged in several different areas and as a result there is
an abundance of terminologies here. Thus Gerber and Kobler[Gerber,2000] used
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Figure 1: Examples of internal partitions

the term satisfactory partition for internal partitions. Internal/external parti-
tions are called friendly and unfriendly partitions sometimes. Morris[Morris,2000]
studied social learning, and considered a more general problem. Now we want
to partition V = A∪̇B with A,B 6= ∅ such that every x ∈ A (resp y ∈ B) has at
least qd(x) of its neighbors in A (resp. ≥ (1− q)d(y) neighbors in B). He refers
to such sets as (q/1 − q)-cohesive. Here we use the term q-internal partitions.
The complementary notion of q-external partitions is considered as well.

Figure 1 shows examples of internal partitions of regular cubic graphs.
Bazgan, Tuza and Vanderpooten have written several papers [Bazgan,2003,

Bazgan,2006] on internal partitions. In [Bazgan,2010] they give a survey of this
area. Much of their work concerns the complexity of finding such partitions, a
problem which we do not address here.

Our own interest in this subject arose in our studies of learning in social or
geographical networks. Vertices in these graphs represent individuals and edges
stand for social connection or geographical proximity. The individuals adopt one
of two choices of a social attribute (e.g. PC or Mac user). Society evolves over
time, with each individual adopting the choice of the majority of her neighbors.
We asked whether a stable, diverse assignment of choices is possible in such a
society. This amounts to finding an internal partition if the social choices are
equally persuasive. It is also of interest to consider the problem when choices
carry different persuasive power (say a neighbor who is a Mac user is more
persuasive than a PC neighbor). If the merits are in proportion q : 1 − q, this
leads to the problem of finding a q-internal partition.

Thomassen [Thomassen,1983] showed that for every two integers s, t > 0
there is a g = g(s, t) such that every graph G = (V,E) of minimum degree at
least g has a partition V = V1∪̇V2 so that the induced subgraphs G(V1), G(V2)
have minimum degree at least s, t, respectively. He conjectured that the same
holds with g(s, t) = s+ t+1, which would be tight for complete graphs. Stiebitz
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[Stiebitz,1996] proved this conjecture, and extended it as follows: For every
a, b : V 7→ Z+ such that ∀v ∈ V, dG(v) ≥ a(v)+ b(v)+ 1, there exists a partition
of V = A∪̇B, such that ∀v ∈ A, dA(v) ≥ a(v) and ∀v ∈ B, dB(v) ≥ b(v).
Kaneko [Kaneko,1998] showed that in triangle-free graphs the same conclusion
holds under the weaker assumption dG(v) ≥ a(v) + b(v).

Stiebitz’s result shows that, given q ∈ (0, 1), every graph has a non-trivial
partition which is at most one edge (for each vertex) short of being a q-internal
partition. Shafique and Dutton [Shafique,2002] showed the existence of internal
partitions in all cubic graphs except K4 and K3,3 and in all 4-regular graphs
except K5. In this paper, we settle the problem for 6-regular graphs.

Shafique and Dutton also conjectured that K2k+1 is the only d = 2k-regular
graph with no internal partition. We disprove this and present a number of
counterexamples. Many of these exceptions are with d ≥ n − 4. This range
turns out to be of interest and we discuss it as well. As we show, there exist
d-regular n-vertex graphs with no internal partitions with both d and n − d
arbitrarily large. We conjecture that every 2k-regular graph with n ≥ 4k has
an internal partition. In the process, we consider external bisections of regular
graphs, and especially cubic graphs. We note that all class-I cubic graphs have
an external bisection, and speculate that for class-II cubic graphs, only graphs
that have the Petersen graph as a component do not have such a bisection.

Finally, we conjecture that there is a function µ = µ(d, q) such that if qd
is an integer, then every d-regular graph has a q-internal partition. We also
conjecture this for q = 1/2 and d odd. As we show, for d fixed and large
n, every n-vertex d-regular graph has many q-internal partitions for some q.
This lends some support to our conjecture. We also discuss an algorithm that
generates q-internal partitions of a graph for many, and plausibly all values of
q. This sheds light on what causes a graph to be non-partitionable.

2. Terminology

We consider undirected graphs G = (V,E) with n vertices. For S ⊂ V , we
denote by G(S) the induced subgraph of S. The degree of x ∈ V is denoted by
d(v) = dG(v) and the number of neighbors that v has in S ⊆ V is called dS(v).
The complement of G is denoted by Ḡ.

A bisection of V = A∪̇B is a partition with |A| = |B|. If ||A| − |B|| ≤ 1,
then we call it a near-bisection. Corresponding to the partition (A,B) of V is
the cut E(A,B) = EG(A,B) = {xy ∈ E|x ∈ A, y ∈ B}. For x ∈ A and y ∈ B
we call dA(x), dB(y), respectively, the vertices’ indegrees, and dB(x), dA(y) the
outdegrees. These terms usually refer to directed graphs, but we could not resist
the convenience of using them in the present context.

A subset S ⊆ V is called p-cohesive if ∀x ∈ S, dS(x) ≥ p. It is called a
p-crumble if no S′ ⊆ S is p-cohesive. (Note that our notion of cohesion differs
from that of Morris [Morris,2000]).

A partition (A,B) is q-internal for q ∈ (0, 1) if ∀x ∈ A, dA(x) ≥ qdG and
∀x ∈ B, dB(x) ≥ (1− q)dG(x). A

1
2 -internal partition is simply internal.
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If ∀x ∈ A, dB(x) ≥ qdG and ∀x ∈ B, dA(x) ≥ (1 − q)dG(x) we call the
partition q-external. A 1

2 -external partition is external.
A q-internal or a q-external partition is called integral if for every v ∈ V ,

qdG(v) is an integer.
A q-internal or a q-external partition (A,B) is called exact if |A| = qn, and

near-exact if ||A| − qn| < 1. A 1
2 -exact partition is a bisection. For q = 1

2 ,
near-exact partitions are near-bisections.

3. Internal Partitions of 6-Regular Graphs

Lemma 1. Let G = (V,E) be a graph with minimal degree d. For 0 < k < |V |,
let (A,B) be a partition of V that attains min |E(A,B)| over all partitions with
|A| = k or |B| = k. Then, either:

1. A is l-cohesive and B is m-cohesive for some integers l,m with l+m = d,
or:

2. (a) A is l-cohesive and B is m-cohesive for some integers l,m with l +
m = d− 1, and:

(b) The vertices in A with indegree l and the vertices in B with indegree
m form a complete bipartite subgraph in G, and:

(c) For every x ∈ A with indegree l, B ∪ {x} is (m+ 1)-cohesive. Simi-
larly, A ∪ {x} is (l + 1)-cohesive for every x ∈ B with indegree m.

Proof. Let x ∈ A, y ∈ B. If xy /∈ E then

|E(((A\{x}) ∪ {y}, (B\{y})∪ {x})| − |E(A,B)| =

= dA(x)− dB(x) + dB(y)− dA(y) ≤

≤ 2[dA(x) + dB(y)− d]

If xy ∈ E, then

|E(((A\{x}) ∪ {y}, (B\{y})∪ {x})| − |E(A,B)| =

= dA(x)− dB(x) + (dB(y) + 1)− (dA(y)− 1) ≤

≤ 2[dA(x) + dB(y)− (d− 1)]

Since E(A,B) is minimal, it follows that the sum of indegrees is at least d − 1
if x, y are adjacent, and d otherwise.

Let us apply this for x, y of minimum indegree. Then (1) follows if there is
such a pair with xy /∈ E. On the other hand, if xy ∈ E for all such pairs, then
(2a) and (2b) follow. We obtain (2c) by observing that increasing by one the
indegree of all minimum indegree vertices in a subset, increases the minimum
indegree of the subset by one. �

Corollary 1. Every n-vertex d-regular graph has a ⌈d2⌉-cohesive set of at most
⌈n2 ⌉ vertices (resp. n

2 + 1) for d even (for d odd).
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Proof. Consider a near-bisection of G that minimizes |E(A,B)|. By Lemma
1 if d is even, at least one of A,B is d

2 -cohesive. If d is odd, and if neither A

nor B are ⌈d2⌉-cohesive, then by (2a) both are ⌊d2⌋-cohesive, and by (2c) each

can be made ⌈d2⌉-cohesive by adding a vertex of the other. �

Theorem 1. Every 6-regular graph with at least 14 vertices has an internal
partition.

Proof. We argue by contradiction and consider an n-vertex 6-regular graph
G = (V,E) with no internal partition. Let (A,B) be the near-bisection of V
that attains min |E(A,B)| over all near-bisections. By Lemma 1 either A or B
must be 3-cohesive. We may assume A is 3-cohesive while B is not, for else
(A,B) is an internal partition.

We repeatedly carry out the following step: As long as there is some y ∈ B
with outdegree dA(y) > 3 we move that vertex from B to A. If A is 3-cohesive
then clearly so is A∪{y}, while if B is 3-crumble, so is B\{y}. By assumption no
internal partition exists, so this process must terminate with a trivial partition,
i.e., B must be 3-crumble. The move of y from B to A decreases |E(A,B)| by
2dA(y)−6 ≥ 2. Every step of the process therefore decreases the cut by at least
2, while |B| decreases by 1. Also in the last two moves |E(A,B)| decreases by
≥ 4, and 6 in this order, and at termination E(A,B) = ∅. We conclude that
|E(A,B)| ≥ 2|B|+ 6.

On the other hand |E(A,B)| ≤ 2|A|+4: By Lemma 1 all vertices in A have
outdegree ≤ 2, except for at most 4 (that are adjacent to a vertex in B with
outdegree ≤ 4) vertices with outdegree 3. Therefore 2|A| + 4 ≥ |E(A,B)| ≥
2|B| + 6 so that |A| ≥ |B| + 1. It follows that |A| = |B| + 1, n is odd and
B is a “tight” 3-crumble. Namely, exactly 4 vertices in A have outdegree 3,
and in all moves (except the last two) |E(A,B)| is reduced by exactly 2. If
n ≥ 9 then |B| ≥ 4, so the first two vertex moves are of outdegree 4. Let
y′, y′′ ∈ B be these first two vertices, let (A′, B′) = (A ∪ {y′}, B\{y′}) be the
partition after the first move, and let (A′′, B′′) = (A ∪ {y′, y′′}, B\{y′, y′′}) be
the partition after the second move. By the above |E(A′, B′)| = |E(A,B)| − 2
and |E(A′′, B′′)| = |E(A,B)| − 4.

By Lemma 1 (2c) all vertices in A′ have outdegree 2. Therefore, in A′′, all
vertices have outdegree 2 except 4 with outdegree 1. Suppose that some pair of
these outdegree-2 vertices in A′′, say x′, x′′ are adjacent. Then it would be possi-
ble to move both vertices to B′′ while increasing the cut size by only 3. Namely,
|E(A′′\{x′, x′′}, B′′ ∪ {x′, x′′})| = |E(A′′, B′′)| + 3 < |E(A,B)|. This yields a
near-bisection, that contradicts the minimality of |E(A,B)|. Alternatively, if
the outdegree-2 vertices in A′′ form an independent set, then all their neighbors
in A′′ must have outdegree 1 and indegree 5. It follows that there are at most
5 vertices in A′′ of outdegree-2. Therefore |A′′| ≤ 9⇒ |A| ≤ 7⇒ n ≤ 13. �

Remark 1. We now comment on the range n ≤ 13. Note that the proof covers
all even n. The complete graph K7 is an exception with n = 7.
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Figure 2: K3,3,3: A 6-regular graph with no internal partition

For n = 9, there is a unique unpartitionable 6-regular graph (see Figure 2).
We prove this statement when we discuss the case d = n − 3 in the following
section.

For n = 11, there exist 6-regular graphs with no internal partition. One such
example, Q3, is a member of a class of unpartitionable graphs we construct in
Section 6.

The case n = 13 remains unsettled. Our Conjecture 4 would imply that all
such graphs have an internal partition.

4. Partitions of Complementary Graphs

Proposition 1. For every q ∈ (0, 1), every graph G has a q-external partition.

Proof. For a partition (A,B) define

w(A,B) := |E(A,B)| − (1− q)
∑

x∈A

dG(x)− q
∑

x∈B

dG(x) (4.1)

The partition that maximizes w(A,B) is non-trivial, since for every non-
isolated vertex x there holds w(V \{x}, {x}) > w(V, ∅) and w({x}, V \{x}) >
w(∅, V ). Furthermore w(A,B) − w(A\{x}, B ∪ {x}) = dB(x) − dA(x) + (1 −
q)dG(x) − qdG(x) = 2dB(x) − 2qdG(x) and w(A,B) − w(A ∪ {x}, B\{x}) =
dA(x)−dB(x)−(1−q)dG(x)+qdG(x) = 2dA(x)−2(1−q)dG(x), so the maximality
of (A,B) implies that it is q-external. �

Proposition 2. For q ∈ (0, 1) every exact q-internal partition of G = (V,E) is
an exact (1− q)-external partition of Ḡ.

Proof. Let |V | = n and let (A,B) be an exact q-internal partition of G.
Namely, |A| = qn, |B| = (1 − q)n and ∀x ∈ A, dA(x) ≥ qdG(x) and ∀x ∈
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B, dB(x) ≥ (1− q)dG(x). To indicate that we work in Ḡ we denote by Ā, B̄ the
subgraphs of Ḡ induced by A,B. Then:

∀x ∈ V, dḠ(x) = n− dG(x)− 1

∀x ∈ A, dB̄(x) = |B| − dB(x) = (1− q)n− (dG(x) − dA(x)) ≥

≥ (1− q)(n− dG(x)) > (1 − q)dḠ(x)

∀x ∈ B, dĀ(x) = |A| − dA(x) = qn− (dG(x) − dB(x)) ≥

≥ q(n− dG(x)) > qdḠ(x)

So (A,B) is a (1− q)-external partition. �

Proposition 3. For q ∈ (0, 1) every exact (1 − q)-external partition of G =
(V,E) is an exact q-internal partition of Ḡ, provided the partition of Ḡ is inte-
gral.

Proof. Maintaining the notation of Proposition 2, consider an exact (1 − q)-
external partition (A,B) of G. Namely |A| = qn, |B| = (1 − q)n and ∀x ∈
B, dA(x) ≥ qdG(x) and ∀x ∈ A, dB(x) ≥ (1 − q)dG(x). Then:

∀x ∈ V, dḠ(x) = n− dG(x)− 1

∀x ∈ A, dĀ(x) = |A| − dA(x)− 1 = qn− (dG(x) − dB(x)) − 1 ≥

≥ q(n− dG(x))− 1 = qdḠ(x)− (1− q).

By rounding up we conclude that dĀ(x) ≥ qdḠ(x). (Note that dĀ(x) and qdḠ(x)
are integers and 1 > q > 0).

∀x ∈ B, dB̄(x) = |B| − dB(x) = (1− q)n− (dG(x)− dA(x))− 1 ≥

≥ (1− q)(n− dG(x)) − 1 = (1 − q)dḠ(x)− q.

By a similar argument dB̄(x) ≥ (1− q)dḠ(x), so (A,B) is a q-internal partition.
�

Corollary 2. If G has an internal bisection, then Ḡ has an external bisection.

Corollary 3. If all degrees in G are even and Ḡ has an external bisection, then
G has an internal bisection.

Theorem 2. For even n, every (n− 2)-regular graph has an internal bisection.

Proof. The complement of an (n−2)-regular graph is a perfect matching. Split
each matched pair between sides of a partition to obtain an external bisection.
The theorem follows from Corollary 3. �

Theorem 3. An (n− 3)-regular graph G has an internal partition if and only
if its complementary graph Ḡ has at most one odd cycle. Furthermore this
partition is a near-bisection.
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Proof. Clearly Ḡ is 2-regular, i.e. it is comprised of vertex disjoint cycles. For
every cycle, place the vertices alternately in A and in B. If at most one cycle
is odd, then ||A| − |B|| ≤ 1, so the partition is a near-bisection. It is also an
internal partition of G, since the smaller side, say B, is a clique. Also, A spans
a clique if |A| = |B| , or a clique minus one edge if |A| = |B|+1, so its minimum
indegree is also |B| − 1. As |B| − 1 ≥ (n− 3)/2, the partition is internal.

Let G have an internal partition (A,B). If n is even, every vertex must
have indegree ≥ n/2 − 1. Therefore |A| = |B| = n/2 and the complementary
graph Ḡ is bipartite so has no odd cycles. If n is odd, assume |A| > |B|.
B’s minimum indegree is (n − 3)/2 so |B| = (n − 1)/2, |A| = (n + 1)/2 and
the partition is a near-bisection. In Ḡ, |E(A,B)| = 2|B| = n − 1 so E(A) =
(2|A| − |E(A,B)|)/2 = 1. Therefore (A,B) is bipartite in Ḡ except for a single
edge internal to A. Therefore Ḡ has only one odd cycle. �

We can now confirm that K3,3,3, the graph in Figure 2, has no internal
partition, as it is the complement of three disjoint triangles. Furthermore, as
there is no other way for a 9-vertex graph to have more than one odd cycle, this
is the only n = 9, d = 6 graph with this property.

5. The Case d = n − 4 and Cubic Graphs

Let G be a d-regular graph on n vertices with d = n− 4. Clearly n must be
even, and its complement Ḡ is a cubic graph.

Proposition 4. If an (n − 4)-regular graph G has an internal partition then
either

• Ḡ has an external bisection, or

• Ḡ has an independent set of size at least n/2− 1.

Proof. By Corollary 3 if Ḡ has an external bisection, G has an internal bisec-
tion. If not, to be internal a partition must have minimum degree n/2 − 2 so
each part must have size ≥ n/2−1. Therefore |A| = |B|+2, where B is a clique
in G and an anticlique in Ḡ. �

The Petersen graph (see Figure 3) has no external bisection, but it has an
independent set of size 4. Its complement is 6-regular, and in fact has an internal
partition (but not a bisection), as already proved in Theorem 1.

The requirement of an independent set of size n/2− 1 means that, save for
3 edges, the cubic graph is bipartite. Clearly this is a rare phenomenon among
cubic graphs, so our quest for graphs with internal partitions boils down to
asking which cubic graphs have an external bisection.

We show next:

Theorem 4. Every class-1 3- or 4-regular graph G has an external bisection.

8



Figure 3: External partition of the Petersen graph

Proof. Pick some d-edge coloring of G, and choose any two of the colors. The
corresponding alternating cycles form a 2-factor in G of even cycles. Number
the vertices of each of these cycles sequentially along the cycle path. Alternately
assign the vertices in the cycles to the two sides of a partition which is clearly
a bisection. For d ≤ 4, this partition is external, since every vertex has at least
two neighbors at the opposite part. �

While all class-1 cubic graphs have an external bisection, the same question
for class-2 cubic graphs remains open, though below we present a partial result.
As noted, the Petersen graph, the smallest snark, has no external bisection. We
checked a substantial number of larger snarks and found external bisections in
all of them. Our computer experiments also suggest that all cubic graphs with
bridges have external bisections, so we make the conjecture:

Conjecture 1. The Petersen graph is the only connected cubic graph that has
no external bisection.

Note that disconnected cubic graphs with no external bisection do exist.
For example, a graph that has an odd number of components that are Petersen
graphs and any number of K4 components.

As mentioned above, the complement of the Petersen graph has an internal
partition, by virtue of having an anticlique of size n/2 − 1 (as required by
Proposition 4). But the above-mentioned disconnected cubic graphs do not
meet that requirement and so their complements have no internal partition.
The smallest of these is a 10-regular graph of order 14, whose complement is
a Petersen graph plus a K4 component (see Figure 4). This is the smallest of
an infinite class of d = (n − 4)-regular graphs with no internal partition. If
Conjecture 1 is true, these are the only exceptions, as stated in the following:

Conjecture 2. If G is (n − 4)-regular and has no internal partition, then Ḡ
is a disconnected cubic graph that has an odd number of components that are
Petersen graphs. All other components of Ḡ have the property that all their
external partitions are bisections.

9



Figure 4: Smallest d=n-4 regular graph with no internal partition (right) is complement of
cubic graph on left

Figure 5: Possibly largest (n = 28) connected cubic graph with no uneven external partition

Another consequence of Conjecture 1 is:

Conjecture 3. Every cubic graph has an external partition (A,B) with ||A| −
|B|| ≤ 2.

There exist graphs other than K4 all of whose external partitions are bi-
sections. Every cubic graph of order 6 or 8 has this property, since an uneven
external partition has at most a 3 : 2 proportion of the sides. There are, how-
ever, larger connected cubic graphs with this property. The graph in Figure 5
has order 28 and it may be the largest such graph.

An obvious first step in proving Conjecture 1 would be to show that the
smallest counterexample to this conjecture must be bridgeless. We are presently
unable to establish even that, but following is a partial result in that direction:

Every bridge in a cubic graph G = (V,E) may be eliminated, resulting in
two smaller cubic graphs by the following procedure. The reader may find it
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y1

x2

y2

b1p4

p2

q1

q4

p3

p1

b2

q2

q3
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G1 G2

Figure 6: Cubic graph bridge decomposition

useful to follow Figure 6 where this procedure is illustrated.
Start by deleting the two vertices of the bridge (b1, b2). In each of the two

components all vertices then have degree 3, except for two vertices of degree
2. The following is repeated in a loop for each component until a cubic graph
remains:

• If the two degree-2 vertices are not adjacent, add an edge between them.
This yields a cubic graph, and the procedure is terminated. Otherwise
remove them both. The continuation depends on whether the two vertices
share a neighbor:

• If the removed degree-2 vertices had a common neighbor (such as p1, p2
and their common neighbor p3), delete that neighbor and its remaining
neighbor (in the example: p4). There remain exactly two vertices of degree
2 (x1, y1), and the loop is repeated.

• Otherwise (as in q1, q2) their additional neighbors (q3, q4) are distinct.
Again, exactly two vertices with degree 2 remain, and the loop is repeated.

The terminal componentsG1 = (V1, E1), G2 = (V2, E2) are nonempty and cubic,
since during the run of the procedure the component always has two vertices
of degree 2. They each contain a single edge that is not in E, namely x1y1 ∈
E1, x2y2 ∈ E2.

We now note that if G1 and G2 are both class-1, then G has an external
bisection, constructed as follows: Bisect the vertices in V1 as in the proof of
Theorem 4, taking care to choose the two colors other than x1y1’s color. This
creates an external bisection of G1 in which x1y1 may be removed and replaced
by other edges without disturbing the fact that the partition is external. Simi-
larly derive an external bisection of G2, using two colors other than x2y2’s color.
Finally assign the bridge vertices to different sides of the partition, and do the

11



X2

X1

X Y Q4

Figure 7: Q4: 8-regular graph with no internal partition (right) is composed from components
(left)

same with any non-bridge vertex pair that was deleted to obtain G1 and G2.
The result is an external bisection of G.

Much remains to be done here, since this construction does not work if either
G1 or G2 are class-2. It may fail because the graph at hand is a snark that has
no 3-edge-coloring, but also if it contains a bridge, due to the requirement
pertaining to the color of the non-E edge. If there is more than one such edge,
it is not necessarily the case that we can simultaneously satisfy more than one
such requirement.

6. The General Case

The existence of internal partitions for d-regular graphs with d = 5 and with
7 ≤ d ≤ n− 5 remains unsettled, as is the existence of q-internal partitions for
q 6= 1

2 .
We construct a class of graphs without an internal partition, in which both

d and n− d are unbounded:
Given an integer m > 2, construct the graph Qm as follows (see Figure 7):

1. Start with a X1 := Km−1 component.

2. Let X2 be an (m + 1)-vertex, (m − 2)-regular graph, and let X be the
graph with components X1, X2.

3. Let Y := K̄m+2 (i.e. Y has m+ 2 isolated vertices).

12



4. Finally Qm is attained by adding to X,Y the complete bipartite graph
between V (X) and V (Y ).

Qm is 2m-regular with 3m+2 vertices. The first few such graphs are Q3(n =
11, d = 6), Q4(n = 14, d = 8), Q5(n = 17, d = 10), . . . .

Proposition 5. Qm has no internal partition.

Proof. Suppose to the contrary that (A,B) is an internal partition of Qm with
|A| = a and |B| = b. In the complementary graph Q̄m, the set Y are the vertices
of a Km+2 component. In the partition (A,B) of Q̄m, each vertex in A (resp.
B) has outdegree at least b−m (resp. a−m). The only way to partition Km+2

to meet these requirements is to have a −m of its vertices in A and the other
b−m vertices in B

Therefore |V (X)∩A| = |V (X)∩B| = m. Also ∀x ∈ (V (X) ∩ A), dV (X)∩A(x) ≥
m−(a−m) = 2m−a, and ∀x ∈ (V (X) ∩B), dV (X)∩B(x) ≥ m−(b−m) = 2m−b.

Therefore (V (X)∩A, V (X)∩B) is a q-internal partition ofX for q = 2m−a
m−2 . Now

X1, being complete, has no q-internal partition for any q. Therefore its vertices
are either all in A or all in B. Say in A. Then |V (X2)∩B| = m−|V (X1)| = 1, so
there is a single B-vertex in the X2 component, but a partition of a connected
graph into a single vertex and its complement is not q-internal for any q. A
contradiction. �

The reader will note that for all known examples G of even-degree regular
graphs with no internal partition, the complement Ḡ is disconnected. We do not
know whether this is true in general, but we observe that if true, this implies
2d > n. To the best of our knowledge, this may hold in general:

Conjecture 4. For every even d, every d-regular graph with no internal parti-
tion has less than 2d vertices.

We return to the problem of the existence of a q-internal partition for arbi-
trary regular graphs. There is a distinction between integral and non-integral
partitions. Non-integral partitions are rarer than integral partitions, since every
q-internal partition of a d-regular graph G is also an integral q′-internal parti-
tion of G for q′ = ⌊qd⌋/d as well as for q′ = ⌈qd⌉/d. We make the following
conjecture:

Conjecture 5. For every integer d and 1 > q > 0 such that either (i) q = 1
2

or (ii) qd is an integer, there is an integer µ such that every d-regular graph of
order ≥ µ has a q-internal partition.

As already noted, µ = 8 for d = 3, q = 1
2 . Numerical experiments suggest

that for q = 1
2 and d = 5, 7 there holds µ = 18, 26 respectively.

In fact, the following stronger statement appears to be true: There exists
an integer µ′ that depends only on dmin(G), dmax(G) and on q such that every
graph G = (V,E) with order at least µ′ has a q-internal partition if (i) q = 1

2 or
(ii) qdG(v) is a positive integer for all v ∈ V .
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For other values of q (i.e. with non-integral values of qd other than q = 1
2 ),

we make no guesses. We note that, for example, a connected graph cannot have
a q-internal partition for 0 < q < 1

d
. On the other hand, for 1

d
< q < 2

d
, a

shortest cycle and its complement often yield a q-internal partition (e.g., when
the girth is ≥ 5).

Although the above conjecture remains open, the following theorem shows
that every incomplete graph has an integral q-internal partition for some q.
Moreover, for d fixed and growing n the number of such distinct partitions
tends to ∞.

Theorem 5. A d-regular graph G of order n > d+1 has a q-internal partition
(A,B) for some q ∈ (0, 1) with qd an integer. Such partitions exist for at least
n−d−1

d
different values of |A|.

Proof. Ḡ is (n− d− 1)-regular. Select r ∈ (0, 1) such that r(n− d− 1) is not
an integer. This is always possible since n− d− 1 6= 0. By Proposition 1 Ḡ has
an (1− r)-external partition (A,B).

In this partition of Ḡ, ∀x ∈ A, dĀ(x) < r(n− d− 1). The inequality is strict
since r(n−d−1) is not an integer. Similarly ∀x ∈ B, dB̄(x) < (1−r)(n−d−1).

Considering the partition (A,B) in G, we have ∀x ∈ A, dA(x) > |A| − 1 −
r(n− d− 1), and ∀x ∈ B, dB(x) > |B| − 1− (1− r)(n− d− 1). Therefore

∀x ∈ A,dA(x) ≥ |A| − 1− ⌊r(n− d− 1)⌋ = |A| − ⌈r(n− d− 1)⌉ (6.1)

∀x ∈ B,dB(x) ≥ |B| − 1− ⌊(1− r)(n − d− 1)⌋ = |B| − ⌈(1− r)(n− d− 1)⌉
(6.2)

Set q = (|A| − ⌈r(n− d− 1)⌉)/d. By (6.1) the minimal indegree of A is
suitable for a q-internal partition. As for B, note that ⌊(1− r)(n − d− 1)⌋ +
⌈r(n− d− 1)⌉ = n− d− 1. So:

|B|−1−⌊(1 − r)(n− d− 1)⌋ = n−|A|−1−(n−d−1)+⌈r(n − d− 1)⌉ = (1−q)d
(6.3)

Therefore by (6.2) the minimal indegree of B is also suitable, and (A,B) is
a q-internal partition.

From (6.1) we see that:

⌈r(n− d− 1)⌉ ≤ |A| ≤ ⌈r(n − d− 1)⌉+ d (6.4)

So for any given r, |A| has a range of at most d. Since ⌈r(n − d− 1)⌉ can
take on n − d − 1 values, |A| takes on at least n−d−1

d
different values. The

number of distinct q-internal partitions is at least as many. �

For d fixed there are just d−1 values of q ∈ (0, 1) for which qd is integral. By
Theorem 5 every d-regular graph has Ω(n) distinct integral q-internal partitions.
While this does not prove the existence of a q-internal partition for any specific
q, it suggests that this becomes more likely as n grows.

From Theorem 5 we derive an efficient algorithm that generates integral
q-internal partitions for many and, for n≫ d, often all possible values of q:
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Algorithm 1. Given a d-regular graph G = (V,E) with n = |V |:

1. Set A← ∅, B ← V .

2. For p = 1, . . . , n− d− 1

(a) Repeat while ∃x ∈ B, dĀ(x) < p or ∃x ∈ A, dB̄(x) < n− d− p
i. If x ∈ A set A← A \ {x}, B ← B ∪ {x}
ii. else set A← A ∪ {x}, B ← B \ {x}

(b) Set Ap ← A,Bp ← B

This algorithm generates the partitions (Ap, Bp), p ∈ [n − d − 1] of Ḡ each
of which is q-external for q = p/(n− d− 1), by greedily moving vertices. When
p > 1, the starting point for (Ap, Bp) is (Ap−1, Bp−1).

From Theorem 5 and its proof, (Ap, Bp) is also a q-internal partition of G
for qd = |Ap| − p. Note that A1 is a maximal independent set in Ḡ, and so is
Bn−d−1. Now when n≫ d the size of a maximal independent set is 2. Therefore,
|A1| = 2, |An−d−1| = n − 2 and so (A1, B1) is a 1

d
-internal partition of G and

(An−d−1, Bn−d−1) is a
d−1
d

-internal partition of G.
Additionally from (6.4) p ≤ |Ap| ≤ p + d, so |Ap| generally grows from

2 to n − 2 as p grows from 1 to n − d − 1. The average of |Ap| − |Ap−1| is
(n − 4)/(n − d − 2) ≃ 1. Now since (Ap, Bp) is a q-internal partition of G for

q =
|Ap|−p

d
, if it turns out that for all p ∈ [n − d − 2], |Ap+1| − |Ap| < 3, the

algorithm generates all possible integral q-internal partitions of G.
Conversely, if for some graph G, some integral q-internal partition does not

exist, then any sequence of partitions (Ap, Bp), p ∈ [n−d−1], whether generated
by Algorithm 1 or by any other means, will exhibit a gap |Ap| − |Ap−1| ≥ 3 for
some p > 1. For example, considering the graph K3,3,3 (Figure 2) shown not to
have an internal partition: n− d− 1 = 2 and |A1| = 3, |A2| = 6.
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