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More on the bipartite decomposition of random graphs

Noga Alon ∗ Tom Bohman † Hao Huang ‡

Abstract

For a graphG = (V,E), let bc(G) denote the minimum number of pairwise edge disjoint complete

bipartite subgraphs of G so that each edge of G belongs to exactly one of them. It is easy to see that

for every graph G, bc(G) ≤ n−α(G), where α(G) is the maximum size of an independent set of G.

Erdős conjectured in the 80s that for almost every graph G equality holds, i.e., that for the random

graph G(n, 0.5), bc(G) = n−α(G) with high probability, that is, with probability that tends to 1 as

n tends to infinity. The first author showed that this is slightly false, proving that for most values

of n tending to infinity and for G = G(n, 0.5), bc(G) ≤ n − α(G) − 1 with high probability. We

prove a stronger bound: there exists an absolute constant c > 0 so that bc(G) ≤ n − (1 + c)α(G)

with high probability.

1 Introduction

For a graph G = (V,E), let bc(G) denote the minimum number of pairwise edge disjoint complete

bipartite subgraphs of G (bicliques of G) so that each edge of G belongs to exactly one of them. A

well known theorem of Graham and Pollak [6] asserts that bc(Kn) = n − 1, see [9], [8], [10] for more

proofs, and [1], [7] for several variants.

Let α(G) denote the maximum size of an independent set of G. It is easy to see that for every

graph G, bc(G) ≤ n− α(G). Indeed one can partition all edges of G into n − α(G) stars centered at

the vertices of the complement of a maximum independent set in G. Erdős conjectured (see [7]) that

for almost every graph G equality holds, i.e., that for the random graph G(n, 0.5), bc(G) = n− α(G)

with high probability (whp, for short), that is, with probability that tends to 1 as n tends to infinity.

Chung and Peng [5] extended the conjecture for the random graphs G(n, p) with p ≤ 0.5, con-

jecturing that for any p ≤ 0.5, bc(G) = n − (1 + o(1))α(G) whp. They also established lower

bounds supporting this conjecture, and the one of Erdős, by proving that for G = G(n, p) and for all

0.5 ≥ p ≥ Ω(1), bc(G) ≥ n− o((log n)3+ǫ) for any positive ǫ.
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The first author proved in [2] that Erdős’ conjecture for G = G(n, 0.5) is (slightly) incorrect. It

turns out that for most values of n, and for G = G(n, 0.5), bc(G) ≤ n − α(G) − 1 whp, while for

some exceptional values of n (that is, those values for which the size of α(G) is concentrated in two

points, and not in one), bc(G) ≤ n− α(G) − 2 with probability that is bounded away from 0.

He also improved the estimates of [5] for G(n, p) for any c ≥ p ≥ 2
n , where c is some small positive

absolute constant, proving that if 2
n ≤ p ≤ c then for G = G(n, p)

bc(G) = n−Θ(
log(np)

p
)

whp.

In this note we establish a better upper bound for bc(G) for G = G(n, 0.5), as follows.

Theorem 1.1 There exists an absolute constant c > 0 so that for G = G(n, 0.5),

bc(G) ≤ n− (2 + 2c) log2 n ≤ n− (1 + c)α(G)

with high probability.

The proof is based on an application of the second moment method applied to an appropriately

defined random variable. We also describe another argument, based on a three-stage exposure of the

edges of the random graph, which provides a simple proof of the fact that for G = G(n, 0.5),

bc(G) ≤ n− α(G) − Ω(log log n). (1)

Although this is weaker than the assertion of Theorem 1.1 we believe this proof is also interesting.

The rest of this note is organized as follows. In Section 2 we describe the short proof of (1).

Section 3 includes the proof of Theorem 1.1. The final Section 4 contains some concluding remarks,

open problems and a brief discussion of related questions.

Throughout the rest of the note we assume, whenever this is needed, that n is sufficiently large.

To simplify the presentation we omit all floor and ceiling signs whenever these are not crucial. We

make no attempt to optimize the absolute constants in our estimates.

2 Three stage exposure and the birthday paradox

In this section we give a proof of inequality (1) based on the following two facts:

(1) If p = c where c is a constant then α(G(n, p)) = 2 logb n−2 logb logb n+Θ(1) where b = 1/(1−p)

with high probability, and

(2) If we choose a items uniformly and independently at random from a collection of b items (with

replacement) then the probability that the a items are all distinct is at most e−a(a−1)/2b.
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The second fact is known as the birthday paradox.

Let X,Y be an equi-partition of the vertex set of G. We expose the random edges in three stages:

We first observe edges inside X, then we expose the edges between X and Y , and finally we reveal

the edges within Y . It follows from fact (1) that whp X contains an independent set I such that

|I| ≥ 2 log2 n− 2 log2 log2 n−O(1).

Let ℓ = (log2 n)
1/3. We partition Y into sets Y1, Y2, . . . , Yℓ of size n/(2 log2 n)

1/3. Note that for every

vertex v ∈ Y the neighborhood of v in I is a uniform random subset of I. Thus it follows from fact

(2) that the probability that every vertex in Yi has a different neighborhood in I is at most

exp

{

−Ω

(

n2/(log2 n)
2/3

n2/(log2 n)
2

)}

= exp
{

−Ω(log2 n)
4/3
}

= o(1/n).

It follows that with high probability each set Yi contains a pair ai, bi of distinct vertices that have the

same neighborhood in I. Let Ii = I ∩ N(ai) = I ∩ N(bi). Once this collection of pairs is fixed, we

reveal the edges within Y . With high probability at least ℓ/3 of the pairs ai, bi are non-edges, and it

follows from fact (1) (taking p = 1/16) that among these ℓ/3 there is a collection of Ω(log log n) pairs

ai, bi that spans no edge. We decompose the edge set of G into n − |I| − Ω(log log n) bicliques using

the bicliques {ai, bi} × Ii for the pairs ai, bi in this collection together with a collection of stars. ✷

3 The proof of the main result

The proof of Theorem 1.1 is based on the second moment method. The crucial point here is the choice

of the random variable to which it is applied.

For a (large) integer k define a family Fk of graphs on k vertices, as follows. Each graph in Fk is

a bipartite graph with classes of vertices A and B, where |A| = 0.1k and |B| = 0.9k. The set A is the

disjoint union of r = 0.01k sets A1, A2, . . . , Ar, where |Ai| = 10 for each i. For each vertex b ∈ B there

is a binary vector vb = (vb(1), vb(2), . . . , vb(r)) of length r. If vb(i) = 0 then there are no edges between

b and Ai, and if vb(i) = 1 then b is connected to all members of Ai. We further assume (although this

is not too crucial, but simplifies matters) that all the vectors {vb : b ∈ B} are distinct, and that the

degree of each a ∈ A is at least k/3 (that if, for each i, vb(i) = 1 for at least k/3 indices i.) In addition

we assume that for each two distinct i, j corresponding to different sets Ai, Aj , the number of vertices

b ∈ B so that vb(i) 6= vb(j) is at least k/3. The family Fk contains all the above graphs.

Note that each graph F ∈ Fk is a bipartite graph on k vertices satisfying bc(F ) ≤ r. Indeed, the

r complete bipartite graphs with classes of vertices Ai and {b ∈ B : vb(i) = 1}, (1 ≤ i ≤ r) form

a bipartite decomposition of F . Let fk denote the number of graphs on k labelled vertices that are

members of Fk. We claim that

fk = (1− o(1))

(

k

10

)(

k − 10

10

)

. . .

(

k − 10r + 10

10

)

1

r!
(2r)0.9k = k(0.09+o(1))k20.9rk. (2)
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Indeed, there are
(

k

10

)(

k − 10

10

)

. . .

(

k − 10r + 10

10

)

1

r!

ways to choose the disjoint sets A1, A2, . . . , Ar. After these are chosen, there are 2r possibilities to

choose the edges from b to the sets Ai, for each of the 0.9k vertices of B. For a typical choice of these

edges, the degree of each a ∈ ∪Ai is close to 0.5 · 0.9k with high probability, no two vertices of B have

the same sets of neighbors, and the symmetric difference between the sets of neighbors of any two

vertices of A belonging to distinct sets Ai is also close to 0.9k/2. This means that indeed 1− o(1) of

the above choices lead to distinct members of Fk, establishing (2). For our purpose here it suffices to

note that by the above, since r = 0.01k,

fk = 20.9rkkΘ(k) = 2(0.9+o(1))rk .

Let V = {1, 2, . . . , n} be a fixed set of n labeled vertices, and let G = G(n, 0.5) = (V,E) be the

random graph on V . Let h(k) =
(

n
k

)

fk2
−(k

2
) be the expected number of members of Fk that appear

as induced subgraphs of G and (with a slight abuse of notation) let k be the largest integer such that

h(k) ≥ 2k. It is not difficult to check that this value of k satisfies

k = 2 log2 n+ 1.8r +O(log k) = (1 + o(1))2 log2 n+ 0.018k

implying that k = (1 + o(1)) 1
0.9822 log2 n, which is slightly bigger than 2.036 log2 n. Note that r =

0.01k < 0.0204 log2 n. If G contains an induced copy of a member F of Fk then

bc(G) ≤ n− k + bc(F ) ≤ n− 2.036 log2 n+ 0.0204 log2 n ≤ n− 2.015 log2 n.

As it is well known that α(G) = (2 + o(1)) log2 n whp (see [4], [3]), it suffices to show that G contains

such an induced subgraph whp in order to complete the proof of the theorem. We proceed to do so

using the second moment method.

For each K ⊂ V , |K| = k, let XK be the indicator random variable whose value is 1 iff K induces

a member of Fk in G. Let X =
∑

K XK , where K ranges over all subsets of size k of V , be the total

number of such induced members. The expectation of this random variable is E(X) = h(k) ≥ 2k. We

proceed to estimate its variance. For K,K ′ ⊂ V , |K| = |K ′| = k, let K ∼ K ′ denote that |K∩K ′| ≥ 2

(and K 6= K ′). The variance of X satisfies:

Var(X) =
∑

K

Var(XK) +
∑

K∼K ′

Cov(XK ,XK ′) ≤ E(X) +
∑

K∼K ′

E(XKXK ′), (3)

where K,K ′ range over all ordered pairs of subsets of size k of V satisfying 2 ≤ |K ∩K ′| ≤ k − 1.

For each i, 2 ≤ i ≤ k − 1, let hi denote the contribution of the pairs with intersection i to the

above sum, that is

hi =
∑

|K∩K ′|=i

E(XKXK ′).

Our objective is to show that
∑k−1

i=2 hi = o(h(k)2).
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We consider two possible ranges for the parameter i, as follows.

Case 1: 2 ≤ i ≤ 0.9k. In this case

hi ≤

(

n

k

)

fk

(

k

i

)(

n− k

k − i

)

fk2
−2(k

2
)+(i

2
).

Indeed, for each of the
(

n
k

)

fk choices of the set K and the induced subgraph on it which is a member

of Fk, there are
(k
i

)(n−k
k−i

)

ways to choose the set of vertices K ′ and then at most fk ways to select the

induced subgraph on K ′ (here there is an inequality, as many of these choices could lead to inconsistent

assumptions about the induced subgraph on K ∩K ′, but in this case we have enough slack and this

trivial inequality suffices). Therefore

hi
h(k)2

≤

(

k
i

)(

n−k
k−i

)

(

n
k

) 2(
i

2
) ≤ ki

(

k

n

)i

2(
i

2
) =

(

k22(i−1)/2

n

)i

≤
1

n0.05i
. (4)

Here we used the facts that k ≤ 2.04 log2 n and i ≤ 0.9k to conclude that

k22(i−1)/2

n
<

1

n0.05
.

Case 2: i = k− j where 1 ≤ j ≤ 0.1k. This case is more complicated and requires a careful estimate

of the number of possibilities for the induced subgraph on K ∪K ′.This is done in the following claim.

Claim 3.1 Let k and r = 0.01k be as above, and let K,K ′ be two sets of labelled vertices, where

|K| = |K ′| = k and |K ∩K ′| = i = k− j with 1 ≤ j ≤ 0.1k. Then the number of graphs H on K ∪K ′,

such that the induced subgraph of H on K and the induced subgraph of H on K ′ are members of Fk

is at most

fk(r + 2r)j20.9kj/10

Proof of Claim: There are fk ways to choose the induced subgraph of H on K. Fixing such a

choice, we estimate the number of ways to extend it to the edges inside K ′ (which are not inside K,

as this part is already fixed). Let A and B denote the vertex classes of the member F ′ of Fk in K ′,

thus A ∪ B = K ′. Let A = A1 ∪ A2 . . . ∪ Ar denote the partition of A into disjoint sets of size 10 in

this member. Since |K ∩ K ′| ≥ 0.9k and the degree of each A-vertex in F ′ is at least k/3 whereas

the degree of each B-vertex is at most |A| = 0.1k it follows that any vertex a ∈ A must have at least

k/3 − 0.1k > 0.1k neighbors in K ∩ K ′, and thus knowing the edges inside K ∩ K ′ reveals the fact

that this is an A-vertex. We thus know, for each vertex in K ∩K ′, if it is an A-vertex or a B-vertex.

Moreover, since the sets of B-neighbors of any two A vertices from distinct subsets Ai differ on at

least k/3 vertices b ∈ B, the edges inside K ∩K ′ reveal, for each i so that Ai intersects K ∩K ′, all the

vertices of Ai ∩ (K ∩K ′). There are now at most (r+2r)j ways to choose, for each vertex in K ′ −K,

if it lies in one of the sets Ai (which is either represented in K ∩K ′ or not), and if so, decide to which
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of the r sets it belongs, and in addition, if it is a B-vertex, to decide to which sets Ai it is connected.

Here we are over-counting, as we ignore the fact that any set Ai has to be of size exactly 10, but this

estimate suffices. Note that after the above choices, the identity of all vertices in each set Ai is known.

As each set Ai is of cardinality 10, there are at most j/10 sets Ai which are completely contained

in K ′ − K. For each such set, there are at most 20.9k possibilities to choose the edges between the

vertices of this set and the remaining vertices of K ′. Once these choices are made, all edges inside K ′

are determined. This completes the proof of the claim ✷

Returning to the proof of the theorem, we proceed with the estimate of hi/h(k)
2 in Case 2. By

the claim, for i = k − j, j ≤ 0.1k we have (since h(k) ≥ 2k > 1):

hi
h(k)2

≤
hi

h(k)
≤

(

k

j

)(

n− k

j

)

(r + 2r)j20.9kj/102−(k−j)j

≤ [kn22r20.9k/102−(k−j)]j ≤ n−0.5j,

with room to spare.

Combining the last inequality with (3) and (4), and using the fact that E(X) = h(k) ≥ 2k, we

conclude that V ar(X) = o(E(X)2) and hence, by Chebyshev’s Inequality, X > 0 whp. This implies

that bc(G) ≤ n− 2.015 log2 n whp, completing the proof of Theorem 1.1. ✷

4 Concluding remarks and open problems

• The estimate in Theorem 1.1 is the best we can hope to get with this method, up to the constant

c. This is because all members of Fk are bipartite graphs, and the random graph G = G(n, 0.5)

cannot contain any induced bipartite graph on more than 2α(G) vertices.

• We have shown that for G = G(n, 0.5), bc(G) ≤ n− α(G) −Ω(log n) whp. It will be interesting

to decide whether or not bc(G) = n−O(α(G)) whp.

• For p < 0.5 and G = G(n, p) it seems that both proofs we know do not give any improvement

of the trivial estimate bc(G) ≤ n − α(G). Is it true that for any fixed positive p < 0.5, bc(G) =

n− α(G) whp ? (for p > 1/2 it is easy to get a better upper bound).

We conclude this short paper with a note regarding biclique decompositions of twin-free graphs.

Vertices u and v in a graph G are twins if they have exactly the same neighborhoods, and G is twin-

free if G contains no such pair of vertices. Note that if a pair of vertices u, v are twins in G then

bc(G) = bc(G−u). Thus it is quite natural to consider the maximum number of vertices in a twin-free

graph G with bc(G) = r.

Theorem 4.1 Suppose G is a twin-free graph whose edges can be decomposed into r bicliques, then

|V (G)| ≤ 2r+1 − 1 and this bound is tight.
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Proof: We first construct a graph G which attains this upper bound. Let V (G) be a collection of

vectors v in {0, 1, 2}r , such that vi = 1 for at most one index i, and vj = 2 for all j > i, vj ∈ {0, 2} for

all j < i. In other words,

V (G) = ∪r
k=0{0, 2}

k × {1} × {2}r−k−1.

The number of vertices in G is equal to 1 + 2 + · · · + 2r = 2r+1 − 1. We define two vertices u

and v to be adjacent if there exists i such that (ui, vi) = (1, 0) or (0, 1). To show that G is twin-free,

suppose u and v are two distinct vertices of G. If ui = vi = 1 for some i, then one can find j < i so

that (uj , vj) = (2, 0) or (0, 2), then the vector w with wj = 1 and wk = 2 for all k 6= j is only adjacent

to one of u and v. If ui = 1 for some i and vi 6= 1, then the vector w with wi = 0 and wj = 2 for

all j 6= i is adjacent to u but not v. Finally if both u and v are in {0, 2}r , take the coordinate i such

that (ui, vi) = (0, 2) or (2, 0), then again letting wi = 1 and wj = 2 for all j 6= i shows that they have

different neighborhoods.

The definition of G naturally induces an edge decomposition into bicliques: two vertices u and v are

adjacent in the biclique Gi iff (ui, vi) = (0, 1) or (1, 0). To verify that this is indeed a partition, assume

that the edge uv belongs to two bicliques Gi and Gj . This can only happen when (ui, uj) = (0, 0),

(vi, vj) = (1, 1) or (ui, uj) = (0, 1), (vi, vj) = (1, 0) (when necessary we swap u and v). Note that both

cases are impossible since all the vectors in V (G) have at most one coordinate equal to 1, and 0 never

appears after 1.

Next we are going to show that 2r+1 − 1 is an upper bound. For a twin-free graph G with biclique

partition E(G) = ∪r
i=1E(Gi) = ∪r

i=1E(Ai, Bi), we assign a r-dimensional vector vu to every vertex u,

such that (vu)i = 1 if u ∈ Ai, 0 if u ∈ Bi and 2 otherwise. Note that two vertices associated with the

same vector have common neighborhoods, so we may assume that all the vectors vu are distinct. Let

F = {vu}u∈G, and FI = {v : v ∈ F , {i : vi ∈ {0, 1}} = I}. We claim that for all |I| ≥ 1, |FI | ≤ 2.

This is obvious for |I| = 1. The case |I| ≥ 2 follows from the observation that among any three

distinct vectors in {0, 1}I , there always exists a pair differing in at least two coordinates i and j, which

contradicts the assumption that Gi and Gj are disjoint. Therefore

|F| ≤ 1 +

r
∑

i=1

2

(

r

i

)

= 2r+1 − 1.

✷
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