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Abstract

Král’ and Sgall (2005) introduced a refinement of list colouring
where every colour list must be subset to one predetermined palette
of colours. We call this (k, `)-choosability when the palette is of size
at most ` and the lists must be of size at least k. They showed that,
for any integer k ≥ 2, there is an integer C = C(k, 2k − 1), satisfying
C = O(16k ln k) as k →∞, such that, if a graph is (k, 2k−1)-choosable,
then it is C-choosable, and asked if C is required to be exponential in
k. We demonstrate it must satisfy C = Ω(4k/

√
k).

For an integer ` ≥ 2k − 1, if C(k, `) is the least integer such that a
graph is C(k, `)-choosable if it is (k, `)-choosable, then we more gener-
ally supply a lower bound on C(k, `), one that is super-polynomial in
k if ` = o(k2/ ln k), by relation to an extremal set theoretic property.
By the use of containers, we also give upper bounds on C(k, `) that
improve on earlier bounds if ` ≥ 2.75k.

1 Introduction

The classic concept of list colouring, where an adversary may place indi-
vidual restrictions on the colours used at each vertex of the graph, was
introduced independently by Erdős, Rubin and Taylor [11] and Vizing [18].
We consider the “bounded palette” refinement of list colouring as defined
by Král’ and Sgall [14]. Let G = (V,E) be a simple, undirected graph. For
any given positive integer `, we shall refer to [`] = {1, . . . , `} as a palette

(of colours). Given a positive integer k ≤ `, a mapping L : V →
([`]
k

)
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is called a (k, `)-list-assignment of G; a colouring c of V is called an L-
colouring if c(v) ∈ L(v) for any v ∈ V . We say G is (k, `)-choosable if for
any (k, `)-list-assignment L of G there is a proper L-colouring of G. We
say G is k-choosable if it is (k, `)-choosable for any ` ≥ k. The choosability
ch(G) (or choice number or list chromatic number) of G is the least k such
that G is k-choosable. Note G is properly k-colourable if and only if it is
(k, k)-choosable.

A natural question one may wonder is whether k-choosability may be
verified merely by establishing (k, `)-choosability with a large enough choice
of ` as a function of k, independent of the given graph1. If true, this would
immediately yield for fixed k an algorithm for checking if a given input
graph is not k-choosable that runs in time that is singly-exponential in the
number of vertices [6]. However, this question was answered by Král’ and
Sgall mainly in the negative.

Theorem 1 ([14]). For integers k and ` satisfying ` ≥ k ≥ 3, there is a
graph Gk,` that is (k, `)-choosable but not (k, `+ 1)-choosable. On the other
hand, if a graph is (2, 4)-choosable, then it is 2-choosable.

The graphs Gk,` they construct are not too large, having O(`2) vertices.
Their proof of Theorem 1 used ideas of precolouring (non)extension.

Upon learning this, one might wonder if (k, `)-choosability of a graph at
least provides partial evidence of choosability: does it imply the graph is
C-choosable for some (possibly large) constant C = C(k, `)? The positive
answer to this second question is the content of the next result, also due to
Král’ and Sgall. This was later strengthened by the second author [12] by a
connection with Property B (also known as weak 2-colourability of uniform
hypergraphs); a more precise version is reviewed in Theorem 7.

Theorem 2 ([14], cf. [12]). For integers k and ` satisfying k ≥ 2 and
` ≥ 2k − 1, there is an integer C = C(k, `) satisfying C = O(16k ln k) such
that, if a graph is (k, `)-choosable, then it is C-choosable.

Moreover, as k → ∞, if for some fixed b > 2 we have ` ∼ bk, then C
may be chosen to satisfy

C ≤ (4(b− 2)b−2(b− 1)2−2bbb + o(1))k.

We remark that

lim
b↓2

4(b− 2)b−2(b− 1)2−2bbb = 16 and lim
b→∞

4(b− 2)b−2(b− 1)2−2bbb = 4.

Observe that the condition ` ≥ 2k − 1 cannot be ignored, because every
bipartite graph is (k, 2k− 2)-choosable and the class of bipartite graphs has
unbounded choosability. Recently, Alon et al. [3] sharpened the boundary

1Kierstead [13] proved that G = (V,E) is k-choosable if it is (k, |V |)-choosable.
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between ` = 2k − 2 and ` = 2k − 1 by exhibiting high girth, bipartite,
non-(k, 2k−1)-choosable graphs all proper subgraphs of which have average
degree at most 2k − 2.

Theorem 2 builds upon the relationship between a graph’s degeneracy
and its choosability. It is easy to see by a greedy argument that, if every
subgraph of a graph has a vertex of degree at most d, then the graph’s choos-
ability is at most d+ 1. Alon [1, 2] showed with probabilistic methodology
that a (weak) converse of this statement is also true. In slightly more detail,
Theorem 2 is proved by a modification of the proof by Alon [2] that any
graph is O(4kk4)-degenerate if it is (k, k2)-choosable.

Our first result uses the containers method to improve upon Theorem 2.
This method was introduced recently by Saxton and Thomason [16, 17], who
sought to more deeply understand the aforementioned relationship between
degeneracy and choice number. As part of a broader approach to several
important problems in random and extremal graph theory (cf. also [4]),
they used this method to show that every graph G with average degree d
satisfies ch(G) ≥ (1 + o(1)) log2 d as d → ∞, an asymptotically optimal
statement. We follow this same approach for bounded palette choosability.
Although this does not (yet) yield optimal results in our setting, it gives
marked improvements in a large range of choices of `.

Theorem 3. In Theorem 2, as k → ∞, if for some fixed b > 2 we have
` ∼ bk, then C may be chosen to satisfy

C ≤ (2(b− 2)−1b+ o(1))k.

Observe that limb↓2 2(b−2)−1b =∞ and limb→∞ 2(b−2)−1b = 2. Theorem 3
improves on Theorem 2 when ((b− 2)(b− 1)−2b)b−1 > 1/2 which is roughly
when b is at least 2.747655083. See Figure 1 for a comparison.

In the light of Theorems 1 and 2, Král’ and Sgall posed two natural
follow-up questions.

1. For each k, what is the least `∗ = `∗(k), if it exists, such that every
graph is (k + 1)-choosable if it is (k, `∗)-choosable?

2. Must the smallest possible choice of C(k, 2k − 1) in Theorem 2 grow
exponentially in k?

Our second result answers the second of these questions in the affirmative
and also provides a lower bound on the quantity `∗ in the first. It also gives
exponential lower bounds on the best possible choice of C(k, `) in Theorem 2
when ` = O(k).

Theorem 4. For integers k and ` satisfying k ≥ 2 and ` ≥ 2k−1, there is a
constant R = R(k, `) satisfying R ≥ exp((k − 1)2/`) such that the complete
bipartite graph KR−1,(R−1)R−1 is (k, `)-choosable but not R-choosable.
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Figure 1: A comparison plot. The curve y = 4(x − 2)x−2(x − 1)2−2xxx

(Theorem 2) is dash–dotted; y = 2(x − 2)−1x (Theorem 3) is dashed; and
y = (x− 2)x−2(x− 1)2−2xxx (Theorem 4) is solid.

Moreover, as k → ∞, if for some fixed b > 2 we have ` ∼ bk, then R
may be chosen to satisfy

R ≥ ((b− 2)b−2(b− 1)2−2bbb + o(1))k.

This improves upon and simplifies Theorem 1 in certain cases, albeit with a
larger graph. Note that R(k, `) is super-polynomial in k if ` = o(k2/ ln k),
implying the hypothetical `∗ in the first question above must be Ω(k2/ ln k).
We will see below that R(k, 2k − 1) can be chosen as

(
2k−1
k

)
∼ 4k/(2

√
πk)

as k → ∞, while R(k, k2) = k. The definition of R(k, `) is based on what
we call “Property K”, which is related to Property B mentioned earlier; we
do not know if it has been studied before.

We remark that the following easy proposition settles the case k = 2 for
the first question of Král’ and Sgall. The proof of this is left to the reader.

Proposition 5. If a graph is (2, 3)-choosable, then it is 3-choosable.

The structure of the paper is as follows. In Section 2, we review the
established connections between bounded palette list colouring and Prop-
erty B, and sketch the argument behind Theorem 2. In Section 3, we indicate
the immediate improvement upon Theorem 2 available by use of the con-
tainers method, which establishes Theorem 3. In Section 4, we introduce
Property K and give a proof of Theorem 4.
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2 Property B and (k, `)-choosability

Erdős, Rubin and Taylor [11] already noticed the close connection between
choice number and the extremal study of Property B [7, 8, 9, 10]. In order to
provide extra context and background, we here summarise this connection,
especially with respect to list colouring with a bounded palette.

A family F of sets has Property B if there exists a set B which meets
every set in F but contains no set in F . Property B for a family of k-sets is
equivalent to weak 2-colourability of k-uniform hypergraphs.

For a fixed integer k ≥ 2, let M(k) be the cardinality of a smallest
family of k-sets that does not have Property B. For fixed integers k, ` ≥ 2, let
M(k, `) be the cardinality of a smallest family of k-subsets of [`] that does not

have Property B. Note thatM(k, 2k−1) =
(
2k−1
k

)
since the collection

([2k−1]
k

)
of all k-subsets of [2k − 1] does not have Property B, whereas any proper

subcollection of
([2k−1]

k

)
has Property B. It also holds that M(k, `) = ∞

if ` ≤ 2k − 2, as every subcollection of
([2k−2]

k

)
has Property B. Clearly,

M(k) = inf`≥2k−1M(k, `).
The best general upper bound on M(k) is a probabilistic construction of

Erdős [8] from the 1960’s, while the best lower bound is a more recent ap-
plication of the semirandom method by Radhakrishnan and Srinivasan [15]
(a short proof of which was obtained recently by Cherkashin and Kozik [5]):

Ω

(
2k
√

k

ln k

)
≤M(k) ≤ O

(
2kk2

)
. (1)

More tailored bounds on M(k, `) were shown by Erdős [9]: there is some
algebraic decreasing function f : [2,∞) → R satisfying limb↓2 f(b) = 4 and
limb→∞ f(b) = 2 such that, if ` ≥ 2k − 1 and ` ∼ bk as k → ∞, then
M(k, `) = (f(b) + o(1))k. More fully,

f(b) = 2(b− 2)
1
2
(b−2)(b− 1)1−bb

1
2
b (2)

We next state the connections between the parametersM(k, `) and (k, `)-
choosability. We first note the following easy proposition which can be
derived quite naturally from the definition of M(k, `).

Proposition 6 ([11]). Let k, ` be integers such that 2 ≤ k ≤ `.

1. If n1 ≥ M(k, `) and n2 ≥ M(k, `), then the complete bipartite graph
Kn1,n2 is not (k, `)-choosable.

2. Any bipartite graph with fewer than M(k, `) vertices is (k, `)-choosable.

The next result (given in a slightly more general form in [12]) extends a
(k, 2k − 1)-choosability version due to Král’ and Sgall.
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Theorem 7 ([14], cf. [12]). Let k, ` be integers such that 2 ≤ k ≤ ` and

D = 12(M(k, `))2 · lnM(k, `) · ln k ·

(
1 +

√
1 +

1

3 lnM(k, `)

)2

.

Any graph with minimum degree D is not (k, `)-choosable.

Now, together with the fact that any d-degenerate graph is (d+1)-choosable,
the first part of Theorem 2 holds by monotonicity of M(k, `) in ` and the fact
that M(k, 2k − 1) =

(
2k−1
k

)
= O(4k/

√
k), while the second part is implied

by the result of Erdős associated to the expression of (2).
As mentioned in the introduction, the proof strategy for Theorem 7 is

after Alon [1, 2]. It has two stages of randomness. In the first, we choose a
small random vertex subset A and assign lists independently and uniformly
at random from F to the vertices of A, where F ⊆

([`]
k

)
is some family not

having Property B. With positive probability, there must be a large number
of “good” vertices, that is, vertices outside of A having for every F ∈ F
a neighbour in A with list F . We fix some such A and its list-assignment.
In the second stage, we assign lists independently and uniformly at random
from F to the good vertices, from which we can show that with positive
probability no valid list colouring is possible. We refer to [12] for the details.

3 Containers and (k, `)-choosability

In this section, we improve upon Theorem 7 and hence Theorem 2 when k
is large and ` ≥ 2.75k. To do so, we use the recently-introduced contain-
ers method. We require a more general containers theorem of Saxton and
Thomason [17] and one of its specific consequences. We remark that, inde-
pendently, Balogh, Morris and Samotij [4] obtained a similar theorem with
a similar (wide) array of important consequences, except that they did not
target list colouring. List colouring was the original motivation of Saxton
and Thomason in formulating the concept of containers in [16]. The follow-
ing is an analogue of Theorem 2.1 in [17], adapted for (k, `)-choosability of
graphs and reformulated in our notation. It implies Theorem 3.

Theorem 8. Let b > 2. There is a function d = d(k) satisfying as k →∞

d = (2(b− 2)−1b+ o(1))k

such that any graph with average degree d is not (k, bbkc)-choosable.

The idea of the containers method is that in order to get a reasonable
understanding of the independent sets of a (hyper)graph (a task that fre-
quently arises in probabilistic and extremal combinatorics), it often suffices
to work with some good collection of container vertex subsets. By “good”,
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we mean that for each independent set there is some container which has it
as a subset, that the number of containers is small (and in particular much
smaller than the number of independent sets), and that each container is not
large. There is already a rather broad and useful collection of interpretations
for “small” and “not large” for which the following statement holds: every
(hyper)graph of average degree d has a good collection of containers [4, 17].

Let G = ([n], E) be a graph and suppose we generate a (k, `)-list-

assignment L of G by assigning each list uniformly at random from
([`]
k

)
.

If there exists a proper L-colouring f , then for each colour i ∈ [`] the set of
vertices u with f(u) = i is an independent set; in particular, there is a col-
lection of independent sets (I1, . . . , I`) such that u ∈ If(u) for all u ∈ [n]. For
any collection of sets (C1, . . . , C`), we say L is compatible with (C1, . . . , C`)
if there is a function f : [n]→ [`] such that f(u) ∈ L(u) and u ∈ Cf(u) for all
u ∈ [n]. If we can find a (k, `)-list-assignment L that is incompatible with
every (I1, . . . , I`) ∈ I` where I is the collection of all independent sets, then
it will follow that ch(G) > k. However, this conclusion also follows from
finding some L that is incompatible with every (C1, . . . , C`) ∈ C` where C
is a good collection of containers. That the collection C is “small” and each
container is “not large” is essentially what is sufficient to prove the existence
of a desired (incompatible) list-assignment L by the probabilistic method.

We have superficially described the approach to proving Theorem 8 and
point to Section 8 of [17] for a better and fuller explanation of the details in
the proof of their Theorem 2.1. Those details are substantial, but there is
one main point where we differ, namely, the following (k, bbkc)-choosability
version of Lemma 8.1 in [17] — they had ` = Θ(k2) instead of ` = O(k).

Lemma 9. Let 0 < ε, c < 1 and b > 1/c. Then there exists x0 = x0(ε, c, b)
such that the following holds for all x > x0.

Let k = b(1− ε) log x/ log(1/(c− 1/b))c and let ` = bbkc. Let n > x and
let C ⊆ 2[n]. Suppose that there is a map g : C` → [x, n] such that

1

`

∑̀
i=1

|Ci ∩ [v]| ≤ (1− c)v

holds for each (C1, . . . , C`) ∈ C` where v = g(C1, . . . , C`). Suppose also that

|{(C1 ∩ [v], . . . , C` ∩ [v]) : g(C1, . . . , C`) = v}| ≤ exp(v`/x)

holds for all v ∈ [n]. Then there is a (k, `)-list-assignment that is incompat-
ible with every (C1, . . . , C`) ∈ C`.

Proof outline. The proof closely follows that of Lemma 8.1 in [17] after the
appropriate substitution of expressions for k and ` (which are, respectively,
` and t, in their choice of letters).

7



The condition b > 1/c ensures that c` > k so that (c − (k − 1)/`)k ≥
(c−1/b)k has a positive base. The choice of k ensures that (c−1/b)k ≥ xε−1.
For more details we direct the reader to [17].

To complete the proof of Theorem 8, we use the same approach as for the
r = 2 case of Theorem 2.1 in [17]. Starting with a graph of average degree
d, we apply a containers theorem, Theorem 3.7 in [17]. (It is necessary
that Theorem 3.7 as stated in [17] is valid for all t ∈ N.) Then we feed
the resulting collection C of containers as input to Lemma 9. Note that the
choice of parameters will be such that c = 1/2 + o(1) (for graphs), ε = o(1)
and log x = (1 + o(1)) log d as d→∞. The list-assignment given as output
by Lemma 9 then certifies that the graph is not (k, bbkc)-choosable. We
omit the remaining details and refer the reader to [17].

The containers method is powerful, and our goal in this section was only
to indicate an immediate improvement with this method in our setting. It
is worth pointing out that the consequences for C(k, `) are inferior to those
of the previous section when ` is close to 2k − 1. In particular, the method
used to obtain Theorem 8 is insufficient to show that for every k ≥ 2 there
is some C such that any graph is C-choosable if it is (k, 2k − 1)-choosable.

4 Property K and bipartite (k, `)-choosability

Underlying the magnitude guarantee in Theorem 4 is the extremal study of
another set theoretic property, one which is related to Property B but which
we have not found treated elsewhere in the literature.

For fixed integers k, ` ≥ 2, a family F ⊆
([`]
k

)
has Property K(k, `) if there

exists a set K ∈
( [`]
k−1
)

that intersects every set in F . (The letter K stands for
the Dutch word, kleurrijk.) We then define R(k, `) to be the cardinality of a

smallest F ⊆
([`]
k

)
that does not have Property K(k, `). Clearly, R(k, `) ≥ k

always. Observe that R(k, 2k − 1) =
(
2k−1
k

)
since the collection

([2k−1]
k

)
of

all k-subsets of [2k − 1] does not have Property K(k, 2k − 1), whereas any

proper subcollection of
([2k−1]

k

)
has Property K(k, 2k−1). It also holds that

M(k, `) = ∞ if ` ≤ 2k − 2, as then every subcollection of
([`]
k

)
trivially has

Property K(k, `).
Let us now demonstrate the connection between Property K(k, `) and

(k, `)-choosability of bipartite graphs with one part that is small enough.

Proposition 10. Suppose G is a graph that admits a bipartition V = A∪B
with |A| < R(k, `). Then G is (k, `)-choosable.

Proof. Let L be any (k, `)-list-assignment of the graph G. We define an
L-colouring c of G as follows. Since |A| < R(k, `), the family {L(u) : u ∈ A}
has Property K(k, `), i.e. there is a set K ∈

( [`]
k−1
)

such that L(u)∩K 6= ∅ for
all u ∈ A. We set c(u) to be an arbitrary colour of L(u) ∩K for all u ∈ A.

8



Since |K| = k − 1 and the lists all have k colours, we have for any v ∈ B
that L(v) \ K 6= ∅ and we set c(v) to be an arbitrary colour of L(v) \ K.
Clearly, c defines a proper L-colouring of G, as required.

As R(k, 2k − 1) =
(
2k−1
k

)
and it is known that ch(Km,mm) > m for

any m ≥ 1, we immediately obtain an affirmative answer to the second
question of Král’ and Sgall mentioned in the introduction. Notice that
R(k, `) = k if ` ≥ k2, by taking F to be an arbitrary partition of [k2] into k
k-subsets. On the other hand, borrowing classic arguments used to analyse
Property B [7, 8], we derive super-polynomial behaviour for R(k, `) when
` = o(k2/ ln k). More specifically, we have the following.

Theorem 11. Let k, ` be integers such that k ≥ 2 and ` ≥ 2k − 1. Then

`!(`− 2k + 1)!

(`− k)!(`− k + 1)!
≤ R(k, `) <

`!(`− 2k + 1)!

(`− k)!(`− k + 1)!
ln

(
`

k − 1

)
.

Note that only the lower bound expression is needed for Theorem 4 and it
is easily seen to be more than exp((k− 1)2/`). As k →∞, one can check by
Stirling’s approximation that, if ` ∼ bk for some fixed b > 2, then

R(k, `) =
(

(b− 2)b−2(b− 1)2−2bbb + o(1)
)k
.

Therefore, together with Proposition 10 and the fact that ch(Km,mm) > m
for any m ≥ 1, we conclude that Theorem 4 holds.

Proof of Theorem 11. First we prove the lower bound. Fix a family F ⊆([`]
k

)
with cardinality less than the leftmost expression. Choose K ∈

( [`]
k−1
)

uniformly at random. For any fixed F ∈ F , we have

P(F ∩K = ∅) =

(
`−k
k−1
)(

`
k−1
) =

(`− k)!(`− k + 1)!

`!(`− 2k + 1)!
.

By a union bound and the choice of cardinality of F ,

P(F ∩K = ∅ for some F ∈ F) ≤
∑
F∈F

P(F ∩K = ∅) < 1.

So with positive probability there is a set K ∈
( [`]
k−1
)

certifying that F has
Property K(k, `).

Next we prove the upper bound. Fix K ∈
( [`]
k−1
)
. Let F ∈

(
`
k

)
be a set

chosen uniformly at random. Then

P(F ∩K = ∅) =

(
`−k+1

k

)(
`
k

) =
(`− k)!(`− k + 1)!

`!(`− 2k + 1)!
.

9



Let F = {F1, . . . , Fr} be a family of sets chosen independently and uniformly

at random from
([`]
k

)
. Based on the above calculation, we have that

P(Fi ∩K 6= ∅ for all i ∈ {1, . . . , r}) ≤
(

1− (`− k)!(`− k + 1)!

`!(`− 2k + 1)!

)r

.

There are
(

`
k−1
)

choices for K, so we have

P(F has no K certifying Property K(k, `))

≤
(

`

k − 1

)
exp

(
−r (`− k)!(`− k + 1)!

`!(`− 2k + 1)!

)
.

This last expression is less than 1 if

r >
`!(`− 2k + 1)!

(`− k)!(`− k + 1)!
ln

(
`

k − 1

)
,

which establishes the upper bound.

` ≤ 4 5 6 7 8 ≥ 9

R(3, `) +∞ 10 8 5 4 3

Table 1: The complete table of values of R(3, `).

5 Conclusion

In this work, we have considered the question of list colouring with a bounded
palette and illustrated its connection to other parameters and tools in ex-
tremal combinatorics. In particular, we answered the second of the two
questions of Král’ and Sgall described in the introduction, by showing that
C(k, 2k− 1) as defined in Theorem 2 must be Ω(4k/

√
k). Moreover, using a

connection to Property K, we showed that C(k, `) must be super-polynomial
in k if ` = o(k2/ ln k) and exponential if ` = O(k). We also gave better up-
per bounds on C(k, `) for large k and ` ≥ 2.75k by a direct application of
the recently-introduced containers method.

Except for the case k = 2, the first question of Král’ and Sgall is open.
Reiterating: what is the least `∗, if it exists, such that every graph is (k+1)-
choosable if it is (k, `∗)-choosable? The probabilistic methods used to prove
Theorems 2 and 3 appear too weak to prove the existence of such an `∗.
Moreover, Theorem 4 falls well short of refuting the existence of such an `∗.
To start with the smallest open case, is there an `∗ such that every (3, `∗)-
choosable graph is 4-choosable? If so, is the value suggested by Table 1
optimal, i.e. is it true that every (3, 9)-choosable graph is 4-choosable?
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