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A Density Turan Theorem

Lothar Narins * Tuan Tran T

Abstract

Let F' be a graph which contains an edge whose deletion reduces its chromatic number. For

such a graph F, a classical result of Simonovits from 1966 shows that every graph on n > ngy(F)
x(F)—2
x(F)-1
theorem for multipartite graphs.

For a graph H and an integer ¢ > v(H), let d¢(H) be the minimum real number such that

every (-partite graph whose edge density between any two parts is greater than dy(H) contains

. % edges contains a copy of F. In this paper we derive a similar

vertices with more than

a copy of H. Our main contribution in this paper is to show that d,(H) = ;‘gg;:f for all
£ > {o(H) sufficiently large if and only if H admits a vertex-colouring with x(H) — 1 colours
such that all colour classes but one are independent sets, and the exceptional class induces just
a matching. When H is a complete graph, this recovers a result of Pfender [Complete subgraphs
in multipartite graphs, Combinatorica 32 (2012), 483-495]. We also consider several extensions

of Pfender’s result.

1 Introduction

Extremal graph theory has enjoyed tremendous growth in recent decades. One of the central
questions from which the theory originated can be described as follows. Given a forbidden graph
H, the Turén problem asks to determine ex(n, H), the maximum possible number of edges in a
graph on n vertices without a copy of H. This number is called the Turdn number of H. Instances
of this problem have many connections and applications to other areas. In this paper we consider a
multipartite version of the problem, suggested by Bollobés [1]. Before stating the problem at hand
and presenting our contributions, we begin with a brief survey of relevant results.

1.1 Background

The fundamental Turdn theorem of 1941 [24] completely determined the Turdn numbers of a clique:
the Turdn graph T;_1(n), the complete (k — 1)-partite graph on n vertices with parts as equal as
possible, has the largest number of edges among all Kj-free n-vertex graphs. Thus, we have
ex(n, Ki) = tg_1(n), where t;_1(n) is the number of edges in Ty_1(n). This theorem generalises a
previous result by Mantel [15] from 1907, which states that ex(n, K3) = L"TZJ

A large and important class of graphs for which the Turdn numbers are well-understood is formed
by colour-critical graphs, that is, graphs whose chromatic number can be decreased by removing
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an edge. Simonovits [22] introduced the stability method to show that ex(n, H) = t;_1(n) for all
n > no(H) sufficiently large, provided H is a colour-critical graph with y(H) = k; furthermore,
Ti—1(n) is the unique extremal graph. As the cliques are colour-critical, Simonovits’ theorem
implies Turan’s theorem for large n.

For general graphs H we still do not know how to compute the Turdn numbers ex(n, H) exactly;
but if we are satisfied with an approximate answer the theory becomes quite simple: it is enough to
know the chromatic number of H. The important and deep theorem of Erdds and Stone [12] together

with an observation of Erdés and Simonovits [10] shows that ex(n, H) = <§Egg:i + 0(1)) %2, where
the o(1) term tends to 0 as n tends to infinity. In the literature, this result is usually referred as
the Erdds—Stone-Simonovits theorem.

In the years since these seminal theorems appeared, great efforts have been made to extend
them, some of which are discussed in Nikiforov’s survey [I8]. We are particularly interested in the
following two extensions.

For every integer s > 2, let K;_1(s) denote the complete (k — 1)-partite graph Ky_1(s,...,s),
and let K;" | (s) be the graph obtained from Kj_1(s) by adding an edge to the first class. Nikiforov
[17] and Erd6s [7] (for k& = 3) proved that for all £ > 3 and all sufficiently small ¢ > 0, every
graph of sufficiently large order n with t;_1(n) + 1 edges contains not only a K} but a copy of
K, (leInn]). For fixed k, the Erdés-Rényi random graph G, ;, shows that the lower bound clnn
on the size of the subgraph in this result is optimal up to a constant factor.

Seeking an extension of Turdn’s theorem, Erdés [9] asked how many K}, sharing a common edge
must exist in a graph on n vertices with tx_1(n) + 1 edges. Bollobéds and Nikiforov [3] sharpened
Erdés’s result [9] showing that for large enough n, every graph of order n with ¢5_1(n)+1 edges has
an edge that is contained in k~*~4n¥=2 copies of K. This result is best possible, up to a poly(k)
factor.

In this paper we shall study analogues of these results for multipartite graphs. For a graph H
and an integer ¢ > v(H), let dy(H) be the minimum real number such that every (-partite graph

G=MWU...UuV,E) with d(V;,V;) = 7%“‘2‘) > dy(H) for all i # j contains a copy of H. The

problem of determining the exact value of dy(H) was suggested by Bollobés (see the discussion
after the proof of Theorem VI.2.15 in [1]). However, it was first studied systematically by Bondy,
Shen, Thomassé and Thomassen [4]. Amongst other things Bondy et.al. showed that for every

graph H the sequence dy(H) decreases to ’;Eggj as £ tends to infinity. To show the lower bound

de(H) > X(H)=2 they observed that the f¢-partite graph G obtained from the empty graph on

= x(H)-1’
{1,...,£} by splitting each vertex v of {1,...,¢} into x(H) — 1 vertices v1,v2,...,vy(m)—1, and
joining two vertices z; and y; if and only if x # y and 7 # j, has all edge densities equal to iggg:f

Since G is (x(H)—1)-colourable (with vertex classes V; = {v; : v € {1,...,¢}} for 1 <i < x(H)—1),

iggg:f, they used the

it does not contain a copy of H. For the opposite inequality Zlim de(H) <
— 00

Erd&s—Stone—Simonovits theorem together with an averaging argument.

When H = K3, the aforementioned result of Bondy et. al. [4] implies that d;(K3) decreases
to 2 as ¢ tends to infinity. They also showed that d3(k3) = _1%‘/5 ~ 0.61, d4(K3) > 0.51, and
speculated that dy(K3) > % for all £ > 3. Refuting this conjecture, Pfender [19] proved that
do(Ky) = % for large enough ¢. He also described the family Qé“ of extremal graphs; we shall
define this family later in Section



Theorem 1.1 (Pfender [19]). For every integer k > 3 there exists a constant C = C(k) such that
the following holds for every integer £ > C. If G = (V1 U... UV, E) is an {-partite graph with

d(V;, Vj) 2 =% fori # j,
then either G contains a Ky or G is isomorphic to a graph in Qf. In particular, do(Ky) = % for
every £ > C'.

This theorem can be seen as a multipartite version of the Turdan theorem. For an arbitrary graph
H, Pfender suggested that dy(H) should be equal to % for every ¢ > {o(H) sufficiently large.

1.2 Our results

In this paper we shows that Pfender’s suggestion is not quite true. In fact, we characterise those
graphs for which the sequence dy(H) is eventually constant, calling them almost colour-critical.

Figure 1: An almost colour-critical graph.

Definition 1.2. A graph H is called almost colour-critical if there exists a map ¢ from V(H) to
{1,2,...,x(H) — 1} such that

(i) The induced subgraph of H on ¢~!(1) has maximum degree at most 1,

(ii) For 2 <4 < x(H) — 1, ¢~1(4) is an independent set of H.

In other words, an almost colour-critical graph H has a vertex-colouring with x(H) — 1 colours
that is almost proper: all colour classes but one are independent sets, and the exceptional class
induces just a matching (see Figure 1). For example, cliques, or, more generally colour-critical
graphs, are almost colour-critical while the complete k-partite graphs Ky (si,...,sg) are not for
every s;1 > 1,89 > 2,...,8, > 2.

Our main result shows that almost colour-critical graphs are exactly those for which the sequence
d¢(H) is eventually constant.

Theorem 1.3. The following statement holds for every graph H.
(1) If H is not almost colour-critical, then dy(H) > iﬁggg:f + (X(H)—11)2(£—1)2 for every £ > v(H).

(2) If H is an almost colour-critical graph, then there exists a positive integer C = C(H) so that

dy(H) = iﬁggg:? for every £ > C.

Note that the estimate in the first statement is tight for H = K 2, and the second statement implies
Pfender’s result since cliques are almost colour-critical. This result can be viewed as a multipartite
version of the Simonovits theorem. Since the proof uses the graph removal lemma, the resulting
constant C'(H) is fairly large.



The rest of the paper deals with various extensions of Pfender’s result. More precisely, we
investigate the extensions of Turdn’s theorem discussed in Section [I.1] for balanced multipartite
graphs. An /-partite graph G on non-empty independent sets Vi,...,Vp is balanced if the vertex
classes V1,...,V; are of the same size.

A multipartite version of the extension considered by Nikiforov [17] and Erdés [7] can be stated
as follows.

Theorem 1.4. Let k and { be integers with k > 3 and { > e4k(k+6)k, and let G = (V1 U...UV,, E)
be a balanced £-partite graph on n vertices such that

d(Vi,Vj) > =3 fori#j.
Then, either G is isomorphic to a graph in Qf or G contains a copy of K,j_l(Lcln nj), where
¢ = k(0K jo,

For fixed k, the random graph G, ;, shows that the lower bound cIlnn on the size of the subgraph
in this theorem is tight up to a constant factor.

The extension of Turdn’s theorem studied by Bollobas and Nikiforov [3] has the following
multipartite version.

Theorem 1.5. Let k and ¢ be integers with k > 3 and £ > k'?*, and let G = (Vi U...UV,, E) be
a balanced (-partite graph on n vertices such that
d(Vi, V) 2 522 fori# j.

k‘_2k2nk_

Then, G either contains a family of 2 cliques of order k sharing a common edge or is

isomorphic to a graph in Qf.

With some minor modifications, this result follows from our proof of Theorem [[L4l For the sake of
clarity we sketch these modifications after detailing the proof of Theorem [T.4]

1.3 Organisation

The remainder of this paper is organised as follows. In Section ] we introduce some notation
and definitions. In Section Bl we extend ideas developed in [19] to prove Theorem [[3l A proof
of Theorem [[4] is given in Section @l We sketch how to modify the proof of Theorem [[L4] to get
Theorem in Section [B and close with some further remarks and open problems in Section

2 Preliminaries

2.1 Notation

All graphs in this paper are finite, simple and undirected. Given a graph G, we denote its vertex
and edge sets by V(H) and E(H), and the cardinalities of these two sets by v(H) and e(H),
respectively. The minimum degree of G will be denoted by 6(G). For a set U C V(G), we write
G[U] for the subgraph of G induced by U. The common neighbourhood N(U) of U is the set of all
vertices of G that are adjacent to every vertex in U. Given a vertex v € V(G), let deg(v,U) stand
for the number of vertices in U adjacent to v. For pairwise disjoint vertex sets Wy,..., W, C V(G),



we write G[W1, ..., W,] for the r-colourable graph which can be obtained from G[W; U ... U W,]
by deletion of edges in G[W;] for all i < r.

Let G be an f-partite graph on non-empty independent sets Vi,...,V,. For X C V(G) and
i </, write X; = X NV;. The edge density between V; and Vj is d;; := d(V;, V) := |%"“2|)

Forr>2and t; > 1,...,t, > 1, let K, (t1,...,t,) be the complete r-partite graph with classes
of sizes ty,...,t,. If t4 = ... = t, = t, we simply write K, (t) instead of K,(t1,...,t,). For
r>2 s>1and t; > 2s, to > 1,...,t, > 1, we denote by K,"*(t,...,t,) the graph obtained
from K, (t1,...,t.) by adding a matching of size s to the first vertex class. If s = 1, we omit the
upper index s. In particular, K;7%(t) is the short form for K 5(¢,...,t) and K, (¢) is nothing but
Kt ... t).

For a,b,c € R, we write a =b=+cif b —c < a < b+ c. In order to simplify the presentation,
we omit floors and ceilings and treat large numbers as integers whenever this does not affect the
argument. Unless stated otherwise, all logarithms are base e.

The set {1,2,...,n} of the first n positive integers is denoted by [n]. For k& € N, we define
( )={ACX: |A| = k}. We use the symbol | J for union of disjoint sets.

2.2 Extremal graphs

In this section we shall recall the definition of the family Qf of extremal graphs given by Pfender
[19]. For k > 3 and £ > (k — 1)!, a graph G is in G} if it can be constructed as follows. Let
{m1,m2, ..., mx—1y} be the set of all permutations of {1,...,k—1}. For1 <i</land1 <s<k—1,
pick non-negative integers n; such that

mi(1) (k—=1)

n?@) >...>n for 1 <i < (k—1),

:...:n'-C V'S 0for (k—1)! <i<¢, and

(2

an>0for1§i§€.

n;

v

1_
n; =n

<N

Vertex and edge sets of G are defined as (see Figure 2)

(is,t):1<i<f1<s<k-11<t<n},
(i,5,0)(0', 8", ') i # i s £ 8}

It is not hard to see that G is an (k — 1)-colourable E—partite graph with parts V; = {(4, s,t) :
1<s<k—-1,1<t<nf}for1<i</{ and colour classes V( —{(z s,t) 11 <i<0,1<t<nf}
for 1 < s <k — 1. Moreover, if all n; are equal, we get dlj = k 1 2 for every i # j. Note that other
(s)

weights n;

{
{

can be used to achieve the inequality d;; > for every i # j.

Let gf be the family of graphs which can be obtamed from graphs in ge by removal of some
edges in {(i,s,t)(¢/,s',t') : 1 <i < i < (k—1)!}. The following simple observation by Pfender [19]
will be useful for our investigation.

Lemma 2.1. Let k > 3 and ¢ > (k—1)! be integers. If G = (V1U...UV,, E) is a (k: 1)-colourable
C-partite graph with d(V;, V;) > k 2 — for i # j, then it is zsomorphzc to a graph in ge



Figure 2: A graph in Q_g’, all edges between different colours in different parts exists.

2.3 Infracolourable structures
The following notation will play a key role in our investigation.

Definition 2.2. Given areal number > 0, and integers k > 3 and ¢ > 2, an (n, k, £)-infracolourable
structure is an (-partite graph G = (V43 U ... UV}, E) together with pairs (DZ(S), Yi(s))sgk_ug sat-
isfying:

(i) For every i < /¢, V; = Usgk_lYi(s) and ‘Yi(l)‘ >

(ii) For every i </ and every s < k — 1, DZ-(S) - Yi(s) and |J;<, Yi(s) \ DZ-(S) is an independent set;

) has at most n- g neighbours in Uigz Yi(s)

y -

Yi(z)‘z...z

I

(iii) For every s <k — 1, each vertex v € {J;«, DZ-(S
and at least 37 - ﬁ non-neighbours in | J;<, Vi \Yi(s).
The graph G is called the base graph of the infracolourable structure.

Infracolourable structures are useful for us mainly because theirs base graphs break the density
conditions in our theorems.

Lemma 2.3. Let n be a positive real number, and let k > 3 and £ > 2 be integers. Suppose that an
C-partite graph G = (V1 U...UVy, E) together with a system of pairs (Dgs), YZ‘(S))sgk—l,igé of vertex
sets form an (n, k,0)-infracolourable structure. Then

e(G) < 22 ) ViVl
i<j
k=2

k=1
Z(S) = 0 for all s and all i,

=L |V;| for all s and all i # iy, and d(Yi(S),Yj(t)) =1 foralls#t andi # j.

In particular, there exist two different indices i and j such that d(V;,V;) < . Furthermore, the

equality occurs if and only if there exists ig € {0,1,...,¢} such that D
Y(S)

)

Proof. 1t follows from the assumption that

G) v(G)
Sl p@|. (. 2G) 1 5 G
e(G)—; i J +U i n k—1 2 377 k—1
Y ,8
<O =Sy X 0 < = vl
i<j i<j i<J i<j
s#t s<k—1
where in the last inequality we use Chebyshev’s sum inequality. |



To find an infracolourable structure in host graphs we shall need the following technical lemma.
It was implicitly stated in [19]. We include a proof here for the sake of completeness.

Lemma 2.4. Let k > 3 and £ > 2 be integers, and let € be a real number with 0 < & < %. Suppose
that G = (Vi U...UVy, E) is an L-partite graph with d(V;,V;) > % for all i # j. Assume that
Xi(s) and T; be subsets of V(G) fori < and s < k — 1 with the following three properties:

(i) For everyi </{, V; = Xi(l)L'J . UXi(k_l)Oﬂ,'

(ii) ”‘ > > (X}’“—”‘ and |T}| < |Vil;

(iii) For every s <k —1, U;<, X *is an independent set.
Then there exists a subset Iy € (k 1) so that ‘X(S (k 7 & kf) |Vi| for s <k—1 andi ¢ Iy.

Proof. 1t suffices to show that for each s < k — 1 there is at most one index i < ¢ such that

/\
~

X X ()
T > 5 + /€. Assume to the contrary that ‘ T 2 ‘I‘z > L+ (/e for some s and i # j.
X (s) X(S)
We first prove that ia <1 —e. Otherwise, if ’ v > 1 — ¢, then
(s) (s)
‘Xi ‘Xj 1 k=2
d(Vi,V;) <1— - <1-(-o) (g +vE) < 2
il Vil

for k>3 and € < i, as XZ.(S) UX ](-8) is an independent set by (iii). But this contradicts the density
condition that d(V;, V;) > %

We shall get a contradiction by proving that d(V;,V;) < k—:% Indeed, we can infer from
Chebyschev’s sum inequality that

awv) €1 S )

(s) ‘ (s)
X X
B | B (it =1zl = |xP)) (il = 1 =[x
Vil IV (k —2)|Vil |V}
:1—:Ei$j—ﬁ(l—ti—iﬂi)(l—tj—l‘j),
(s) (s)
where z; = ‘X; T = ’Xj t; = EH and t; = 1731 Since both z; and z; are bounded from below
v Vil >3 ] J vl v J

by 717, the expression f(z;,zj,t;,t;) =1 —x;2; — 25 (1 —t; — 2;) (1 — t; — x;) is decreasing with
respect to both x; and x;. Therefore, the density d(V;, V) is bounded from above by

f(iEiainj,tiatj)§f<ﬁ+\/gaﬁ+\/gvtiatj> < T Ve 1+\/555) <&

where the second inequality follows from the assumption that ¢;,¢; € [0,¢]. However, this contra-
dicts the assumption that d(V;, V;) > % [

3 Proof of Theorem [1.3

In this section we will prove Therem [[L3l We begin with a proof of the first assertion.



Proof of Theorem [1.3(1). We prove by contradiction. Assume that dy(H) < igggj—i- (X(H)—11)2(€—1)2 )
Let r = x(H) — 1, and let V1,...,V; be ¢ disjoint sets of size (¢ — 1)r. For i < ¢, we partition V;
into r subsets Vi(l) . s)

ey VZ.(T) of size (¢ — 1) each. We form a complete bipartite graph between Vi(
and Vj(t) for i < j and s # t. We then create a perfect matching in Vl(l) U...U Ve(l) such that there

is exactly one edge between Vi(l) and Vj(l) for every i # j. The resulting graph G satisfies
X(H) —2 1
X(H) =1 (x(H) —1)*(t—1)?

Thus, by the definition of dy(H), G must contain a copy of H. From the construction of G, we can
see that H is an almost colour-critical graph. This finishes our proof of Theorem [L3(1). [

d(vi7 V}) =

> do(H) fori#j.

Remark 3.1. The estimate in Theorem [[23(1) is tight for K o, that is dy (K7 2) = =12 1) for £ > 3.
Indeed, let G = (V1 U...UV,, E) be an (-partite graph with d(V;, V}) > ﬁ for every i # j. We
wish to show that G contains a copy of K 2. Suppose to the contrary that G is K o-free. For i # 7,

we write V; ; for the set of vertices in V; with at least one neighbour in V;. Since G is K »-free, we
see that

(i) the edges between V; and V; form a perfect matching between V; ; and Vj; for every i # j;
(i) V;; and V; j are disjoint for all distinct indices ¢, j and j'.

Notice that V; ; is non-empty for every i # j as d(V;,V;) > 0. Combining this with property (ii),
we conclude that

Vil> Y Vil =t—1fori<t. (1)
JElN{i}
Hence
3 <\‘3g’\ N ‘31!) -y |V‘i/,j’ <
1<i<j<t Vil il 1<i<e \j'#i Vil
Consequently, there exist 1 < i < 5 < £ with |K}"| %Z" < A= ZL By appealing to the AM-GM

inequality, we thus get /|V; ;| |Vj] < -/|Vil|V;|. This forces

avi, vy @ sl @ VIVl IVidl 1 D 1

Vil V] VIVl ~ =10/ Vi[IV;] ~ =1

contradicting the assumption that d(V;, V) >

1
(—1)2"
To handle the second statement of Theorem [[.3] we shall prove a stronger result.

Theorem 3.2. Let H be an almost colour-critical graph. Then, there exists a constant C = C(H)
such that for every integer £ > C, every (-partite graph G = (V1 U ... U Vy, E) with

X(H) —

W)= 1

fori#j

contains a copy of H whose vertices are in different parts of G.



Remark 3.3. Suppose that H is almost colour-critical. Let k = x(H) and ¢ = v(H). From the
definition of almost colour-critical graphs, H is a subgraph K ;’_‘11(2(]). Moreover, it is easy to see
that x (K. ?,(2¢)) = k = x(H) and K, % (2q) is almost colour-critical. Therefore, if Theorem
holds for K ,j_ql(Qq), it will hold for H as well.

The main idea of the proof of Theorem is as follows. Let G = (V3 U...UV,, E) be a
counterexample. We first apply a stability result (Lemma B.4]) to obtain an induced (x(H) — 1)-
colourable subgraph of G which almost spans V(G). Using embedding results (Lemmas 3.8 and
B.6) we can then show that there exists a subset I C [¢] such that G[|J;c; Vi] is the base graph of
an (n, k, |I|)-infracolourable structure. But according to Lemma 23] this forces d(V;, V) < % for
some %, j € I, violating the density condition.

Our first step in the proof of Theorem 3.2l will be to show that a counterexample G must contain
an induced (x(H) — 1)-colourable subgraph which almost spans V(G). For that we shall need the
following stability result.

Lemma 3.4. Given integers k > 3 and ¢ > 1 and a real number 0 < & < ﬁ, there exists a

constant C' = C(k,q,€) such that the following holds for ¢ > C. Let G = (V1 U...UV,, E) be a
balanced (-partite graph on n wvertices with d(V;,V;) > % for all i # j. Suppose G contains no
copy of K,j_ql(Zq) whose vertices lie in different parts of G. Then, G contains an induced (k —1)-

k—1

colourable subgraph F whose vertex classes XV, ..., X =1 satisfy the following properties

(i) Fors<k—1,|X®|= <ﬁ i€> n;
(i) For s <k —1 and v € ;4 X® | deg(v, X)) > |X(5)| —en.

To prove Lemma [3.4] we require the following result whose proof can be found in Section

Proposition 3.5. For every graph H and every e > 0, there exist positive constants v = y(H,¢)
and C' = C(H,¢) such that the following holds for n > C. Suppose that G is an n-vertex graph with

e(G) > <§Eg;j — 7) (g) containing at most yn* ) copies of H. Then, G contains a (x(H) — 1)-

colourable subgraph of order at least (1 — )n and minimum degree at least (i%g;j — 6) n.

Another tool that will be used in the proof of Lemma B4 and Theorem is an embedding
result. Before stating it, we shall introduce the necessary terminology. Let G[W(l),...,W(T’)]
be an r-colourable graph such that W) = Ui>1Wi(S) for every s < r. We call an embedding
f:Ke(a1,...,a.) = G good if the sth vertex class of K,(ay,...,a,) is mapped to W) for every
s <r, and for each index i there is at most one vertex v € K,(ay,...,a,) with f(v) € U,, WZ-(S).

Lemma 3.6. Suppose that r > 2 and q > 1 are integers, and let G[W(l),...,W(T)] be an r-
colourable graph which satisfies the following properties

(i) Fors<r, WG = UiVVi(s) and ‘VVZ.(S)‘ < qu . |W(8)| for all i,

(i) For s <7 and v € Uy, W® | deg(v, W) > (1 — %q) . ‘W(S)‘.
Then, for every r-tuple of integers ay,...,a, € [0,q], every good embedding from K,(a,...,a,) to

G can be extended to a good embedding from K,(q) to G.

Proof. Suppose f is a good embedding from K, (aq,...,a,) to G. To prove the lemma, it suffices to
show that f can be extended to a good embedding g from K, (aj,...,as+1,...,a,) to G whenever



as < q—1. Let v be the vertex of K,(ay,...,as+1,...,a,) which is not in K,(a1,...,a,), and let
X denote the set of vertices of K,(ai,...,a,) Which are not in the sth vertex class. By property
(ii), we see that each vertex of X has at most ‘W(S)‘ non-neighbours in W), and thus
(s)

NGO AW > )| - |x]- ]
forbid at most 2_71«[1 . |W(S)‘ vertices of W) from being the image of v. Therefore, the number of
(s)

‘W ’ > I‘W(S‘_|X|"M2/rq‘ >07
where in the last inequality we use the inequality ‘W(S)‘ >0 Wthh is implied by property (i). W

2rq
> % ‘W(s)|. Note that, by property (i), each vertex of X can

possible images of v under g is at least |N(X) N W(8)| —|X]-

Proof of Lemma[3.4 We denote H = K,j_ql(2q), and let

Y= m (H7 %) ) C= max{2k2q27_l, S(k - 1)2q7 4(k - 1)q€_17 qm(H7 QE_k)}
Because G = (V3 U... UV, E) is a balanced ¢-partite graph on n vertices, we must have
n
\Vl\:\Vg\:...:\Vg]:Z::m. (2)
In the first step, we shall use Proposition [3.5] to show that G contains an almost spanning
(k — 1)-colourable subgraph. Indeed, by the choice of C' we see that n > £ > C > (gx(H, 57)

Moreover, since GG contains no copy of H whose vertices lie in different parts of GG, the number Of
copies of H in G is at most

<U(f)>£m2nv(H)—2 < 2kzq2 '(ém)2nv(H)—2 < an(H)’
since n = ¢m and ¢ > C > 2k?¢>y~!. Also, by the density condition

e(G) > (5) 2,2 © (E2-1) <Z> > (12 -1) (Z)

assuming ¢ > C > 2k?¢?>y~!'. Therefore, we can derive from Proposition that G contains a
(k — 1)-colourable subgraph F’ with

;?"?r

w(F) > (1— £)n and 6(F') > (% - ﬁ) n. (3)
W, W=D are vertex classes of F’, then (3) implies that

(# = g)m = |

S(ﬁ—i—i)n for s <k —1. (4)

In the second step, we shall prove that the induced subgraph G[V (F”)] of G does not contain a
large monochromatic matching whose vertices are in different parts of G. Indeed, for s < k — 1, let
My denote a maximum matching in G [W ()] whose vertices are in different parts of G, and let K
be a subset of [¢] containing all indices i such that (J,;_; Ms) has a vertex in V;. The size of K
will be bounded from above in terms of k£ and gq.

Claim 3.7. |K| < 2(k —1)q.
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Proof. We prove the claim by contradiction. Suppose that for some s < k — 1, M) contains a
matching of size ¢, say {x122,...,22-172}, . We wish to show that the following two properties
holds:

() For ¢t <k —landi <6, WO = w0 0w and |[W| < glo - (WO

(ii) For t <k —1and v e V(F)\ W®, degp (v, WH) > (1 - m> . |W(t)|.

Property (i) follows from the estimate

[Nelf0)

‘Wi(t)‘g’v"‘:%<4(ki1)q’(kil_ >"@4(k7i1)q"w(t)‘

for £ >C >8(k—1)%gand e < 8—]32—(1. To prove (i), assume that v € W) for some s # t. Because
W) is an independent set in F’, one has |W(t)‘ —dp (v, W) < o(F') - ‘W(S)‘ —degp(v). Hence
by appealing to ([B]) and (), we get

1 k—2
WO = dp 0, W 0) < - (m - 2> " (m - ﬁ) "

1 1 1
< . - < ___ =  \wW®
S S k1) <1<;—1 2)”—4@—1)(1 s

. This finishes our verification of (i) and (ii).

1
for€<8k—2q

Finally, properties (i) and (ii) ensure that we can apply Lemma with 135 = k — 1 and
=2¢ to GIWW ..., W] to find a copy of Kj;_1(2q) whose sth vertex class is {x1,... , Toq }
and vertices lie in different parts of G. Since {z1,z2,...,22,—122,} is a matching in G, the graph
G contains a desired copy of H, which contradicts our hypothesis. |

To finish the proof, we shall show that G contains an induced subgraph F' with the desired
properties. For this purpose, we let X&) = W) \ Ujex Vi for s <k — 1. The maximality of M)
implies that X () is an independent set in G. So the induced subgraph F = G[X(l) U...uU X(k_l)]
is (k — 1)-colourable. What is left is to prove that F' has the desired properties. Since ¢ < ﬁ and
¢>C > 4(k —1)ge™!, we find that

@),Claim [3717
o(F) = v(F) - || Vi > 1—Z)n—2(k—-1)q-— > (1—¢)n,
ieK
@),Claim [3717
o) =) - || 2 (B g)n -2k -1 5> (- 4)n
ieK

Moreover, by () we see that |X(5)| < |W(8)| < <ﬁ + %) n for s < k—1, and hence <ﬁ — %) n <
|X(5)| < <ﬁ + %) n for s < k — 1. Therefore, for s <k—1and v € Ut#s X @ there are at most

n— |X(5)| —dp(v) <n-— <ﬁ - %) n— (% - %) n = en missing edges in F between v and X ().
This completes our proof of Lemma [3.41 |

We also need the following elementary lemma. It is probably well-known, but we could not find
a reference. For completeness we include its proof in Section [Bl

11



Lemma 3.8. Given integers r > 1 and q > 2 and a real number d € (0,1), there exist an integer
D = D(r,q,d) and a positive p = p(r,q,d) so that the following holds. Suppose that G is an (r+1)-
colourable graph with vertex classes U, Wyy,...,Wy. If |U| > D and deg(u, W) = d ‘W(s)‘ for

allu € U and s < r, then there is a subset A € (g) with |N(A) N W(s)‘ >p |W(8)| for s <r.

To find an infracolourable structure in G we shall make use of a consequence of Lemmas

and B.8]

Lemma 3.9. Given integers k > 3 and ¢ > 1 and a real number n € (0,1), there exist integers
C = C(k,q,n) and D = D(k,q,n) and a positive § = 6(k,q,n) such that the following holds for
0> C ande € (0,0). Suppose that G = (V1 U...UVp, E) is a balanced (-partite graph containing no
copy of K(2q) in G whose vertices are in different parts of G. Assume (Xi(s))sgk_l,igg are vertex
sets satisfying:
() Fori<e, XV ... x!
(ii) Fori <l ands<k—1,

A= are disjoint subsets of V;,

i | = (ﬁif) \Vil,

(iii) For every s <k—1andv € Uz‘ge,t;ﬁs Xi(t), deg(v,UiSe XZ-(S)) > ‘Uige XZ-(S)‘ —e-v(G).

Let I be the subset of [£] consisting of all indices i € [] such that V; contains a vertex v with
deg(U,UjSZX](-S)) >n-v(G) fors<k—1. Then |I| < D.

Proof. LetD:ﬂm( -1 2q,—) C= max{4kD o1 D, Wr=Lkg 1) }and5:min{ﬁ778(k_p1)kq}v

where p = g3g| <k: —1,2q, T") We shall prove the lemma by contradiction. Assume that |I| > D.
Let J be an arbitrary subset of I of size D. By the definition of I, for each index j € J we can find
a vertex v; € Vj such that deg(vj,UKg X(s)) >n-v(G) for s <k—1. Let U ={v;:j € J}.

For simplicity of notation, let X () := (. i<t X(S) and W) .= Uze[z]\J X for s < k — 1. Then,

property (i) implies that W), .. .,W(k 1) are disjoint subsets of V(G). By (i) and (ii), we find
that

1 D
> (- __Z). > v(@)

‘W —<1<;—1 e z) v(G) > UG (5)
for e < 5 < A and ¢ > C > 4kD. Also, (i) and (ii) force ‘W(S)‘ < (ﬁ + 6) v(G) < 2v§€G), since
€ <0 < 4. Combining these two inequalities, we conclude that

deg(v, W®) > deg(v, X©) V| > P R e
o0, W) > deg(o, X — | V5| 20000 - 0- 49 > 4 u(e) 2 1.

jeJ

forv € U and s < k — 1, as £ > 2p~'D. Furthermore, |U| = D = l]m( —1,2¢q, 4) by the

definition of D By applying Lemma [B.8 to G[U WO WD with wBR=k—-1, 3R =29
and dgg1= 7, we thus obtain a subset A € ( ) with

N(A) NWE)

> p(W(S)

for s <k —1. (6)

In the rest of the proof we shall use Lemma 3.6 to show that G[N(A)NW® ... N(A)NW k1)
contains a copy of Kj_1(2q) whose vertices are in different parts of G. Since this copy lies in N(A),
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together with vertices of A it forms a copy of Kj(2¢g) whose vertices belong to different parts of
G, contradicting the assumption. It remains to verify the assumptions of Lemma Indeed, for
s<k—1, N(A) NW does admit the partition

N(A) N W) = UMJ(N(A) nx®). (7)

Moreover, since N(A) N W) C X6 for s < k — 1, we must have, for s < k— 1 and v €
Ut;és (N(A) N W(t))’

(N(A) AW — deg(v, N(A) < |Ux®| - deg(v, | Jx)
i<l 1<l
(i) W(G) B.6) .
gg.v(g)§4(kil)q.p, (@) > 1 ‘N(A)OW(),

assuming € < § <3 W It can be rewritten as

deg(v, N(A) N W) > (1 - Wil)q) ‘N(A) AW for s <k—1and v ¢ U(N(A) Nw®. (8)
t#s

Also, for every j ¢ J and s < k — 1, we have

1 v(G) 6.6 1

_ v(G)
= &g P "o S TCESr

<

N(A) N X (9)

: ‘N(A) AW

because £ > C > 2k=Dka pq inequalities (7)), (8) and (@) show that we can apply Lemma to

GIN(A) NWO . N(A) N W] with rgg =k — 1 and =2q. |
We also require another consequence of Lemma B.6], stated below.

Lemma 3.10. Given integers k > 3 and ¢ > 1 and a real number n € (%, 1) , there exist an

integer C = C(k,q,n) and a positive § = §(k,q,n) such that the following holds for every integer
¢>C and every e € (0,0). Let G = (V4 U...UVy, E) be a balanced (-partite graph containing no
copy of K,j_ql(2q) whose vertices are in different parts of G. Assume (Xi(s),}/;(s))sgk_ug are pairs
of vertex sets satisfying:
(i) Fori</{ and s <k—1, Y(l) Y(k_l) are disjoint subsets of V; and Xi(s) - Yi(s),
(ii) Fori </l ands<k—1, ) (klzlzs)|V|
(iii) Fors<k—1andv € Uig’t;ﬁs Z( ), deg(v, U;<, X ‘Uz<€ ‘ e-v(Q).

For i < £ and s < k —1, let BZ-(S) denote a subset of Y( consisting of all vertices v with
deg(v,U;<, X](-t)) < n-v(G) for some t # s. For s < k—1, write My for a mazimal match-

ing n the induced subgraph G[UK( \B(s ] of G whose vertices are in dzﬁerent parts of G, and
set J = {j € [{] : V; contains some vertez in Uscp_1 M(s)}- Then, |J] < 2(k —1)q.
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Proof. Choose

/ /

qn U
2 — 1 4(k — 2

2g—1

Ak —2)
2(k —1)q

C= p

and § = min{ )}, where ' =n —

Notice that ’ > 0 as n € <ﬁ, 1>. We prove the statement by contradiction. Suppose that

M,y contains a matching {z122,. .., 7241272} of size ¢ for some s < k — 1. Let X® denote the
vertex set J; XZ.(S) for s <k—1. For t # s, define W,y = |, (N(z1,...,32) ﬂXZ.(t))_ Then property
(i) implies that WM ... W*=1 are disjoint subsets of V(G). We shall apply Lemma 3.6 to find a
copy of Kj_2(2q) in G[W(l), ceey /(:), ceey W(k—l)] whose vertices are in different parts of G (here
W//\s) stands for the empty set). Since this copy lies in N(x1,...,29,) and since {z122, ..., T2q—1224}
is a matching, G contains a copy of K ,j_ql(2q) whose vertices belong to different parts of G, which
is impossible. The remaining task is thus to verify the assumptions of Lemma Indeed, from
the definition of W;) we see that, for ¢ # s,

W(t) :U-(N(‘/El"-"x?q)mXi(t))‘ (10)

(2

By the definition of M), we have deg(z, X1) > n-v(G) for x € {x1,...,29,} and t # s. Hence

Wiy | = [N (@, 220) 0 XO| > 25 0(G) — (2g — 1) [ x©)]

(i)
> 2q7-0(G) — (20~ 1) (51 +¢) v(6) = @ - () (11)
fore <6 < QZL_II. Together with the assumption ¢ > C = 4(kn72), this inequality implies that, for
1 <fandt#s,
v G ’
[N, ma) N X0 < Vi = (e ) < s V(6 < g Wl (12)

On the other hand, we can derive from property (iii) that, for v € Uigm%{&t} XZ.(‘D),

/ @
Wiy | — deg(v, Wiyy) < - 0(G) < gy - v(G) < qtayg Wl (13)
assuming ¢ < § < 4(,;7—L). It follows from (I0), (I2) and (I3]) that we can apply Lemma to
G[W(l),...,ﬂ//(\s),...,W(k_l)] with 135 =k — 2 and qgg = 2¢. |

We are now ready to prove Theorem

Proof of Theorem[32. Let k = x(H). If k = 2, then H is a matching. The density condition
implies that there is at least one edge between any two parts of G. Hence G contains a matching of
size g > e(H) whose vertices are in different parts of G. So from now on we can focus on the case
when k > 3. Moreover, as discussed in Remark [3.3] we can suppose that H = K ,j_ql(2q) for some
positive integer ¢. To prove Theorem [B.2] we assume to the contrary that G does not contain a
copy of H whose vertices are in different parts of G. Without loss of generality we can suppose that
each part of G has exactly m vertices, where m is a sufficiently large integer. Otherwise, multiply
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each vertex in each part V; by a factor of %, which has no effect on the densities, and creates no

copy of H whose vertices lie in different parts of G.
Choose ¢ = max{(g7(k,q,¢€),1/e}, where ¢ > 0 is sufficiently small (to be specified later).
Let ¢; = ﬁ, by = 0 — (k—1), l3 = ﬁ and 04 = l3 — 2(k — 1)g — D, where D =

Dy (k:,q, (6q+10)(k1—1)(k—1)!>' Note that the parameters ¢ and ¢; both grow as Q(1/¢).

Our goal is to find an infracolourable struture in G. In the first step, we apply Lemma B4 to
G with kg1 =k, qgg =g and g3 =€ < 8_13271 to obtain an induced (k — 1)-colourable subgraph

F of G whose vertex classes XV ... X(k=1) gatisfy

‘X(s) :(ﬁia)nforsgk—l, (14)
deg(v, X)) > ‘X(s) —enfors<k—1landwve U x®, (15)
t#s
Let T =V(G) \ V(F). The inequality (I4]) implies that |T'| < ken. This forces |T;| < 2kem for
at least half of indices ¢ < £. Since ¢; = ﬁ, by the pigeon hole principle we can relabel the V;

and the X) such that ‘Xi(l)‘ > ‘XZ-(Z)‘ > .. > ‘Xi(k_l)‘ and
|T;| < 2kem for i < ¢;. (16)

Hence we can apply Lemma 2.4 with gy = 2ke < % to find a subset I € (,ﬁ 1) such that
‘XZ-(S) = <ﬁ + k\/2/<;a> m for s < k—1and i€ [¢1]\ Ip. By reordering parts if necessary, we may
assume that

o

:(ﬁikv2ka)m for s <k—1andi < /. (17)

For i < /5 we shall partition V; into £ — 1 subsets Yi(l), e ,Yi(k_l) as follows. A vertex v € V;
is assigned to Yi(s) if deg (U, UngQ X](.S)) = ming<j_1 deg (v, Uj§z2 Xj(t)); if there are more than one
such index s, arbitrarily choose one of them.

Claim 3.11. X c v ¢ x0T} and |V,

:<ﬁi2kv2k‘€)mf0rs§k_1 and i < {s.

Proof. Let v be an arbitrary vertex of Xi(s). Since X®) is an independent set of G, v has no
neighbours in (J;, XJ(S). It thus follows from the definition of Yi(s) that v € Yi(s), and so XZ-(S) is

a subset of Yi(s). Combining with the fact that V; = <USXZ-(S)) UT; = USYZ-(S), we conclude that
Yi(s) C XZ-(S)L'JTi for i < f9 and s < k — 1.

As XZ-(S) is a subset of Yi(s), (I7) tells us that
and s < k — 1. Using (I6]) and (I7), we get

Y(S)

> X

> (ﬁ—k\/%)mforigﬁg

v\ < |X9] 41T < (ghy + kv2ke + 2ke) m < (1 + 2kv'2ke ) m
for i < /9 and s < k — 1, where the first inequality holds since Yi(s) is a subset of Xi(s) uT;. |

We shall show that I has bounded size.
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Claim 3.12. |[I| < D.

Proof. We require € to be small enough so that max{kv/2ke, k*e} < 3 (k:,q, (6q+10)(k1—1)(k—1)!>’

and fo > CB:g(k: q, (6q+10)(k (= > By (I7), ‘X(s = (ﬁ :l:k:\/Zk‘e) m for s < k—1 and
i < fy. Moreover, for s <k —1and v € Uig%t#s XZ.(t), we have

deg(v U X U X(s + deg(v, X© ‘X

Z<f2 ’l<€2

U Xi(s) —en > U Xi(s) — kFelom.
1<ty 1<lo

Therefore, we can apply Lemma to G[Vi U... U V] with input = k, = ¢ and
1 1
B = GG D! O conclude that |I| < Dgq (k‘,q, GGG ) = D. [

As U3 = ﬁ, by reordering the V; and Y(®) if necessary we can ensure

Vi — USYZ@ and ‘Yiu)‘ > ‘Y,@)‘ S>>

Yi(k_l)‘ for i < f3. (18)
For i < /3 and s < k — 1, let B-(S) be the set of all vertices v € YZ-(S) with the property that

deg(v,X{t) U...u Xg)) < 2(1231 33_”1’ for some ¢t # s. For s < k — 1, let M, denote a maximal

matching in G[Uigz3 f \Bi ] whose vertices are in different parts of GG, and write J for the
collection of all indices j € [(3] so that (J,<;_; Ms) contains some vertex in Vj.

Claim 3.13. |J| < 2(k — 1)q.

Proof. We shall apply Lemma [B.I0 to G[V1 U ... V] with kg = k, q319 = ¢ and 731m =

(]6_1)2(7‘12(1“) to get |J| < 2(k — 1)g. Note that ‘Xi(s) = <ﬁ + k‘\/2k:5) m for s <k —1and i < /3,

by (7). Furthermore, for s <k —1 and v € U,y ;45 XZ.(t), we have

(@3
deg(v, | J Xy > U X —en > U X kR elgm.

1<{3 i<ly i<ly

Finally, we can choose ¢ sufficiently small so that max{kv/2ke kzks} < §3I10 (k; q, W) and

ts > g (% 0. iy ) m

From Claims and B.I3] we can assume (relabelling parts once more if necessary) that
{1,...0633\ (T UJ) ={1,...,44}. Fori < /{4 and s <k —1, let Dgs) be the set consisting of all
vertices v € Yi(s) such that deg(v, Yl(t) U...U YX)) < ggi; %‘T"I for some t # s.

Claim 3.14. The {4-partite graph G[Vi U ... U V,,] together with pairs (DZ(S),YZ-(S))Sgk_l,iS& of

vertex sets form an (6q+9,k ly)- mfmcoloumble structure.
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Proof. We have to verify the following three properties:
(i) For i < /{y, V; = U8<k1 sand‘Y ‘>‘Y(2‘> >YZ(

(ii) Fori < /4 and s <k —1, D( ) CY( *) and Ui<e, Y \D )1s an independent set;
5)

k-1)].

9

has at most &*Tm neighbours in Uz<z4 v

6q+9 t
and at least 3073 +3 i‘*m non-neighbours in | J; <ty Vi \Y(S

Property (i) follows directly from (I8]). For (ii), we observe that Bi(s) C DZ(S) fori </yand s < k—1.
We then deduce property (ii) from the maximality of M ). For (iii), we consider an arbitrary vertex
v € U<y, Di(s). Assume to the contrary that deg(v,|J;<,, Yi(s)) > Gqﬁ . i‘%’}. Then, by Claim B.1T],
we obtain -

(iii) For s <k — 1, every vertex v € J;<, D(

)

(s) (S 1 1
deg(v U X;7) 2 deg(v U Y; U T 2 G055 kot — 2kelam > GmgeTy et
1<ty 1<ty 1<ty

for € sufficiently small. On the other hand, by (ii), we must have v € J;,, D Z C Ui<e, YZ(S) nd

so deg(v, U;<y, Xi( )) > deg(v, Uj<p, X i( )) for all t < k — 1. Therefore,

) (s) 1 Lym
deg(v, |J X) > deg(v, |J X)) > deg(v, |J X)) > iy - 24

i<tlo i<lo 1<ty
fort<k-—1,asve€ Ui§Z4 Yi(s). This contradicts the fact that {1,...,¢,} NI = (. Finally, by the
definition of |J;<, DZ-(S), there exists t # s such that deg(v,{J;<,, Yi(t)) < ggi; i— Consequently,

the number of non-neighbours of v in in (J;«,, Yi(t) is at least

Claim 3171

®)| _ 2¢+1  t4m 1 o~ 2g+1  Lam 1 lym
U Vi l—5/m 1 2 1 — 2kV2ke ) bam — 355 55T > 903 e
1<ty

assuming ¢ is sufficiently small. |

Claim B.I4] tells us that G[V; U ... U V,,] is the base graph of an (6q+9,

structure. By appealing to Lemma [23], we can find two indices 1 <14 < j < ¢4 with d(V;, V;) < i %,

contradicting the assumption that d(V;, V;) > % This completes our proof of Theorem 3.2 W

k, ¢4)-infracolourable

4 Proof of Theorem 1.4

In this section we shall prove a stronger version of Theorem 41

Theorem 4.1. Let k and £ be integers with k > 3 and £ > eZ/C, where ¢ s a real number with
0<c< k_(k+6)k/2. Suppose that G = (V1 U ... UV, E) be a balanced (-partite graph on n vertices
such that

d(Vi,Vj) > =2 fori# j.

Then, G either contains a copy of K,j_l(Lc Innl,...,[clnn], Ln1_2‘/éj) or is isomorphic to a graph
m gé“.
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The idea of the proof is similar to that of Theorem We assume that G does not contain
a copy of K;~ | (lelnn],..., [clnn], Lnl_z\/zj). We wish to show that G is isomorphic to a graph
in the family G¥. For this purpose, we apply the stability lemma (Lemma EZ) to find an induced
(k — 1)-colourable subgraph of G which almost spans V(G). We then use the embedding lemma
(Lemma [£.4)) showing that G contains a large infracolourable structure. To conclude the proof, we
shall use a bootstrapping argument (Lemma [£.8) which allows leveraging a weak structure result
into a strong structure result.

In the proof of Theorem 1] we shall need the following stability lemma.

Lemma 4.2. Let k and ¢ be integers with k > 3 and ¢ > 62/0, where ¢ 1s a real number with
0<c<k *+0k/2 Let G = (V1U...UV,, E) be a balanced (-partite graph such that d(V;, V;) > k=2
for i # j. If G does not contain a copy of K;’_l(LclnnJ,...,Lclnnj, Lnl_z‘/aj), then G has an
induced (k — 1)-colourable subgraph F whose vertez classes XWX ED satisfy the following
properties with e = 40~1/2

(i) For s <k—1, !X(s)| = <ﬁ iks) n;

(i) For s <k—1 and v € ;4 X® | deg(v, X)) > !X(s)| — ken.

To prove the above statement we need a stability lemma of Nikiforov [I7, Theorem 3].

Lemma 4.3. Let k > 3 be an integer, and let ¢ and § be positive real numbers with ¢ < k:_(k+6)k/2
and 6 < 8%. Suppose that G is a graph of order n > €?/¢ with e(G) > <% —5) (g) If G
has no copy of K; | (lclnn],..., clnn], |n'=2V¢]), then G contains an induced (k — 1)-colourable
subgraph F of order v(F) > (1 — 2v/8)n and minimum degree 6(F) > (% - 4\/3) n.

Proof of Lemma[{.3. By the assumption, |Vi| = ... = [V| = 7 := m. Together with the density
condition, we conclude that e(G) > (g) %mz > <% — %) ((7721)2 = (% — %) ”72 Notice that
¢ < k~(k+0)k, % < 8% and n > e2/¢. Thus, by applying Lemma to G with g9 = % we obtain
an (k — 1)-colourable induced subgraph F = G[ XM U... U X*=D] of G with v(F) > (1 — )n and
IF) > (% - E) n. Since 0(F) > (% - E) n and since X(®) is an independent set, we must have

‘ X

<n-§(F) < <ﬁ+6>n
for s < k — 1. This implies that

‘ X

ZU(F)—(IC—Q)<ﬁ+z—:>n2(1—5)n—(k‘—2)<ﬁ+5)n:(ﬁ—(k‘—l)z—:)n

for s < k — 1. Therefore, for s < k—1 and v € U#s X®  the number of non-neighbours of v in
X ) is at most

n— ‘X(s)

—dp(v) <n-— <ﬁ—(k’—1)e>n— (%—5)71:1@‘671,
as desired. m

The next ingredient we need is an embedding result.
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Lemma 4.4. Let r > 2 be an integer, and let G be an r-colourable graph with vertex classes
Wy, -, Wiy of the same size h. Suppose that deg(w, W) > (1 - T%)h for s < r and w €
Ut;ﬁs W(t) Then
(1) G contains at least %hr copies of K,
(2) For every a € (0,%) and s < r, G contains a copy of K,([a"Inh],..., [a" Inh], |h1=e" 7))
whose sth vertex class is a subset of W,.

The proof of the above lemma requires a simple result of Nikiforov [17, Lemma 5].

Lemma 4.5. Let r > 2 be an integer, and let o be a real number in (0, 7). Suppose that B[U, W] is
a bipartite graph with [U| =p and |W|=¢q. If p > 4[a"Inq] and e(B[U W1) > 1pq, then B[U, W]
contains the complete bipartite graph K (a,b) with a = |a"Ing| and b= [¢*=*" " ].

Proof of Lemmal[{.4 (1) Let ws € Wy for s =1,...,r. Observe that {w1,...,w,} forms a clique of
G if and only ifws € N(wy,...,ws_1)NW, fors =2,...,r. Inaddition, ‘N Wiy ey Ws—1) N W(S)| >

h—(s—1) ;5. Thus, we can bound the number of copies of K, in G from below by
S [CEE=S N <1—Z—7> = > L
s=1

(2) We proceed by induction on r. The base case r = 2 follows from the first assertion and
Lemma For the induction step, assume that » > 2. The induction hypothesis implies that
G[WyU...UW_y)] contains a copy of K,_1(m) with m = la"~'Inh|. Let U denote a set of m
disjoint copies of K, in K,_1(m). Define a bipartite graph B[U, W(,)] with vertex classes U and
Wiy, joining R € U to w € W,y if RU{w} is a clique. We see that |U| =m and ‘W(T)| = h. Since
0<a<1/4, we have m = |a""tInh| > [4a"Inh] > 4|a" Inh]. Furthermore, every vertex of U
has at least h —r - -z > h/2 neighbours in W(,). Hence e(B[U, W(,y]) > mh/2. The assertion then
follows from the base case r = 2. [

In order to find a large infracolourable structure in G we shall use the following consequence of
Lemma .41

Lemma 4.6. Let kK > 3 and £ > 2 be integers, and let € and « be positive real numbers with
e <1072k~ % and o < %. Suppose that G = (V1 U...UVy, E) is a balanced (-partite graph containing

no copy of Ky ([o* " In(p)],..., [a¥ " In(p) ], [p' =" "), where p = g=tgmmyr - v(G). Assume

that (Xi(s))sgk_l,igg are vertex sets so that

(i) Fori</¥, X(l) X(k_l) are disjoint subsets of VZ,
(i) Fors <k—1 and v € Uycppp X, deg(v,Upey XI7) = [Uje X17| = 2 - 0(G).
Then, there are no vertices v € V(G) such that deg(v 7Ui§£ XZ-( )) >p foralls <k—1.

Proof. Suppose for the contradiction that there is v € V(G) with deg(v, |, XZ.(S)) > p for all
s < k—1. Then, for s < k — 1 there exists a subset

W € N(v) N (U X}S)> with | W] = p. (19)
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By property (i), Wy, ..., Wg_1) are disjoint subsets of V(G). On the other hand, property (ii)
shows that for all s < k —1and v € U# s W(t) one has

deg(v, Ws)) = [W(e)| == 0(G)
1 1 1
AR R <1 - W) [Wigl,  (20)

as ¢ < 1072k7*. Finally, it follows from ([J) and (20) that we can apply Lemma EZ(2) to
the graph G[W(,...,Wg_n)] with qgg = k — 1, hgg = p and agg = « to find a copy of
Ki—1([e* ' In(p)], ..., [e* 1 In(p)], Lpl_akﬂj). Since Wiy U ... U W;_y) lies in the neighbour
of v, G contains a copy of K;;(la* 'In(p)],...,[a* 1 In(p)], Lpl_akﬁj), which contradicts our
assumption. |

> [Wig| -

To find a large infracolourable structure in G we also require the following consequence of
Lemma 441

Lemma 4.7. Let k > 3 and £ > 2 be integers, and let € and o be positive real numbers with

e < 121193 and a < %. Let G = (Vi U... UV, E) be a balanced (-partite graph containing

no copy of K,j_l(Lak_lln(p)J,...,Lozk_lln(p)J, Lpl_akizj), where p = 4(k1_1) - v(@).  Suppose

(Xi(s),}/;(s))sgk_l,igg are pairs of vertex sets which satisfy

(i) For everyi </ and s <k —1, Yi(l), .. ,Yi(k_l) are disjoint subsets of V; and XZ-(S) - Yi(s);
(ii) Fori</lands<k—1, Z-) :(ﬁia)]vﬂ'

(ili) Fors <k —1 and v € U;cpzs Xi(t), deg(v,U;<, X ‘U <t ‘ —e-v(G).

Fori < ¢ and s < k —1, let BZ-(S) stands for a subset of Yi( s) consisting of all vertices v with

deg(v,UjSZX](-t)) < ﬁ -v(G) for some t # s. Then, for s < k—1, U< Yi(s) \ BZ-(S) is an
independent set of G.

Proof. We prove by contradiction. Suppose that there exists an edge {z,y} € E(G) with x,y €
U, Y(S \B . Let t # s. By the definition of |, BZ-(S), both deg(z, U, Xi(t)) and deg(y, |, Xi(t)) are
at least (k 0 -v(@G). Hence

Ut

i

@) 4 1 1
T R (m +€> (@) 2 gy V)

. It means that there is a subset

N(z,y)N UXZ@

> deg(z, | X[") + deg(y, | ] X)) -

as € < 7553 12k

Wiy € N(z,y) 0 | X with [We| = g0 - v(G).

1<ls

On the other hand, it follows from property (ii) that ‘UZ Xi(s)
for0 <e<

> (5 —2) v(G) > gy - v(G)

1%3, and so there exists a subset

W(S) g UXZ(S) with |W(S)| = . ’U(G)

1
(-1
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Analysis similar to that in the proof of Lemma shows that G[Wy),..., W(_1)] must con-

tain a copy of Kj_i([e* 'In(p)],..., e 1In(p)], Lpl_akﬁj) whose sth vertex class is of size
|a*1In(p)|. Adding back vertices x and y to this class one gets a supgraph of the graph
K (la*tIn(p)], ..., "t In(p)], Lpl_akfzj), contradicting the hypothesis. [ |

The last component of the proof is a bootstrapping argument which allows us to leverage a
weak structure result into a strong structure result. Roughly speaking, it says that if G contains
an {-partite subgraph which is in Qé? , then G must belong to Qf.

Lemma 4.8. Let k > 3 be an integer, and let G = (V1 U... UV, E) be an L-partite graph_with
Vi| = ... =|V)| = m and d(V;,V;) > £=2 for all i # j. Suppose that there ezist an integer { and

disjoint subsets Yi(l), - ,Yi(k_l) of Vi for 1 <i < ¥ so that Yi(s) = 9 and d(Yi(s),Y}(t)) =1 for

alli # j and s # t. If G does not contain a copy of K,j_l(:fz%), then G is isomorphic to a graph
i the family géf.

Proof. We wish to show that G is isomorphic to a graph in Qé“. According to Lemma 2.1], it suffices
to prove G is (k — 1)-colourable. By the assumption, we have

Y(S)

)

= 0, d(YP YY) =1for s#tand 1 <i<j<U. (21)

We shall show that for v € V(G) \ (V4 U...UV}) there does not exist s < k — 1 with

deg(v,Yl(s) U...u YZ(S))Z 1, deg(v,Yl(t) U...u Yg(t))z 62_7]:& for all t # s. (22)

We prove by contradiction. Suppose that ([22)) holds. We can pick an index ig € {1,2,...,¢} with
N(v) ﬂYi(()s) # () whose existence is guaranteed by (22]). We then arbitrarily add other indices to get

a subset I(5) C {1,... 0} of size é. It follows from (2I) and (22) that for each ¢ # s, there are at
least g i]qdices i < gvxiith deg(v, Yi(t)) > 7. Hence we can find k — 1 disjoint subsets [(y),..., [(x_1)
of size é of {1,...,¢} with the property that deg(v,Yi(t)) > g for all t # s and i € I;). By
1), G[Uigm Yi(l), e Uiel(k,l) Y-(k_l)] is a complete (k — 1)-partite graph. In addition, we have

7

‘N(v) N Uiel(s) Yi(s) > ‘N(v) N Yigs) > 0 and
m Im
N(w)n U Yi(t) = Z deg(v,Yi(t)) > Iy - T for t # s.
iGI(t) iEI(t)
Therefore, by adding v to the sth part of G[Uiel(l) Yi(l), . vUieI(k,l) Yi(k_l)] we get a supergraph

of K ,;"_1 (352%) in GG, contradicting our assumption.

We can infer from ([Z2) that deg(v, Vi U...UV;) < £=2 -m for all v € V(G)\ (Viu...UV;). By
the density condition, equality must hold. Again (22) shows that for each v € V(G)\ (Vi U... U V;),

N(U)Q(WU...UVE):UW\XQ(S) for some s < k — 1. (23)
i<é
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If v € V; for some 7 > 57, then we assign v to Zi(s). For ¢ < 7 we let ZZ.(S) = Yi(s) for s < k — 1.
If we denote Z(5) = UZZZ-(S) for s < k—1, then V = USZ(S). To prove G is (k — 1)-colourable,
it is enough to show that Z(M) ..., Z(*+=1 are independent sets. Suppose to the contrary that for
some s < k — 1, Z®) contains an edge {u,v} with u € Zi(ls) and v € ZZ.(;). We can easily find £ — 1
disjoint subsets J(1y, ..., Jg—1) of size ﬁ of []\ {i1,ia}. Let W) = {u,v} U (Uz‘eJ(S) Yi(s)>
and W = UieJ(t) Yi(t) for t # 5. It follows from @I) and @3) that GIW® ... WkE-D] is a
complete (k — 1)-colourable graph with ‘W(t)‘ > 2(%_1) > 35;% for t < k — 1. Combining this
with the assumption that {u,v} € E(G), we conclude that G contains a copy of K ;_1(32%), a
contradiction. [

We now have all the necessary tools to prove Theorem .1

Proof of Theorem[{1]. For convenience, we write H = K;7 ,(|cnn],..., |cInn], Ln1_2‘/éj) and

H™ = Kj_1(lclnn],..., [elnn], [n'=2V¢]). Suppose G has no copy of H. We wish to show that
G is isomorphic to a graph in gf. Since G is a balanced ¢-partite graph on n vertices, each partition
set of G has size n/l :=m. Let e = 40712 4 = ﬁ —(k—=1), by = ﬁ and f3 = £y — 1.

By Lemma[£2] G must contain an induced (k — 1)-colourable subgraph F' whose vertex classes
X@ XKD gatisty

‘ X

:(ﬁ:l:ke)nforsgk‘—l, (24)

deg(v, X)) > | X

—k‘enforsgk‘—landvEUX(t). (25)
t#s
Let T = V(G) \ V(F). As in the proof of Theorem B.2] by relabelling parts we can assume that

|T;| < 2k%*em, and ‘XZ.(S)‘ = <ﬁ + 21{:2\@) m fori</; and s <k —1. (26)

For i < ¢1 we shall partition V; into k — 1 subsets as follows. A vertex v € V; is assigned to
Yi(s) if deg (v, Ujg1 XJ(S)) = ming<y_1 deg (v, Ujgzl X]@); if there are more than one such index s,
arbitrarily pick one of them.

Claim 4.9. XZ.(S) C Yi(s) C Xi(s)UTZ- fori </t and s <k —1.

Proof. Because X®) is an independent set in G, every vertex in X Z.(s) has no neighbours in [ J i<, X ](s),

and so XZ-(S) is a subset of Yi(s). Since V; = (Uin(s)) UT; = USYZ-(S) and XZ-(S) - Yi(s) for i < ¢1 and
s < k — 1, the inclusion relation Yi(s) C Xi(s)UTZ- holds for 1 < /¢ and s < k — 1. [ |

We proceed by showing that Ui§ ¢, Vi does not contain a vertex which has relatively large degree
to U<, v forall s < k — 1.

(2

Claim 4.10. There are no vertices v € |J;<,, Vi with deg(v,U;<,, Yi(s)) > m -lym for all

s<k-—1.
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Proof. We can derive from (25) that, for s <k —1 and v € U<y, 45 Xi(t),

deg(v, U Xi(S)) > U XZ-(S) +deg(v,X(S)) - ‘X(S)

1<y 1<y

> U XZ-(S) — ken > U XZ-(S) — kre - tym.

1<ty i<ly

Applying Lemma .6 to G[V1 U... UV, ] with kg =k, g1 = k*e and g = (2¢)Y/ =1 e con-
clude that either G[V;U...UV,,] contains a copy of K; | ([a*"1In(p)],..., [a* ' In(p)], Lpl_o‘kfzj)

or there are no vertices v € V4 U... UV, with deg(v,X}S) U...uU Xés)) > p for all s, where

1 2

P = wE—no—ty - fim. Since o*1In(p) > cln(n), pt=—*"

> n!'~2V¢ and since G has no copy

of K;” | (lelnn],..., [cInn], {n1_2\/5j), the former case is ruled out. The later case implies our
statement. [

Since {5 = ﬁ, by reordering parts if necessary we can assume that
Yi(l)‘ > YZ.(Z)‘ > ... > YZ.("C‘”‘ for i < £y. (27)

For i < /9 and s < k — 1, let us denote

DZ(S) = {v € YZ.(S) : deg(v,Yl(t) U...U Yg(;)) < ﬁ - £om for some t # S}.

Claim 4.11. The vertez set |J;,, Yi(s) \Dgs) is an independent set of G for s <k — 1.

Proof. Fori < /{5 and s < k—1, let BZ-(S) be the vertex set consisting of all vertices v € Yi(s) such that
deg(v, U;<y, Xi(t)) < ﬁ - Lam for some t # s. Note that, for s <k —1 and v € U, 145 XZ.(S),
one has

deg(v, |J X1 = || x| + deg(v, X)) — | X

1<ty 1<lo

@5
> U XZ-(S) — ken > U XZ-(S) — k% tym.

i<l i<z

This estimate together with Claim[4.9land (26]) show that we can apply LemmalL7to G[V1U...UV,,]
with kg = k, gz = max{2k*\/z, k?"c} and og7 = (2¢)/* =1 .= « to conclude that either
G[Vi U...U V] contains K, ([ 1In(p)],..., a1 1In(p)], Lpl_akizj) or U<y, Yi(s) \ BZ-(S) is

an independent set of G for s < k — 1, where p = ﬁ - lom. Since o 'ln(p) > cln(n),
p=" "% > n!=2V€ and since @ has no copy of K" (lelnn],...,[clnn], [n!=2V¢]), the former case
is ruled out. We can see that the later case implies our statement. |

Now we can find a large infracolourable structure in G, and then use Lemma 48] to show that
G is isomorphic to a graph in Qé“.
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Claim 4.12. G is isomorphic to a graph in the family Qé“.

Proof. Analogously to the proof of Claim B.14] we can infer from Claims .10l and 11l (26) and
@7) that G[V1 U... UV, ] together with pairs (DZ(S), Y(s))sgk_17i552 form a (7%, k, £2)-infracolourable

(2

structure. By Lemma 23] this implies that e(G[V1 U...UV,]) < (622) k=212 and hence the equality

must occur by the density condition. Appealing to Lemma [2.3] once again, we see that there exists
io € {0,1,..., 65} with YZ@‘ = 2 for all s and all i € [f] \ {io}, and d(Y;”,Y") = 1 for

all s # t and 1 < i < j < fy. Hence we can apply Lemma E8 with £ = ¢, — 1 to conclude

that either G contains a copy of K ;’_1((62_1)7”) or (G is isomorphic to a graph in géf . The former

322
can not happen since G has no copy of K;~ | ([clnn],..., [clnn], |n'~2v€]) and since (‘”g—gklﬁ >

max{n1_2‘/5, clnn}. So G must isomorphic to a graph in the family Qé“. |

This concludes our proof of Theorem |

5 Missing proofs

5.1 Proof of Theorem

In this section we sketch a proof of Theorem We follow essentially the proof of Theorem .11
We make the following alterations. Instead of Lemma .3 we use a stability result due to Bollobés
and Nikiforov [3, Theorem 9].

L
16k3 *

a graph with n > k® vertices and e(G) > (% — 5) (g‘) edges. Then, either G contains a family

Lemma 5.1. Let k > 2 be an integer, and let & be a positive with § < Suppose that G is

of k= 5)nk=2 copies of K}, sharing a common edge, or G contains an induced (k — 1)-colourable
subgraph F of size v(F) > (1 — 2v/8)n and minimum degree §(F) > (% — 4\/3) n.

We replace Lemma [£4] by the following embedding result.

Lemma 5.2. Letr > 2 be an integer, and let G be an r-colourable graph with classes Wy, ..., W,
of the same size h. Suppose that deg(v, W(4)) > (1 — ;lg)h fors<randv € U#s W. Then for
every pair (s,t) with s # t, there is an edge between W) and Wy which is contained in %hr_Q
copies of K.

Proof. According to Lemma [4.4] G contains at least %h" copies of K,.. Hence there exists an edge
between W) and W ;) which is shared by at least h"/ (2n?) = %hr_2 copies of K. |

The remainder of the proof is similar to that of Theorem [£.11

5.2 Proofs of Proposition and Lemma [3.8

To prove Proposition we shall require the Erdés-Simonovits stability theorem (Erdés [8] and
Simonovits [22, Theorem 8|, and the graph removal lemma (Ruzsa and Szemerédi [21]).
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Theorem 5.3 (Stability theorem). For every graph H and every ¢ > 0, there exist positive
constants 6 = §(H,e) and C = C(H,¢) so that the following holds for every integer n > C. Every

n-vertexr H-free graph with at least <§Eg;j - 5) (g) edges contains a (x(H)—1)-colourable subgraph

of order at least (1 — e)n and minimum degree at least (i%g;j — 6) n

Theorem 5.4 (Graph removal lemma). For every graph H and every § > 0, there exists a
positive constant v = ~y(H,0) such that every graph on n vertices with at most ) copies of H
can be made H-free by removing from it at most 5(3) edges.

Now we can deduce Proposition from Theorems [£.3] and [5.4] as follows.

Proof of Proposition [Z3. Let § = q5(H,€)/2, v = min{ygg(H,),d} and C = (55(H,¢). Since
G contains at most yn*) copies of H, Theorem [5.4] shows that G contains an H-free subgraph G’
with e(G’) > e(G) — 4(5). Hence

= () (0) (o) )

Moreover, v(G') = n > C = (g3g(H,c). Therefore, one can apply Theorem [5.3] to obtain a

(x(H) — 1)-colourable subgraph G” of G’ with v(G”) > (1 — ¢)n and 6(G") > (igg;j - 6) n. N

Proof of Lemma[3.8. Choose D = qd™" and p = e~ 9d"?. Let S be the set of tuples (wi,...,w,, A)
where ws € Wy for all s, and A € (N(wlzl'"’w")). We find that

5] = Z H‘N | Z <|N(w1,(.]..,wr)>' (28)

)S<7” (w17~~~7w7‘)

Moreover, our assumption implies that

>IN, w) =Y [ deglu, W) = d UL T [Wis| - (29)

(W,eewr) uel s<r s<r

Note that the function

(:c) _{x(m—l)~~(m—q+1)/q! ifz>q—1,

q) |0 ife <q—1.

is convex. Thus, we can first apply Jensen’s inequality to the right hand side of (28) and then use
the inequality (29) to obtain |S| > (d (‘IU‘) [T |W(s)|- We infer from this and the first identity in
s<r

([28) that there is a subset A € (Z) with

U
[TV nw@_(; TLWel = s T IWel = o TLIWe,
q s<r

s<r s<r s<r

)

where the second inequality holds since ('Z') < (%)q, and (dTJIUI) > (%)q for [U| > D =

qd~" > q. Hence |N(A) N Wg| > p|W(s)| for s <r. u
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6 Concluding remarks

Bollobas [I, Corollary 3.5.4] showed that every n-vertex graph with L"TQJ +1 edges contains cycles of
lengths from 3 up to L"THJ, and thus strengthened the Mantel theorem. Using techniques developed
in this paper we can prove the following multipartite version of this result; we omit the details.

Theorem 6.1. Let £ > 10%°, and let G = (V1 U...UV,, E) be a balanced (-partite graph on n
vertices such that

d(V;, V) > & fori#j.
Then, G either contains a cycle of length h for each integer h with 3 < h < (% —

isomorphic to a graph in gg.

)n or is

<

The balanced (-partite graph obtained by taking the disjoint union of K;(| 3| — 1) and K;([3]+1)

has edge densities between parts strictly greater than % However, every cycle of this graph has

length at most $n + 2¢ = (1 + o(1))n provided ¢ = o(n). Therefore, the bound (3 — %)n in the
above result is asymptotically best possible.

A book in a graph is a collection of triangles sharing a common edge. The size of a book
is the number of triangles. Let b(G) be the size of the largest book in a graph G. Generalising
Mantel’s theorem, Erdds [6] showed that every n-vertex graph G with L%J + 1 edges satisfies
b(G) > & — O(1). The optimal bound b(G) > |§| was obtained independently by Edwards in
an unpublished manuscript [5], and by Khadziivanov and Nikiforov in [14]. We wonder whether a
similar result holds for balanced multipartite graphs.

Conjecture 6.2. For every € > 0, there is a constant C = C(e) such that the following holds for
(>C. Let G= (V1 U...UVy, E) be a balanced {-partite graph on n vertices such that

d(Vi, Vj) > % for every i # j.
Then, b(G) > (3 —¢) n.

According to Theorem [LE] the above conjecture is true for ¢ > % — 3718,

Assume H is not an almost colour-critical graph. Theorem [[3|(1) tells us that dy(H) > iﬁggg:? +

W for every ¢ > v(H). Furthermore, this estimate is tight for H = K 5, as shown in

Remark 3.l It would be very interesting to have a characterisation of the equality case.

Bondy, Shen, Thomassé and Thomassen [4] determined the value of dy(K}) in the case when
¢ = k = 3, while Pfender [19] obtained result in the case when ¢ is large enough in terms of k. The
value of dy(K}) is not known in the remaining cases. Nevertheless, when ¢ = k > 4, Pfender [20]
proposed the following conjecture (see [16, Section 5] for more details).

Conjecture 6.3. The critical edge density dy, = di(K}) satisfies the following recurrence formula:
dy=0, d2(1—dg_1)+dyp—1=0 fork>3.

Finally, we emphasise that there are other interesting multipartite versions of the Turan theo-
rem. For instance, Bollobas, Erdés and Szemerédi [2] introduced the function d,(n) which is the
smallest integer so that every r-partite graph with parts of size n and minimum degree 6,(n) + 1
contains a copy of K,. The exact values of §,(n) was determined completely by Haxell and Szab6
[13] (for odd r), and Szabé and Tardos [23] (for even r) via topological methods.
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