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Abstract

Let F be a graph which contains an edge whose deletion reduces its chromatic number. For
such a graph F, a classical result of Simonovits from 1966 shows that every graph on n > n0(F )

vertices with more than χ(F )−2
χ(F )−1 · n

2

2 edges contains a copy of F . In this paper we derive a similar

theorem for multipartite graphs.
For a graph H and an integer ℓ ≥ v(H), let dℓ(H) be the minimum real number such that

every ℓ-partite graph whose edge density between any two parts is greater than dℓ(H) contains

a copy of H . Our main contribution in this paper is to show that dℓ(H) = χ(H)−2
χ(H)−1 for all

ℓ ≥ ℓ0(H) sufficiently large if and only if H admits a vertex-colouring with χ(H) − 1 colours
such that all colour classes but one are independent sets, and the exceptional class induces just
a matching. When H is a complete graph, this recovers a result of Pfender [Complete subgraphs
in multipartite graphs, Combinatorica 32 (2012), 483–495]. We also consider several extensions
of Pfender’s result.

1 Introduction

Extremal graph theory has enjoyed tremendous growth in recent decades. One of the central
questions from which the theory originated can be described as follows. Given a forbidden graph
H, the Turán problem asks to determine ex(n,H), the maximum possible number of edges in a
graph on n vertices without a copy of H. This number is called the Turán number of H. Instances
of this problem have many connections and applications to other areas. In this paper we consider a
multipartite version of the problem, suggested by Bollobás [1]. Before stating the problem at hand
and presenting our contributions, we begin with a brief survey of relevant results.

1.1 Background

The fundamental Turán theorem of 1941 [24] completely determined the Turán numbers of a clique:
the Turán graph Tk−1(n), the complete (k − 1)-partite graph on n vertices with parts as equal as
possible, has the largest number of edges among all Kk-free n-vertex graphs. Thus, we have
ex(n,Kk) = tk−1(n), where tk−1(n) is the number of edges in Tk−1(n). This theorem generalises a

previous result by Mantel [15] from 1907, which states that ex(n,K3) = ⌊n2

4 ⌋.
A large and important class of graphs for which the Turán numbers are well-understood is formed

by colour-critical graphs, that is, graphs whose chromatic number can be decreased by removing
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an edge. Simonovits [22] introduced the stability method to show that ex(n,H) = tk−1(n) for all
n ≥ n0(H) sufficiently large, provided H is a colour-critical graph with χ(H) = k; furthermore,
Tk−1(n) is the unique extremal graph. As the cliques are colour-critical, Simonovits’ theorem
implies Turán’s theorem for large n.

For general graphs H we still do not know how to compute the Turán numbers ex(n,H) exactly;
but if we are satisfied with an approximate answer the theory becomes quite simple: it is enough to
know the chromatic number ofH. The important and deep theorem of Erdős and Stone [12] together

with an observation of Erdős and Simonovits [10] shows that ex(n,H) =
(
χ(H)−2
χ(H)−1 + o(1)

)
n2

2 , where

the o(1) term tends to 0 as n tends to infinity. In the literature, this result is usually referred as
the Erdős–Stone–Simonovits theorem.

In the years since these seminal theorems appeared, great efforts have been made to extend
them, some of which are discussed in Nikiforov’s survey [18]. We are particularly interested in the
following two extensions.

For every integer s ≥ 2, let Kk−1(s) denote the complete (k − 1)-partite graph Kk−1(s, . . . , s),
and let K+

k−1(s) be the graph obtained from Kk−1(s) by adding an edge to the first class. Nikiforov
[17] and Erdős [7] (for k = 3) proved that for all k ≥ 3 and all sufficiently small c > 0, every
graph of sufficiently large order n with tk−1(n) + 1 edges contains not only a Kk but a copy of
K+

k−1

(
⌊c ln n⌋

)
. For fixed k, the Erdős-Rényi random graph Gn,p shows that the lower bound c lnn

on the size of the subgraph in this result is optimal up to a constant factor.
Seeking an extension of Turán’s theorem, Erdős [9] asked how many Kk sharing a common edge

must exist in a graph on n vertices with tk−1(n) + 1 edges. Bollobás and Nikiforov [3] sharpened
Erdős’s result [9] showing that for large enough n, every graph of order n with tk−1(n)+1 edges has
an edge that is contained in k−k−4nk−2 copies of Kk. This result is best possible, up to a poly(k)
factor.

In this paper we shall study analogues of these results for multipartite graphs. For a graph H
and an integer ℓ ≥ v(H), let dℓ(H) be the minimum real number such that every ℓ-partite graph

G = (V1 ∪ . . . ∪ Vℓ, E) with d(Vi, Vj) :=
e(Vi,Vj)
|Vi||Vj | > dℓ(H) for all i 6= j contains a copy of H. The

problem of determining the exact value of dℓ(H) was suggested by Bollobás (see the discussion
after the proof of Theorem VI.2.15 in [1]). However, it was first studied systematically by Bondy,
Shen, Thomassé and Thomassen [4]. Amongst other things Bondy et.al. showed that for every

graph H the sequence dℓ(H) decreases to χ(H)−2
χ(H)−1 as ℓ tends to infinity. To show the lower bound

dℓ(H) ≥ χ(H)−2
χ(H)−1 , they observed that the ℓ-partite graph G obtained from the empty graph on

{1, . . . , ℓ} by splitting each vertex v of {1, . . . , ℓ} into χ(H) − 1 vertices v1, v2, . . . , vχ(H)−1, and

joining two vertices xi and yj if and only if x 6= y and i 6= j, has all edge densities equal to χ(H)−2
χ(H)−1 .

Since G is (χ(H)−1)-colourable (with vertex classes Vi = {vi : v ∈ {1, . . . , ℓ}} for 1 ≤ i ≤ χ(H)−1),

it does not contain a copy of H. For the opposite inequality lim
ℓ→∞

dℓ(H) ≤ χ(H)−2
χ(H)−1 , they used the

Erdős–Stone–Simonovits theorem together with an averaging argument.
When H = K3, the aforementioned result of Bondy et. al. [4] implies that dℓ(K3) decreases

to 1
2 as ℓ tends to infinity. They also showed that d3(K3) = −1+

√
5

2 ≈ 0.61, d4(K3) > 0.51, and
speculated that dℓ(K3) > 1

2 for all ℓ ≥ 3. Refuting this conjecture, Pfender [19] proved that

dℓ(Kk) = k−2
k−1 for large enough ℓ. He also described the family Gk

ℓ of extremal graphs; we shall
define this family later in Section 2.2.
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Theorem 1.1 (Pfender [19]). For every integer k ≥ 3 there exists a constant C = C(k) such that
the following holds for every integer ℓ ≥ C. If G = (V1 ∪ . . . ∪ Vℓ, E) is an ℓ-partite graph with

d(Vi, Vj) ≥ k−2
k−1 for i 6= j,

then either G contains a Kk or G is isomorphic to a graph in Gk
ℓ . In particular, dℓ(Kk) =

k−2
k−1 for

every ℓ ≥ C.

This theorem can be seen as a multipartite version of the Turán theorem. For an arbitrary graph
H, Pfender suggested that dℓ(H) should be equal to χ(H)−2

χ(H)−1 for every ℓ ≥ ℓ0(H) sufficiently large.

1.2 Our results

In this paper we shows that Pfender’s suggestion is not quite true. In fact, we characterise those
graphs for which the sequence dℓ(H) is eventually constant, calling them almost colour-critical.

Figure 1: An almost colour-critical graph.

Definition 1.2. A graph H is called almost colour-critical if there exists a map φ from V (H) to
{1, 2, . . . , χ(H) − 1} such that
(i) The induced subgraph of H on φ−1(1) has maximum degree at most 1,
(ii) For 2 ≤ i ≤ χ(H)− 1, φ−1(i) is an independent set of H.

In other words, an almost colour-critical graph H has a vertex-colouring with χ(H) − 1 colours
that is almost proper: all colour classes but one are independent sets, and the exceptional class
induces just a matching (see Figure 1). For example, cliques, or, more generally colour-critical
graphs, are almost colour-critical while the complete k-partite graphs Kk(s1, . . . , sk) are not for
every s1 ≥ 1, s2 ≥ 2, . . . , sk ≥ 2.

Our main result shows that almost colour-critical graphs are exactly those for which the sequence
dℓ(H) is eventually constant.

Theorem 1.3. The following statement holds for every graph H.
(1) If H is not almost colour-critical, then dℓ(H) ≥ χ(H)−2

χ(H)−1 +
1

(χ(H)−1)2(ℓ−1)2
for every ℓ ≥ v(H).

(2) If H is an almost colour-critical graph, then there exists a positive integer C = C(H) so that

dℓ(H) = χ(H)−2
χ(H)−1 for every ℓ > C.

Note that the estimate in the first statement is tight for H = K1,2, and the second statement implies
Pfender’s result since cliques are almost colour-critical. This result can be viewed as a multipartite
version of the Simonovits theorem. Since the proof uses the graph removal lemma, the resulting
constant C(H) is fairly large.
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The rest of the paper deals with various extensions of Pfender’s result. More precisely, we
investigate the extensions of Turán’s theorem discussed in Section 1.1 for balanced multipartite
graphs. An ℓ-partite graph G on non-empty independent sets V1, . . . , Vℓ is balanced if the vertex
classes V1, . . . , Vℓ are of the same size.

A multipartite version of the extension considered by Nikiforov [17] and Erdős [7] can be stated
as follows.

Theorem 1.4. Let k and ℓ be integers with k ≥ 3 and ℓ ≥ e4k
(k+6)k

, and let G = (V1 ∪ . . . ∪ Vℓ, E)
be a balanced ℓ-partite graph on n vertices such that

d(Vi, Vj) ≥ k−2
k−1 for i 6= j.

Then, either G is isomorphic to a graph in Gk
ℓ or G contains a copy of K+

k−1

(
⌊c ln n⌋

)
, where

c = k−(k+6)k/2.

For fixed k, the random graph Gn,p shows that the lower bound c lnn on the size of the subgraph
in this theorem is tight up to a constant factor.

The extension of Turán’s theorem studied by Bollobás and Nikiforov [3] has the following
multipartite version.

Theorem 1.5. Let k and ℓ be integers with k ≥ 3 and ℓ ≥ k12k, and let G = (V1 ∪ . . . ∪ Vℓ, E) be
a balanced ℓ-partite graph on n vertices such that

d(Vi, Vj) ≥ k−2
k−1 for i 6= j.

Then, G either contains a family of k−2k2nk−2 cliques of order k sharing a common edge or is
isomorphic to a graph in Gk

ℓ .

With some minor modifications, this result follows from our proof of Theorem 1.4. For the sake of
clarity we sketch these modifications after detailing the proof of Theorem 1.4.

1.3 Organisation

The remainder of this paper is organised as follows. In Section 2 we introduce some notation
and definitions. In Section 3 we extend ideas developed in [19] to prove Theorem 1.3. A proof
of Theorem 1.4 is given in Section 4. We sketch how to modify the proof of Theorem 1.4 to get
Theorem 1.5 in Section 5, and close with some further remarks and open problems in Section 6.

2 Preliminaries

2.1 Notation

All graphs in this paper are finite, simple and undirected. Given a graph G, we denote its vertex
and edge sets by V (H) and E(H), and the cardinalities of these two sets by v(H) and e(H),
respectively. The minimum degree of G will be denoted by δ(G). For a set U ⊆ V (G), we write
G[U ] for the subgraph of G induced by U . The common neighbourhood N(U) of U is the set of all
vertices of G that are adjacent to every vertex in U . Given a vertex v ∈ V (G), let deg(v, U) stand
for the number of vertices in U adjacent to v. For pairwise disjoint vertex sets W1, . . . ,Wr ⊆ V (G),
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we write G[W1, . . . ,Wr] for the r-colourable graph which can be obtained from G[W1 ∪ . . . ∪Wr]
by deletion of edges in G[Wi] for all i ≤ r.

Let G be an ℓ-partite graph on non-empty independent sets V1, . . . , Vℓ. For X ⊆ V (G) and

i ≤ ℓ, write Xi = X ∩ Vi. The edge density between Vi and Vj is dij := d(Vi, Vj) :=
e(Vi,Vj)
|Vi||Vj | .

For r ≥ 2 and t1 ≥ 1, . . . , tr ≥ 1, let Kr(t1, . . . , tr) be the complete r-partite graph with classes
of sizes t1, . . . , tr. If t1 = . . . = tr = t, we simply write Kr(t) instead of Kr(t1, . . . , tr). For
r ≥ 2, s ≥ 1 and t1 ≥ 2s, t2 ≥ 1, . . . , tr ≥ 1, we denote by K+s

r (t1, . . . , tr) the graph obtained
from Kr(t1, . . . , tr) by adding a matching of size s to the first vertex class. If s = 1, we omit the
upper index s. In particular, K+s

r (t) is the short form for K+s
r (t, . . . , t) and K+

r (t) is nothing but
K+1

r (t, . . . , t).
For a, b, c ∈ R, we write a = b ± c if b − c ≤ a ≤ b + c. In order to simplify the presentation,

we omit floors and ceilings and treat large numbers as integers whenever this does not affect the
argument. Unless stated otherwise, all logarithms are base e.

The set {1, 2, . . . , n} of the first n positive integers is denoted by [n]. For k ∈ N, we define(
X
k

)
:= {A ⊆ X : |A| = k}. We use the symbol

⋃̇
for union of disjoint sets.

2.2 Extremal graphs

In this section we shall recall the definition of the family Gk
ℓ of extremal graphs given by Pfender

[19]. For k ≥ 3 and ℓ ≥ (k − 1)!, a graph G is in Ḡk
ℓ if it can be constructed as follows. Let

{π1, π2, . . . , π(k−1)!} be the set of all permutations of {1, . . . , k−1}. For 1 ≤ i ≤ ℓ and 1 ≤ s ≤ k−1,
pick non-negative integers ns

i such that

n
πi(1)
i ≥ n

πi(2)
i ≥ . . . ≥ n

πi(k−1)
i for 1 ≤ i ≤ (k − 1)!,

n1
i = n2

i = . . . = nk−1
i > 0 for (k − 1)! < i ≤ ℓ, and

∑

s

ns
i > 0 for 1 ≤ i ≤ ℓ.

Vertex and edge sets of G are defined as (see Figure 2)

V (G) = {(i, s, t) : 1 ≤ i ≤ ℓ, 1 ≤ s ≤ k − 1, 1 ≤ t ≤ n
(s)
i },

E(G) = {(i, s, t)(i′, s′, t′) : i 6= i′, s 6= s′}.

It is not hard to see that G is an (k − 1)-colourable ℓ-partite graph with parts Vi = {(i, s, t) :
1 ≤ s ≤ k − 1, 1 ≤ t ≤ ns

i} for 1 ≤ i ≤ ℓ, and colour classes V (s) = {(i, s, t) : 1 ≤ i ≤ ℓ, 1 ≤ t ≤ ns
i}

for 1 ≤ s ≤ k − 1. Moreover, if all ns
i are equal, we get dij =

k−2
k−1 for every i 6= j. Note that other

weights n
(s)
i can be used to achieve the inequality dij ≥ k−2

k−1 for every i 6= j.

Let Gk
ℓ be the family of graphs which can be obtained from graphs in Ḡk

ℓ by removal of some
edges in {(i, s, t)(i′, s′, t′) : 1 ≤ i < i′ ≤ (k − 1)!}. The following simple observation by Pfender [19]
will be useful for our investigation.

Lemma 2.1. Let k ≥ 3 and ℓ ≥ (k−1)! be integers. If G = (V1∪ . . .∪Vℓ, E) is a (k−1)-colourable
ℓ-partite graph with d(Vi, Vj) ≥ k−2

k−1 for i 6= j, then it is isomorphic to a graph in Gk
ℓ .

5



n2
1

n1
1

n2
2

n1
2

n2
3

n1
3

· · · n2
ℓ−1

· · · n1
ℓ−1

n2
ℓ

n1
ℓ

Figure 2: A graph in Ḡ3
ℓ , all edges between different colours in different parts exists.

2.3 Infracolourable structures

The following notation will play a key role in our investigation.

Definition 2.2. Given a real number η ≥ 0, and integers k ≥ 3 and ℓ ≥ 2, an (η, k, ℓ)-infracolourable

structure is an ℓ-partite graph G = (V1 ∪ . . . ∪ Vℓ, E) together with pairs (D
(s)
i , Y

(s)
i )s≤k−1,i≤ℓ sat-

isfying:

(i) For every i ≤ ℓ, Vi =
⋃̇

s≤k−1Y
(s)
i and

∣∣∣Y (1)
i

∣∣∣ ≥
∣∣∣Y (2)

i

∣∣∣ ≥ . . . ≥
∣∣∣Y (k−1)

i

∣∣∣;
(ii) For every i ≤ ℓ and every s ≤ k − 1, D

(s)
i ⊆ Y

(s)
i and

⋃
i≤ℓ Y

(s)
i \D(s)

i is an independent set;

(iii) For every s ≤ k − 1, each vertex v ∈ ⋃i≤ℓD
(s)
i has at most η · v(G)

k−1 neighbours in
⋃

i≤ℓ Y
(s)
i

and at least 3η · v(G)
k−1 non-neighbours in

⋃
i≤ℓ Vi \ Y (s)

i .
The graph G is called the base graph of the infracolourable structure.

Infracolourable structures are useful for us mainly because theirs base graphs break the density
conditions in our theorems.

Lemma 2.3. Let η be a positive real number, and let k ≥ 3 and ℓ ≥ 2 be integers. Suppose that an

ℓ-partite graph G = (V1 ∪ . . . ∪ Vℓ, E) together with a system of pairs (D
(s)
i , Y

(s)
i )s≤k−1,i≤ℓ of vertex

sets form an (η, k, ℓ)-infracolourable structure. Then

e(G) ≤ k−2
k−1 ·

∑

i<j

|Vi| |Vj| .

In particular, there exist two different indices i and j such that d(Vi, Vj) ≤ k−2
k−1 . Furthermore, the

equality occurs if and only if there exists i0 ∈ {0, 1, . . . , ℓ} such that D
(s)
i = ∅ for all s and all i,∣∣∣Y (s)

i

∣∣∣ = 1
k−1 · |Vi| for all s and all i 6= i0, and d(Y

(s)
i , Y

(t)
j ) = 1 for all s 6= t and i 6= j.

Proof. It follows from the assumption that

e(G) ≤
∑

i<j

s6=t

∣∣∣Y (s)
i

∣∣∣
∣∣∣Y (t)

j

∣∣∣+

∣∣∣∣∣∣
⋃

i,s

D
(s)
i

∣∣∣∣∣∣
·
(
η · v(G)

k − 1
− 1

2 · 3η · v(G)

k − 1

)

≤
∑

i<j

s6=t

∣∣∣Y (s)
i

∣∣∣
∣∣∣Y (t)

j

∣∣∣ =
∑

i<j

|Vi| |Vj| −
∑

i<j

s≤k−1

∣∣∣Y (s)
i

∣∣∣
∣∣∣Y (s)

j

∣∣∣ ≤ k−2
k−1 ·

∑

i<j

|Vi| |Vj| ,

where in the last inequality we use Chebyshev’s sum inequality. �
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To find an infracolourable structure in host graphs we shall need the following technical lemma.
It was implicitly stated in [19]. We include a proof here for the sake of completeness.

Lemma 2.4. Let k ≥ 3 and ℓ ≥ 2 be integers, and let ε be a real number with 0 < ε < 1
4 . Suppose

that G = (V1 ∪ . . . ∪ Vℓ, E) is an ℓ-partite graph with d(Vi, Vj) ≥ k−2
k−1 for all i 6= j. Assume that

X
(s)
i and Ti be subsets of V (G) for i ≤ ℓ and s ≤ k − 1 with the following three properties:

(i) For every i ≤ ℓ, Vi = X
(1)
i ∪̇ . . . ∪̇X(k−1)

i ∪̇Ti;

(ii) For every i ≤ ℓ,
∣∣∣X(1)

i

∣∣∣ ≥ . . . ≥
∣∣∣X(k−1)

i

∣∣∣ and |Ti| ≤ ε |Vi|;
(iii) For every s ≤ k − 1,

⋃
i≤ℓX

(s)
i is an independent set.

Then there exists a subset I0 ∈
(

N

k−1

)
so that

∣∣∣X(s)
i

∣∣∣ =
(

1
k−1 ± k

√
ε
)
|Vi| for s ≤ k − 1 and i /∈ I0.

Proof. It suffices to show that for each s ≤ k − 1 there is at most one index i ≤ ℓ such that
∣

∣

∣
X

(s)
i

∣

∣

∣

|Vi| > 1
k−1 +

√
ε. Assume to the contrary that

∣

∣

∣
X

(s)
i

∣

∣

∣

|Vi| ≥
∣

∣

∣
X

(s)
j

∣

∣

∣

|Vj | > 1
k−1 +

√
ε for some s and i 6= j.

We first prove that

∣

∣

∣

X
(s)
i

∣

∣

∣

|Vi| ≤ 1− ε. Otherwise, if

∣

∣

∣

X
(s)
i

∣

∣

∣

|Vi| > 1− ε, then

d(Vi, Vj) ≤ 1−

∣∣∣X(s)
i

∣∣∣
|Vi|

·

∣∣∣X(s)
j

∣∣∣
|Vj |

≤ 1− (1− ε)
(

1
k−1 +

√
ε
)
< k−2

k−1

for k ≥ 3 and ε < 1
4 , as X

(s)
i ∪X

(s)
j is an independent set by (iii). But this contradicts the density

condition that d(Vi, Vj) ≥ k−2
k−1 .

We shall get a contradiction by proving that d(Vi, Vj) < k−2
k−1 . Indeed, we can infer from

Chebyschev’s sum inequality that

d(Vi, Vj)
(iii)

≤ 1− 1

|Vi| |Vj |
·
∑

t

∣∣∣X(t)
i

∣∣∣
∣∣∣X(t)

j

∣∣∣

≤ 1−

∣∣∣X(s)
i

∣∣∣
∣∣∣X(s)

j

∣∣∣
|Vi| |Vj |

− 1

(k − 2) |Vi| |Vj |
·
(
|Vi| − |Ti| −

∣∣∣X(s)
i

∣∣∣
) (

|Vj| − |Tj| −
∣∣∣X(s)

j

∣∣∣
)

= 1− xixj − 1
k−2 (1− ti − xi) (1− tj − xj) ,

where xi =

∣

∣

∣
X

(s)
i

∣

∣

∣

|Vi| , xj =

∣

∣

∣
X

(s)
j

∣

∣

∣

|Vj | , ti =
|Ti|
|Vi| and tj =

|Tj |
|Vj | . Since both xi and xj are bounded from below

by 1
k−1 , the expression f(xi, xj , ti, tj) := 1−xixj − 1

k−2 (1− ti − xi) (1− tj − xj) is decreasing with
respect to both xi and xj . Therefore, the density d(Vi, Vj) is bounded from above by

f(xi, xj , ti, tj) ≤ f
(

1
k−1 +

√
ε, 1

k−1 +
√
ε, ti, tj

)
≤ f

(
1

k−1 +
√
ε, 1

k−1 +
√
ε, ε, ε

)
< k−2

k−1 ,

where the second inequality follows from the assumption that ti, tj ∈ [0, ε]. However, this contra-
dicts the assumption that d(Vi, Vj) ≥ k−2

k−1 . �

3 Proof of Theorem 1.3

In this section we will prove Therem 1.3. We begin with a proof of the first assertion.
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Proof of Theorem 1.3(1). We prove by contradiction. Assume that dℓ(H) < χ(H)−2
χ(H)−1+

1
(χ(H)−1)2(ℓ−1)2 .

Let r = χ(H) − 1, and let V1, . . . , Vℓ be ℓ disjoint sets of size (ℓ − 1)r. For i ≤ ℓ, we partition Vi

into r subsets V
(1)
i , . . . , V

(r)
i of size (ℓ− 1) each. We form a complete bipartite graph between V

(s)
i

and V
(t)
j for i < j and s 6= t. We then create a perfect matching in V

(1)
1 ∪ . . .∪V

(1)
ℓ such that there

is exactly one edge between V
(1)
i and V

(1)
j for every i 6= j. The resulting graph G satisfies

d(Vi, Vj) =
χ(H)− 2

χ(H)− 1
+

1

(χ(H)− 1)2(ℓ− 1)2
> dℓ(H) for i 6= j.

Thus, by the definition of dℓ(H), G must contain a copy of H. From the construction of G, we can
see that H is an almost colour-critical graph. This finishes our proof of Theorem 1.3(1). �

Remark 3.1. The estimate in Theorem 1.3(1) is tight for K1,2, that is dℓ(K1,2) =
1

(ℓ−1)2
for ℓ ≥ 3.

Indeed, let G = (V1 ∪ . . . ∪ Vℓ, E) be an ℓ-partite graph with d(Vi, Vj) >
1

(ℓ−1)2
for every i 6= j. We

wish to show that G contains a copy of K1,2. Suppose to the contrary that G is K1,2-free. For i 6= j,
we write Vi,j for the set of vertices in Vi with at least one neighbour in Vj. Since G is K1,2-free, we
see that

(i) the edges between Vi and Vj form a perfect matching between Vi,j and Vj,i for every i 6= j;

(ii) Vi,j and Vi,j′ are disjoint for all distinct indices i, j and j′.

Notice that Vi,j is non-empty for every i 6= j as d(Vi, Vj) > 0. Combining this with property (ii),
we conclude that

|Vi| ≥
∑

j∈[ℓ]\{i}
|Vi,j| ≥ ℓ− 1 for i ≤ ℓ. (1)

Hence
∑

1≤i<j≤ℓ

( |Vi,j|
|Vi|

+
|Vj,i|
|Vj |

)
=
∑

1≤i≤ℓ


∑

j′ 6=i

∣∣Vi,j′
∣∣

|Vi|


 ≤ ℓ.

Consequently, there exist 1 ≤ i < j ≤ ℓ with
|Vi,j |
|Vi| +

|Vj,i|
|Vj | ≤ ℓ

(ℓ2)
= 2

ℓ−1 . By appealing to the AM-GM

inequality, we thus get
√

|Vi,j| |Vj,i| ≤ 1
ℓ−1 ·

√
|Vi| |Vj |. This forces

d(Vi, Vj)
(i)
=

|Vi,j|
|Vi| |Vj |

(i)
=

√
|Vi,j| |Vj,i|
|Vi| |Vj|

≤ 1

(ℓ− 1)
√

|Vi| |Vj |
(1)

≤ 1

(ℓ− 1)2
,

contradicting the assumption that d(Vi, Vj) >
1

(ℓ−1)2
.

To handle the second statement of Theorem 1.3, we shall prove a stronger result.

Theorem 3.2. Let H be an almost colour-critical graph. Then, there exists a constant C = C(H)
such that for every integer ℓ > C, every ℓ-partite graph G = (V1 ∪ . . . ∪ Vℓ, E) with

d(Vi, Vj) >
χ(H)− 2

χ(H)− 1
for i 6= j

contains a copy of H whose vertices are in different parts of G.
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Remark 3.3. Suppose that H is almost colour-critical. Let k = χ(H) and q = v(H). From the
definition of almost colour-critical graphs, H is a subgraph K+q

k−1(2q). Moreover, it is easy to see

that χ(K+q
k−1(2q)) = k = χ(H) and K+q

k−1(2q) is almost colour-critical. Therefore, if Theorem 3.2

holds for K+q
k−1(2q), it will hold for H as well.

The main idea of the proof of Theorem 3.2 is as follows. Let G = (V1 ∪ . . . ∪ Vℓ, E) be a
counterexample. We first apply a stability result (Lemma 3.4) to obtain an induced (χ(H) − 1)-
colourable subgraph of G which almost spans V (G). Using embedding results (Lemmas 3.8 and
3.6) we can then show that there exists a subset I ⊆ [ℓ] such that G[

⋃
i∈I Vi] is the base graph of

an (η, k, |I|)-infracolourable structure. But according to Lemma 2.3, this forces d(Vi, Vj) ≤ k−2
k−1 for

some i, j ∈ I, violating the density condition.
Our first step in the proof of Theorem 3.2 will be to show that a counterexample G must contain

an induced (χ(H)− 1)-colourable subgraph which almost spans V (G). For that we shall need the
following stability result.

Lemma 3.4. Given integers k ≥ 3 and q ≥ 1 and a real number 0 < ε < 1
8k2q

, there exists a

constant C = C(k, q, ε) such that the following holds for ℓ ≥ C. Let G = (V1 ∪ . . . ∪ Vℓ, E) be a
balanced ℓ-partite graph on n vertices with d(Vi, Vj) ≥ k−2

k−1 for all i 6= j. Suppose G contains no

copy of K+q
k−1(2q) whose vertices lie in different parts of G. Then, G contains an induced (k − 1)-

colourable subgraph F whose vertex classes X(1), . . . ,X(k−1) satisfy the following properties

(i) For s ≤ k − 1,
∣∣X(s)

∣∣ =
(

1
k−1 ± ε

)
n;

(ii) For s ≤ k − 1 and v ∈ ⋃t6=sX
(t), deg(v,X(s)) ≥

∣∣X(s)
∣∣− εn.

To prove Lemma 3.4 we require the following result whose proof can be found in Section 5.

Proposition 3.5. For every graph H and every ε > 0, there exist positive constants γ = γ(H, ε)
and C = C(H, ε) such that the following holds for n ≥ C. Suppose that G is an n-vertex graph with

e(G) ≥
(
χ(H)−2
χ(H)−1 − γ

) (n
2

)
containing at most γnv(H) copies of H. Then, G contains a (χ(H)− 1)-

colourable subgraph of order at least (1− ε)n and minimum degree at least
(
χ(H)−2
χ(H)−1 − ε

)
n.

Another tool that will be used in the proof of Lemma 3.4 and Theorem 3.2 is an embedding
result. Before stating it, we shall introduce the necessary terminology. Let G[W (1), . . . ,W (r)]

be an r-colourable graph such that W (s) =
⋃̇

i≥1W
(s)
i for every s ≤ r. We call an embedding

f : Kr(a1, . . . , ar) → G good if the sth vertex class of Kr(a1, . . . , ar) is mapped to W (s) for every

s ≤ r, and for each index i there is at most one vertex v ∈ Kr(a1, . . . , ar) with f(v) ∈ ⋃s≤r W
(s)
i .

Lemma 3.6. Suppose that r ≥ 2 and q ≥ 1 are integers, and let G[W (1), . . . ,W (r)] be an r-
colourable graph which satisfies the following properties

(i) For s ≤ r, W (s) =
⋃̇

iW
(s)
i and

∣∣∣W (s)
i

∣∣∣ < 1
2rq ·

∣∣W (s)
∣∣ for all i,

(ii) For s ≤ r and v ∈ ⋃t6=sW
(t), deg(v,W (s)) > (1− 1

2rq ) ·
∣∣W (s)

∣∣.
Then, for every r-tuple of integers a1, . . . , ar ∈ [0, q], every good embedding from Kr(a1, . . . , ar) to
G can be extended to a good embedding from Kr(q) to G.

Proof. Suppose f is a good embedding from Kr(a1, . . . , ar) to G. To prove the lemma, it suffices to
show that f can be extended to a good embedding g from Kr(a1, . . . , as+1, . . . , ar) to G whenever
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as ≤ q − 1. Let v be the vertex of Kr(a1, . . . , as + 1, . . . , ar) which is not in Kr(a1, . . . , ar), and let
X denote the set of vertices of Kr(a1, . . . , ar) which are not in the sth vertex class. By property
(ii), we see that each vertex of X has at most 1

2rq ·
∣∣W (s)

∣∣ non-neighbours in W (s), and thus
∣∣N(X) ∩W (s)

∣∣ ≥
∣∣W (s)

∣∣− |X| · |W
(s)|

2rq ≥ 1
2

∣∣W (s)
∣∣. Note that, by property (i), each vertex of X can

forbid at most 1
2rq ·

∣∣W (s)
∣∣ vertices of W (s) from being the image of v. Therefore, the number of

possible images of v under g is at least
∣∣N(X) ∩W (s)

∣∣ − |X| · |W
(s)|

2rq ≥ 1
2

∣∣W (s)
∣∣ − |X| · |W

(s)|
2rq > 0,

where in the last inequality we use the inequality
∣∣W (s)

∣∣ > 0 which is implied by property (i). �

Proof of Lemma 3.4. We denote H = K+q
k−1(2q), and let

γ = γ3.5
(
H, ε

2k

)
, C = max

{
2k2q2γ−1, 8(k − 1)2q, 4(k − 1)qε−1, C3.5(H, ε

2k )

}
.

Because G = (V1 ∪ . . . ∪ Vℓ, E) is a balanced ℓ-partite graph on n vertices, we must have

|V1| = |V2| = . . . = |Vℓ| =
n

ℓ
:= m. (2)

In the first step, we shall use Proposition 3.5 to show that G contains an almost spanning
(k − 1)-colourable subgraph. Indeed, by the choice of C we see that n ≥ ℓ ≥ C ≥ C3.5(H, ε

2k ).
Moreover, since G contains no copy of H whose vertices lie in different parts of G, the number of
copies of H in G is at most

(
v(H)

2

)
ℓm2nv(H)−2 < 2k2q2

ℓ · (ℓm)2nv(H)−2 ≤ γnv(H),

since n = ℓm and ℓ ≥ C ≥ 2k2q2γ−1. Also, by the density condition

e(G) ≥
(
ℓ

2

)
k−2
k−1m

2
(2)

≥
(
k−2
k−1 − 1

ℓ

)(n
2

)
≥
(
k−2
k−1 − γ

)(n
2

)
,

assuming ℓ ≥ C ≥ 2k2q2γ−1. Therefore, we can derive from Proposition 3.5 that G contains a
(k − 1)-colourable subgraph F ′ with

v(F ′) ≥ (1− ε
2k )n and δ(F ′) ≥

(
k−2
k−1 − ε

2k

)
n. (3)

If W (1), . . . ,W (k−1) are vertex classes of F ′, then (3) implies that

(
1

k−1 − ε
2

)
n ≤

∣∣∣W (s)
∣∣∣ ≤

(
1

k−1 +
ε
2k

)
n for s ≤ k − 1. (4)

In the second step, we shall prove that the induced subgraph G[V (F ′)] of G does not contain a
large monochromatic matching whose vertices are in different parts of G. Indeed, for s ≤ k− 1, let
M(s) denote a maximum matching in G[W (s)] whose vertices are in different parts of G, and let K
be a subset of [ℓ] containing all indices i such that

⋃
s≤k−1M(s) has a vertex in Vi. The size of K

will be bounded from above in terms of k and q.

Claim 3.7. |K| < 2(k − 1)q.
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Proof. We prove the claim by contradiction. Suppose that for some s ≤ k − 1, M(s) contains a
matching of size q, say {x1x2, . . . , x2q−1x2q}, . We wish to show that the following two properties
holds:
(i) For t ≤ k − 1 and i ≤ ℓ, W (t) = W

(t)
1 ∪̇ . . . ∪̇W (t)

ℓ and
∣∣∣W (t)

i

∣∣∣ < 1
4(k−1)q ·

∣∣W (t)
∣∣;

(ii) For t ≤ k − 1 and v ∈ V (F ′) \W (t), degF ′(v,W (t)) >
(
1− 1

4(k−1)q

)
·
∣∣W (t)

∣∣.
Property (i) follows from the estimate

∣∣∣W (t)
i

∣∣∣ ≤ |Vi| =
n

ℓ
<

1

4(k − 1)q
·
(

1

k − 1
− ε

2

)
n

(4)
<

1

4(k − 1)q
·
∣∣∣W (t)

∣∣∣

for ℓ ≥ C ≥ 8(k − 1)2q and ε < 1
8k2q

. To prove (ii), assume that v ∈ W (s) for some s 6= t. Because

W (s) is an independent set in F ′, one has
∣∣W (t)

∣∣− dF ′(v,W (t)) ≤ v(F ′)−
∣∣W (s)

∣∣− degF ′(v). Hence
by appealing to (3) and (4), we get

∣∣∣W (t)
∣∣∣− dF ′(v,W (t)) ≤ n−

(
1

k − 1
− ε

2

)
n−

(
k − 2

k − 1
− ε

2k

)
n

≤ εn <
1

4(k − 1)q
·
(

1

k − 1
− ε

2

)
n ≤ 1

4(k − 1)q
·
∣∣∣W (t)

∣∣∣

for ε < 1
8k2q

. This finishes our verification of (i) and (ii).

Finally, properties (i) and (ii) ensure that we can apply Lemma 3.6 with r3.6 = k − 1 and
q3.6 = 2q to G[W (1), . . . ,W (r)] to find a copy of Kk−1(2q) whose sth vertex class is {x1, . . . , x2q}
and vertices lie in different parts of G. Since {x1, x2, . . . , x2q−1x2q} is a matching in G, the graph
G contains a desired copy of H, which contradicts our hypothesis. �

To finish the proof, we shall show that G contains an induced subgraph F with the desired
properties. For this purpose, we let X(s) = W (s) \⋃i∈K Vi for s ≤ k − 1. The maximality of M(s)

implies that X(s) is an independent set in G. So the induced subgraph F = G[X(1) ∪ . . . ∪X(k−1)]
is (k− 1)-colourable. What is left is to prove that F has the desired properties. Since ε < 1

8k2q and

ℓ ≥ C ≥ 4(k − 1)qε−1, we find that

v(F ) ≥ v(F ′)−
∣∣∣∣∣
⋃

i∈K
Vi

∣∣∣∣∣
(3),Claim 3.7

≥
(
1− ε

2k

)
n− 2(k − 1)q · n

ℓ
> (1− ε)n,

δ(F ) ≥ δ(F ′)−
∣∣∣∣∣
⋃

i∈K
Vi

∣∣∣∣∣
(3),Claim 3.7

≥
(
k−2
k−1 − ε

2k

)
n− 2(k − 1)q · n

ℓ
>
(
k−2
k−1 − ε

2

)
n.

Moreover, by (4) we see that
∣∣X(s)

∣∣ ≤
∣∣W (s)

∣∣ ≤
(

1
k−1 +

ε
2k

)
n for s ≤ k−1, and hence

(
1

k−1 − ε
2

)
n ≤

∣∣X(s)
∣∣ ≤

(
1

k−1 +
ε
2k

)
n for s ≤ k− 1. Therefore, for s ≤ k− 1 and v ∈ ⋃t6=s X

(t), there are at most

n−
∣∣X(s)

∣∣− dF (v) ≤ n−
(

1
k−1 − ε

2

)
n−

(
k−2
k−1 − ε

2

)
n = εn missing edges in F between v and X(s).

This completes our proof of Lemma 3.4. �

We also need the following elementary lemma. It is probably well-known, but we could not find
a reference. For completeness we include its proof in Section 5.
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Lemma 3.8. Given integers r ≥ 1 and q ≥ 2 and a real number d ∈ (0, 1), there exist an integer
D = D(r, q, d) and a positive ρ = ρ(r, q, d) so that the following holds. Suppose that G is an (r+1)-
colourable graph with vertex classes U,W(1), . . . ,W(r). If |U | ≥ D and deg(u,W(s)) ≥ d

∣∣W(s)

∣∣ for
all u ∈ U and s ≤ r, then there is a subset A ∈

(U
q

)
with

∣∣N(A) ∩W(s)

∣∣ ≥ ρ
∣∣W(s)

∣∣ for s ≤ r.

To find an infracolourable structure in G we shall make use of a consequence of Lemmas 3.6
and 3.8.

Lemma 3.9. Given integers k ≥ 3 and q ≥ 1 and a real number η ∈ (0, 1), there exist integers
C = C(k, q, η) and D = D(k, q, η) and a positive δ = δ(k, q, η) such that the following holds for
ℓ ≥ C and ε ∈ (0, δ). Suppose that G = (V1∪ . . .∪Vℓ, E) is a balanced ℓ-partite graph containing no

copy of Kk(2q) in G whose vertices are in different parts of G. Assume (X
(s)
i )s≤k−1,i≤ℓ are vertex

sets satisfying:

(i) For i ≤ ℓ, X
(1)
i , . . . ,X

(k−1)
i are disjoint subsets of Vi,

(ii) For i ≤ ℓ and s ≤ k − 1,
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± ε

)
|Vi|,

(iii) For every s ≤ k − 1 and v ∈ ⋃i≤ℓ,t6=sX
(t)
i , deg(v,

⋃
i≤ℓX

(s)
i ) ≥

∣∣∣
⋃

i≤ℓX
(s)
i

∣∣∣− ε · v(G).

Let I be the subset of [ℓ] consisting of all indices i ∈ [ℓ] such that Vi contains a vertex v with

deg(v,
⋃

j≤ℓX
(s)
j ) ≥ η · v(G) for s ≤ k − 1. Then |I| ≤ D.

Proof. LetD = D3.8

(
k − 1, 2q, kη4

)
, C = max

{
4kD, 2η−1D, 9(k−1)kq

ρ

}
and δ = min

{
1
4k ,

ρ
8(k−1)kq

}
,

where ρ = ρ3.8

(
k − 1, 2q, kη4

)
. We shall prove the lemma by contradiction. Assume that |I| ≥ D.

Let J be an arbitrary subset of I of size D. By the definition of I, for each index j ∈ J we can find

a vertex vj ∈ Vj such that deg(vj ,
⋃

i≤ℓX
(s)
i ) ≥ η · v(G) for s ≤ k − 1. Let U = {vj : j ∈ J}.

For simplicity of notation, let X(s) :=
⋃

i≤ℓX
(s)
i and W (s) :=

⋃
i∈[ℓ]\J X

(s)
i for s ≤ k− 1. Then,

property (i) implies that W (1), . . . ,W (k−1) are disjoint subsets of V (G). By (i) and (ii), we find
that ∣∣∣W (s)

∣∣∣ ≥
(

1

k − 1
− ε− D

ℓ

)
· v(G) ≥ v(G)

2k (5)

for ε ≤ δ ≤ 1
4k and ℓ ≥ C ≥ 4kD. Also, (i) and (ii) force

∣∣W (s)
∣∣ ≤

(
1

k−1 + ε
)
v(G) ≤ 2v(G)

k , since

ε ≤ δ ≤ 1
4k . Combining these two inequalities, we conclude that

deg(v,W (s)) ≥ deg(v,X(s))−

∣∣∣∣∣∣
⋃

j∈J
Vj

∣∣∣∣∣∣
≥ η · v(G) −D · v(G)

ℓ
≥ η

2 · v(G) ≥ kη
4 ·
∣∣∣W (s)

∣∣∣

for v ∈ U and s ≤ k − 1, as ℓ ≥ 2η−1D. Furthermore, |U | = D = D3.8

(
k − 1, 2q, kη4

)
, by the

definition of D. By applying Lemma 3.8 to G[U,W (1), . . . ,W (k−1)] with r3.8 = k − 1, q3.8 = 2q

and d3.8 = kη
4 , we thus obtain a subset A ∈

(U
2q

)
with

∣∣∣N(A) ∩W (s)
∣∣∣ ≥ ρ

∣∣∣W (s)
∣∣∣ for s ≤ k − 1. (6)

In the rest of the proof we shall use Lemma 3.6 to show that G[N(A)∩W (1), . . . , N(A)∩W (k−1)]
contains a copy of Kk−1(2q) whose vertices are in different parts of G. Since this copy lies in N(A),
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together with vertices of A it forms a copy of Kk(2q) whose vertices belong to different parts of
G, contradicting the assumption. It remains to verify the assumptions of Lemma 3.6. Indeed, for
s ≤ k − 1, N(A) ∩W (s) does admit the partition

N(A) ∩W (s) =
⋃̇

j /∈J

(
N(A) ∩X

(s)
j

)
. (7)

Moreover, since N(A) ∩ W (s) ⊆ X(s) for s ≤ k − 1, we must have, for s ≤ k − 1 and v ∈⋃
t6=s

(
N(A) ∩W (t)

)
,

∣∣∣N(A) ∩W (s)
∣∣∣− deg(v,N(A) ∩W (s)) ≤

∣∣∣∣∣∣
⋃

i≤ℓ

X
(s)
i

∣∣∣∣∣∣
− deg(v,

⋃

i≤ℓ

X
(s)
i )

(iii)

≤ ε · v(G) ≤ 1
4(k−1)q · ρ ·

v(G)

2k

(5),(6)

≤ 1
4(k−1)q ·

∣∣∣N(A) ∩W (s)
∣∣∣ ,

assuming ε ≤ δ ≤ ρ
8(k−1)kq . It can be rewritten as

deg(v,N(A) ∩W (s)) ≥
(
1− 1

4(k−1)q

) ∣∣∣N(A) ∩W (s)
∣∣∣ for s ≤ k − 1 and v /∈

⋃

t6=s

(N(A) ∩W (t). (8)

Also, for every j /∈ J and s ≤ k − 1, we have

∣∣∣N(A) ∩X
(s)
j

∣∣∣ ≤ |Vj | = v(G)
ℓ < 1

4(k−1)q · ρ ·
v(G)

2k

(5),(6)

≤ 1
4(k−1)q ·

∣∣∣N(A) ∩W (s)
∣∣∣ (9)

because ℓ ≥ C ≥ 9(k−1)kq
ρ . The inequalities (7), (8) and (9) show that we can apply Lemma 3.6 to

G[N(A) ∩W (1), . . . , N(A) ∩W (k−1)] with r3.6 = k − 1 and q3.6 = 2q. �

We also require another consequence of Lemma 3.6, stated below.

Lemma 3.10. Given integers k ≥ 3 and q ≥ 1 and a real number η ∈
(

2q−1
2(k−1)q , 1

)
, there exist an

integer C = C(k, q, η) and a positive δ = δ(k, q, η) such that the following holds for every integer
ℓ ≥ C and every ε ∈ (0, δ). Let G = (V1 ∪ . . . ∪ Vℓ, E) be a balanced ℓ-partite graph containing no

copy of K+q
k−1(2q) whose vertices are in different parts of G. Assume (X

(s)
i , Y

(s)
i )s≤k−1,i≤ℓ are pairs

of vertex sets satisfying:

(i) For i ≤ ℓ and s ≤ k − 1, Y
(1)
i , . . . , Y

(k−1)
i are disjoint subsets of Vi and X

(s)
i ⊆ Y

(s)
i ,

(ii) For i ≤ ℓ and s ≤ k − 1,
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± ε

)
|Vi|,

(iii) For s ≤ k − 1 and v ∈ ⋃i≤ℓ,t6=sX
(t)
i , deg(v,

⋃
i≤ℓX

(s)
i ) ≥

∣∣∣
⋃

i≤ℓX
(s)
i

∣∣∣− ε · v(G).

For i ≤ ℓ and s ≤ k − 1, let B
(s)
i denote a subset of Y

(s)
i consisting of all vertices v with

deg(v,
⋃

j≤ℓX
(t)
j ) < η · v(G) for some t 6= s. For s ≤ k − 1, write M(s) for a maximal match-

ing in the induced subgraph G
[⋃

i≤ℓ Y
(s)
i \B(s)

i

]
of G whose vertices are in different parts of G, and

set J = {j ∈ [ℓ] : Vj contains some vertex in
⋃

s≤k−1M(s)}. Then, |J | < 2(k − 1)q.
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Proof. Choose

C =
4(k − 2)

η′
and δ = min

{
qη′

2q − 1
,

η′

4(k − 2)

}
, where η′ = η − 2q − 1

2(k − 1)q
.

Notice that η′ > 0 as η ∈
(

2q−1
2(k−1)q , 1

)
. We prove the statement by contradiction. Suppose that

M(s) contains a matching {x1x2, . . . , x2q−1x2q} of size q for some s ≤ k − 1. Let X(t) denote the

vertex set
⋃

iX
(s)
i for s ≤ k−1. For t 6= s, define W(t) =

⋃
i

(
N(x1, . . . , x2q)∩X

(t)
i

)
. Then property

(i) implies that W (1), . . . ,W (k−1) are disjoint subsets of V (G). We shall apply Lemma 3.6 to find a

copy of Kk−2(2q) in G
[
W(1), . . . , Ŵ(s), . . . ,W(k−1)

]
whose vertices are in different parts of G (here

Ŵ(s) stands for the empty set). Since this copy lies in N(x1, . . . , x2q) and since {x1x2, . . . , x2q−1x2q}
is a matching, G contains a copy of K+q

k−1(2q) whose vertices belong to different parts of G, which
is impossible. The remaining task is thus to verify the assumptions of Lemma 3.6. Indeed, from
the definition of W(t) we see that, for t 6= s,

W(t) =
⋃̇

i

(
N(x1, . . . , x2q) ∩X

(t)
i

)
. (10)

By the definition of M(s), we have deg(x,X(t)) ≥ η · v(G) for x ∈ {x1, . . . , x2q} and t 6= s. Hence

∣∣W(t)

∣∣ =
∣∣∣N(x1, . . . , x2q) ∩X(t)

∣∣∣ ≥ 2qη · v(G)− (2q − 1)
∣∣∣X(t)

∣∣∣
(ii)

≥ 2qη · v(G) − (2q − 1)
(

1
k−1 + ε

)
v(G) ≥ qη′ · v(G) (11)

for ε ≤ δ ≤ qη′

2q−1 . Together with the assumption ℓ ≥ C = 4(k−2)
η′ , this inequality implies that, for

i ≤ ℓ and t 6= s,

∣∣∣N(x1, . . . , x2q) ∩X
(t)
i

∣∣∣ ≤ |Vi| =
v(G)

ℓ
≤ qη′

4(k−2)q · v(G) ≤ 1
4(k−2)q ·

∣∣W(t)

∣∣ . (12)

On the other hand, we can derive from property (iii) that, for v ∈ ⋃i≤ℓ,p/∈{s,t}X
(p)
i ,

∣∣W(t)

∣∣− deg(v,W(t)) ≤ ε · v(G) ≤ qη′

4(k−2)q · v(G)
(11)

≤ 1
4(k−2)q ·

∣∣W(t)

∣∣ , (13)

assuming ε ≤ δ ≤ η′

4(k−2) . It follows from (10), (12) and (13) that we can apply Lemma 3.6 to

G
[
W(1), . . . , Ŵ(s), . . . ,W(k−1)

]
with r3.6 = k − 2 and q3.6 = 2q. �

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let k = χ(H). If k = 2, then H is a matching. The density condition
implies that there is at least one edge between any two parts of G. Hence G contains a matching of
size ℓ

2 ≥ e(H) whose vertices are in different parts of G. So from now on we can focus on the case

when k ≥ 3. Moreover, as discussed in Remark 3.3, we can suppose that H = K+q
k−1(2q) for some

positive integer q. To prove Theorem 3.2, we assume to the contrary that G does not contain a
copy of H whose vertices are in different parts of G. Without loss of generality we can suppose that
each part of G has exactly m vertices, where m is a sufficiently large integer. Otherwise, multiply

14



each vertex in each part Vi by a factor of m
|Vi| , which has no effect on the densities, and creates no

copy of H whose vertices lie in different parts of G.
Choose ℓ = max{C3.4(k, q, ε), 1/ε}, where ε > 0 is sufficiently small (to be specified later).

Let ℓ1 = ℓ
2(k−1)! , ℓ2 = ℓ1 − (k − 1), ℓ3 = ℓ2

(k−1)! and ℓ4 = ℓ3 − 2(k − 1)q − D, where D =

D3.9

(
k, q, 1

(6q+10)(k−1)(k−1)!

)
. Note that the parameters ℓ and ℓi both grow as Ω(1/ε).

Our goal is to find an infracolourable struture in G. In the first step, we apply Lemma 3.4 to
G with k3.4 = k, q3.4 = q and ε3.4 = ε < 1

8k2q
to obtain an induced (k − 1)-colourable subgraph

F of G whose vertex classes X(1), . . . ,X(k−1) satisfy
∣∣∣X(s)

∣∣∣ =
(

1
k−1 ± ε

)
n for s ≤ k − 1, (14)

deg(v,X(s)) ≥
∣∣∣X(s)

∣∣∣− εn for s ≤ k − 1 and v ∈
⋃

t6=s

X(t). (15)

Let T = V (G) \ V (F ). The inequality (14) implies that |T | ≤ kεn. This forces |Ti| ≤ 2kεm for
at least half of indices i ≤ ℓ. Since ℓ1 = ℓ

2(k−1)! , by the pigeon hole principle we can relabel the Vi

and the X(s) such that
∣∣∣X(1)

i

∣∣∣ ≥
∣∣∣X(2)

i

∣∣∣ ≥ . . . ≥
∣∣∣X(k−1)

i

∣∣∣ and

|Ti| ≤ 2kεm for i ≤ ℓ1. (16)

Hence we can apply Lemma 2.4 with ε2.4 = 2kε < 1
4 to find a subset I0 ∈

(
N

k−1

)
such that∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± k

√
2kε
)
m for s ≤ k− 1 and i ∈ [ℓ1] \ I0. By reordering parts if necessary, we may

assume that ∣∣∣X(s)
i

∣∣∣ =
(

1
k−1 ± k

√
2kε
)
m for s ≤ k − 1 and i ≤ ℓ2. (17)

For i ≤ ℓ2 we shall partition Vi into k − 1 subsets Y
(1)
i , . . . , Y

(k−1)
i as follows. A vertex v ∈ Vi

is assigned to Y
(s)
i if deg

(
v,
⋃

j≤ℓ2
X

(s)
j

)
= mint≤k−1 deg

(
v,
⋃

j≤ℓ2
X

(t)
j

)
; if there are more than one

such index s, arbitrarily choose one of them.

Claim 3.11. X
(s)
i ⊆ Y

(s)
i ⊆ X

(s)
i ∪̇Ti and

∣∣∣Y (s)
i

∣∣∣ =
(

1
k−1 ± 2k

√
2kε
)
m for s ≤ k − 1 and i ≤ ℓ2.

Proof. Let v be an arbitrary vertex of X
(s)
i . Since X(s) is an independent set of G, v has no

neighbours in
⋃

j≤ℓ2
X

(s)
j . It thus follows from the definition of Y

(s)
i that v ∈ Y

(s)
i , and so X

(s)
i is

a subset of Y
(s)
i . Combining with the fact that Vi =

(⋃̇
sX

(s)
i

)
∪̇Ti =

⋃̇
sY

(s)
i , we conclude that

Y
(s)
i ⊆ X

(s)
i ∪̇Ti for i ≤ ℓ2 and s ≤ k − 1.

As X
(s)
i is a subset of Y

(s)
i , (17) tells us that

∣∣∣Y (s)
i

∣∣∣ ≥
∣∣∣X(s)

i

∣∣∣ ≥
(

1
k−1 − k

√
2kε
)
m for i ≤ ℓ2

and s ≤ k − 1. Using (16) and (17), we get
∣∣∣Y (s)

i

∣∣∣ ≤
∣∣∣X(s)

i

∣∣∣+ |Ti| ≤
(

1
k−1 + k

√
2kε + 2kε

)
m ≤

(
1

k−1 + 2k
√
2kε
)
m

for i ≤ ℓ2 and s ≤ k − 1, where the first inequality holds since Y
(s)
i is a subset of X

(s)
i ∪ Ti. �

Let I =
{
i ∈ [ℓ2] : ∃ vi ∈ Vi with deg(vi,X

(s)
1 ∪ . . . ∪X

(s)
ℓ2

) ≥ 1
(6q+10)(k−1)! · ℓ2m

k−1 for s ≤ k − 1
}
.

We shall show that I has bounded size.
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Claim 3.12. |I| ≤ D.

Proof. We require ε to be small enough so that max{k
√
2kε, kkε} < δ3.9

(
k, q, 1

(6q+10)(k−1)(k−1)!

)
,

and ℓ2 ≥ C3.9

(
k, q, 1

(6q+10)(k−1)(k−1)!

)
. By (17),

∣∣∣X(s)
i

∣∣∣ =
(

1
k−1 ± k

√
2kε
)
m for s ≤ k − 1 and

i ≤ ℓ2. Moreover, for s ≤ k − 1 and v ∈ ⋃i≤ℓ2,t6=sX
(t)
i , we have

deg(v,
⋃

i≤ℓ2

X
(s)
i ) ≥

∣∣∣∣∣∣
⋃

i≤ℓ2

X
(s)
i

∣∣∣∣∣∣
+ deg(v,X(s))−

∣∣∣X(s)
∣∣∣

(15)

≥

∣∣∣∣∣∣
⋃

i≤ℓ2

X
(s)
i

∣∣∣∣∣∣
− εn ≥

∣∣∣∣∣∣
⋃

i≤ℓ2

X
(s)
i

∣∣∣∣∣∣
− kkεℓ2m.

Therefore, we can apply Lemma 3.9 to G[V1 ∪ . . . ∪ Vℓ2 ] with input k3.9 = k, q3.9 = q and

η3.9 = 1
(6q+10)(k−1)(k−1)! to conclude that |I| ≤ D3.9

(
k, q, 1

(6q+10)(k−1)(k−1)!

)
= D. �

As ℓ3 =
ℓ2

(k−1)! , by reordering the Vi and Y (s) if necessary we can ensure

Vi =
⋃̇

s
Y

(s)
i and

∣∣∣Y (1)
i

∣∣∣ ≥
∣∣∣Y (2)

i

∣∣∣ ≥ . . . ≥
∣∣∣Y (k−1)

i

∣∣∣ for i ≤ ℓ3. (18)

For i ≤ ℓ3 and s ≤ k − 1, let B
(s)
i be the set of all vertices v ∈ Y

(s)
i with the property that

deg(v,X
(t)
1 ∪ . . . ∪ X

(t)
ℓ3

) < 2q
2q+1 · ℓ3m

k−1 for some t 6= s. For s ≤ k − 1, let M(s) denote a maximal

matching in G
[⋃

i≤ℓ3
Y

(s)
i \ B

(s)
i

]
whose vertices are in different parts of G, and write J for the

collection of all indices j ∈ [ℓ3] so that
⋃

s≤k−1M(s) contains some vertex in Vj .

Claim 3.13. |J | < 2(k − 1)q.

Proof. We shall apply Lemma 3.10 to G[V1 ∪ . . . Vℓ3 ] with k3.10 = k, q3.10 = q and η3.10 =
2q

(k−1)(2q+1) to get |J | < 2(k − 1)q. Note that
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± k

√
2kε
)
m for s ≤ k − 1 and i ≤ ℓ3,

by (17). Furthermore, for s ≤ k − 1 and v ∈ ⋃i≤ℓ3,t6=sX
(t)
i , we have

deg(v,
⋃

i≤ℓ3

X
(s)
i )

(15)

≥

∣∣∣∣∣∣
⋃

i≤ℓ2

X
(s)
i

∣∣∣∣∣∣
− εn ≥

∣∣∣∣∣∣
⋃

i≤ℓ2

X
(s)
i

∣∣∣∣∣∣
− k2kεℓ3m.

Finally, we can choose ε sufficiently small so that max{k
√
2kε, k2kε} < δ3.10

(
k, q, 2q

(k−1)(2q+1)

)
and

ℓ3 ≥ C3.10

(
k, q, 2q

(k−1)(2q+1)

)
. �

From Claims 3.12 and 3.13 we can assume (relabelling parts once more if necessary) that

{1, . . . , ℓ3} \ (I ∪ J) = {1, . . . , ℓ4}. For i ≤ ℓ4 and s ≤ k − 1, let D
(s)
i be the set consisting of all

vertices v ∈ Y
(s)
i such that deg(v, Y

(t)
1 ∪ . . . ∪ Y

(t)
ℓ4

) < 2q+1
2q+2 · ℓ4m

k−1 for some t 6= s.

Claim 3.14. The ℓ4-partite graph G[V1 ∪ . . . ∪ Vℓ4 ] together with pairs (D
(s)
i , Y

(s)
i )s≤k−1,i≤ℓ4 of

vertex sets form an ( 1
6q+9 , k, ℓ4)-infracolourable structure.
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Proof. We have to verify the following three properties:

(i) For i ≤ ℓ4, Vi =
⋃̇

s≤k−1Y
(s)
i and

∣∣∣Y (1)
i

∣∣∣ ≥
∣∣∣Y (2)

i

∣∣∣ ≥ . . . ≥
∣∣∣Y (k−1)

i

∣∣∣;
(ii) For i ≤ ℓ4 and s ≤ k − 1, D

(s)
i ⊆ Y

(s)
i and

⋃
i≤ℓ4

Y
(s)
i \D(s)

i is an independent set;

(iii) For s ≤ k − 1, every vertex v ∈ ⋃i≤ℓ4
D

(s)
i has at most 1

6q+9 · ℓ4m
k−1 neighbours in

⋃
i≤ℓ4

Y
(s)
i

and at least 1
2q+3 · ℓ4m

k−1 non-neighbours in
⋃

i≤ℓ4
Vi \ Y (s)

i .

Property (i) follows directly from (18). For (ii), we observe that B
(s)
i ⊆ D

(s)
i for i ≤ ℓ4 and s ≤ k−1.

We then deduce property (ii) from the maximality ofM(s). For (iii), we consider an arbitrary vertex

v ∈ ⋃i≤ℓ4
D

(s)
i . Assume to the contrary that deg(v,

⋃
i≤ℓ4

Y
(s)
i ) > 1

6q+9 · ℓ4m
k−1 . Then, by Claim 3.11,

we obtain

deg(v,
⋃

i≤ℓ4

X
(s)
i ) ≥ deg(v,

⋃

i≤ℓ4

Y
(s)
i )−

∣∣∣∣∣∣
⋃

i≤ℓ4

Ti

∣∣∣∣∣∣
(16)

≥ 1
6q+9 · ℓ4m

k−1 − 2kεℓ4m > 1
(6q+10)(k−1)! · ℓ2m

k−1

for ε sufficiently small. On the other hand, by (ii), we must have v ∈ ⋃i≤ℓ4
D

(s)
i ⊆ ⋃i≤ℓ4

Y
(s)
i , and

so deg(v,
⋃

i≤ℓ2
X

(t)
i ) ≥ deg(v,

⋃
i≤ℓ2

X
(s)
i ) for all t ≤ k − 1. Therefore,

deg(v,
⋃

i≤ℓ2

X
(t)
i ) ≥ deg(v,

⋃

i≤ℓ2

X
(s)
i ) ≥ deg(v,

⋃

i≤ℓ4

X
(s)
i ) > 1

(6q+10)(k−1)! · ℓ2m
k−1

for t ≤ k − 1, as v ∈ ⋃i≤ℓ4
Y

(s)
i . This contradicts the fact that {1, . . . , ℓ4} ∩ I = ∅. Finally, by the

definition of
⋃

i≤ℓ4
D

(s)
i , there exists t 6= s such that deg(v,

⋃
i≤ℓ4

Y
(t)
i ) < 2q+1

2q+2 · ℓ4m
k−1 . Consequently,

the number of non-neighbours of v in in
⋃

i≤ℓ4
Y

(t)
i is at least

∣∣∣∣∣∣
⋃

i≤ℓ4

Y
(t)
i

∣∣∣∣∣∣
− 2q+1

2q+2 · ℓ4m
k−1

Claim 3.11
≥

(
1

k−1 − 2k
√
2kε
)
ℓ4m− 2q+1

2q+2 · ℓ4m
k−1 > 1

2q+3 · ℓ4m
k−1 ,

assuming ε is sufficiently small. �

Claim 3.14 tells us that G[V1 ∪ . . . ∪ Vℓ4 ] is the base graph of an ( 1
6q+9 , k, ℓ4)-infracolourable

structure. By appealing to Lemma 2.3, we can find two indices 1 ≤ i < j ≤ ℓ4 with d(Vi, Vj) ≤ k−2
k−1 ,

contradicting the assumption that d(Vi, Vj) >
k−2
k−1 . This completes our proof of Theorem 3.2. �

4 Proof of Theorem 1.4

In this section we shall prove a stronger version of Theorem 1.4.

Theorem 4.1. Let k and ℓ be integers with k ≥ 3 and ℓ ≥ e2/c, where c is a real number with
0 < c ≤ k−(k+6)k/2. Suppose that G = (V1 ∪ . . . ∪ Vℓ, E) be a balanced ℓ-partite graph on n vertices
such that

d(Vi, Vj) ≥ k−2
k−1 for i 6= j.

Then, G either contains a copy of K+
k−1

(
⌊c ln n⌋, . . . , ⌊c ln n⌋, ⌊n1−2

√
c⌋
)
or is isomorphic to a graph

in Gk
ℓ .
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The idea of the proof is similar to that of Theorem 3.2. We assume that G does not contain
a copy of K+

k−1

(
⌊c ln n⌋, . . . , ⌊c ln n⌋, ⌊n1−2

√
c⌋
)
. We wish to show that G is isomorphic to a graph

in the family Gk
ℓ . For this purpose, we apply the stability lemma (Lemma 4.2) to find an induced

(k − 1)-colourable subgraph of G which almost spans V (G). We then use the embedding lemma
(Lemma 4.4) showing that G contains a large infracolourable structure. To conclude the proof, we
shall use a bootstrapping argument (Lemma 4.8) which allows leveraging a weak structure result
into a strong structure result.

In the proof of Theorem 4.1 we shall need the following stability lemma.

Lemma 4.2. Let k and ℓ be integers with k ≥ 3 and ℓ ≥ e2/c, where c is a real number with
0 < c ≤ k−(k+6)k/2. Let G = (V1∪. . .∪Vℓ, E) be a balanced ℓ-partite graph such that d(Vi, Vj) ≥ k−2

k−1

for i 6= j. If G does not contain a copy of K+
k−1

(
⌊c ln n⌋, . . . , ⌊c ln n⌋, ⌊n1−2

√
c⌋
)
, then G has an

induced (k − 1)-colourable subgraph F whose vertex classes X(1), . . . ,X(k−1) satisfy the following
properties with ε = 4ℓ−1/2

(i) For s ≤ k − 1,
∣∣X(s)

∣∣ =
(

1
k−1 ± kε

)
n;

(ii) For s ≤ k − 1 and v ∈ ⋃t6=sX
(t), deg(v,X(s)) ≥

∣∣X(s)
∣∣− kεn.

To prove the above statement we need a stability lemma of Nikiforov [17, Theorem 3].

Lemma 4.3. Let k ≥ 3 be an integer, and let c and δ be positive real numbers with c < k−(k+6)k/2

and δ < 1
8k8

. Suppose that G is a graph of order n ≥ e2/c with e(G) ≥
(
k−2
k−1 − δ

) (n
2

)
. If G

has no copy of K+
k−1

(
⌊c ln n⌋, . . . , ⌊c ln n⌋, ⌊n1−2

√
c⌋
)
, then G contains an induced (k− 1)-colourable

subgraph F of order v(F ) ≥ (1− 2
√
δ)n and minimum degree δ(F ) ≥

(
k−2
k−1 − 4

√
δ
)
n.

Proof of Lemma 4.2. By the assumption, |V1| = . . . = |Vℓ| = n
ℓ := m. Together with the density

condition, we conclude that e(G) ≥
(ℓ
2

)
k−2
k−1m

2 ≥
(
k−2
k−1 − 1

ℓ

)
(ℓm)2

2 =
(
k−2
k−1 − 1

ℓ

)
n2

2 . Notice that

c ≤ k−(k+6)k, 1
ℓ < 1

8k8
and n ≥ e2/c. Thus, by applying Lemma 4.2 to G with δ4.2 = 1

ℓ we obtain

an (k − 1)-colourable induced subgraph F = G[X(1) ∪ . . . ∪X(k−1)] of G with v(F ) > (1− ε)n and

δ(F ) ≥
(
k−2
k−1 − ε

)
n. Since δ(F ) ≥

(
k−2
k−1 − ε

)
n and since X(s) is an independent set, we must have

∣∣∣X(s)
∣∣∣ ≤ n− δ(F ) ≤

(
1

k−1 + ε
)
n

for s ≤ k − 1. This implies that

∣∣∣X(s)
∣∣∣ ≥ v(F )− (k − 2)

(
1

k−1 + ε
)
n ≥ (1− ε)n − (k − 2)

(
1

k−1 + ε
)
n =

(
1

k−1 − (k − 1)ε
)
n

for s ≤ k − 1. Therefore, for s ≤ k − 1 and v ∈ ⋃t6=sX
(t), the number of non-neighbours of v in

X(s) is at most

n−
∣∣∣X(s)

∣∣∣− dF (v) ≤ n−
(

1
k−1 − (k − 1)ε

)
n−

(
k−2
k−1 − ε

)
n = kεn,

as desired. �

The next ingredient we need is an embedding result.
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Lemma 4.4. Let r ≥ 2 be an integer, and let G be an r-colourable graph with vertex classes
W(1), . . . ,W(r) of the same size h. Suppose that deg(w,W(s)) ≥

(
1 − 1

r2

)
h for s ≤ r and w ∈⋃

t6=sW(t). Then

(1) G contains at least 1
2h

r copies of Kr,

(2) For every α ∈ (0, 14) and s ≤ r, G contains a copy of Kr(⌊αr lnh⌋, . . . , ⌊αr lnh⌋, ⌊h1−αr−1⌋)
whose sth vertex class is a subset of W(s).

The proof of the above lemma requires a simple result of Nikiforov [17, Lemma 5].

Lemma 4.5. Let r ≥ 2 be an integer, and let α be a real number in (0, 14). Suppose that B[U,W ] is
a bipartite graph with |U | = p and |W | = q. If p ≥ 4⌊αr ln q⌋ and e(B[U,W ]) ≥ 1

2pq, then B[U,W ]

contains the complete bipartite graph K(a, b) with a = ⌊αr ln q⌋ and b = ⌊q1−αr−1⌋.

Proof of Lemma 4.4. (1) Let ws ∈ W(s) for s = 1, . . . , r. Observe that {w1, . . . , wr} forms a clique of
G if and only if ws ∈ N(w1, . . . , ws−1)∩W(s) for s = 2, . . . , r. In addition,

∣∣N(w1, . . . , ws−1) ∩W(s)

∣∣ ≥
h− (s − 1) · h

r2
. Thus, we can bound the number of copies of Kr in G from below by

hr ·
r∏

s=1

(
1− s−1

r2

)
≥ hr ·

(
1−

r∑

s=1

s−1
r2

)
= r+1

2r · hr > 1
2h

r.

(2) We proceed by induction on r. The base case r = 2 follows from the first assertion and
Lemma 4.5. For the induction step, assume that r > 2. The induction hypothesis implies that
G[W(1) ∪ . . . ∪W(r−1)] contains a copy of Kr−1(m) with m = ⌊αr−1 lnh⌋. Let U denote a set of m
disjoint copies of Kr−1 in Kr−1(m). Define a bipartite graph B[U,W(r)] with vertex classes U and
W(r), joining R ∈ U to w ∈ W(r) if R∪{w} is a clique. We see that |U | = m and

∣∣W(r)

∣∣ = h. Since
0 < α < 1/4, we have m = ⌊αr−1 lnh⌋ ≥ ⌊4αr lnh⌋ ≥ 4⌊αr lnh⌋. Furthermore, every vertex of U
has at least h− r · h

r2
≥ h/2 neighbours in W(r). Hence e(B[U,W(r)]) ≥ mh/2. The assertion then

follows from the base case r = 2. �

In order to find a large infracolourable structure in G we shall use the following consequence of
Lemma 4.4.

Lemma 4.6. Let k ≥ 3 and ℓ ≥ 2 be integers, and let ε and α be positive real numbers with
ε < 10−2k−k and α < 1

4 . Suppose that G = (V1∪ . . .∪Vℓ, E) is a balanced ℓ-partite graph containing

no copy of K+
k−1

(
⌊αk−1 ln(p)⌋, . . . , ⌊αk−1 ln(p)⌋, ⌊p1−αk−2⌋

)
, where p = 1

16(k−1)(k−1)! · v(G). Assume

that (X
(s)
i )s≤k−1,i≤ℓ are vertex sets so that

(i) For i ≤ ℓ, X
(1)
i , . . . ,X

(k−1)
i are disjoint subsets of Vi;

(ii) For s ≤ k − 1 and v ∈ ⋃i≤ℓ,t6=sX
(t)
i , deg(v,

⋃
i≤ℓX

(s)
i ) ≥

∣∣∣
⋃

i≤ℓX
(s)
i

∣∣∣− ε · v(G).

Then, there are no vertices v ∈ V (G) such that deg(v,
⋃

i≤ℓX
(s)
i ) ≥ p for all s ≤ k − 1.

Proof. Suppose for the contradiction that there is v ∈ V (G) with deg(v,
⋃

iX
(s)
i ) ≥ p for all

s ≤ k − 1. Then, for s ≤ k − 1 there exists a subset

W(s) ⊆ N(v) ∩
(⋃

i

X
(s)
i

)
with

∣∣W(s)

∣∣ = p. (19)
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By property (i), W(1), . . . ,W(k−1) are disjoint subsets of V (G). On the other hand, property (ii)
shows that for all s ≤ k − 1 and v ∈ ⋃t6=s W(t) one has

deg
(
v,W(s)

)
≥
∣∣W(s)

∣∣− ε · v(G)

≥
∣∣W(s)

∣∣− 1

(k − 1)2
· 1

16(k − 1)(k − 1)!
· v(G) =

(
1− 1

(k − 1)2

)
·
∣∣W(s)

∣∣ , (20)

as ε < 10−2k−k. Finally, it follows from (19) and (20) that we can apply Lemma 4.4(2) to
the graph G[W(1), . . . ,W(k−1)] with r4.4 = k − 1, h4.4 = p and α4.4 = α to find a copy of

Kk−1

(
⌊αk−1 ln(p)⌋, . . . , ⌊αk−1 ln(p)⌋, ⌊p1−αk−2⌋

)
. Since W(1) ∪ . . . ∪ W(k−1) lies in the neighbour

of v, G contains a copy of K+
k−1

(
⌊αk−1 ln(p)⌋, . . . , ⌊αk−1 ln(p)⌋, ⌊p1−αk−2⌋

)
, which contradicts our

assumption. �

To find a large infracolourable structure in G we also require the following consequence of
Lemma 4.4.

Lemma 4.7. Let k ≥ 3 and ℓ ≥ 2 be integers, and let ε and α be positive real numbers with
ε < 1

12k3
and α < 1

4 . Let G = (V1 ∪ . . . ∪ Vℓ, E) be a balanced ℓ-partite graph containing

no copy of K+
k−1

(
⌊αk−1 ln(p)⌋, . . . , ⌊αk−1 ln(p)⌋, ⌊p1−αk−2⌋

)
, where p = 1

4(k−1) · v(G). Suppose

(X
(s)
i , Y

(s)
i )s≤k−1,i≤ℓ are pairs of vertex sets which satisfy

(i) For every i ≤ ℓ and s ≤ k − 1, Y
(1)
i , . . . , Y

(k−1)
i are disjoint subsets of Vi and X

(s)
i ⊆ Y

(s)
i ;

(ii) For i ≤ ℓ and s ≤ k − 1,
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± ε

)
|Vi|;

(iii) For s ≤ k − 1 and v ∈ ⋃i≤ℓ,t6=sX
(t)
i , deg(v,

⋃
i≤ℓX

(s)
i ) ≥

∣∣∣
⋃

i≤ℓX
(s)
i

∣∣∣− ε · v(G).

For i ≤ ℓ and s ≤ k − 1, let B
(s)
i stands for a subset of Y

(s)
i consisting of all vertices v with

deg(v,
⋃

j≤ℓX
(t)
j ) < 2

3(k−1) · v(G) for some t 6= s. Then, for s ≤ k − 1,
⋃

i≤ℓ Y
(s)
i \ B

(s)
i is an

independent set of G.

Proof. We prove by contradiction. Suppose that there exists an edge {x, y} ∈ E(G) with x, y ∈⋃
i Y

(s)
i \B(s)

i . Let t 6= s. By the definition of
⋃

iB
(s)
i , both deg(x,

⋃
iX

(t)
i ) and deg(y,

⋃
iX

(t)
i ) are

at least 2
3(k−1) · v(G). Hence

∣∣∣∣∣N(x, y) ∩
⋃

i

X
(t)
i

∣∣∣∣∣ ≥ deg(x,
⋃

i

X
(t)
i ) + deg(y,

⋃

i

X
(t)
i )−

∣∣∣∣∣
⋃

i

X
(t)
i

∣∣∣∣∣
(ii)

≥ 4

3(k − 1)
· v(G) −

(
1

k − 1
+ ε

)
· v(G) ≥ 1

4(k − 1)
· v(G),

as ε < 1
12k3

. It means that there is a subset

W(t) ⊆ N(x, y) ∩
⋃

i≤ℓ3

X
(t)
i with

∣∣W(t)

∣∣ = 1
4(k−1) · v(G).

On the other hand, it follows from property (ii) that
∣∣∣
⋃

iX
(s)
i

∣∣∣ ≥
(

1
k−1 − ε

)
v(G) > 1

4(k−1) · v(G)

for 0 < ε < 1
12k3

, and so there exists a subset

W(s) ⊆
⋃

i

X
(s)
i with

∣∣W(s)

∣∣ = 1
4(k−1) · v(G).

20



Analysis similar to that in the proof of Lemma 4.6 shows that G[W(1), . . . ,W(k−1)] must con-

tain a copy of Kk−1

(
⌊αk−1 ln(p)⌋, . . . , ⌊αk−1 ln(p)⌋, ⌊p1−αk−2⌋

)
whose sth vertex class is of size

⌊αk−1 ln(p)⌋. Adding back vertices x and y to this class one gets a supgraph of the graph

K+
k−1

(
⌊αk−1 ln(p)⌋, . . . , ⌊αk−1 ln(p)⌋, ⌊p1−αk−2⌋

)
, contradicting the hypothesis. �

The last component of the proof is a bootstrapping argument which allows us to leverage a
weak structure result into a strong structure result. Roughly speaking, it says that if G contains
an ℓ̃-partite subgraph which is in Gk

ℓ̃
, then G must belong to Gk

ℓ .

Lemma 4.8. Let k ≥ 3 be an integer, and let G = (V1 ∪ . . . ∪ Vℓ, E) be an ℓ-partite graph with
|V1| = . . . = |Vℓ| = m and d(Vi, Vj) ≥ k−2

k−1 for all i 6= j. Suppose that there exist an integer ℓ̃ and

disjoint subsets Y
(1)
i , . . . , Y

(k−1)
i of Vi for 1 ≤ i ≤ ℓ̃ so that

∣∣∣Y (s)
i

∣∣∣ = m
k−1 and d(Y

(s)
i , Y

(t)
j ) = 1 for

all i 6= j and s 6= t. If G does not contain a copy of K+
k−1

(
ℓ̃m
32k2

)
, then G is isomorphic to a graph

in the family Gk
ℓ .

Proof. We wish to show that G is isomorphic to a graph in Gk
ℓ . According to Lemma 2.1, it suffices

to prove G is (k − 1)-colourable. By the assumption, we have

∣∣∣Y (s)
i

∣∣∣ = m
k−1 , d(Y

(s)
i , Y

(t)
j ) = 1 for s 6= t and 1 ≤ i < j ≤ ℓ̃. (21)

We shall show that for v ∈ V (G) \
(
V1 ∪ . . . ∪ Vℓ̃

)
there does not exist s ≤ k − 1 with

deg
(
v, Y

(s)
1 ∪ . . . ∪ Y

(s)

ℓ̃

)
≥ 1, deg

(
v, Y

(t)
1 ∪ . . . ∪ Y

(t)

ℓ̃

)
≥ ℓ̃m

2k
for all t 6= s. (22)

We prove by contradiction. Suppose that (22) holds. We can pick an index i0 ∈ {1, 2, . . . , ℓ̃} with

N(v)∩Y
(s)
i0

6= ∅ whose existence is guaranteed by (22). We then arbitrarily add other indices to get

a subset I(s) ⊂ {1, . . . , ℓ̃} of size ℓ̃
8k . It follows from (21) and (22) that for each t 6= s, there are at

least ℓ̃
4 indices i ≤ ℓ̃ with deg(v, Y

(t)
i ) ≥ m

4k . Hence we can find k− 1 disjoint subsets I(1), . . . , I(k−1)

of size ℓ̃
8k of {1, . . . , ℓ̃} with the property that deg(v, Y

(t)
i ) ≥ m

4k for all t 6= s and i ∈ I(t). By

(21), G
[⋃

i∈I(1) Y
(1)
i , . . . ,

⋃
i∈I(k−1)

Y
(k−1)
i

]
is a complete (k− 1)-partite graph. In addition, we have∣∣∣N(v) ∩⋃i∈I(s) Y

(s)
i

∣∣∣ ≥
∣∣∣N(v) ∩ Y

(s)
i0

∣∣∣ > 0 and

∣∣∣∣∣∣
N(v) ∩

⋃

i∈I(t)

Y
(t)
i

∣∣∣∣∣∣
=
∑

i∈I(t)

deg(v, Y
(t)
i ) ≥

∣∣I(t)
∣∣ · m

4k
=

ℓ̃m

32k2
for t 6= s.

Therefore, by adding v to the sth part of G
[⋃

i∈I(1) Y
(1)
i , . . . ,

⋃
i∈I(k−1)

Y
(k−1)
i

]
we get a supergraph

of K+
k−1

(
ℓ̃m
32k2

)
in G, contradicting our assumption.

We can infer from (22) that deg(v, V1∪ . . .∪Vℓ̃) ≤ k−2
k−1 · ℓ̃m for all v ∈ V (G)\

(
V1 ∪ . . . ∪ Vℓ̃

)
. By

the density condition, equality must hold. Again (22) shows that for each v ∈ V (G)\
(
V1 ∪ . . . ∪ Vℓ̃

)
,

N(v) ∩
(
V1 ∪ . . . ∪ Vℓ̃

)
=
⋃

i≤ℓ̃

Vi \ Y (s)
i for some s ≤ k − 1. (23)
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If v ∈ Vi for some i > ℓ̃, then we assign v to Z
(s)
i . For i ≤ ℓ̃ we let Z

(s)
i = Y

(s)
i for s ≤ k − 1.

If we denote Z(s) =
⋃̇

iZ
(s)
i for s ≤ k − 1, then V =

⋃̇
sZ

(s). To prove G is (k − 1)-colourable,
it is enough to show that Z(1), . . . , Z(k−1) are independent sets. Suppose to the contrary that for

some s ≤ k − 1, Z(s) contains an edge {u, v} with u ∈ Z
(s)
i1

and v ∈ Z
(s)
i2

. We can easily find k − 1

disjoint subsets J(1), . . . , J(k−1) of size ℓ̃
2(k−1) of [ℓ̃] \ {i1, i2}. Let W (s) = {u, v} ∪

(⋃
i∈J(s) Y

(s)
i

)

and W (t) =
⋃

i∈J(t) Y
(t)
i for t 6= s. It follows from (21) and (23) that G[W (1), . . . ,W (k−1)] is a

complete (k − 1)-colourable graph with
∣∣W (t)

∣∣ ≥ ℓ̃
2(k−1) · m

k−1 > ℓ̃m
32k2

for t ≤ k − 1. Combining this

with the assumption that {u, v} ∈ E(G), we conclude that G contains a copy of K+
k−1

(
ℓ̃m
32k2

)
, a

contradiction. �

We now have all the necessary tools to prove Theorem 4.1.

Proof of Theorem 4.1. For convenience, we write H = K+
k−1

(
⌊c ln n⌋, . . . , ⌊c ln n⌋, ⌊n1−2

√
c⌋
)
and

H− = Kk−1

(
⌊c ln n⌋, . . . , ⌊c ln n⌋, ⌊n1−2

√
c⌋
)
. Suppose G has no copy of H. We wish to show that

G is isomorphic to a graph in Gk
ℓ . Since G is a balanced ℓ-partite graph on n vertices, each partition

set of G has size n/ℓ := m. Let ε = 4ℓ−1/2, ℓ1 =
ℓ

2(k−1)! − (k − 1), ℓ2 =
ℓ2

(k−1)! and ℓ3 = ℓ2 − 1.

By Lemma 4.2, G must contain an induced (k− 1)-colourable subgraph F whose vertex classes
X(1), . . . ,X(k−1) satisfy ∣∣∣X(s)

∣∣∣ =
(

1
k−1 ± kε

)
n for s ≤ k − 1, (24)

deg(v,X(s)) ≥
∣∣∣X(s)

∣∣∣− kεn for s ≤ k − 1 and v ∈
⋃

t6=s

X(t). (25)

Let T = V (G) \V (F ). As in the proof of Theorem 3.2, by relabelling parts we can assume that

|Ti| ≤ 2k2εm, and
∣∣∣X(s)

i

∣∣∣ =
(

1
k−1 ± 2k2

√
ε
)
m for i ≤ ℓ1 and s ≤ k − 1. (26)

For i ≤ ℓ1 we shall partition Vi into k − 1 subsets as follows. A vertex v ∈ Vi is assigned to

Y
(s)
i if deg

(
v,
⋃

j≤ℓ1
X

(s)
j

)
= mint≤k−1 deg

(
v,
⋃

j≤ℓ1
X

(t)
j

)
; if there are more than one such index s,

arbitrarily pick one of them.

Claim 4.9. X
(s)
i ⊆ Y

(s)
i ⊆ X

(s)
i ∪̇Ti for i ≤ ℓ1 and s ≤ k − 1.

Proof. BecauseX(s) is an independent set inG, every vertex inX
(s)
i has no neighbours in

⋃
j≤ℓ1

X
(s)
j ,

and so X
(s)
i is a subset of Y

(s)
i . Since Vi =

(⋃̇
sX

(s)
i

)
∪̇Ti =

⋃̇
sY

(s)
i and X

(s)
i ⊆ Y

(s)
i for i ≤ ℓ1 and

s ≤ k − 1, the inclusion relation Y
(s)
i ⊆ X

(s)
i ∪̇Ti holds for i ≤ ℓ1 and s ≤ k − 1. �

We proceed by showing that
⋃

i≤ℓ1
Vi does not contain a vertex which has relatively large degree

to
⋃

i≤ℓ1
Y

(s)
i for all s ≤ k − 1.

Claim 4.10. There are no vertices v ∈ ⋃i≤ℓ1
Vi with deg(v,

⋃
i≤ℓ1

Y
(s)
i ) ≥ 1

15(k−1)(k−1)! · ℓ1m for all
s ≤ k − 1.
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Proof. We can derive from (25) that, for s ≤ k − 1 and v ∈ ⋃i≤ℓ1,t6=sX
(t)
i ,

deg(v,
⋃

i≤ℓ1

X
(s)
i ) ≥

∣∣∣∣∣∣
⋃

i≤ℓ1

X
(s)
i

∣∣∣∣∣∣
+ deg(v,X(s))−

∣∣∣X(s)
∣∣∣

≥

∣∣∣∣∣∣
⋃

i≤ℓ1

X
(s)
i

∣∣∣∣∣∣
− kεn ≥

∣∣∣∣∣∣
⋃

i≤ℓ1

X
(s)
i

∣∣∣∣∣∣
− kkε · ℓ1m.

Applying Lemma 4.6 to G[V1 ∪ . . .∪Vℓ1 ] with k4.6 = k, ε4.6 = kkε and α4.6 = (2c)1/(k−1), we con-

clude that either G[V1∪ . . .∪Vℓ1 ] contains a copy of K+
k−1

(
⌊αk−1 ln(p)⌋, . . . , ⌊αk−1 ln(p)⌋, ⌊p1−αk−2⌋

)

or there are no vertices v ∈ V1 ∪ . . . ∪ Vℓ1 with deg(v,X
(s)
1 ∪ . . . ∪ X

(s)
ℓ ) ≥ p for all s, where

p = 1
16(k−1)(k−1)! · ℓ1m. Since αk−1 ln(p) > c ln(n), p1−αk−2

> n1−2
√
c and since G has no copy

of K+
k−1

(
⌊c ln n⌋, . . . , ⌊c ln n⌋, ⌊n1−2

√
c⌋
)
, the former case is ruled out. The later case implies our

statement. �

Since ℓ2 =
ℓ1

(k−1)! , by reordering parts if necessary we can assume that

∣∣∣Y (1)
i

∣∣∣ ≥
∣∣∣Y (2)

i

∣∣∣ ≥ . . . ≥
∣∣∣Y (k−1)

i

∣∣∣ for i ≤ ℓ2. (27)

For i ≤ ℓ2 and s ≤ k − 1, let us denote

D
(s)
i =

{
v ∈ Y

(s)
i : deg(v, Y

(t)
1 ∪ . . . ∪ Y

(t)
ℓ2

) < 3
4(k−1) · ℓ2m for some t 6= s

}
.

Claim 4.11. The vertex set
⋃

i≤ℓ2
Y

(s)
i \D(s)

i is an independent set of G for s ≤ k − 1.

Proof. For i ≤ ℓ2 and s ≤ k−1, let B
(s)
i be the vertex set consisting of all vertices v ∈ Y

(s)
i such that

deg(v,
⋃

i≤ℓ2
X

(t)
i ) < 2

3(k−1) · ℓ2m for some t 6= s. Note that, for s ≤ k − 1 and v ∈ ⋃i≤ℓ2,t6=sX
(s)
i ,

one has

deg(v,
⋃

i≤ℓ2

X
(s)
i ) ≥

∣∣∣∣∣∣
⋃

i≤ℓ2

X
(s)
i

∣∣∣∣∣∣
+ deg(v,X(s))−

∣∣∣X(s)
∣∣∣

(25)

≥

∣∣∣∣∣∣
⋃

i≤ℓ2

X
(s)
i

∣∣∣∣∣∣
− kεn ≥

∣∣∣∣∣∣
⋃

i≤ℓ2

X
(s)
i

∣∣∣∣∣∣
− k2kε · ℓ2m.

This estimate together with Claim 4.9 and (26) show that we can apply Lemma 4.7 to G[V1∪. . .∪Vℓ2 ]
with k4.7 = k, ε4.7 = max{2k2√ε, k2kε} and α4.7 = (2c)1/(k−1) := α to conclude that either

G[V1 ∪ . . . ∪ Vℓ2 ] contains K+
k−1

(
⌊αk−1 ln(p)⌋, . . . , ⌊αk−1 ln(p)⌋, ⌊p1−αk−2⌋

)
or
⋃

i≤ℓ2
Y

(s)
i \ B

(s)
i is

an independent set of G for s ≤ k − 1, where p = 1
4(k−1) · ℓ2m. Since αk−1 ln(p) > c ln(n),

p1−αk−2
> n1−2

√
c and since G has no copy of K+

k−1

(
⌊c lnn⌋, . . . , ⌊c ln n⌋, ⌊n1−2

√
c⌋
)
, the former case

is ruled out. We can see that the later case implies our statement. �

Now we can find a large infracolourable structure in G, and then use Lemma 4.8 to show that
G is isomorphic to a graph in Gk

ℓ .
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Claim 4.12. G is isomorphic to a graph in the family Gk
ℓ .

Proof. Analogously to the proof of Claim 3.14, we can infer from Claims 4.10 and 4.11, (26) and

(27) thatG[V1 ∪ . . . ∪ Vℓ2 ] together with pairs (D
(s)
i , Y

(s)
i )s≤k−1,i≤ℓ2 form a ( 1

15 , k, ℓ2)-infracolourable

structure. By Lemma 2.3 this implies that e(G[V1 ∪ . . .∪Vℓ2 ]) ≤
(ℓ2
2

)
k−2
k−1m

2 and hence the equality
must occur by the density condition. Appealing to Lemma 2.3 once again, we see that there exists

i0 ∈ {0, 1, . . . , ℓ2} with
∣∣∣Y (s)

i

∣∣∣ = m
k−1 for all s and all i ∈ [ℓ2] \ {i0}, and d(Y

(s)
i , Y

(t)
j ) = 1 for

all s 6= t and 1 ≤ i < j ≤ ℓ2. Hence we can apply Lemma 4.8 with ℓ̃ = ℓ2 − 1 to conclude
that either G contains a copy of K+

k−1

( (ℓ2−1)m
32k2

)
or G is isomorphic to a graph in Gk

ℓ . The former

can not happen since G has no copy of K+
k−1

(
⌊c ln n⌋, . . . , ⌊c ln n⌋, ⌊n1−2

√
c⌋
)
and since (ℓ2−1)m

32k2
>

max{n1−2
√
c, c ln n}. So G must isomorphic to a graph in the family Gk

ℓ . �

This concludes our proof of Theorem 3.2. �

5 Missing proofs

5.1 Proof of Theorem 1.5

In this section we sketch a proof of Theorem 1.5. We follow essentially the proof of Theorem 4.1.
We make the following alterations. Instead of Lemma 4.3 we use a stability result due to Bollobás
and Nikiforov [3, Theorem 9].

Lemma 5.1. Let k ≥ 2 be an integer, and let δ be a positive with δ < 1
16k8

. Suppose that G is

a graph with n > k8 vertices and e(G) ≥
(
k−2
k−1 − δ

) (
n
2

)
edges. Then, either G contains a family

of k−(k+5)nk−2 copies of Kk sharing a common edge, or G contains an induced (k − 1)-colourable

subgraph F of size v(F ) ≥ (1− 2
√
δ)n and minimum degree δ(F ) ≥

(
k−2
k−1 − 4

√
δ
)
n.

We replace Lemma 4.4 by the following embedding result.

Lemma 5.2. Let r ≥ 2 be an integer, and let G be an r-colourable graph with classes W(1), . . . ,W(r)

of the same size h. Suppose that deg(v,W(s)) ≥
(
1 − 1

r2

)
h for s ≤ r and v ∈ ⋃t6=sW(t). Then for

every pair (s, t) with s 6= t, there is an edge between W(s) and W(t) which is contained in 1
2h

r−2

copies of Kr.

Proof. According to Lemma 4.4, G contains at least 1
2h

r copies of Kr. Hence there exists an edge
between W(s) and W(t) which is shared by at least hr/(2h2) = 1

2h
r−2 copies of Kr. �

The remainder of the proof is similar to that of Theorem 4.1.

5.2 Proofs of Proposition 3.5 and Lemma 3.8

To prove Proposition 3.5 we shall require the Erdős-Simonovits stability theorem (Erdős [8] and
Simonovits [22, Theorem 8], and the graph removal lemma (Ruzsa and Szemerédi [21]).
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Theorem 5.3 (Stability theorem). For every graph H and every ε > 0, there exist positive
constants δ = δ(H, ε) and C = C(H, ε) so that the following holds for every integer n ≥ C. Every

n-vertex H-free graph with at least
(
χ(H)−2
χ(H)−1 − δ

) (n
2

)
edges contains a (χ(H)−1)-colourable subgraph

of order at least (1− ε)n and minimum degree at least
(
χ(H)−2
χ(H)−1 − ε

)
n.

Theorem 5.4 (Graph removal lemma). For every graph H and every δ > 0, there exists a
positive constant γ = γ(H, δ) such that every graph on n vertices with at most γnv(H) copies of H
can be made H-free by removing from it at most δ

(n
2

)
edges.

Now we can deduce Proposition 3.5 from Theorems 5.3 and 5.4 as follows.

Proof of Proposition 3.5. Let δ = δ5.3(H, ε)/2, γ = min{γ5.4(H, δ), δ} and C = C5.3(H, ε). Since
G contains at most γnv(H) copies of H, Theorem 5.4 shows that G contains an H-free subgraph G′

with e(G′) ≥ e(G) − δ
(n
2

)
. Hence

e(G′) ≥
(
χ(H)− 2

χ(H)− 1
− γ − δ

)(
n

2

)
≥
(
χ(H)− 2

χ(H)− 1
− δ5.3(H, ε)

)(
n

2

)
.

Moreover, v(G′) = n ≥ C = C5.3(H, ε). Therefore, one can apply Theorem 5.3 to obtain a

(χ(H)− 1)-colourable subgraph G′′ of G′ with v(G′′) ≥ (1− ε)n and δ(G′′) ≥
(
χ(H)−2
χ(H)−1 − ε

)
n. �

Proof of Lemma 3.8. Choose D = qd−r and ρ = e−qdrq. Let S be the set of tuples (w1, . . . , wr, A)
where ws ∈ W(s) for all s, and A ∈

(N(w1,...,wr)
q

)
. We find that

|S| =
∑

A∈(Uq )

∏

s≤r

∣∣N(A) ∩W(s)

∣∣ =
∑

(w1,...,wr)

(|N(w1, . . . , wr)|
q

)
. (28)

Moreover, our assumption implies that
∑

(w1,...,wr)

|N(w1, . . . , wr)| =
∑

u∈U

∏

s≤r

deg(u,W(s)) ≥ dr |U | ·
∏

s≤r

∣∣W(s)

∣∣ . (29)

Note that the function

(
x

q

)
=

{
x(x− 1) · · · (x− q + 1)/q! if x ≥ q − 1,

0 if x < q − 1.

is convex. Thus, we can first apply Jensen’s inequality to the right hand side of (28) and then use
the inequality (29) to obtain |S| ≥

(dr |U |
q

) ∏
s≤r

∣∣W(s)

∣∣. We infer from this and the first identity in

(28) that there is a subset A ∈
(U
q

)
with

∏

s≤r

∣∣N(A) ∩W(s)

∣∣ ≥
(dr |U |

q

)
(|U |

q

) ·
∏

s≤r

∣∣W(s)

∣∣ ≥ e−qdrq ·
∏

s≤r

∣∣W(s)

∣∣ = ρ ·
∏

s≤r

∣∣W(s)

∣∣ ,

where the second inequality holds since
(|U |

q

)
≤
(
e|U |
q

)q
, and

(dr |U |
q

)
≥
(
dr |U |
q

)q
for |U | ≥ D =

qd−r ≥ q. Hence
∣∣N(A) ∩W(s)

∣∣ ≥ ρ
∣∣W(s)

∣∣ for s ≤ r. �

25



6 Concluding remarks

Bollobás [1, Corollary 3.5.4] showed that every n-vertex graph with ⌊n2

4 ⌋+1 edges contains cycles of
lengths from 3 up to ⌊n+3

2 ⌋, and thus strengthened the Mantel theorem. Using techniques developed
in this paper we can prove the following multipartite version of this result; we omit the details.

Theorem 6.1. Let ℓ ≥ 1020, and let G = (V1 ∪ . . . ∪ Vℓ, E) be a balanced ℓ-partite graph on n
vertices such that

d(Vi, Vj) ≥ 1
2 for i 6= j.

Then, G either contains a cycle of length h for each integer h with 3 ≤ h ≤ (12 − 2√
ℓ
)n or is

isomorphic to a graph in G3
ℓ .

The balanced ℓ-partite graph obtained by taking the disjoint union ofKℓ

(
⌊ n
2ℓ⌋ − 1

)
andKℓ

(
⌈ n
2ℓ⌉+1

)

has edge densities between parts strictly greater than 1
2 . However, every cycle of this graph has

length at most 1
2n + 2ℓ = (12 + o(1))n provided ℓ = o(n). Therefore, the bound (12 − 2√

ℓ
)n in the

above result is asymptotically best possible.
A book in a graph is a collection of triangles sharing a common edge. The size of a book

is the number of triangles. Let b(G) be the size of the largest book in a graph G. Generalising

Mantel’s theorem, Erdős [6] showed that every n-vertex graph G with ⌊n2

4 ⌋ + 1 edges satisfies
b(G) ≥ n

6 − O(1). The optimal bound b(G) ≥ ⌊n6 ⌋ was obtained independently by Edwards in
an unpublished manuscript [5], and by Khadžiivanov and Nikiforov in [14]. We wonder whether a
similar result holds for balanced multipartite graphs.

Conjecture 6.2. For every ε > 0, there is a constant C = C(ε) such that the following holds for
ℓ > C. Let G = (V1 ∪ . . . ∪ Vℓ, E) be a balanced ℓ-partite graph on n vertices such that

d(Vi, Vj) >
1
2 for every i 6= j.

Then, b(G) >
(
1
6 − ε

)
n.

According to Theorem 1.5, the above conjecture is true for ε ≥ 1
6 − 3−18.

AssumeH is not an almost colour-critical graph. Theorem 1.3(1) tells us that dℓ(H) ≥ χ(H)−2
χ(H)−1+

1
(χ(H)−1)2(ℓ−1)2

for every ℓ ≥ v(H). Furthermore, this estimate is tight for H = K1,2, as shown in

Remark 3.1. It would be very interesting to have a characterisation of the equality case.
Bondy, Shen, Thomassé and Thomassen [4] determined the value of dℓ(Kk) in the case when

ℓ = k = 3, while Pfender [19] obtained result in the case when ℓ is large enough in terms of k. The
value of dℓ(Kk) is not known in the remaining cases. Nevertheless, when ℓ = k ≥ 4, Pfender [20]
proposed the following conjecture (see [16, Section 5] for more details).

Conjecture 6.3. The critical edge density dk = dk(Kk) satisfies the following recurrence formula:

d2 = 0, d2k(1− dk−1) + dk − 1 = 0 for k ≥ 3.

Finally, we emphasise that there are other interesting multipartite versions of the Turán theo-
rem. For instance, Bollobás, Erdős and Szemerédi [2] introduced the function δr(n) which is the
smallest integer so that every r-partite graph with parts of size n and minimum degree δr(n) + 1
contains a copy of Kr. The exact values of δr(n) was determined completely by Haxell and Szabó
[13] (for odd r), and Szabó and Tardos [23] (for even r) via topological methods.
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