On the Existence of Tree Backbones that Realize the Chromatic Number on a Backbone Coloring

J. Araujo and A. A. Cezar and A. Silva
ParGO Group - Parallellism, Graphs and Optimization
Departamento de Matemática
Universidade Federal do Ceará, Fortaleza, Brazil

October 17, 2018

Abstract

A proper k-coloring of a graph $G=(V, E)$ is a function $c: V(G) \rightarrow$ $\{1, \ldots, k\}$ such that $c(u) \neq c(v)$, for every $u v \in E(G)$. The chromatic number $\chi(G)$ is the minimum k such that there exists a proper k-coloring of G. Given a spanning subgraph H of G, a q-backbone k-coloring of (G, H) is a proper k-coloring c of $V(G)$ such that $|c(u)-c(v)| \geq q$, for every edge $u v \in E(H)$. The q-backbone chromatic number $B B C_{q}(G, H)$ is the smallest k for which there exists a q-backbone k-coloring of (G, H). In this work, we show that every connected graph G has a spanning tree T such that $B B C_{q}(G, T)=\max \left\{\chi(G),\left\lceil\frac{\chi(G)}{2}\right\rceil+q\right\}$, and that this value is the best possible.

As a direct consequence, we get that every connected graph G has a spanning tree T for which $B B C_{2}(G, T)=\chi(G)$, if $\chi(G) \geq 4$, or $B B C_{2}(G, T)=\chi(G)+1$, otherwise. Thus, by applying the Four Color Theorem, we have that every connected nonbipartite planar graph G has a spanning tree T such that $B B C_{2}(G, T)=4$. This settles a question by Wang, Bu, Montassier and Raspaud (2012), and generalizes a number of previous partial results to their question.

1 Introduction

For basic notions and terminology on Graph Theory, the reader is referred to [1]. All graphs in this work are considered to be simple. Because we investigate the existence of a spanning tree with certain property, we also consider only connected graphs. However, for disconnected graphs, the statements hold by replacing "spanning tree" by "spanning forest". A proper k-coloring of a graph G is a function $c: V(G) \rightarrow\{1, \ldots, k\}$ such that $c(u) \neq c(v)$, for every $u v \in$ $E(G)$. If G admits a proper k-coloring, we say that G is k-colorable. The chromatic number of G, denoted by $\chi(G)$, is the smallest positive integer k such that G is k-colorable. Determining the chromatic number of a graph is an

NP-hard problem on Karp's list [10] and one of the most studied problems on Graph Theory 9, 11.

Given a spanning subgraph H of G, and positive integers k and q, a q backbone k-coloring of (G, H) is a proper k-coloring c of G such that $\mid c(u)-$ $c(v) \mid \geq q$, for every $u v \in E(H)$. The q-backbone chromatic number of (G, H), denoted by $B B C_{q}(G, H)$, is the smallest integer k for which (G, H) admits a q-backbone k-coloring.

This parameter was first introduced by Broersma et al. 2] as a model for the frequency assignment problem where certain channels of communication are more demanding than others. In their seminal work, they only considered $q=2$ and they were interested in finding out how far away from $\chi(G)$ can $B B C_{2}(G, H)$ be in the worst case. Concerning trees, for each positive integer k, they defined:

$$
\mathcal{T}_{k}=\max \left\{B B C_{2}(G, T): \chi(G)=k \text { and } T \text { is a spanning tree of } G\right\} .
$$

Note that, if c is a proper $\chi(G)$-coloring of G, then by recoloring each vertex u with color $2 c(u)-1$, we obtain a proper $(2 \chi(G)-1)$-coloring of G where every color is odd. Therefore, we get $B B C_{2}(G, G) \leq 2 \chi(G)-1$. This gives an upper bound of $2 k-1$ for \mathcal{T}_{k}. In [2], they proved that this is actually best possible.

Theorem 1 (Broersma et al. [2]). $\mathcal{T}_{k}=2 k-1$, for every positive integer k.
This means that, between all the k-colorable graphs, there is one that attains this upper bound. However, it does not give any insight on how bad can a tree backbone be for a given graph G. One could then define $\mathcal{T}_{2}(G)$ as the maximum $B B C_{2}(G, T)$, where T is a spanning tree of G. This worst case behaviour has been studied for planar graphs. If G is planar, because $\chi(G) \leq 4$ and the fact that $B B C_{2}(G, G) \leq 2 \chi(G)-1$, we get $\mathcal{T}_{2}(G) \leq 7$. Broersma et al. 3] give examples where $B B C_{2}(G, T)=6$, and conjecture that $\mathcal{T}_{2}(G)=6$. A partial result for their conjecture has been given in [7]. Note that this parameter can be generalized for higher values of q. In [8], Havet et al. prove that, if G is a planar graph, then $\mathcal{T}_{q}(G) \leq q+6$. They also prove that this is best possible if $q \geq 4$, and conjecture that $\mathcal{T}_{3}(G) \leq 8$.

Now, observe that it is not clear whether G always has a spanning tree with a "good" behaviour, i.e., such that $B B C_{q}(G, T)$ is not much larger than $\chi(G)$. Therefore, it makes sense to define the best case behaviour of $B B C_{q}(G, T)$. In [12, Wang, Bu , Montassier and Raspaud asked what is the smallest value β for which the following holds: if G is a nonbipartite planar graph with girth at least β, then G has a spanning tree T such that $B B C_{2}(G, T)=4$. Inspired by their question, we define the following parameter, for a given graph G and a positive integer q :
$\mathcal{B}_{q}(G)=\min \left\{B B C_{q}(G, T): T\right.$ is a spanning tree of $\left.G\right\}$.
Our main result is the following:

Theorem 2. For every graph G and positive integer q,

$$
\mathcal{B}_{q}(G)=\max \left\{\chi(G),\left\lceil\frac{\chi(G)}{2}\right\rceil+q\right\}
$$

This gives us the following value for bipartite graphs:
Corollary 1. If G is bipartite, then $\mathcal{B}_{q}(G)=q+1$.
Considering $q \geq 2$, observe that if G has at least one edge and T is a spanning tree of G, then $B B C_{2}(G, T) \geq 3$, and that $B B C_{2}(G, T)=3$ if, and only if, G is bipartite. Also, observe that, when G is a nonbipartite planar graph, we get that $\max \{\chi(G),\lceil\chi(G) / 2\rceil+2\}$ is always equal to 4 . Therefore, the answer to Wang et al's question is $\beta=3$, i.e., having high girth is not a necessary condition for having the desired spanning tree.

Corollary 2. If G is a nonbipartite planar graph and $q \geq 2$, then $\mathcal{B}_{q}(G)=q+2$. In particular, G always has a spanning tree T for which $B B C_{2}(G, T)=4$.

We mention that this generalizes results in a number of papers: 4, 5, 13, 6, [12]. We also mention that, in [12, Wang et al. wrongly state that β is at least 4 due to the existence of a nonbipartite planar graph G and a spanning tree T of G such that $B B C_{2}(G, T)=6$. However, they fail to notice that, in order for β to be at least 4 , this should hold for every spanning tree of G.

2 Proof of Theorem 2

Roughly, the idea of the proof is to show that any graph G has a nice proper k-coloring, where $k=\max \{\chi(G),\lceil\chi(G) / 2\rceil+q\}$. By nice we mean that the subgraph of G induced by the edges whose endpoint colors differ by at least q form a connected spanning subgraph of G. Then, we select among these edges a spanning tree to form its backbone. Before presenting the main result, let us recall some definitions, and present some new ones.

Consider a proper k-coloring c of a graph G. For $i \in\{1, \ldots, k\}$, the color class i of c is the subset $c_{i}=\{u \in V(G): c(u)=i\}$. Observe that if H is a component of $G\left[c_{i} \cup c_{j}\right]$, a.k.a. Kempe's chain, then the k-coloring c^{\prime} obtained from c by switching colors i and j in $V(H)$ is also a proper k-coloring of G. We denote the set of edges $\{u v \in E(G): u \in V(H)$ and $v \in V(G) \backslash V(H)\}$ by $[H, \bar{H}]$. Given an integer q, and $i \in\{1, \ldots, k\}$, we denote by $[i]_{q}$ the set $\{j \in$ $\{1, \ldots, k\}:|i-j|<q\}$. The q-subgraph of c, denoted by $G_{c, q}$, is the subgraph $\left(V(G), E_{c, q}\right)$, where $E_{c, q}=\{u v \in E(G):|c(u)-c(v)| \geq q\}$. Alternatively, one can see that $u v \in E_{c, q}$ if and only if $c(u) \notin[c(v)]_{q}$ if and only if $c(v) \notin[c(u)]_{q}$. Our upper bound is obtained as a corollary of the following theorem:

Theorem 3. If G is a connected graph and $k \geq \max \{\chi(G),\lceil\chi(G) / 2\rceil+q\}$, then there exists a proper k-coloring c of G such that $G_{c, q}$ is connected.

Proof. Consider $k=\max \{\chi(G),\lceil\chi(G) / 2\rceil+q\}$ and let c be a proper k-coloring of G that uses the following $\chi(G)$ colors: $\left\{1, \ldots, x, x+k^{\prime}+1, \ldots, k\right\}$, where $x=\lceil\chi(G) / 2\rceil$ and $k^{\prime}=k-\chi(G)$. Let H be a component of $G_{c, q}$ with maximum number of vertices. Suppose, without loss of generality, that c maximizes the size of H. We claim that such a coloring c satisfies that $G_{c, q}$ is connected, which means that H is a spanning subgraph of G.

By contradiction, suppose that $V(H) \subset V(G)$, i.e., H does not contain every vertex of G. Since G is connected, there must be an edge $u v \in[H, \bar{H}]$. By the definition of $G_{c, q}$, we know that $[c(u)]_{q} \cap[c(v)]_{q} \neq \emptyset$.

First, suppose that there exists $j \in\{1, \ldots, k\} \backslash\left([c(u)]_{q} \cup[c(v)]_{q}\right)$, and let H^{\prime} be the component of $G\left[c_{j} \cup c_{c(v)}\right]$ containing v. We claim that $V\left(H^{\prime}\right) \cap V(H)=\emptyset$. Suppose otherwise and let $v^{\prime} \in V\left(H^{\prime}\right) \cap V(H)$ be closest to v in H^{\prime}; also, let $w \in N_{H^{\prime}}\left(v^{\prime}\right) \backslash V(H)$ (it exists by the choice of v^{\prime}). By the definition of H^{\prime}, we know that $\left\{c\left(v^{\prime}\right), c(w)\right\}=\{j, c(v)\}$. This contradicts the construction of H since $w v^{\prime} \notin E_{c, q}$ and $j \notin[c(v)]_{q}$. Now, let c^{\prime} be obtained from c by switching colors j and $c(v)$ in H^{\prime}. Because $V\left(H^{\prime}\right) \cap V(H)=\emptyset$, nothing changes in H; additionally, $c^{\prime}(v) \notin\left[c^{\prime}(u)\right]_{q}$, which means that $u v \in E_{c^{\prime}, q}$ and that there is a component in $G_{c^{\prime}, q}$ that strictly contains H, a contradiction to the choice of c.

Now, suppose that

$$
\begin{equation*}
[c(u)]_{q} \cup[c(v)]_{q}=\{1, \ldots, k\}, \text { for all } u v \in[H, \bar{H}] . \tag{1}
\end{equation*}
$$

Recall that c uses the colors that are in the set $\left\{1, \ldots, x, x+k^{\prime}+1, \ldots, k\right\}$, where $k=\max \{\chi(G),\lceil\chi(G) / 2\rceil+q\}, x=\lceil\chi(G) / 2\rceil$ and $k^{\prime}=k-\chi(G)$. We want to prove that $1 \notin[i]_{q}$, for every $i \in\left\{x+k^{\prime}+1, \ldots, k\right\}$, and that $k \notin[i]_{q}$, for every $i \in\{1, \ldots, x\}$. We analyse the cases below.

- $q \geq\lfloor\chi(G) / 2\rfloor$: in this case, $k=x+q$. If $i \in\{1, \ldots, x\}$, then $k-i \geq$ $k-x=x+q-x=q$. In case, $i \in\left\{x+k^{\prime}+1, \ldots, k\right\}$, then $i-1 \geq$ $x+k^{\prime}+1-1=x+k-\chi(G)=x+x+q-\chi(G) \geq q$.
- $q<\lfloor\chi(G) / 2\rfloor$: observe that $k=\chi(G)$ and $k^{\prime}=0$. If $i \in\{1, \ldots, x\}$, then $k-i \geq k-x=\chi(G)-x=\lfloor\chi(G) / 2\rfloor>q$. Similarly, if $i \in\left\{x+k^{\prime}+1, \ldots, k\right\}$, then $i-1 \geq x+k^{\prime}+1-1=x>q$.

Now, consider any edge $u v \in[H, \bar{H}]$. Suppose that $c(u) \leq x$, in which case $k \notin$ $[c(u)]_{q}$; if this is not the case, we get $1 \notin[c(u)]_{q}$ and the argument is analogous. By Equation we get $k \in[c(v)]_{q}$, and therefore $c(v) \geq x+k^{\prime}+1$. Let H^{\prime} be the component of $G\left[c_{k} \cup c_{c(v)}\right]$ containing v. We claim that $V\left(H^{\prime}\right) \cap V(H)=\emptyset$. Suppose otherwise, and let $v^{\prime} \in V\left(H^{\prime}\right) \cap V(H)$ be the closest to v in H^{\prime} and let $w \in N_{H^{\prime}}\left(v^{\prime}\right) \backslash V(H)$. By the choice of H^{\prime}, we know that $\left\{c\left(v^{\prime}\right), c(w)\right\}=\{c(v), k\}$, in which case $1 \notin\left[c\left(v^{\prime}\right)\right]_{q} \cup[c(w)]_{q}$, contradicting Equation 1. Finally, the theorem follows by the same argument used on the previous case.

It remains to prove that this is also a lower bound. Our proof actually holds for any spanning backbone that does not contain isolated vertices.

Lemma 1. If G is a graph and H is a spanning subgraph of G such that $\delta(H) \geq$ 1, then, for every positive integer q the following holds:

$$
B B C_{q}(G, H) \geq \max \left\{\chi(G),\left\lceil\frac{\chi(G)}{2}\right\rceil+q\right\}
$$

Proof. Let H be any spanning subgraph of G with $\delta(H) \geq 1$, and let $k=$ $B B C_{q}(G, H)$. Furthermore, let c be a q-backbone k-coloring of G. Since any q-backbone coloring of (G, H) is also a proper coloring of G, we have that $k \geq \chi(G)$. Now, if either $q \leq\lfloor\chi(G) / 2\rfloor$, or $q \geq\lceil\chi(G) / 2\rceil$ and $k \geq 2 q$, we are done. So, suppose $q \geq\lceil\chi(G) / 2\rceil$ and $k<2 q$, and let $k^{\prime}=2 q-k$. We claim that $[i]_{q}=\{1, \ldots, k\}$, for every $i \in\left\{q-k^{\prime}+1, \ldots, q\right\}$. Because $d_{H}(u) \geq 1$, we know that none of these k^{\prime} colors can be used on u, for every $u \in V(G)$, and the following holds:

$$
k-k^{\prime}=k-2 q+k \geq \chi(G)
$$

This inequality implies that:

$$
k \geq\left\lceil\frac{\chi(G)}{2}\right\rceil+q
$$

It remains to prove our claim. So, let i be any color in $\left\{q-k^{\prime}+1, \ldots, q\right\}$. It suffices to show that $\{1, k\} \subseteq[i]_{q}$. Clearly, $1 \in[i]_{q}$, since $i \leq q$. Also, since $k=2 q-k^{\prime}$ and $i \geq q-k^{\prime}+1$, we get $k-i \leq 2 q-k^{\prime}-q+k^{\prime}-1=q-1$. Thus, $k \in[i]_{q}$ and the lemma follows.

References

[1] A. Bondy, U. Murty, Graph Theory, Graduate Texts in Mathematics, Springer-Verlag London, 2008.
[2] H. Broersma, F. V. Fomin, P. A. Golovach, G. J. Woeginger, Backbone colorings for networks, in: H. L. Bodlaender (Ed.), Graph-Theoretic Concepts in Computer Science, Vol. 2880 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2003, pp. 131-142.
[3] H. Broersma, F. V. Fomin, P. A. Golovach, G. J. Woeginger, Backbone colorings for graphs: Tree and path backbones, Journal of Graph Theory 55 (2) (2007) 137-152.
[4] Y. Bu, X. Bao, Backbone coloring of planar graphs for c_{8}-free or c_{9}-free, Theoretical Computer Science 580 (2015) 50-58.
[5] Y. Bu, Y. Li, Backbone coloring of planar graphs without special circles, Theoretical Computer Science 412 (46) (2011) 6464-6468.
[6] Y. Bu, S. Zhang, Backbone coloring for c_{4}-free planar graphs, Sci. Sin. Math 41 (2011) 197-206.
[7] V. Campos, F. Havet, R. Sampaio, and A. Silva. Backbone colouring: Tree backbones with small diameter in planar graphs. Theoretical Computer Science 487 (2013), 50-64.
[8] F. Havet, A.D. King, M. Liedloff, I. and Todinca. (Circular) backbone colouring: Forest backbones in planar graphs. Discrete Applied Mathematics 169 (2014), 119-134.
[9] T. R. Jensen, B. Toft, Graph Coloring Problems, Wiley-Interscience, New York, 1995.
[10] R. Karp, Reducibility among combinatorial problems, in: R. Miller, J. Thatcher (Eds.), Complexity of Computer Computations, Plenum Press, 1972, pp. 85-103.
[11] M. Molloy, B. Reed, Graph Colouring and the Probabilistic Method, 1st Edition, Springer, 2001.
[12] W. Wang, Y. Bu, M. Montassier, A. Raspaud, On backbone coloring of graphs, Journal of combinatorial optimization 23 (1) (2012) 79-93.
[13] S.-M. Zhang, Y.-H. Bu, Backbone coloring for c_{5}-free planar graphs, J. Math Study 43 (4) (2010) 315-321.

