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Exponentially Many 4-List-Colorings of Triangle-Free Graphs

on Surfaces

Tom Kelly∗† Luke Postle∗‡

February 15, 2016

Abstract

Thomassen proved that every planar graph G on n vertices has at least 2n/9 distinct
L-colorings if L is a 5-list-assignment for G and at least 2n/10000 distinct L-colorings if
L is a 3-list-assignment for G and G has girth at least five. Postle and Thomas proved
that if G is a graph on n vertices embedded on a surface Σ of genus g, then there exist
constants ǫ, cg > 0 such that if G has an L-coloring, then G has at least cg2

ǫn distinct
L-colorings if L is a 5-list-assignment for G or if L is a 3-list-assignment for G and G
has girth at least five. More generally, they proved that there exist constants ǫ, α > 0
such that if G is a graph on n vertices embedded in a surface Σ of fixed genus g, H
is a proper subgraph of G, and φ is an L-coloring of H that extends to an L-coloring
of G, then φ extends to at least 2ǫ(n−α(g+|V (H)|)) distinct L-colorings of G if L is a
5-list-assignment or if L is a 3-list-assignment and G has girth at least five. We prove
the same result if G is triangle-free and L is a 4-list-assignment of G, where ǫ = 1

8 , and
α = 130.

1 Introduction

Let G be a graph with n vertices, and let L = (L(v) : v ∈ V (G)) be a collection of lists
which we call available colors. If each set L(v) is non-empty, then we say that L is a
list-assignment for G. If k is an integer and |L(v)| ≥ k for every v ∈ V (G), then we say
that L is a k-list-assignment for G. An L-coloring of G is a mapping φ with domain V (G)
such that φ(v) ∈ L(v) for every v ∈ V (G) and φ(v) 6= φ(u) for every pair of adjacent
vertices u, v ∈ V (G). We say that a graph G is k-choosable, or k-list-colorable, if G has an
L-coloring for every k-list-assignment L. If L(v) = {1, . . . , k} for every v ∈ V (G), then we
call an L-coloring of G a k-coloring, and we say G is k-colorable if G has a k-coloring.
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If G has an L-coloring, it is natural to ask how many L-colorings G has. In particular,
we are interested in when the number of L-colorings of G is exponential in the number of
vertices. The Four Color Theorem states that every planar graph has a 4-coloring. A plane
graph obtained from the triangle by recursively adding vertices of degree three inside facial
triangles has only one 4-coloring up to permutation of the colors. So in general planar
graphs do not have exponentially many 4-colorings. However, if φ is a k-coloring of G,
then we may assume there is some X ⊆ V (G) with |X| ≥ |V (G)|/k such that for all v ∈ X,
φ(v) = 1. It follows that G has at least 2|V (G)|/k (k + 1)-colorings, because for each subset
of X, we can obtain a unique (k + 1)-coloring of G from φ by coloring it with the color
k + 1. Hence, planar graphs have exponentially many 5-colorings. In [2], Birkhoff and
Lewis obtained an optimal bound on the number of 5-colorings of planar graphs, which is
tight for the graph described above.

Theorem 1.1. [2] Every planar graph on n ≥ 3 vertices has at least 60 · 2n−3 distinct
5-colorings

In [8], Thomassen proved a similar result for graphs on surfaces.

Theorem 1.2. [8] For every surface Σ there is some constant c > 0 such that every
5-colorable graph on n vertices embedded in Σ has at least c · 2n distinct 5-colorings.

In [8, Theorem 2.1], Thomassen gave a shorter proof using Euler’s formula that for
every fixed surface Σ, if a graph G embedded in Σ is 5-colorable, then it has exponentially
many 5-colorings. The argument also applies to 4-colorings of triangle-free graphs and
3-colorings of graphs of girth at least five. We are interested in finding similar results for
list-coloring.

In [6], Thomassen gave his classic proof that every planar graph is 5-choosable. Later,
Thomassen proved that in fact every planar graph has exponentially many 5-list-colorings.

Theorem 1.3. [9] If G is a planar graph on n vertices and L is a 5-list-assignment for
G, then G has at least 2n/9 distinct L-colorings.

In [7], Thomassen proved that every planar graph of girth at least five is 3-choosable.
Later, he proved that in fact every planar graph of girth at least 5 has exponentially many
3-list-colorings.

Theorem 1.4. [10] If G is a planar graph on n vertices of girth at least 5 and L is a
3-list-assignment for G, then G has at least 2n/10000 distinct L-colorings.

An important proof technique is to extend a coloring of a subgraph to the entire graph.
This can be viewed as list-coloring where the precolored vertices have lists of size one. The
following theorem of Postle and Thomas [5, 4] utilizes this technique and extends Theorems
1.3 and 1.4 to graphs on surfaces.
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Theorem 1.5. [5, 4] There exist constants ǫ, α > 0 such that the following holds. Let G
be a graph on n vertices embedded in a fixed surface Σ of genus g, and let H be a proper
subgraph of G. If L is a 5-list-assignment for G, or L is a 3-list-assignment for G and G
has girth at least five, and if φ is an L-coloring of H that extends to an L-coloring of G,
then φ extends to at least 2ǫ(n−α(g+|V (H)|)) distinct L-colorings of G.

A classical theorem of Grőtzsch states that every triangle-free planar graph is 3-
colorable. Hence, every triangle-free planar graph has exponentially many 4-colorings.
Thomassen conjectured in [10] that in fact every triangle-free planar graph has exponen-
tially many 3-colorings. The best progress towards this conjecture is the following result
due to Asadi et al..

Theorem 1.6. [1] Every triangle-free planar graph on n vertices has at least 2
√

n/212

distinct 3-colorings.

Theorem 1.6 can not be extended to list-coloring, since there exist triangle-free planar
graphs that are not 3-choosable. However, it is an easy consequence of Euler’s formula
that every triangle-free planar graph is 4-choosable. Thus, it is natural to ask if a result
analagous to Theorem 1.5 holds for 4-list-coloring triangle-free graphs on surfaces. The
following is our main theorem.

Theorem 1.7. Let G be a triangle-free graph on n vertices embedded in a fixed surface Σ
of genus g, and let L be a 4-list-assignment for G. If H ( G, and φ is an L-coloring of H
that extends to G, then φ extends to 2(n−130(g+|V (H)|))/8 distinct L-colorings of G.

In order to prove Theorem 1.7, we prove a stronger result for which we need the following
definition.

Definition 1.8. Let ǫ, α ≥ 0. Let G be a graph embedded in a surface Σ of Euler genus g,
let H be a proper subgraph of G, and let L be a list-assignment for G. We say that (G,H)
is (ǫ, α)-exponentially-critical with respect to L if for every proper subgraph G′ of G such
that H ⊆ G′, there exists an L-coloring φ of H such that there exists 2ǫ(|V (G′)|−α(g+|V (H)|))

distinct L-colorings of G′ extending φ, but there do not exist 2ǫ(|V (G)|−α(g+|V (H)|)) distinct
L-colorings of G extending φ.

We prove the following theorem, which implies Theorem 1.7.

Theorem 1.9. Suppose (G,H) is (ǫ, α)-exponentially-critical and G is triangle-free. For
all α ≥ 0, if 0 ≤ ǫ ≤ 1

8 , then |V (G)| ≤ 50
(

|V (H)| − 13
5

)

+ 130g.

Proof of Theorem 1.7 assuming Theorem 1.9. Let (G,H) be a minimal counterexample.
Then there exists an L-coloring φ of H that extends to G that does not extend to
2(V (G)|−130(g+|V (H)|))/8 distinct L-colorings of G. By the minimality of G, G is (ǫ, α)-
exponentially-critical, where ǫ = 1

8 and α = 130. Hence, by Theorem 1.9, |V (G)| ≤
50(|V (H)| − 13

5 ) + 130g. Therefore φ does not extend to an L-coloring of G, a contradic-
tion.
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We prove Theorem 1.9 using the method of reducible configurations and discharging.
In this paper, if G is a graph and H ( G, then a reducible configuration of (G,H) is a
nonempty subgraph Q of G − V (H) such that for every 4-list-assignment L of G, every
L-coloring of G − V (Q) extends to at least two distinct L-coloring of G. In Section 2,
we prove that certain reducible configurations do not occur in (ǫ, α)-exponentially-critical
graphs. In Section 3, we prove Theorem 1.9 using discharging.

Finally, we remark that a version of Theorem 1.9 can be proved if ǫ ≤ 1
7 , at the expense

of a worse bound on |V (G)| and a more complicated discharging argument.

2 Reducible Configurations

We first prove that small reducible configurations do not occur in (ǫ, α)-exponentially-
critical graphs.

Proposition 2.1. If (G,H) is (ǫ, α)-exponentially-critical with respect to some 4-list-
assignment L, then (G,H) does not contain any reducible configurations of size at most
1
ǫ .

Proof. Suppose that Q ⊆ G−V (H) is a reducible configuration. We want to show |V (Q)| >
1
ǫ . Since (G,H) is (ǫ, α)-exponentially-critical, there exists an L-coloring φ of H such that

there exists 2ǫ(|V (G)|−|V (Q)|−α(g+|V (H)|)) distinct L-colorings of G− V (Q) extending φ, but
there do not exist 2ǫ(|V (G)|−α(g+|V (H)|)) distinct L-colorings of G extending φ. Since Q
is a reducible configuration, every L-coloring of G − V (Q) extending φ has at least two
extensions to an L-coloring of G. Hence, G has at least 2ǫ(|V (G)|−|V (Q|−α(g+|V (H)|))+1 =
2ǫ(|V (G)|−α(g+|V (H)|))+1−ǫ|V (Q)| distinct L-colorings extending φ. Therefore |V (Q)| > 1

ǫ , as
desired.

We now present our first reducible configuration.

Lemma 2.2. A 4-cycle C ⊆ G− V (H) is a reducible configuration if for all v ∈ V (C), v
has degree at most four in G.

Proof. Let L be some 4-list-assignment for G, and let φ be an L-coloring of G − V (C).
Note that there are two distinct list-colorings of a 4-cycle when every vertex has at least
two available colors. Hence, there are at least two distinct L-colorings of G extending φ,
as desired.

For our next reducible configuration, we need the following definitions.

Definition 2.3. If P is a path, and v ∈ V (P ) is not an end of P , then we say v is an
internal vertex of P . If P ′ is also a path, we say P and P ′ are internally disjoint if they
share no internal vertices.

4



Definition 2.4. We say a path P ⊆ G is a stamen in (G,H) if there exists an end
u ∈ V (G)\V (H) of P such that the degree of u is precisely three in G, and in addition,
every internal vertex of P has degree four and is not in H. If v 6= u is an end of P , then
we say P is a v-stamen.

If v ∈ V (G), let d(v) denote the degree of v in G.

Definition 2.5. We say G′ ⊆ G − V (H) is a poppy of (G,H) if there is some v ∈ V (G′)
such that G′ is the union of v and at least d(v) − 2 internally disjoint v-stamens.

v

v

Figure 1: A v-stamen and a poppy

We next prove that a poppy is a reducible configuration, but first we need the following
definition and a classical theorem of Erdős, Rubin, and Taylor [3].

Definition 2.6. We say G is degree-choosable if for every list-assignment L such that for
all v ∈ V (G), |L(v)| ≥ d(v), G has an L-coloring.

Theorem 2.7. [3] A connected graph G is not degree-choosable if and only if every block
of G is a clique or an odd cycle. Furthermore, if G does not have an L-coloring for some
L with |L(v)| ≥ d(v), then for all v ∈ V (G), |L(v)| = d(v).

Lemma 2.8. If Q is a poppy of (G,H), then Q is a reducible configuration.

Proof. Let Q be a poppy of (G,H). Let L be some 4-list-assignment of G, and let φ be an L-
coloring of G−V (Q). Say Q is the union of v and v-stamens P1, . . . , Pk, where k ≥ d(v)−2.
Let L′ be a list-assignment for Q, where for every u ∈ V (Q), L′(u) = L(u)\{φ(u′) : uu′ ∈
E(G), u′ ∈ V (G)\V (Q− v)}. Let φ1 = φ2 = φ, and let φ1(v) 6= φ2(v) ∈ L′(v).

Note that every connected component of Q−v contains a vertex u of degree three in G,
so |L′(u)| = dQ−v(u) + 1. Therefore by Theorem 2.7, every connected component of Q− v
is L′-colorable. Hence, φ1 and φ2 extend to distinct L-colorings of G, so Q is a reducible
configuration, as desired.

If v ∈ V (G) has degree at most two, then v itself is a poppy. Hence, Lemma 2.8 implies
the following.

5



Corollary 2.9. If v ∈ V (G) has degree at most two, then v is a reducible configuration.

If v ∈ V (G) has degree three, then a v-stamen in (G,H) is a poppy. Hence, Lemma
2.8 implies the following.

Corollary 2.10. If v ∈ V (G)\V (H) has degree three, then a v-stamen is a reducible
configuration of (G,H).

3 Discharging

Before proving Theorem 1.9, we need some definitions. In the following definitions, G is a
graph and H ( G.

Definition 3.1. We say v ∈ V (G) is a k-vertex if d(v) = k, a k+-vertex if d(v) ≥ k, and a
k−-vertex if d(v) ≤ k. If G is embedded in a surface, we define a k-face, a k+-face, and a
k−-face similarly.

Definition 3.2. We say v ∈ V (G) is a major vertex of (G,H) if v is a 5+-vertex, or if
v ∈ V (H).

Definition 3.3. If every vertex of a stamen P of G is incident with a face f , then we say
P is incident with f .

Definition 3.4. If G is 2-cell-embedded in some surface Σ and f is a face of G, then the
boundary of f in Σ is the union of the vertices and edges of a closed walk in G, which we
call the boundary walk of f .

If G is embedded in a surface, we let F (G) denote the set of faces of G. If G is 2-cell-
embedded and f ∈ F (G), we let |f | denote the length of the boundary walk of f . We are
now ready to prove Theorem 1.9.

Proof of Theorem 1.9. Suppose G is a triangle-free graph embedded in a surface Σ of Euler
genus g, H ( G, and (G,H) is (ǫ, α)-exponentially-critical with respect to some 4-list-
assignment L, where 0 ≤ ǫ ≤ 1

8 . Let G1, . . . , Gm be the components of G, and let Hi =
Gi ∩ H. To prove Theorem 1.9, it suffices to show that for all i = 1, . . . ,m, |V (Gi)| ≤
50(|V (Hi)| − 13

5 ) + 130gi when V (Hi) ( V (Gi) and gi is the genus of Gi.
By Proposition 2.1, (G,H) has no reducible configurations of size at most 1

ǫ . Note
that a reducible configuration of (Gi,Hi) is a reducible configuration of (G,H). Thus,
for all i = 1, . . . ,m, (Gi,Hi) has no reducible configurations of size at most 1

ǫ . Hence, it
suffices to show |V (G)| ≤ 50(|V (H)| − 13

5 ) + 130g, where G is a connected triangle-free
graph embedded in a surface Σ of Euler genus g, H ( G, and (G,H) contains no reducible
configurations of size at most 1

ǫ . We may assume G is 2-cell-embedded in Σ, or else we
embed G in a surface of smaller genus.
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v v′

u

Figure 2: An Example of Rule 1

For v ∈ V (G)\V (H), let ch(v) = d(v)−4, and for v ∈ V (H), let ch(v) = d(v)+3γ−1 for
some fixed constant γ > 0 to be determined later. For every f ∈ F (G), let ch(f) = |f |− 4.
By Euler’s formula,

∑

v∈V (G)

ch(v) +
∑

f∈F (G)

ch(f) = (3 + 3γ)|V (H)|+ 4(2g − 2).

Redistribute the charges according to the following rules, and let ch∗ denote the final
charge.

1. Let v be a major vertex, and let u ∈ V (G)\V (H) be a 3-vertex at distance at most
two from v. For every v-stamen P in G with an end at u such that there exists a
4-face f with P incident with f , let v send charge 1

3 + γ to u.

2. Let v be a major vertex, and let u ∈ V (G)\V (H) be a 4-vertex at distance at most
two from v. For each 4-face incident to both u and v, let v send charge 3γ

4 to u.

3. If f is a 5+-face incident to a 3-vertex u ∈ V (G)\V (H), let f send charge 1
3 + γ to u

for every instance of u in the boundary walk of f .

4. If f is a 5+-face incident to a 4-vertex u ∈ V (G)\V (H), let f send charge 3γ
4 to u for

every instance of u in the boundary walk of f .

Figure 2 illustrates an instance of Rule 1. Major vertices are represented as black
circles, and non-major vertices are represented as white circles. There are two v-stamens
and one v′-stamen with ends at u (shown as directed paths), and each is incident with a
4-face. Hence, v sends charge at least 2

3 + 2γ to u and v′ sends charge at least 1
3 + γ to u

under Rule 1.

Claim 3.5. If u ∈ V (G)\V (H) has degree at most four, ch∗(u) ≥ 3γ.

Proof. First suppose u is a 4-vertex. Note that u sends no charge under Rules 1-4. By
Lemma 2.2, every 4-face f incident to u contains a major vertex vf . Therefore, if u is

adjacent to k 4-faces, u receives at least 3kγ
4 charge under Rule 2. By Rule 4, u receives

3(4−k)γ
4 charge from 5+-faces. Hence, u receives at least 3γ charge, as desired.

7



Therefore we may assume u is a 3-vertex. Note that u sends no charge under Rules
1-4. By Lemma 2.2, every 4-face f incident to u contains a major vertex. Hence, for every
4-face f incident to u, there are two internally disjoint stamens P1 and P2 with an end at
u and an end at a major vertex such that every vertex in P1 and P2 is incident to f . Note
that a stamen is incident with at most two 4-faces.

Therefore, if u is adjacent to k 4-faces, u receives at at least k(1+3γ)
3 charge under Rule

1. By Rule 3, u receives (3−k)(1+3γ)
3 charge from 5+-faces. Hence, u receives at least 1+3γ

charge, as desired.

Claim 3.6. If v ∈ V (G)\V (H) has degree at least seven and γ ≤ 2
13 , ch∗(v) ≥ 2

3 − 91γ
4 .

Proof. Let P1 and P2 be distinct v-stamens that are each incident with a 4-face. Suppose
vv′ ∈ E(P1) ∩ E(P2). Then E(P1) ∩ E(P2) = {vv′}, and P1△P2 is a u-stamen of length
at most five, where u is an end of P1, contradicting Corollary 2.10. Hence, P1 and P2 are
internally disjoint. Therefore v sends charge at most d(v)(13 + γ) to 3-vertices under Rule

1. Note that v sends at most d(v)9γ4 charge to 4-vertices under Rule 2. Therefore v sends

charge at most d(v)
(

1
3 + γ + 9γ

4

)

. Since γ ≤ 2
13 ,

ch∗(v) ≥ d(v) − 4− d(v)

(

1

3
+ γ +

9γ

4

)

= d(v)

(

2

3
− 13γ

4

)

− 4 ≥ 2

3
− 91γ

4
,

as desired.

Claim 3.7. If v ∈ V (G)\V (H) has degree six, then ch∗(v) ≥ 2
3 − 35γ

2 .

Proof. Suppose v sends charge at most 4
3 + 4γ to 3-vertices under Rule 1. Note that v

sends at most d(v)9γ4 = 27γ
2 charge to 4-vertices under Rule 2. Hence,

ch∗(v) ≥ 2−
(

4

3
+ 4γ

)

− 54γ

4
=

2

3
− 35γ

2
,

as desired.
Therefore we may assume that v sends greater than 4

3 + 4γ charge to 3-vertices. Then
by Rule 1, there exist at least five v-stamens of G P1, . . . , P5, where ui 6= v is an end
of Pi, and each Pi is incident with a 4-face, fi. Since ǫ ≤ 1

5 , by Corollary 2.10, the
Pi are pairwise internally disjoint. Let Q = ∪4

i=1Pi. We choose P1, . . . , P5 such that
(|V (P1)|, . . . , |V (P5)|) is lexicographically minimum over all v-stamens of G, and subject
to that, |V (Q)| is minimum. Note that Q is a poppy of G. Since ǫ ≤ 1

8 , by Lemma 2.8,
|V (Q)| > 8. Note that for all i = 1, . . . , 5, 2 ≤ |V (Pi)| ≤ 4. Furthermore, if |V (Pi)| = 4,
then v is adjacent to ui, so there exists j < i such that uj = ui and |V (Pj)| = 2.

First we claim that |V (P2)| > 2. Suppose not. Then |V (P1)| = |V (P2)| = 2. If
|V (P3)| = 3, then since v ∈ V (Pi) for all i, |V (Q)| ≤ 8, a contradiction. Therefore for

8



i = 3, 4, 5, |V (Pi)| = 4. Since |V (Q)| is minimum, u3 is either u1 or u2. Hence, |V (Q)| ≤ 8,
a contradiction. Therefore |V (P2)| > 2, as claimed.

We claim that |V (P1)| > 2. Suppose not. Since v ∈ V (Pi) for all i and |V (Q)| > 8,
|V (P4)| = 4. Since |V (Q)| is minimum, u4 = u1. Since |V (Q)| ≤ 8, |V (P3)| = 4. Since
|V (P2)| > 2, u3 = u1. Since |V (Q)| ≤ 8, |V (P2)| = 4. Hence, u2 = u1, contradicting that
u1 has degree three. Therefore |V (P1)| > 2, as claimed.

Thus |V (Pi)| > 2 for all i = 1, . . . , 5. But then |V (Pi)| 6= 4 for all i. Hence, |V (Pi)| = 3
for all i = 1, . . . , 5. Since |V (Q)| > 8 and |V (Q)| is minimum, u1, . . . , u5 are distinct.
For each i = 1, . . . , 5, let wi ∈ V (Pi)\{v, ui}. If there exists i, j such that i 6= j and
wi is adjacent to uj, then uiwuj is a ui-stamen, contradicting Corollary 2.10. Therefore
w1, . . . , w5 are distinct, and since the u1, . . . , u5 are distinct, f1, . . . , f5 are distinct. But
each wi is incident with at least two 4-faces that are incident to v. Since v is incident with
at most six 4-faces, there exists some face f incident to v such that for all i = 1, . . . , 5,
f 6= fi and wi is incident with f . Therefore for some i 6= j, wi = wj , a contradiction. This
completes the proof.

Claim 3.8. If v ∈ V (G)\V (H) has degree five, then ch∗(v) ≥ 1
3 −

53γ
4 .

Proof. Suppose v sends charge at most 2
3 + 2γ to 3-vertices under Rule 1. Note that v

sends at most d(v)9γ4 = 45γ
4 charge to 4-vertices under Rule 2. Hence,

ch∗(v) ≥ 1−
(

2

3
+ 2γ

)

− 45γ

4
=

1

3
− 53γ

4
,

as desired.
Therefore we may assume that v sends greater than 2

3 + 2γ charge to 3-vertices. Then
by Rule 1, there exist v-stamens P1, P2, and P3, where ui 6= v is an end of Pi, and each Pi

is incident with a 4-face, fi. Since ǫ ≤ 1
5 , by Corollary 2.10, the Pi are pairwise internally

disjoint.
We choose P1, P2, and P3 such that (|V (P1), |V (P2)|, |V (P3)|) is lexicographically min-

imum over all v-stamens of G. Let Q = ∪3
i=1Pi. Note that Q is a poppy of G. Since

ǫ ≤ 1
8 , by Lemma 2.8, |V (Q)| > 8. Note that for all i = 1, 2, 3, 2 ≤ |V (Pi)| ≤ 4. Further-

more, if |V (Pi)| = 4, then v is adjacent to ui, so there exists j < i such that uj = ui and
|V (Pi)| = 2. Since v ∈ V (Pi) for all i and |V (Q)| > 8, |V (P1)| + |V (P2)| + |V (P3)| > 10.
Since |V (P2)|, |V (P3)| ≤ 4, |V (P1)| > 2. Hence, |V (Pi)| = 3 for all i = 1, 2, 3. Then
|V (Q)| ≤ 7, a contradiction. This completes the proof.

Claim 3.9. If v ∈ V (H) and γ ≤ 2
13 , then ch∗(v) ≥ min{3γ, 13 −

7γ
2 }.

Proof. If v is a 1-vertex, then since G is simple, v is not incident to a 4-face unless G is
the path of length three. Since H is a proper subgraph of G, there is a vertex of degree
at most two in V (G)\V (H), contradicting Corollary 2.9. Therefore G is not the path of
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length three, so v is not incident to a 4-face. Hence, v sends no charge under Rules 1-4, so
ch∗(v) ≥ 3γ, as desired.

Therefore we may assume d(v) ≥ 2. Since ǫ ≤ 1
5 , by Corollary 2.10, if P1 and P2

are distinct v-stamens that are each incident with a 4-face, then P1 and P2 are internally
disjoint. Therefore v sends charge at most d(v)(13 + γ) to 3-vertices under Rule 1. Note

also that v sends charge at most d(v)9γ4 to 4-vertices under Rule 2. Therefore,

ch∗(v) ≥ d(v) + 3γ − 1− d(v)

(

1

3
+ γ +

9γ

4

)

= d(v)

(

2

3
− 13γ

4

)

+ 3γ − 1 ≥ 1

3
− 7γ

2
,

as desired.

Claim 3.10. If f ∈ F (G) and γ ≤ 1
15 , then ch∗(f) ≥ 0.

Proof. Let f ∈ F (G). If |f | = 4, then f sends no charge under Rules 1-4. Therefore
ch∗(f) ≥ 0, as desired.

Suppose |f | ≥ 8. Under Rule 3, f sends charge at most |f |(13 + γ) to 3-vertices. Under

Rule 4, f sends charge at most |f |3γ4 to 4-vertices. Since γ ≤ 1
15 , f sends charge at most

|f |
(

1

3
+ γ +

3γ

4

)

≤ 27|f |
60

<
1

2
|f |.

Hence, ch∗(f) ≥ |f | − 4− |f |
2 = |f |

2 − 4 ≥ 0, as desired.
Suppose 5 < |f | < 8. By Corollary 2.10, since ǫ ≤ 1

2 , G does not contain adjacent

3-vertices. Therefore f is incident to at most ⌊ |f |2 ⌋ 3-vertices. Since G is triangle-free and
|f | < 8, each 3-vertex appears at most once in the boundary walk of f . Hence, f sends

charge at most |f |
2

(

1
3 + γ

)

to 3-vertices under Rule 3. Under Rule 4, f sends charge at

most |f |3γ4 to 4-vertices. Therefore f sends charge at most

|f |
2

(

1

3
+ γ

)

+ |f |3γ
4

= |f |
(

1

6
+

γ

2
+

3γ

4

)

= |f |
(

2 + 15γ

12

)

.

Since γ ≤ 1
15 , f sends at most |f |

4 charge. Hence, ch∗(f) ≥ |f | − 4 − |f |
4 = 3|f |

4 − 4 ≥ 0, as
desired.

Suppose |f | = 5. Since G is triangle-free, each vertex appears at most once in the
boundary walk of f . If f is not incident to any 3-vertices, then f sends charge at most
5(3γ4 ) ≤ 1

4 under Rules 3 and 4, so ch∗(f) ≥ 0, as desired. If f is incident to precisely

one 3-vertex, then f sends charge at most 1
3 + γ + 4(3γ4 ) = 1

3 + 4γ ≤ 3
5 under Rules 3

and 4, as desired. If f is incident to precisely two 3-vertices, then f sends charge at most
2
3 + 2γ + 3(3γ4 ) = 2

3 + 17γ
4 ≤ 57

60 under Rules 3 and 4, as desired. Since ǫ ≤ 1
2 , G does

not contain adjacent 3-vertices by Corollary 2.10. Hence, f is incident to at most two
3-vertices, so the proof is complete.
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By Claims 3.5, 3.6, 3.7, 3.8, and 3.9, if γ ≤ 1
15 , then for all v ∈ V (G), ch∗(v) ≥

min{3γ, 23 −
91γ
4 , 13 −

53γ
4 }. So if γ = 4

195 , then ch∗(v) ≥ 4
65 for all v ∈ V (G), and by Claim

3.10, for all f ∈ F (G), ch∗(f) ≥ 0. Therefore

4

65
|V (G)| ≤

∑

v∈V (G)

ch∗(v) +
∑

f∈F (G)

ch∗(f) =

(

199

65

)

|V (H)|+ 4(2g − 2).

Hence,

|V (G)| ≤ 199

4
|V (H)|+ 65(2g − 2) ≤ 50

(

|V (H)| − 13

5

)

+ 130g,

as desired.
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