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DYNAMIC CHOOSABILITY OF TRIANGLE-FREE GRAPHS AND SPARSE

RANDOM GRAPHS

JAEHOON KIM AND SEONGMIN OK

Abstract. The r-dynamic choosability of a graph G, written chr(G), is the least k such that

whenever each vertex is assigned a list of at least k colors a proper coloring can be chosen from

the lists so that every vertex v has at least min{dG(v), r} neighbors of distinct colors. Let ch(G)

denote the choice number of G. In this paper, we prove chr(G) ≤ (1 + o(1))ch(G) when ∆(G)
δ(G)

is

bounded. We also show that there exists a constant C such that the random graph G = G(n, p)

with 6 log(n)
n

< p ≤ 1
2
almost surely satisfies ch2(G) ≤ ch(G)+C. Also if G is a triangle-free regular

graph, then we have ch2(G) ≤ ch(G) + 86.

1. Introduction

The Secret Sharing Scheme is a method to distribute an important key or secret amongst a group

of people, each of whom is assigned a share of the data. Retrieving the full information requires

certain number of distinct shares, called the threshold, to be collected. Let us say the proximity

between the participants are modeled by a graph. To ensure quick access to the key whenever

needed, we want the retrieval be achievable in the neighborhood of each vertex. The problem of

finding how many distinct shares in total are necessary can be expressed in terms of the r-dynamic

coloring defined below.

In a communication network, two adjacent computers must be assigned different resources. To

make many resources accessible, each computer need to be able to obtain many resources amongst

its neighbors. However, expecting all neighbors of each computer to have distinct resources demands

too many types of resources. Alternatively, we can specify a threshold r such that for a computer

with d neighbors must have access to at least min{r, d} distinct types of resources in its neighbors.

We ask how many types of resources are required in this model by considering r-dynamic coloring

defined below.

For k ∈ N, we denote [k] := {1, . . . , k}. For a graph G and a vertex v ∈ V (G), we denote NG(v)

to be the set of neighbors of v in G and dG(v) := |NG(v)|. Let ∆(G) := maxv∈V (G){dG(v)}, δ(G) :=

minv∈V (G){dG(v)}. For d ∈ N, we say a graph is d-regular if ∆(G) = δ(G) = d. In this paper, log

denote the natural logarithm.

A proper k-coloring of a graph G is an assignment f : V (G) −→ C with a set C of k colors such

that f(u), f(v) are different whenever u, v are adjacent in G. The smallest number k such that a
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proper k-coloring of G exists is called the chromatic number of G, denoted by χ(G), which is one

of the most important graph parameters.

The concept of the dynamic coloring was first introduced by Montgomery [16]. For given r, k ∈ N,

an r-dynamic k-coloring f of a graph G is a proper k-coloring with the additional assumption that

|f(N(v))| ≥ min{r, d(v)} for each vertex v.

The r-dynamic chromatic number of G, denoted by χr(G), is defined as the smallest number k

such that an r-dynamic k-coloring of G exists. A dynamic coloring and the dynamic chromatic

number of a graph G refer to a 2-dynamic coloring and the 2-dynamic chromatic number of G,

respectively.

For a given graph G, the square G2 of G denote the graph obtained from G by adding all

edges joining two nonadjacent vertices sharing a common neighbor. Coloring the square of a

graph has been extensively studied both combinatorially and algorithmically with applications in

communication network. One of the motivations of r-dynamic coloring is that it gives a spectrum

between chromatic numbers χ(G) and χ(G2) because of the following observation:

χ(G) ≤ χ2(G) ≤ χ3(G) ≤ · · · ≤ χ∆(G)(G) = χ(G2).

In [16], Montgomery conjectured the following:

Conjecture 1.1. If G is a regular graph, then χ2(G) ≤ χ(G) + 2.

Conjecture 1.1 was proven for several classes of regular graphs, such as bipartite regular graphs

[2], claw-free graphs [16] and graphs with diameter at most 2 and chromatic number at least 4 [5].

For every d-regular graph G, Alishahi [5] provided an upper bound with additional logarithmic

term: χ2(G) ≤ χ(G) + 14.06 log d + 1. Ahadi et al. [1] posed the following conjecture, which

generalizes Conjecture 1.1.

Conjecture 1.2. If G has maximum degree ∆ and minimum degree δ, then χ2(G) ≤ χ(G)+⌈∆
δ
⌉+1.

Recently, Bowler et al. [8] found a counterexample for Conjecture 1.1 by constructing a d-

regular graph with χr(G) = rχ(G) for large d. In this paper, we consider list-coloring-variation of

Conjecture 1.2 for certain classes of graphs.

The r-dynamic choosability of a graph G, denoted by chr(G), is the least positive integer k such

that the following holds:

for any given sets L(v) for each vertex v ∈ V (G) with |L(v)| ≥ k, there exists an r-dynamic

coloring f : V (G) →
⋃

v∈V (G) L(v) such that f(v) ∈ L(v) for all v ∈ V (G).

Akbari et al. [3] proved ch2(G) ≤ ∆(G)+1 when ∆(G) ≥ 3 and no component is the 5-cycle C5.

Kim and Park [14] proved ch2(G) ≤ 4 if G is planar with girth at least 7, and ch2(G) ≤ k if k ≥ 4

and ∆(G) ≤ 4k
k+2 . Kim et al. [15] proved χ2(G) ≤ 4 if G is planar and no component of G is C5;

also, they proved ch2(G) ≤ 5 if G is planar.

Similarly to Conjecture 1.1, Akbari et al. [3] conjectured that ch2(G) ≤ max{ch(G), χ2(G)}.

However, Esperet [10] constructed a graph Gk for each k ≥ 3 such that χ2(Gk) = ch(Gk) = 3

whereas ch2(Gk) ≥ k, thereby disproving Akbari’s conjecture. All of Esperet’s examples are 2-

degenerate and ch(Gk) = 3. In Section 2, we construct a more robust class of counterexamples of

the conjecture. To be specific, we construct graphs G with small χ(G) and ch(G) such that all the
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value of chr(G)− χr(G), χr(G)− ch(G) and δ(G) are all arbitrarily large. These graphs show that

finding a good bound on chr(G) using the values of χ(G), ch(G) and χr(G) for general graph G

may be difficult. However, our graphs is far from regular as ∆(G)− δ(G) is big.

Our main result, Theorem 1.3, proves an upper bound on the r-dynamic choosability of almost

regular graphs in terms of ch(G) and ∆(G)
δ(G) .

Theorem 1.3. Suppose r, s, ℓ ∈ N with s ≥ r − 1 and r ≥ 2. Suppose that G is a graph with

∆(G) = ∆, δ(G) = δ, ch(G) = ℓ. If

((r + 1) log(∆) + (r − 1) log(r) + 1)

(

ℓ+ s

s

)r−1

≤ δ,

then we have

chr(G) ≤ ch(G) + s+ r − 2.

One implication of Theorem 1.3 is Corollary 4.3: there exists a constant C such that almost all

n-vertex graphs with average degree at least 6 log(n) satisfies ch2(G) ≤ ch(G) + C. Note that if

there is an edge in NG(v), then NG(v) is non-monochromatic in any proper coloring of G. Thus

ch(G(n, p)) = ch2(G(n, p)) almost surely holds for p ≫ n− 2
3 since neighborhoods of all vertices

contain an edge in G(n, p). On the other hand, for p ≪ n− 2
3 , almost surely the neighborhoods of

all vertices are independent, so the problem is not trivial. However, Corollary 4.3 gives an upper

bound for the dynamic choosability of G(n, p) for all p ≥ 6 log(n)
n

.

Another implication of Theorem 1.3 is Theorem 4.4: if G is a triangle-free graph with δ(G) ≥

6 log(∆(G))+2, then ch2(G) ≤ ch(G)+ 86∆(G)
δ(G) . As mentioned before, the vertices with independent

neighborhoods are dangerous for dynamic coloring, so that the triangle-free graphs are difficult to

color dynamically. However, Theorem 4.4 gives us a good upper bound for triangle-free graphs in

a form similar to Conjecture 1.2.

2. Graphs of large r-dynamic choosability

We shall start with introducing the notion of r-strong coloring of a hypergraph. Let G be a

graph and let H(G) be the hypergraph on V (G) with the edge set {N(v) : v ∈ V (G)}. We say that

a vertex coloring of H(G) is r-strong if each edge e of H have at least min{r, |e|} distinct colors.

We define χr(H) be the least k such that there exists an r-strong k-coloring of H. The r-strong

choosability of H, which we denote by chr(H), is the least k such that an r-strong coloring can be

chosen from the lists whenever each vertex of H is assigned a list of at least k colors. The incidence

graph of a hypergraph H is the graph G with V (G) = V (H) ∪ E(H) and E(G) = {ve : v ∈ e, v ∈

V (H), e ∈ E(H)}. The following observation is obvious.

Observation 2.1. If G is the incidence graph of a hypergraph H, then χr(G) ≥ χr(H), and

chr(G) ≥ chr(H).

Theorem 2.2. For m,k, r ∈ N with k ≥ r ≥ 2, there exists a bipartite graph G with

chr(G)− χr(G) ≥ m, χr(G)− ch(G) ≥ m, and ch(G) ≤ k + 1.
3



Proof. Consider a (k − r + 2)-uniform hypergraph H with ch(H) − χ(H) ≥ m + r2 + 2r − 2 and

χ(H) > m+ k. It is well known that such a hypergraph exists. For example, see [11] to check that

a large complete (m+ 2k)-partite (k − r + 2)-uniform hypergraph suffices.

We take a set of r− 2 vertices X disjoint from V (H), and replace every edge e of H with e∪X

to get H ′. It is easy to check chr(H ′)− χr(H ′) ≥ ch(H)− (χ(H) + r − 2) ≥ m+ r2 + r. We may

assume that the number of vertices in H ′ is a multiple of k by adding some isolated vertices. Now

we add r disjoint perfect matchings M1,M2, · · · ,Mr to H ′, then this may increase χr(H ′) by at

most r2, so we still have chr(H ′) − χr(H ′) ≥ m + r. Let G be the incidence graph of H ′, and let

{A,B} be the bipartition of G such that A = V (H ′), B = E(H ′).

Since G is k-degenerate, ch(G) ≤ k+1. By Observation 2.1, χr(G) ≥ χr(H ′) > m+ k. We shall

take an r-strong χr(H ′)-coloring f of H ′, and let α1, α2, · · · , αr be new colors not used by f . We

define a coloring g of G as follows.

g(v) :=







f(v) if v ∈ A

αi if v ∈ Mi ∩B for some i, 1 ≤ i ≤ r

αr otherwise

Since the colors used by B are not used by A, the coloring g is a proper coloring. The neighbor-

hood of each vertex in B contains at least r vertices of different colors because f is an r-strong color-

ing. Also, the neighborhood of each vertex in A contains vertices with colors α1, α2, · · · , αr since it is

covered by each of M1,M2, · · · ,Mr. Thus g is an r-dynamic coloring of G, and χr(G) ≤ χr(H ′)+r.

However, we have chr(G) ≥ chr(H) by Observation 2.1. Thus we conclude

chr(G)− χr(G) ≥ m, χr(G)− ch(G) ≥ m, and ch(G) ≤ k + 1.

�

3. Proof of Theorem 1.3

Before proving Theorem 1.3, we introduce the following simple lemma. For a hypergraph H, we

say a set T in V (H) is a transversal of H if T intersects all edges of H. If T is a transversal of H

with |T | = r, then we say it is an r-transversal. For a hypergraph H, let τ(H) be the minimum size

of a transversal of H. Note that for r′ ∈ [n] the number of r′-transversals of an n-vertex hypergraph

H is zero if and only if r′ < τ(H).

Lemma 3.1. For r ∈ N and a k-uniform hypergraph H, there are at most kr distinct r-transversals

of H.

Proof. We use induction on r. Take a smallest natural number r such that the lemma doesn’t hold.

We may assume that E(H) 6= ∅.

If r = 1, then we choose an arbitrary edge e ∈ E(H). Then any 1-transversal T must satisfy

T ⊆ e and |T | = 1. Thus H has at most k distinct 1-transversals.

Assume r > 1. Let e = {v1, v2, · · · , vk} ∈ E(H). For each i ∈ [k], we consider the hypergraphs

Hi = H − vi. By the induction hypothesis, for each i ∈ [k], the number of (r − 1)-transversals of

Hi is at most ti ≤ kr−1. Note that if A is an r-transversal of H and vi ∈ A ∩ e, then A− vi is an
4



(r−1)-transversal of Hi. Thus the number of r-transversals of H is at most
∑k

i=1 ti ≤ k ·kr−1 ≤ kr.

It is a contradiction to the choice of r, thus the lemma holds. �

We also know the following simple bound by a slight modification of Theorem 2.1 from [12].

Theorem 3.2. If a graph G has maximum degree ∆, then

chr(G) ≤ r∆+ 1.

Now we prove our main result, Theorem 1.3.

Proof of Theorem 1.3. The theorem is trivial from Theorem 3.2 if ℓ+ s+ r− 2 ≥ r∆+1. Thus we

may assume ℓ+s+ r−2 ≤ r∆. Consider a list assignment Lv of ℓ+s+ r−2 colors for every vertex

v ∈ V (G). For each v ∈ V (G), we choose a sub-list L′
v ∈

(

Lv

ℓ

)

uniformly at random. We consider

H, the neighborhood hypergraph of G, defined as

V (H) = V (G), E(H) = {NG(v) : v ∈ V (G)}.

Note that each edge of H intersects at most ∆2 other edges since ∆(G) ≤ ∆.

We shall use the Lovász Local Lemma to show that there is a choice of sublists L′
v such that

each list coloring f with f(v) ∈ L′
v yields an r-strong coloring of H. Since |L′

v| = ℓ = ch(G)

for all v ∈ V (G), we can find a proper coloring of G from this list assignment, which becomes

automatically an r-dynamic list coloring of G.

For each v ∈ V (G), let Hv and H ′
v be the hypergraphs defined on the colors such that

V (Hv) =
⋃

w∈NG(v)

Lw and E(Hv) = {Lw : w ∈ NG(v)},

V (H ′
v) =

⋃

w∈NG(v)

L′
w and E(H ′

v) = {L′
w : w ∈ NG(v)}.

We consider the following event Av.

(3.1) Av : τ(H ′
v) ≤ r − 1.

Let us estimate the probability Pr(Av). Fix a vertex v and let NG(v) = {u1, u2, · · · , udG(v)}. For

an (r − 1)-transversal P of Hv and i ∈ [dG(v)], the probability that L′
ui

intersect P is at most

1−

(ℓ+s+r−2−|P∩Lui
|

ℓ

)

(

ℓ+s+r−2
ℓ

) ≤ 1−

(

ℓ+s−1
ℓ

)

(

ℓ+s+r−2
ℓ

) .

Let Bv(P ) be the event that P is a transversal of H ′
v. In other words, P intersects every edge of H ′

v.

Since the choice of L′
u and the choice of L′

w are independent for two distinct vertices u,w ∈ NG(v),

we have

Pr(Bv(P )) ≤

dG(v)
∏

i=1

(

1−

(

ℓ+s−1
ℓ

)

(

ℓ+s+r−2
ℓ

)

)

≤

(

1− (
s

ℓ+ s
)r−1

)δ

< e−δ( s

ℓ+s
)r−1

Let T be the set of all (r − 1)-transversals of Hv, then by Lemma 3.1, |T| ≤ (ℓ+ s+ r − 2)r−1.

Since every edge of H ′
v is a subset of an edge of Hv, every (r− 1)-transversal of H ′

v also belongs to
5



T. Note that τ(H ′
v) ≤ r − 1 if and only if there exists a set P ∈ T which is a transversal of H ′

v.

Thus for all v ∈ V (G),

Pr(Av) ≤
∑

P∈T

Pr(Bv(P )) < (ℓ+ s+ r − 2)r−1e−δ( s

ℓ+s
)r−1

However, events Av is mutually independent of the set {Au : NG(v)∩NG(u) = ∅} of events. So each

event Av is mutually independent of all but at most ∆2 of other events Au. Since ((r+1) log(∆)+

(r − 1) log(r) + 1)( ℓ+s
s
)r−1 ≤ δ, for each v ∈ V (G) we have

e∆2Pr(Av) < e∆2(ℓ+ s+ r − 2)r−1e−δ( s

ℓ+s
)r−1

≤
e∆2(ℓ+ s+ r − 2)r−1

err−1∆r+1
≤ 1.

By the Lovász Local Lemma, there is a choice of sublists L′
v which avoids all the events Av si-

multaneously. Since |L′
v| = ch(G) for every v ∈ V (G), there exists a proper coloring f of G such

that f(v) ∈ L′
v. Moreover, f(NG(v)) is a transversal of H ′

v, thus |f(NG(v))| ≥ r as τ(H ′
v) ≥ r.

Therefore, the coloring f is in fact a r-dynamic list coloring of G, and chr(G) ≤ ℓ+ s+ r − 2. �

4. Consequences of Theorem 1.3

Theorem 1.3 immediately implies the following corollary, which shows that chr(G) ≤ (1 +

o(1))ch(G) for graphs G with bounded ∆(G)
δ(G) .

Corollary 4.1. For given ε > 0, r ∈ N \ {1} and k ≥ 1, there exists ℓ0 = ℓ0(r, k, ε) such that the

following holds. Suppose that G is a graph with ∆(G) = ∆, δ(G) = δ and ∆
δ
≤ k. If ch(G) ≥ ℓ0,

then

chr(G) ≤ (1 + ε)ch(G).

Proof. Let ch(G) = ℓ. It is enough to prove that if ℓ ≥ 62rr3rk2 then

chr(G) ≤ ℓ+ ⌈(3krℓr−2 log(ℓ))
1

r−1 ⌉+ r − 2.

If G is an odd cycle or a clique, then the inequality is trivial. So we may assume ℓ ≤ ∆. Now

we choose s = ⌈(3krℓr−2 log(ℓ))
1

r−1 ⌉. Since ℓ ≥ 62rr3rk2, we have ℓ
log(ℓ) ≥ 6rr2r−1k which implies

r2s
ℓ

≤ 1
3 . We need to verify the condition ((r + 1) log(∆) + (r− 1) log(r) + 1)( ℓ+s

s
)r−1 ≤ δ to apply

Theorem 1.3. Note that

((r + 1) log(∆) + (r − 1) log(r) + 1) ≤ (1 +
1

r + 1
)(r + 1) log(∆) ≤

4

3
(r + 1) log(∆),

since ∆ ≥ ℓ ≥ r3r. We also have

(
ℓ+ s

s
)r−1 ≤ (1 +

rs

ℓ
+

r2s2

ℓ2
+ · · ·+

rr−1sr−1

ℓr−1
)(
ℓ

s
)r−1 ≤ (1 +

r2s

ℓ
)(
ℓ

s
)r−1 ≤

4

3
(
ℓ

s
)r−1.

Hence, it is enough to show
16

9
(r + 1) log(∆)(

ℓ

s
)r−1 ≤

∆

k
≤ δ,

which follows from

3kr(
ℓ

s
)r−1 ≤

ℓ

log(ℓ)
≤

∆

log(∆)
.

Thus we can apply Theorem 1.3 to conclude the theorem. �
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Corollary 4.2. Let G be a graph with ∆(G) = ∆ and δ(G) = δ. If ((r+1) log(∆)+(r−1) log(r)+

1)(ch(G) + 1)r−1 ≤ δ, then

chr(G) ≤ ch(G) + r − 1.

In particular, if r = 2, then (3 log(∆) + 2)(ch(G) + 1) ≤ δ implies ch2(G) ≤ ch(G) + 1.

In [4], Alon mentioned Kahn’s proof that shows almost surely ch(G(n, 12)) = (1 + o(1)) n
2 log(n) .

Also, in [6], Alon, Krivelevich and Sudakov showed that there exists an absolute constant c1, c2
such that the random graph G(n, p) almost surely satisfies c1

np
log(np) ≤ ch(G(n, p)) ≤ c2

np
log(np) for

all 2
n
< p ≤ 1

2 . Since G(n, p) with p > 6 log(n)
n

almost surely satisfies ∆(G(n,p))
δ(G(n,p)) ≤ 12, these facts

combined with Theorem 1.3 show the following.

Corollary 4.3. There exists an absolute constant C such that for any
6 log(n)

n
< p = p(n) ≤ 1,

G = G(n, p) almost surely satisfies ch2(G) ≤ ch(G) + C.

Proof. Note that if p > 1/2, then with high probability, NG(v) contains an edge for all v ∈ V (G).

Thus ch2(G) = ch(G) almost surely holds. So, we may assume that p ≤ 1/2.

Simple calculation with Chernoff bound shows that the random graph G = G(n, p) almost surely

satisfies np−
√

4pn log(n) ≤ δ(G) ≤ ∆(G) ≤ np+
√

4pn log(n). Thus, for p > 6 log(n)
n

, we have

np/6 ≤ δ(G) ≤ ∆(G) ≤ 2np.

So we almost surely have
np

30 log(np)
≤

δ(G)

4 log(∆)
.

Let s = ⌈40c2⌉ where c2 is the constant in [6] (see paragraph preceding Corollary 4.3) such that

ch(G) ≤ c2np
log(np) , so that almost surely we have

ch(G) + s

s
= 1 +

ch(G)

s
≤

np

30 log(np)
≤

δ(G)

3 log(∆(G)) + 2
.

Thus

(3 log(∆) + log(2) + 1)

(

ch(G) + s

s

)

≤ δ.

Hence, Theorem 1.3 implies that almost surely we have that ch2(G) ≤ ch(G) + s. �

In [13], Johansson proved ch(G) ≤ 9∆(G)
log2(∆(G)) ≤

13∆(G)
log(∆(G)) for all triangle-free graph G. Johansson’s

result combined with our Theorem 1.3 shows the following.

Theorem 4.4. Let G be a triangle-free graph with ∆(G) = ∆ and δ(G) = δ. If δ ≥ 6 log(∆) + 2,

then

ch2(G) ≤ ch(G) +
86∆

δ
.

In particular, if G is a regular graph, then ch2(G) ≤ ch(G) + 86.

Proof. Since ch2(G) ≤ 2∆(G)+1 by Theorem 3.2, we may assume ∆ ≥ δ ≥ 43. Thus every regular

graph in our consideration satisfies δ ≥ 9 log(∆)+6. Let s = 86∆
δ

and we apply Theorem 1.3. Note

that 13 ≤ 4 log(43).
7



We only have to check (3 log(∆) + 2) ch(G)+s
s

≤ δ. Since ch(G) ≤ 13∆
log(∆) ,

(3 log(∆)+2)(1+
ch(G)

s
) ≤ (3 log(∆)+2)+(3 log(∆)+2)

13δ

86 log(∆)
≤

δ

3
+

(

39 log(∆) + 26

86 log(∆)

)

δ ≤ δ.

Thus by Theorem 1.3, ch2(G) ≤ ch(G) + 86∆
δ

. �

More generally, Vu [17] proved that there exists a positive constant K such that for any graph

G, if G[NG(v)] contains at most ∆2

f
edges for all v ∈ V (G), then ch(G) ≤ K∆

log(f) . By using this as

in the proof of Theorem 4.4, we get the following.

Corollary 4.5. Let G be a graph with ∆(G) = ∆, δ(G) = δ > 0. Then, there exists a constant

K ′ satisfying the following. If for each v ∈ V (G), the neighborhood G[NG(v)] contains at most ∆2

f

edges, then

ch2(G) ≤ ch(G) +
K ′∆ log(∆)

δ log(f)
.
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