
χ-bounds, operations and chords

Lan Anh Pham∗ and Nicolas Trotignon†

December 27, 2018

Abstract

A long unichord in a graph is an edge that is the unique chord
of some cycle of length at least 5. A graph is long-unichord-free if it
does not contain any long-unichord. We prove a structure theorem
for long-unichord-free graph. We give an O(n4m)-time algorithm to
recognize them. We show that any long-unichord-free graph G can be
colored with at most O(ω3) colors, where ω is the maximum number
of pairwise adjacent vertices in G.
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1 Introduction

In this article, all graphs are finite and simple. We denote by χ(G) the
chromatic number of a graph G, that is the minimum number of colors
needed to give a color to each vertex in such a way that any two adjacent
vertices receive different colors. We denote by ω(G) the maximum size of a
set of pairwise adjacent vertices (that we call a clique). It is clear that for
every graph, χ(G) ≥ ω(G), while the converse inequality is false in general
(the smallest example is the chordless cycle on five vertices).

Let f be any function from R to R. A graph G is χ-bounded by f if
every induced subgraph H of G satisfies χ(H) ≤ f(ω(H)). This notion first
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appeared in an article of Gyárfás [17]. A class of graphs is χ-bounded if
for some function f , every graph of the class is χ-bounded by f . It is well
known that the class of all graphs is not χ-bounded, this follows from the
existence of graphs with ω = 2 and arbitralily large chromatic number, see
for instance [26].

Graphs that are χ-bounded by the indentity function are known as per-
fect graphs. They were the object of much research (see [24] for a survey),
and the notion of χ-boundedness was invented to try to have some insight
on them. In his seminal paper, Gyárfás [17] made many conjectures, and
some of them were claiming that excluding chordless cycles with various con-
straints on their length should lead to χ-bounded classes. Recently, much
progress has been reported toward these conjectures, see for instance [9].

In this paper, we focus on excluding cycles with contraints on their
chords. A unichord in a graph is an edge that is the unique chord of some
cycle (note that the cycle has length at least 4 because of the chord). A graph
is unichord-free if it does not contain any unichord. A long unichord in a
graph is an edge that is the unique chord of some cycle of length at least 5.
The house is the graph on five vertices a, b, c, d, e with the following edges:
ab, bc, cd, da, ea, eb (so the house is the smallest graph that contains a long
unichord). A house* is any graph obtained from the house by repeatedly
subdividing edges. A graph is house*-free if it does not contain any house*
as an induced subgraph.

It is straightforward to check that long-unichord-free graphs form a gen-
eralisation of unichord-free graphs and of house*-free graphs. They also
form a generalisation of the classical class of chordal graphs (a graph is
chordal if it contains no chordless cycle of length at least 4). A classical re-
sult states that chordal graphs are perfect (equivalently, they are χ-bounded
by the indentity function). In [25], it is proved that unichord-free graphs
are χ-bounded by the function f(x) = max(3, x), and in [19], it is proved
that house*-free graphs are χ-bounded by some exponential function. We
generalise these theorems and we provide a better bound for the last one
by showing that long-unichord-free graphs are χ-bounded by a polynomial
function of degree 3, namely f3, to be defined later:

Theorem 6.4 Long-unichord-free graphs are χ-bounded by f3 (in particu-
lar, by a polynomial of degree 3).

Our proof relies on a decomposition theorem that is easily obtained
from [25] and [10] (again, we postpone the definitions).

Theorem 5.4 Let G be a connected long-unichord-free graph. Then either:
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• G is an induced subgraph of the Petersen graph;

• G is an induced subgraph of the Heawood graph;

• G is chordal;

• G is bipartite and one side of the bipartition is made of vertices of
degree at most 2;

• G has a universal vertex;

• G has a cutvertex;

• G has an amalgam;

• G has proper 2-cutset.

It must be stressed that applying decomposition theorems to prove χ-
boundedness is not at all straightforward. There are several papers dealing
with the following question: when a prescribed operation is applied repeat-
edly to some graphs from a class χ-bounded by f , is the larger class that is
obtained χ-bounded by a possibly different function g? This has been an-
swered positively for several operations, most notably for one that we use in
our decomposition theorem, the so called amalgam operation (to be defined
in the next section), see [19]. But the theorem from [19] is not enough for
our purpose because it leads to an exponential χ-bounding function. Here,
to obtain χ-boundedness we prove a stronger property for the sake of in-
duction, roughly we find graphs with a special structure that intersect all
inclusion-wise maximal cliques of the graph to be colored, and we apply
this procedure inductively on what remains (where the maximum clique is
smaller).

Our decomposition theorem turns out to be a complete structural de-
scription of long-unichord-free graphs: it tells how all long-unichord-free
graphs can be constructed from simple pieces. As a byproduct of this de-
scription we obtain the following:

Theorem 7.6 Deciding whether an input graph G has a long-unichord can
be performed in time O(n4m2) (where n = |V (G)| and m = |E(G)|).

This answers an open question mentioned in [25] (where a similar al-
gorithm is given for unichord-free graphs). It should be pointed out that
in [25], a problem of the very same flavour is proved to be NP-complete:
deciding whether a graph contains a cycle C with a unique chord uv such
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that u and v are at distance at least 4 along the cycle. This shows that
naive attempts to obtain our recognition algorithm are likely to fail.

Outline of the paper

In Section 2, we define all the decompositions and operations on graphs that
we need, and we survey several results about how they preserve perfection
and χ-boundedness.

In Section 3, we study a technique to prove that an operation on graphs
(namely, the substitution operation, everything is defined in the next sec-
tion) preserves χ-boundedness. This technique is analogous to the one used
in the proof of the replication lemma of Lovász (see [24]). It consists in
identifying a particular subgraph that intersects all maximal cliques of a
graph, and in showing that the existence of such a subgraph is preserved by
the operation. Our technique yields short proofs of known results and may
provide good bounds in some situations. For instance we prove that the clo-
sure of 3-colourable graphs under substitution is χ-bounded by a quadratic
function, a seemingly new result. Note that the results from Section 3 are
not used in the rest of the article. They illustrate our method and are of
independent interest.

In Section 4, we apply a similar technique to a larger set of operations
(namely, we consider 1-joins, amalgams and proper 2-cutsets). The price to
pay for that is that the classes of graphs where the technique can be applied
are even more restricted. But fortunately, it does not vanish to nothing as
shown afterward.

In Section 5, we prove the structure theorem for long-unichord-free
graphs.

In Section 6, we apply the results of the previous sections to prove that
long-unichord-free graphs are χ-bounded.

In Section 7 we provide a polynomial time algorithm to recognize long-
unichord-free graphs, based on the decomposition theorem.

Section 8 is devoted to open questions.

2 Operations and properties preserved by them

We now define several classical decompositions for graphs, that are all par-
titions of the vertex-set with some structural constraints. For each of them,
we explain how it enables us to obtain smaller graphs called blocks of de-
composition, and how the decomposition can be reversed into an operation
that allows building a graph from smaller pieces.
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A vertex x in a graph G is complete to A ⊆ V (G) \ {x} if for all y ∈ A,
xy ∈ E(G). We also say that x is A-complete. A set A ⊆ V (G) is complete
to a set B ⊆ V (G) disjoint from A if every vertex of A is B-complete.

A vertex x in a graph G is anticomplete to A ⊆ V (G) \ {x} if for all
y ∈ A, xy /∈ E(G). We also say that x is A-anticomplete. A set A ⊆ V (G)
is anticomplete to a set B ⊆ V (G) disjoint from A if every vertex of A is
B-anticomplete.

Gluing along a clique

A (possibly empty) clique K of a graph G is a clique cutset of G if there
exists a partition (X1,K,X2) of V (G) such that X1, X2 6= ∅ and there are
no edges of G between X1 and X2. We then say that (X1,K,X2) is a split
for this clique cutset, and that G1 = G[X1 ∪K] and G2 = G[K ∪ X2] are
the blocks of decomposition of G with respect to this split.

Note that G = G1 ∪G2, and we say that G is obtained from G1 and G2

by gluing along a clique. This operation can be performed for any pair of
graphs G1, G2 such that G1 ∩ G2 is a clique. If K = ∅, this operation can
also be refered to as disjoint union. When |K| = 1, the operation can be
refered to as gluing along a vertex, and the unique vertex in K is called a
cutvertex.

Substitutions

A set X of vertices of a graph G is a homogeneous set if |X| ≥ 2, X ( V (G),
and every vertex of V (G) \X is either complete or anticomplete to X. We
then denote by G/X the graph obtained from G by deleting X and adding
a vertex v adjacent to all X-complete vertices of G. The graphs G[X] and
G/X are the blocks of decomposition of G with respect to the homogeneous
set X.

When G is a graph on at least two vertices, v is a vertex of G and H
is a graph on at least two vertices vertex-disjoint from G, then the graph
G′ obtained from G by deleting v, adding H and all possible edges between
vertices of H and the neighbors of v in G is called the graph obtained from
G by substituting H for v. We also say that G′ is obtained from G and H
by a substitution. Observe that V (H) is a homogeneous set of G′.

1-join composition

A 1-join of a graph G is a partition of V (G) into sets X1 and X2 such that
there exist sets A1, A2 satisfying:
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• ∅ 6= A1 ⊆ X1, ∅ 6= A2 ⊆ X2;

• |X1| ≥ 2 and |X2| ≥ 2;

• there are all possible edges between A1 and A2;

• there are no other edges between X1 and X2.

We say that (X1, X2, A1, A2) is a split of this 1-join. For i = 1, 2, the
block of decomposition Gi with respect to this split is the graph obtained
from G[Xi] by adding a vertex u3−i complete to Ai.

The operation that is the reverse of the 1-join decomposition is defined
as follows. Start with two vertex-disjoint graphs G1 and G2 on at least 3 ver-
tices. For some vertex u2 (resp. u1) of G1 (resp. G2) such that NG1(u2) (resp.
NG2(u1)) is non-empty, G is obtained from the disjoint union of G1 \ {u2}
and G2 \ {u1} by adding all possible edges between NG1(u2) and NG2(u1).
We say that G is obtained from G1 and G2 by a 1-join composition.

Amalgam composition

An amalgam of a graph G is a partition (K,X1, X2) of V (G) such that
K is a (possibly empty) clique, (X1, X2) is a 1-join of G \ K with a split
(X1, X2, A1, A2) and K is complete to A1 ∪A2 (possibly, vertices of K have
neighbors in V (G) \ (A1 ∪A2)).

We say that (X1, X2, A1, A2,K) is a split of the amalgam defined above.
For i = 1, 2, the block of decomposition Gi with respect to this split is the
graph obtained from G[Xi∪K] by adding a vertex u3−i complete to Ai∪K.

The operation that is the reverse of the amalgam decomposition is de-
fined as follows. Start with two graphs G1 and G2 whose intersection forms
a clique K with |K| ≤ |V (G1)| − 3, |V (G2)| − 3 and such that for i = 1, 2
there is a vertex u3−i in V (Gi) \K whose neighborhood is K ∪Ai where Ai

is non-empty, disjoint from K and K-complete. Let G be obtained from the
union of G1 \ {u2} and G2 \ {u1} by adding all edges between A1 and A2.
We say that G is obtained from G1 and G2 by an amalgam composition.

The amalgam is obviously a generalisation of the 1-join. If A1 or A2 were
allowed to be empty, it could be also be seen as a generalisation of the clique
cutset, but it is not (we keep this distinction that might seem artificial, for
historical reasons and compatibility of definitions with previous papers).

If X1 = A1 then X1 is a homogeneous set of G. Yet, formally the amal-
gam is not a generalisation of the homogeneous set, because a homogeneous
set X such that |X| = |V (G)| − 1 (which is allowed) does not imply the
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presence of an amalgam. Setting K = ∅, X1 = X, and X2 = V (G) \X does
not work because then |X2| = 1. However, it works for all homogeneous
sets X such that |X| ≤ |V (G)| − 2. This remark leads us to consider the
following trivial decomposition and lemma.

Adding a universal vertex

A universal vertex in a graph G is a vertex v complete to V (G) \ {v}. Note
that V (G)\{v} is then a homogeneous set of G (that does not yield a 1-join
or an amalgam as noted above). From the discussion above, the following
is trivial.

Lemma 2.1 If G has a homogenous set, then either G has a 1-join (and
therefore an amalgam) or G has a universal vertex.

The operation that is the reverse of “having a universal vertex” is simply
adding a universal vertex, which means adding a vertex v to a graph G, and
all possible edges between v and V (G).

Proper 2-cutset composition

A proper 2-cutset of a connected graph G is a pair of non-adjacent vertices
a, b, such that V (G) can be partitioned into non-empty sets X1, X2 and
{a, b} so that: |X1| ≥ 2, |X2| ≥ 2; there are no edges between X1 and X2;
and both G[X1 ∪ {a, b}] and G[X2 ∪ {a, b}] contain a path from a to b. We
say that (X1, X2, a, b) is a split of this proper 2-cutset.

For i = 1, 2, the block of decomposition Gi with respect to this split is
the graph obtained from G[Xi ∪ {a, b}] by adding a vertex x3−i complete to
{a, b}.

The operation that is the reverse of the proper 2-cutset is defined as
follows. Start with two graphs G1 and G2 whose intersection is a pair of
vertices a, b non-adjacent in both G1 and G2, and such that a, b have a
common neighbor x2 in G1, and a common neighbor x1 in G2. Suppose
furthermore that for i = 1, 2, there exists a path from a to b in Gi \ x3−i.
Let G be the union of G1 \ {x2} and G2 \ {x1}. We say that G is obtained
from G1 and G2 by a proper 2-cutset composition.

Heredity of decompositions

The next two lemmas are very easy to prove and we give them without
proofs.
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Lemma 2.2 Suppose that G is obtained from G1 by substituting G2 for v.
If G′ is an induced subgraph of G, then either G′ is isomorphic to an induced
subgraph of G1, or G′ is an induced subgraph of G2, or G′ is obtained from
an induced subgraph of G1 by substituting an induced subgraph of G2 for v.

Lemma 2.3 Suppose that G is obtained from G1 and G2 by one of the
operations from S = {gluing along a clique, substitution, 1-join composition,
amalgam composition, gluing along a proper 2-cutset}.

If G′ is an induced subgraph of G, then either G′ is isomorphic to an
induced subgraph of G1, or G′ is isomorphic to an induced subgraph of G2,
or G′ is obtained from an induced subgraph of G1 and an induced subgraph
of G2 by an operation from S.

Properties preserved by the operations

Theorem 2.4 below was proved by Gallai [16] (gluing along a clique),
Lovász [18] (substitutions), Cunningham [13] (1-join), Burlet and Fonlupt [5]
(amalgams), Cornuéjols and Cunningham [12] (proper 2-cutset).

Note that in [12], an operation more general than gluing along a proper
2-cutset is considered (the so-called 2-join, not worth defining here). Note
also that with our definitions, it could be that for a graph G with a proper
2-cutset, the blocks of decompositions are not perfect. This happens for
instance with the chordless cycle v1 . . . v6v1 and the proper 2-cutset v1, v4.
The blocks of decomposition are then both isomorphic to a cycle of length 5,
a notoriously non-perfect graph. But the converse works smoothly: if two
graphs are perfect, then a perfect graph is obtained by gluing them along
a proper 2-cutset. A proof of this is implicit in [12]. Another simple way
to check this is to note that when a vertex v has degree 2 and non-adjacent
neighbors a, b in a perfect graph G, then all paths from a to b in G have even
length (otherwise, G contains an odd chordless cycle of length at least 5).
Such a pair a, b is what is called an even pair, and it is proved in [15] that
there exists an optimal coloring of G such that a and b have the same color.
The perfection of a graph obtained from two perfect graphs by gluing G1 and
G2 along a proper 2-cutset {a, b} is then easy to prove by a direct coloring
argument: use colorings of G1 and G2 that both give the same color to a
and b.

Theorem 2.4 Perfect graphs are closed under the following operations: glu-
ing along a clique, substitution, 1-join composition, amalgam composition,
gluing along a proper 2-cutset.
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We now turn our attention to the preservation of χ-boundedness under
the operations, but there is an important technicality. A class of graphs is
hereditary if it is closed under taking induced subgraphs. The closure of a
class B of graphs under a set of graph operations is the class C obtained from
the graphs of B by perfoming the operations repeatedly and in any order.
A set of operations preserves χ-boundedness if the closure of any hereditary
χ-bounded class under the set of operations is a χ-bounded class. Of course,
the function that bounds χ needs not be the same in B and C, and in most
cases, it is not. This leads to a potential problem: it may happen that
an operation O1 preserves χ-boundedness, that another operation O2 also
preserves χ-boundedness, but that the set of operations {O1, O2} does not
preserves χ-boundedness. This is explained in [7], where an actual (but
slightly artificial) example of this phenomenon is provided.

It is very easy to prove that gluing along a clique preserves χ-
boundedness. In [7], it is proved that substitution preserves χ-boundedness.
In [14], it is proved that 1-join composition preserves χ-boundedness. But it
is not at all easy to prove for instance that the set of operations {1-join com-
position, gluing along a clique} preserves χ-boundedness or that amalgam
composition preserves χ-boundedness. However, these are true statements,
and corollaries of the next theorem from [19].

Theorem 2.5 (Penev) If a class of graphs is χ-bounded, then its closure
under the following set of operations is χ-bounded: {substitution, amalgam
composition, gluing along a clique}.

Also gluing along a proper 2-cutset preserves χ-boundedness as shown
in [7].

Theorem 2.6 (Chudnovsky, Penev, Scott and Trotignon) If a class
of graphs is χ-bounded, then its closure under the operation of gluing along
a proper 2-cutset is χ-bounded.

Note that in Theorem 2.5, if the class we start with is χ-bounded by a
function f , then the closure is χ-bounded by an exponential in f (something
close to g(x) = (xf(x))x). In Theorem 2.6, the situation is much better, and
the resulting function is linear in the function f we start with. The function
was even improved by Penev, Thomassé and Trotignon, see [20]. Note that
in [7, 20] an operation more general than the proper 2-cutset is considered
(namely, the operation of gluing along a 2-cutset, not worth defining here).
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3 A property closed under substitutions

Say that a graph G has Property P0 if it has no edges (such a graph is
called an independent graph). We now define inductively a Property Pk for
all k ≥ 1 as follows: a graph G has Property Pk if for every induced subgraph
G′ of G there exists an induced subgraph H of G′ that has Property Pk−1
and that intersects every maximal clique of G′. From the definition, it is
clear that Property Pk is hereditary (if a graph has it, then so are all its
induced subgraphs).

Graphs with Property P1 are exactly the graphs G such that for every
induced subgraph H of G there exists a stable set of H that intersects every
maximal clique of H (where a stable set in a graph is a set of vertices that
induces an independent graph). Graphs satisfying Property P1 are known
as strongly perfect graphs, see [21] for a survey about them. They form a
(proper) subclass of perfect graphs. To the best of our knowledge, for k ≥ 2,
graphs with Property Pk were not studied so far.

The following provides examples of graphs with Property Pk.

Lemma 3.1 For all k ≥ 1, graphs with chromatic number at most k have
Property Pk−1.

proof — We proceed by induction on k. For k = 1, the result is obvious.
Suppose it holds for some fixed k ≥ 1. Let G be a graph with chromatic
number at most k+ 1, and G′ an induced subgraph of G. In G′, there exists
an induced subgraph H of chromatic number at most k that intersects all
maximal cliques of G′: consider for instance the union of the first k (possibly
empty) colour classes in a colouring ofG′ with k+1 colours. By the induction
hypothesis, H has Property Pk−1. This proves that G has Property Pk. 2

The following is similar to the Lovász’s replication lemma, stating that
perfect graphs are closed under substitutions.

Lemma 3.2 For all k ≥ 0, Property Pk is closed under substitution.

proof — We proceed by induction on k. If k = 0, we have to prove that
substituting an independent graph for a vertex v of an independent graph
yields an independent graph, which is obvious. So, suppose k ≥ 1 and
suppose Property Pk−1 is closed under substitution.

Suppose that G is a graph obtained from G1 by substituting G2 for
v ∈ V (G1) and G1 and G2 have Property Pk. We will prove that G contains
an induced subgraph with Property Pk−1 that intersect all maximal cliques
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of G. By Lemma 2.2, the same proof can be done for induced subgraphs G′

of G.
A maximal clique in G is either a maximal clique of G1 that does not

contain v (we say that such a maximal clique has type non-v), or is equal to
K1 ∪K2 where K1 ∪ {v} is a maximal clique of G1[{v} ∪N(v)] and K2 is a
maximal clique of G2 (we say that such a maximal clique has type v).

For i = 1, 2, because Gi has Property Pk, there exists an induced sub-
graph Hi of Gi that has Property Pk−1 and that intersects every maximal
clique of Gi. There are now two cases.

If v ∈ V (H1), then let H be the graph obtained from H1 by substituting
H2 for v. By the induction hypothesis, H has Property Pk−1. Let K be a
maximal clique in G. If K is of type v, then K ∩ V (G2) is a maximal clique
of G2, and it is intersected by V (H2), so it is intersected by H. If K is of
type non-v, then K is a maximum clique of G1, so it must intersect H1, and
not in v, so it intersects H. We proved that H intersects all maximal cliques
of G.

If v /∈ V (H1), then we set H = H1. Let K be a maximal clique in G. If
K is of type v, then (K ∩ V (G1)) ∪ {v} is a maximal clique of G1, and it is
intersected by V (H1) = V (H). If K is of type non-v, then K is a maximum
clique of G1, so it must intersect V (H1) = V (H). We proved again that H
intersects all maximal cliques of G. 2

Since substitution is one of the simplest operation that preserves per-
fection, it is worth asking whether Property Pk is closed under gluing
along a clique (another simple operation that preserves perfection and χ-
boundedness). It turns out that it is not the case for k = 1 (examples are
provided in [3]). Here we give another example showing that P2 is not closed
under gluing along a clique.

To check this, it is convenient to rephrase Property P2: for every induced
subgraph G′, there is a strongly perfect graph H that is an induced subgraph
ofG′ and that intersects all maximal cliques of G′. Chordal graphs are shown
to be strongly perfect in [3]. On Figure 1, three graphs are represented.
Graph G1 is obtained from a copy of C5 and a copy of K5 by adding a
matching. In G2, there are five copies of K5, say H1, . . . , H5, and there are
all possible edges between Hi and Hi+1 for all i = 1, . . . , 5 (taken modulo
5). Four of the copies have a C5 matched to them.

It is easy to check that G1 and G2 both have Property P2 (in fact,
they have the stronger property that a chordal graph intersects all maximal
cliques). For instance, in G1, by picking a vertex in the K5 and by taking all
its non-neighbors, we obtain a chordal graph H that intersects all maximal
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G1 G2 G3

Figure 1: Three graphs

cliques of G1. In G2, we can take four copies of the chordal graph used for
G1 that exist in the matched K5’s. Note that in G2, no vertex of the top
clique needs to be taken in chordal graph that intersects all maximal cliques.

However, G3, that is obtained by gluing G1 and G2 along a K5, does not
have Property P2. To see this, note that every matching edge is a maximal
clique. Also, H cannot contain a vertex in each of the K5’s (because this
would form a C5, that is not strongly perfect), so at least one copy of K5

does not intersect H. The C5 matched to this copy therefore has to be all
in H, a contradiction to the strong perfection of H.

We now explain how Property Pk is related to χ-boundedness. We define
f0(0) = 0 and f0(x) = 1 for all integers x ≥ 1. For all integers k ≥ 1 and
x ≥ 0, we set

fk(x) =
x∑

i=0

fk−1(i).

By an easy induction, for all integer k ≥ 0, fk(0) = 0, fk(1) = 1 and f1
is the identity function. Also, it is easy to check that fk(x) ≤ xk for all
integers x, k ≥ 0. Hence fk is a polynomial of degree k (with the convention
that 00 = 0).

Lemma 3.3 Graphs with Property Pk are χ-bounded by the function fk
(and therefore by a polynomial of degree k).

proof — For k = 0, this is trivial. Let us prove it by induction on k for
k ≥ 1. Let G be a graph that has Property Pk and set ω = ω(G). By
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Property Pk, G contains an induced subgraph Hω that has Property Pk−1
and intersects all maximal cliques of G, so that ω(G \Hω) = ω(G) − 1. In
G\Hω, there exists also an induced subgraph Hω−1 that has Property Pk−1
and intersects all maximal cliques of G \ Hω, and continuing like that, we
prove that G can be vertex-wise partitioned into ω(G) induced subgraphs
H1, H2, . . . , Hω, such that for all j = 1, . . . , ω, Hj has Property Pk−1 and
ω(Hj) = j. By the induction hypothesis, we have

χ(G) ≤
ω∑

i=1

χ(Hi) ≤
ω∑

i=0

fk−1(i) = fk(ω(G)).

The same proof can be made for all induced subgraphs of G. 2

Theorem 3.4 The closure by substitutions of the class of k-colourable
graphs is a class of graph that is χ-bounded by fk−1 (in particular, by a
polynomial of degree k − 1).

proof — Every graph in the class has Property Pk−1, either by Lemma 3.1
or by Lemma 3.2. So, by Lemma 3.3, it is χ-bounded by fk−1. 2

As observed by Penev, for large values of k, a stronger result was implic-
itly proved in [7].

Theorem 3.5 (Chudnovsky, Penev, Scott and Trotignon) If a class
of graphs is χ-bounded by f(x) = xA, then the closure of the class under
substitution is χ-bounded by g(x) = x3A+11.

Since k-colourable graphs are χ-bounded by f(x) = xlog2 k, we know
by Theorem 3.5 that the closure of k-colorable graphs under substitution
forms a class χ-bounded by g(x) = x11+3 log2 k. So, when k is large, g(x) is
smaller than xk, but for small values, Theorem 3.4 provides the best bound
known so far. For instance, the fact that the closure of 3-colorable graphs
under substitution is χ-bounded by a quadratic function is seemingly a new
theorem.

4 A property closed under amalgam and proper
2-cutset

In the rest of the paper, we adopt the unusual convention that no vertex of
a graph is complete to the empty set. We call a constraint for a graph G
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Figure 2: A graph that does not have Property Qk for any k

any pair (K in,K+) such that K in and K+ are disjoint sets and K in ∪K+ is
a clique of G. Note that K in and K+ are therefore disjoint possibly empty
cliques of G. When (K in,K+) is a constraint for a graph G, a splitter for
(G,Kin,K+) is an induced subgraph H of G that satisfies the following.

• H intersects all maximal cliques of G (except possibly K+ when K+

is a maximal clique of G);

• H contains all vertices of K in and H contains no K in-complete vertex
(when K in = ∅, this constraint can be forgotten);

• H contains no vertex of K+.

We now define inductively a Property Qk for all k ≥ 1. A graph has
Property Q1 if it is perfect. For k ≥ 1, a graph has Property Qk+1 if for every
induced subgraph G′ and every constraint (K in,K+) for G′, there is splitter
H for (G′,K in,K+) with the additionnal property that G[V (H) ∪K+] has
Property Qk. Such a splitter is called a k-splitter.

It is obvious that if a graph G has Property Qk then every induced
subgraph of G has Property Qk. On Figure 2, we show a graph G that does
not have Property Qk for any k. To see this, suppose for a contradiction
that G has Property Qk for some k ≥ 1, and consider the minimum such k.
Since G contains a C5 and is therefore not perfect, we have k ≥ 2. Define
K+ as the set of black vertices on the figure. It is straightforward that the
only splitter for (G, ∅,K+) is H = G \ K+, so G[V (H) ∪ K+] = G must
have Property Qk−1, a contradiction to the minimality of k.

The next lemma gives the taste of our main theorem on Property Qk

(and is a particular case of it, but we prefer proving it separately). It is very
easy, but it seems impossible to prove it formally without an induction.

14



Lemma 4.1 Property Qk is closed under disjoint union.

proof — We prove the lemma by induction on k. If k = 1, the result follows
directly from Theorem 2.4 (because taking the disjoint union means gluing
along an empty clique). So, suppose k ≥ 1 and let G be the disjoint union
of two graphs G1 and G2 that have Property Qk+1. Let (K in,K+) be a
constraint for G. Up to symmetry, we may assume that K in∪K+ ⊆ V (G1),
and consider a k-splitter H1 for (G1,K

in,K+). In G2, we consider a k-
splitter for (H2, ∅, ∅). It is straightforward to check that H1∪H2 is a splitter
for (G,K in,K+), and by the induction hypothesis, it is a k-splitter. 2

Lemma 4.2 For every graph G and every constraint (Kin,K+) for G there
exist a splitter for (G,Kin,K+).

proof — Define H as the graph induced by all vertices of G \K+ that are
not complete to K in (in particular, if K in = ∅ then H = G \K+). We claim
that H is a splitter for (G,K in,K+). It intersects all maximal cliques of G
(except possibly K+ when K+ is a maximal clique) because any vertex in
K in is complete to V (G)\V (H) (and when K in = ∅ and K+ is not maximal,
there must be a vertex complete to K+ in H). Obviously, H contains all
vertices of K in, no K in-complete vertex, and no vertex of K+. 2

Lemma 4.3 For all k ≥ 1, any graph with Property Qk has Property Qk+1.

proof — Let (K in,K+) be a constraint for a graph G with Property Qk.
Lemma 4.2 provides a splitter for (G,K in,K+). This splitter has Prop-
erty Qk because so does G. The same proof can be done for all induced
subgraphs of G, so every induced subgraph of G has a k-splitter. 2

Lemma 4.4 Let (Kin,K+) be a constraint for a non-bipartite triangle-free
connected graph G. Then there exists a splitter H for (G,Kin,K+) such
that |V (H) ∪K+| < |V (G)|.

proof — Since G is triangle-free, |K in ∪ K+| ≤ 2. Also, since G is non-
bipartite and triangle-free, |V (G)| ≥ 5. We claim that G contains a vertex
v such that:

• v /∈ K in ∪K+;

• v has no neighbor in K+;
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• v is not adjacent to any K in-complete vertex.

To prove the claim, we break into cases according to the sizes of K in and
K+.

If |K in| = 0 and |K+| = 0, then any vertex v satisfies the constraint.
If |K in| = 0 and |K+| = 1, then any vertex not in K+ and non-adjacent

to the unique vertex in K+ satisfies the constraint (and there is such a
vertex, for otherwise G is bipartite).

If |K in| = 1 and |K+| = 0, then any K in-complete vertex v satisfies the
constraint (and there is such a vertex since G is connected).

If |K in| = 1 and |K+| = 1, then any K in-complete vertex not in K+

satisfies the contraints. Since G is connected, we may therefore assume that
K in is made of a vertex x whose only neighbor is the vertex y from K+. If
all vertices of G \K+ are adjacent to y, then since G is triangle free, N(y)
is a stable set, and G is bipartite, a contradiction. It follows that v can be
chosen among the non-neighbors of y.

If |K in| = 2 and |K+| = 0, then no vertex in G is K in-complete since G
is triangle-free, so any vertex v not in K in satisfies the constraint (and there
exists such a vertex since G is not bipartite).

If |K in| = 0 and |K+| = 2, then any vertex not in K+ and with no
neighbor in K+ satisfies the constraint, so suppose that no such vertex
exists. It follows that V (G) = {x, y} ∪ N(x) ∪ N(y) where K+ = {x, y}.
Since G is triangle-free, we see that x ∪N(y) and y ∪N(x) are stable sets,
so G is bipartite, a contradiction.

This proves the claim. Now define X as the set of K in-complete vertices.
Since G is triangle-free, we see that X∪K+∪{v} is a stable set of G (except
when |K+| = 2). It follows that H = G \ (X ∪K+ ∪ {v}) is a splitter for
(G,K in,K+). And because of v, we have |V (H) ∪K+| < |V (G)|. 2

Lemma 4.5 Every triangle-free graph on n ≥ 4 vertices has Property Qn−3.

proof — We prove the property by induction on n. It is well known that
all graphs on at most 4 vertices are perfect (they are all chordal except the
cycle of length 4 that is bipartite). So by Lemma 4.3, the property is true
for n = 4. Suppose it holds for n ≥ 4, and consider a graph G on n + 1
vertices and a constraint (K in,K+) for G. By Lemma 4.3, we may assume
that G is not perfect (and in particular not bipartite). It is enough to find
an (n− 3)-splitter for (G,K in,K+), because the proper induced subgraphs
of G have Property Qn−3 by the induction hypothesis. Lemma 4.4 provides
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a splitter H such that |V (H) ∪K+| < |V (G)|, so the induction hypothesis
shows that this splitter has Property Qn−3. 2

Theorem 4.6 Property Qk is closed under the following four operations:
gluing along a clique, amalgam (and therefore 1-join composition), substitu-
tion and proper 2-cutset composition.

proof — We proceed by induction on k. For k = 1, the result follows
directly from Theorem 2.4. Suppose it holds for some fixed k ≥ 1. We
consider a graph G obtained from two graphs G1 and G2 with Property Qk+1

by one of the operations, and we show that for every constraint (K in,K+),
there exists a k-splitter for (G,K in,K+). Each time, the splitter is obtained
by combining k-splitters of G1 and G2 with well chosen constraints (they
exist by assumption), and the combination has Property Qk by the induction
hypothesis. Note that by Lemma 2.3, the same proof can be done for induced
subgraphs of G, so we do not need to consider induced subgraphs of G. Let
us consider the operations one by one.

Gluing along a clique

We suppose that (X1,K,X2) is a split for a clique cutset of G, so G is
obtained from G1 = G[X1∪K] and G2 = G[X2∪K] by gluing along K. We
suppose that G1 and G2 have Property Qk+1.

Up to symmetry, we may assume that K in ∪K+ ⊆ X1 ∪K. Set K in
1 =

K in,K+
1 = K+ and let H1 be a splitter for (G1,K

in
1 ,K

+
1 ). There are two

cases.
Case 1: V (H1) ∩K 6= ∅.

Set K in
2 = V (H1) ∩ K and K+

2 = K+ ∩ K. Note that K+
2 is not a

maximal clique of G2 since K in
2 6= ∅. Let H2 be a splitter for (G2,K

in
2 ,K

+
2 ).

Let H = H1 ∪ H2. Since H2 contains no K in
2 -complete vertex, we have

V (H2) ∩K = K in
2 . We now check that H is a k-splitter for (G,K in,K+).

First, H contains all vertices of K in and H contains no vertex of K+.
Vertices of H1 are not complete to K in

1 = K in. Also a vertex v ∈ V (H2) is
not complete to K in, for otherwise, v ∈ V (H2)\K (because as noted already
V (H2) ∩K = K in

2 ). It follows that K in ⊆ K. But then, K in ⊆ K in
2 , so v is

K in
2 -complete, a contradiction. Hence, H contains no K in-complete vertex.

Moreover, H intersects all maximal cliques of G (except K+ when K+

is a maximal clique of G and therefore of G1), because all such cliques are
either in G1 or in G2.
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Since G1[V (H1) ∪ K+] and G2[V (H2) ∪ K+
2 ] have Property Qk and

G[V (H)∪K+] is obtained from these two graphs by gluing along K in
2 ∪K

+
2 ,

we know by the induction hypothesis that G[V (H)∪K+] has Property Qk.
Case 2: V (H1) ∩K = ∅.

Note that K in ⊆ X1. Set K in
2 = ∅ and K+

2 = K and let H2 be a splitter
for (G2,K

in
2 ,K

+
2 ). Let H = H1 ∪H2. So H contains all vertices of K in, no

vertex of K+ and no K in-complete vertex.
Observe that G[V (H) ∪ K+] is obtained from G1[V (H1) ∪ K+] and

G2[V (H2)∪ (K+∩K)] by gluing along K+∩K. And G2[V (H2)∪ (K+∩K)]
has Property Qk because it is an induced subgraph of G2[V (H2) ∪K+

2 ]. So
by the induction hypothesis, G[V (H)∪K+] has Property Qk. It remains to
prove that H intersects all maximal cliques of G (except K+ when K+ is a
maximal clique of G).

Let K ′ be any maximal clique of G. Since K is a clique cutset of G, K ′

is a maximal clique of G1 or G2. If K ′ ⊆ V (G1), then K ′ is intersected by
H1 (and therefore H) unless K ′ = K+

1 = K+. If K ′ ⊆ V (G2), then K ′ is
intersected by H2, unless K ′ = K+

2 = K. In this last case, K is a maximal
clique of G (and therefore G1), and since it is not intersected by H1 (because
V (H1)∩K = ∅), it must be that K ′ = K+

1 = K+. In all cases, H intersects
K ′ except when K ′ = K+.

Amalgam

We suppose that (X1, X2, A1, A2,K) is a split for an amalgam of G. For
i = 1, 2, the block of decomposition Gi with respect to this split is the graph
obtained from G[Xi ∪K] by adding a vertex u3−i complete to Ai ∪K, so G
is obtained from G1 and G2 by an amalgam composition. We suppose that
G1 and G2 have Property Qk+1.

Let (K in,K+) be a constraint for G.
Case 1 X1 ∪K does not contain K in ∪K+ and X2 ∪K does not contain
K in ∪K+. Since K in ∪K+ is a clique, K in ∪K+ belongs to A1 ∪ A2 ∪K,
(K in ∪K+) ∩A1 6= ∅, (K in ∪K+) ∩A2 6= ∅. There are three subcases.
Case 1a: K in ∩K 6= ∅.

Set K in
1 = K in∩ (K ∪A1) and K+

1 = (K+∩ (K ∪A1))∪{u2} . Note that
K+

1 is not a maximal clique of G1 since K in ∩K 6= ∅. Let H1 be a splitter
for (G1,K

in
1 ,K

+
1 ).

Set K in
2 = K in∩ (K ∪A2) and K+

2 = (K+∩ (K ∪A2))∪{u1} . Note that
K+

2 is not a maximal clique of G2 since K in ∩K 6= ∅. Let H2 be a splitter
for (G2,K

in
2 ,K

+
2 ).

Let H = H1∪H2. We now check that H is a k-splitter for (G,K in,K+).
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It is obvious that H contains all vertices of K in. If a vertex v ∈ V (H1)
is complete to K in, then v is complete to K in

1 , a contradiction. This implies
that H1 contains no K in-complete vertex, no vertex of K+. Similarly, H2

contains no K in-complete vertex, no vertex of K+. Hence, H contains no
K in-complete vertex, no vertex of K+.

H contains K in and K in ∩K 6= ∅ so H intersects all maximal cliques of
A1 ∪A2 ∪K. Therefore, H intersects all maximal cliques of G.

G[V (H) ∪ K+] is obtained from two graphs G1[V (H1) ∪ K+
1 ] and

G2[V (H2) ∪ K+
2 ] (both graphs have Property Qk) by an amalgam com-

position, so by the induction hypothesis, G[V (H) ∪K+] has Property Qk.
Case 1b: K in ∩K = ∅, K in 6= ∅.

Up to symmetry, we may assume that K in ∩A1 6= ∅.
Set K in

1 = K in ∩A1 and K+
1 = (K+ ∩ (K ∪A1)) ∪ {u2} . Note that K+

1

is not a maximal clique of G1 since K in ∩ A1 6= ∅. Let H1 be a splitter for
(G1,K

in
1 ,K

+
1 ).

Set K in
2 = (K in ∩ A2) ∪ {u1} and K+

2 = (K+ ∩ (K ∪ A2)) . Note that
K+

2 is not a maximal clique of G2 since u2 /∈ K+
2 . Let H2 be a splitter for

(G2,K
in
2 ,K

+
2 ).

Let H = G[V (H1)∩(V (H2)\{u1})]. We now check that H is a k-splitter
for (G,K in,K+).

As in the preceding case, H contains all vertices of K in, no K in-complete
vertex, no vertex of K+.

Since H1 intersects all maximal cliques of G1 then P1 = V (H1)∩A1 6= ∅
and P1 must intersect all maximal cliques of A1 (if not this clique combined
with u2 and K would be a maximal clique of G1 that H1 does not intersect,
a contradiction). This implies that P1 intersects all maximal cliques of
A1 ∪A2 ∪K. Hence, H intersects all maximal cliques of G.

Because (K in∪K+)∩A2 6= ∅, (V (H2)∪K+
2 )∩A2 6= ∅. Hence, G[V (H)∪

K+] is obtained from two graphs G1[V (H1)∪K+
1 ] and G2[V (H2)∪K+

2 ] (both
graphs have Property Qk) by an amalgam composition, so by the induction
hypothesis, G[V (H) ∪K+] has Property Qk.
Case 1c: K in = ∅.

If (A1 ∪ A2 ∪ K) \ K+ 6= ∅, then, we choose v ∈ (A1 ∪ A2 ∪ K) \ K+,
set K in = {v} and by the proof of case 1 and case 2 we obtain a k-splitter
H for (G,K in,K+). So, suppose K+ = A1 ∪ A2 ∪K. This means K+ is a
maximal clique of G.

Set K in
1 = ∅ and K+

1 = (K+ ∩ (K ∪ A1)) ∪ {u2} . Let H1 be a splitter
for (G1,K

in
1 ,K

+
1 ).

Set K in
2 = ∅ and K+

2 = (K+ ∩ (K ∪ A2)) ∪ {u1} . Let H2 be a splitter
for (G2,K

in
2 ,K

+
2 ).
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Let H = H1∪H2. We now check that H is a k-splitter for (G,K in,K+).
It is obvious that H contains no vertex of K+ and H intersects all

maximal cliques of G except K+.
G[V (H) ∪ K+] is obtained from two graphs G1[V (H1) ∪ K+

1 ] and
G2[V (H2) ∪ K+

2 ] (both graphs have Property Qk) by an amalgam com-
position, so by the induction hypothesis, G[V (H) ∪K+] has Property Qk.
Case 2 We are not in Case 1, so up to symmetry, we may assume that
K in ∪K+ ⊆ X1 ∪K. Set K in

1 = K in,K+
1 = K+ and let H1 be a splitter for

(G1,K
in
1 ,K

+
1 ). There are three cases.

Case 2a: V (H1) ∩K 6= ∅.
Set K in

2 = V (H1)∩K and K+
2 = K+∩K. Note that K+

2 is not a maximal
clique of G2 since K in

2 6= ∅. Let H2 be a splitter for (G2,K
in
2 ,K

+
2 ). Since H2

contains no K in
2 -complete vertex, we have V (H2)∩K = K in

2 , V (H2)∩A2 = ∅
and u1 /∈ V (H2).

Let H = G[(V (H1)\{u2})∪V (H2)]. We now check that H is a k-splitter
for (G,K in,K+).

It is obvious that H contains all vertices of K in and H contains no
vertex of K+. Vertices of H1 are not complete to K in

1 = K in. Also a vertex
v ∈ V (H2) is not complete to K in, for otherwise, v ∈ V (H2) \K (because
as noted already V (H2) ∩ K = K in

2 ). It follows that K in ⊆ K. But then,
V (H1) ∩ K = K in

1 = K in since H1 contains no K in
1 -complete vertex. This

implies K in = K in
2 , so v is K in

2 -complete, a contradiction. Hence, H contains
no K in-complete vertex.

H contains V (H1) ∩K 6= ∅ so H intersects all maximal cliques of A1 ∪
A2 ∪K. Hence, H intersects all maximal cliques of G.

Observe that G[V (H) ∪K+] is obtained from G1[(V (H1) \ {u2}) ∪K+
1 ]

and G2[V (H2)∪K+
2 ] by gluing along K+

2 ∩K in
2 . And G1[(V (H1)\{u2})∪K+

1 ]
has Property Qk because it is an induced subgraph of G1[V (H1) ∪K+

1 ]. So
by the induction hypothesis, G[V (H) ∪K+] has Property Qk.
Case 2b: V (H1) ∩K = ∅ and u2 /∈ V (H1).

H1 contains all vertices of K in so K in ∩ K = ∅. Set K in
2 = {u1} and

K+
2 = K+ ∩K. Note that K+

2 is not a maximal clique of G2 since A2 6= ∅.
Let H2 be a splitter for (G2,K

in
2 ,K

+
2 ). Since H2 contains no K in

2 -complete
vertex, we have V (H2) ∩K = ∅, V (H2) ∩A2 = ∅.

Let H = G[V (H1)∪(V (H2)\{u1})]. We now check that H is a k-splitter
for (G,K in,K+).

It is obvious that H contains all vertices of K in and H contains no
vertex of K+. H contains no K in-complete vertex since vertices of H1 are
not complete to K in

1 = K in and V (H2) is anticomplete to K in (because as
noted already V (H2) ∩K = ∅, V (H2) ∩A2 = ∅ and K in ∩K = ∅).
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Since H1 intersects all maximal cliques of G1 then P1 = V (H1)∩A1 6= ∅
and P1 must intersect all maximal cliques of A1 (if not this clique combined
with u2 and K would be a maximal clique of G1 that H1 does not intersect,
a contradiction). This implies that P1 intersects all maximal cliques of
A1 ∪A2 ∪K. Hence, H intersects all maximal cliques of G.

Observe that G[V (H) ∪ K+] is obtained from G1[V (H1) ∪ K+
1 ] and

G2[(V (H2) \ {u1}) ∪ K+
2 ] by gluing along K+

2 (possibly empty). And
G2[(V (H2) \ {u1}) ∪ K+

2 ] has Property Qk because it is an induced sub-
graph of G2[V (H2) ∪K+

2 ]. So by the induction hypothesis, G[V (H) ∪K+]
has Property Qk.
Case 2c V (H1) ∩K = ∅ and u2 ∈ V (H1).

H1 contains all vertices of K in so K in ∩ K = ∅. Also K in 6⊆ A1, for
otherwise u2 ∈ V (H1) is complete to K in.

Choose any vertex v2 ∈ A2, set K in
2 = {v2} and K+

2 = (K+ ∩K)∪{u1}.
Note that K+

2 is not a maximal clique of G2 since A2 6= ∅. Let H2 be a
splitter for (G2,K

in
2 ,K

+
2 ). Since H2 contains no K in

2 -complete vertex, we
have V (H2) ∩K = ∅.

Let H = G[(V (H1)\{u2})∪V (H2)]. We now check that H is a k-splitter
for (G,K in,K+).

It is obvious that H contains all vertices of K in and H contains no
vertex of K+. Vertices of H1 are not complete to K in

1 = K in. Also a vertex
v ∈ V (H2) is not complete to K in, for otherwise, v ∈ A2 since K in ∩K = ∅.
But then v is adjacent to a vertex of X1 \ A1 (because as noted already
K in 6⊆ A1), a contradiction. Hence, H contains no K in-complete vertex.

Since H2 intersects all maximal cliques of G2 then P2 = V (H2)∩A2 6= ∅
and P2 must intersect all maximal cliques of A2 (if not this clique combined
with u1 and K would be a maximal clique of G2 that H2 does not intersect,
a contradiction). This implies that P2 intersects all maximal cliques of
A1 ∪A2 ∪K. Hence, H intersects all maximal cliques of G.

Consider V (H1) ∩ A1 = ∅, G[V (H) ∪K+] is obtained from two graphs
G1[(V (H1) \ {u2}) ∪ K+

1 ] and G2[V (H2) ∪ (K+ ∩ K)] (both graphs have
Property Qk) by gluing along a clique K+ ∩ K (possibly empty), so by
the induction hypothesis, G[V (H) ∪ K+] has Property Qk. In the case
V (H1) ∩ A1 6= ∅, G[V (H) ∪K+] is obtained from two graphs G1[V (H1) ∪
K+

1 ] and G2[V (H2) ∪K+
2 ] (both graphs have Property Qk) by an amalgam

composition, so by the induction hypothesis, G[V (H) ∪ K+] has Property
Qk.

We are done when K in ∪K+ ⊆ X1 ∪K.

Hence, G has Property Qk+1.
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Substitution

Since the amalgam is already treated, by Lemma 2.1, it is enough to prove
that Property Qk is closed under adding a universal vertex. Let G be a
graph obtained from a graph G′ by adding a universal vertex v. We suppose
that G′ has Property Qk+1. Let (K in,K+) be a constraint for G. There are
two cases.
Case 1: v ∈ K in.

Let H = G[K in]. So H contains all vertices of K in, no vertex of K+

and no K in-complete vertex. Every maximal clique of G contains v since
v is a universal vertex, this means H intersects all maximal cliques of G.
G[V (H)∪K+] is a clique, so it has Property Q1. Therefore, G[V (H)∪K+]
has Property Qk. Hence, H is a k-splitter for (G,K in,K+).
Case 2: v /∈ K in.

Let H be a splitter for (G′,K in,K+ \ {v}).
We have v /∈ H so in G, H contains all vertices of K in, no vertex of K+,

no K in-complete vertex.
Assume H does not intersect a maximal clique P (P 6= K+) of G. It

follows that H does not intersect a maximal clique P \ {v} of G′ since v is
a universal vertex of G, a contradiction.

Hence, H intersects all maximal cliques of G (except K+ when K+ is a
maximal clique).

If v /∈ K+ then G[V (H) ∪K+] has Property Qk since G[V (H) ∪K+] =
G′[V (H) ∪ K+]. If v ∈ K+ then G[V (H) ∪ K+] is obtained from graph
G′[V (H) ∪ (K+ \ {v})] by adding a universal vertex v. So by the induction
hypothesis, G[V (H) ∪K+] has Property Qk.

Hence, G has Property Qk+1.

Proper 2-cutset

We suppose that (X1, X2, a, b) is a split for a proper 2-cutset. For i = 1, 2,
the block of decomposition Gi with respect to this split is the graph obtained
from G[Xi ∪ {a, b}] by adding a vertex x3−i complete to {a, b}, so G is
obtained from G1 and G2 by a proper 2-cutset composition. We suppose
that G1 and G2 have Property Qk+1.

Let (K in,K+) be a constraint for G. Up to symmetry, we may assume
that K in ∪ K+ ⊆ X1 ∪ {a, b}. Set K in

1 = K in,K+
1 = K+ and let H1 be a

splitter for (G1,K
in
1 ,K

+
1 ). There are two cases.

Case 1: K+ ∩ {a, b} 6= ∅.
Because K+ is a clique, we have K+ ∩ {a, b} 6= {a, b}. Without loss

22



of generality, we can assume K+ ∩ {a, b} = {a}. Note that b /∈ K in since
K+ ∪K in is a clique of G. It follows K in ⊆ X1.

The set H1 intersects maximal clique {a, x2} and a /∈ V (H1) since H1

does not contain vertices of K+
1 . It follows x2 ∈ V (H1).

• If b ∈ V (H1) then set K in
2 = ∅,K+

2 = {a, x1} and let H2 be a splitter
for (G2,K

in
2 ,K

+
2 ).

Let H = G[(V (H1)\{x2})∪V (H2)] so H intersects all maximal cliques
of G (except possibly K+ when K+ is a maximal clique) because all
such cliques are either in G1 or in G2.

H contains all vertices of K in and no vertex of K+. Also b is not
complete to K in since b ∈ V (H1) and H2 \ {b} is anticomplete to K in.
This implies that H contains no K in-complete vertex.

G[V (H) ∪ K+] is obtained from two graphs G1[V (H1) ∪ K+
1 ] and

G2[V (H2)∪K+
2 ] (both graphs have Property Qk) by a proper 2-cutset

composition so by the induction hypothesis, G[V (H)∪K+] has Prop-
erty Qk.

• If b /∈ V (H1) then set K in
2 = {x1},K+

2 = {a} and let H2 be a splitter
for (G2,K

in
2 ,K

+
2 ).

Let H = G[(V (H1) \ {x2}) ∪ (V (H2) \ {x1})] so H intersects all max-
imal cliques of G (except possibly K+ when K+ is a maximal clique)
because all such cliques are either in G1 or in G2.

The graph H contains all vertices of K in and no vertex of K+. Also
H2 contains no K in

2 -complete vertex so H2 does not contains a or b. It
follows H2 is anticomplete to K in. Hence, H contains no K in-complete
vertex.

G[V (H) ∪K+] is obtained from two graphs G1[(V (H1) \ {x2}) ∪K+
1 ]

and G2[(V (H2) \ {x1}) ∪ K+
2 ] (both graphs have Property Qk) by a

gluing at clique {a}, so by the induction hypothesis, G[V (H) ∪ K+]
has Property Qk.

Case 2: K+ ∩ {a, b} = ∅.

• If V (H1) ∩ {a, b} = ∅ then K in does not contains a or b. Set K in
2 =

{x1},K+
2 = ∅ and let H2 be a splitter for (G2,K

in
2 ,K

+
2 ).

Let H = G[(V (H1) \ {x2}) ∪ (V (H2) \ {x1})] so H intersects all max-
imal cliques of G (except possibly K+ when K+ is a maximal clique)
because all such cliques are either in G1 or in G2.
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The graph H contains all vertices of K in and no vertex of K+. Also
H2 contains no K in

2 -complete vertex so H2 does not contains a or b. It
follows H2 is anticomplete to K in. Hence, H contains no K in-complete
vertex.

The graph G[V (H) ∪ K+] is obtained from two disjoint graphs
G1[(V (H1)\{x2})∪K+

1 ] and G2[V (H2)\{x1}] (both graphs have Prop-
erty Qk) so by the induction hypothesis, G[V (H)∪K+] has Property
Qk.

• If V (H1) ∩ {a, b} = {a, b} and {a, b} ∩K in = ∅ then set K in
2 = {a}. If

{a, b} ∩K in 6= ∅ then set K in
2 = {a, b} ∩K in and K in is a clique so up

to symmetry, we may assume that K in
2 = {a}.

Set K+
2 = ∅ and let H2 be a splitter for (G2,K

in
2 ,K

+
2 ). Because H2

does not contain {a}-complete vertices, x1 /∈ V (H2), so H2 contains b
since H2 intersects all maximal cliques.

Let H = G[(V (H1) \ {x2}) ∪ (V (H2) \ {a})] so H intersects all maxi-
mal cliques of G (except possibly K+ when K+ is a maximal clique)
because all such cliques are either in G1 or in G2.

The graph H contains all vertices of K in and no vertex of K+. Also
H2 contains no K in-complete vertex since H2 does not contain {a}-
complete vertex. Hence, H contains no K in-complete vertex.

The graph G[V (H)∪K+] is obtained from graphs G1[(V (H1)\{x2})∪
K+

1 ] and G2[V (H2) \ {a}] (both graphs have Property Qk) by gluing
along a clique {b}, so by the induction hypothesis, G[V (H)∪K+] has
Property Qk

• If V (H1) ∩ {a, b} 6= ∅ and V (H1) ∩ {a, b} 6= {a, b} then without loss
of generality, we can assume that V (H1) ∩ {a, b} = {a}. Because H1

intersects the maximal clique {x2, b}, x2 ∈ V (H1). Hence, K in 6= {a}
(since if K in = {a}, then x2 /∈ V (H1), a contradiction).

Set K in
2 = {x1}, K+

2 = {a} and let H2 be a splitter for (G2,K
in
2 ,K

+
2 ).

Because H2 does not contain {x1}-complete vertex, H2 does not con-
tain a or b.

Let H = G[(V (H1) \ {x2}) ∪ (V (H2) \ {x1}] so H intersects all maxi-
mal cliques of G (except possibly K+ when K+ is a maximal clique)
because all such cliques are either in G1 or in G2.

The graph H contains all vertices of K in and no vertex of K+. Also
H contains no K in-complete vertex since K in 6= {a}.
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The graph G[V (H) ∪ K+] is obtained from two graphs G1[(V (H1) \
{x2})∪K+

1 ] and G2[(V (H2)\{x1})∪{a}] (both graphs have Property
Qk) by gluing at clique {a}, so by the induction hypothesis, G[V (H)∪
K+] has Property Qk.

2

Recall that the function fk was defined in the previous section.

Lemma 4.7 For all k ≥ 1, graphs with Property Qk are χ-bounded by the
function fk.

proof — The proof is similar to the proof of Lemma 3.3. In the induction
step, when we consider a graph with Property Qk+1, we use the constraint
(∅, ∅) to find an induced subgraph with Property Qk that intersects all max-
imal cliques. 2

We can now prove the following theorem that is a seemingly new and non-
trivial result. Note that χ-boundedness of the class under consideration can
easilly be obtained by Theorem 2.5, but this approach would only provide
an exponential function, while we provide a polynomial.

Theorem 4.8 The closure by the set of operations S = {gluing along
a clique, substitutions, 1-join composition, amalgam compositions, gluing
along a proper 2-cutset} of the class of graphs of triangle-free graphs of or-
der at most k + 3 is a class of graph that is χ-bounded by fk (in particular,
by a polynomial of degree k).

proof — Every graph in the class has Property Qk, either by Lemma 4.5
or by Theorem 4.6. So, by Lemma 4.7, it is χ-bounded by fk. 2

5 Structure of long-unichord-free graphs

Recall that a long-unichord in a graph is an edge that is the unique chord
of some cycle of length at least 5. A graph is long-unichord-free if it does
not contain any long-unichord. In this section, we prove a decomposition
theorem for long-unichord-free graphs. We obtain its proof somehow for
free, by combining two known theorems.

The theorem below is proven in [10]. The original statement is slightly
more precise, but this one is enough for our purpose. A cap in a graph is a
cycle of length at least 5, with a unique chord ab such that a and b are at
distance two along the cycle.
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Figure 3: The Petersen and the Heawood graph

Theorem 5.1 (Conforti, Cornuéjols, Kapoor and Vušković) If G is
a connected cap-free graph, then either:

• G is chordal;

• G is triangle-free;

• G has a universal vertex;

• G has a cutvertex;

• G has an amalgam.

Here is useful corollary.

Theorem 5.2 If G is long-unichord-free, then either:

• G is chordal;

• G is unichord-free;

• G has a universal vertex;

• G has a cutvertex;

• G has an amalgam.

proof — Since a cap has a long unichord, G is cap-free. If G contains a
triangle, one of the outcome follows from Theorem 5.1. And if G is triangle-
free, then every unichord of G is a long-unichord. So G is unichord-free. 2

The Petersen and the Heawood graphs are the graphs represented on
Figure 3. The following theorem is proved in [25].
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Theorem 5.3 (Trotignon and Vušković) If G is a connected unichord-
free graph, then either:

• G is a clique;

• G is an induced subgraph of the Petersen graph;

• G is an induced subgraph of the Heawood graph;

• G is bipartite and one side of the bipartition is made of vertices of
degree at most 2;

• G has a cutvertex;

• G has a 1-join (and therefore an amalgam);

• G has a proper 2-cutset.

Our main decomposition theorem is the following.

Theorem 5.4 Let G be a connected long-unichord-free graph. Then either:

• G is an induced subgraph of the Petersen graph;

• G is an induced subgraph of the Heawood graph;

• G is chordal;

• G is bipartite and one side of the bipartition is made of vertices of
degree at most 2;

• G has a universal vertex;

• G has a cutvertex;

• G has an amalgam;

• G has proper 2-cutset.

proof — We apply Theorem 5.2. So either G satisfies one of the outcomes,
or G is unichord free. In this last case, the result follows from Theorem 5.3.2
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Figure 4: The Petersen graph

6 χ-bounding long-unichord-free graphs

Our main purpose is to prove that all long-unichord-free graphs are χ-
bounded. This is a direct consequence of Theorems 5.2, 2.5 and the fact
proved in [25] that unichord-free graphs are χ-bounded. But this approach
would only provide an exponential bound (because of Theorem 2.5). Here,
by using Property Qk, we prove that the class is χ-bounded by a polynomial.

By Theorem 4.6 and 5.4, to prove that long-unichord-free graphs have
Property Qk, it is enough to prove that the basic graphs from Theorem 5.4
have Property Qk. It turns out that most of these basic graphs are perfect :
chordal graphs and bipartite graphs are perfect, and the Heawood graph is
bipartite. So, all these graphs have Property Q1, and Property Qk for all
k ≥ 1 by Lemma 4.3. So, the only problem is the Petersen graph, but it
has Property Q7 by Lemma 4.5. Hence, we have a short proof that long-
unichord-free graphs have all Property Q7.

We now prove several lemmas needed to show that in fact, long-unichord-
free graphs have Property Q3. The only problem is to handle the Petersen
graph. We rely on the labeling of the Petersen graph represented on Figure 4.
We first observe that Q3 is best possible: by setting K in = {c} and K+ =
{x}, it can be checked that the Petersen graph does not have Property Q2.
Indeed, the splitter H cannot contain y and z that are K in-complete, so it
would have to contain a5, a6 and also a1 and a4 (because it does not contain
x), so that H ∪ {x} contains a C5.

Lemma 6.1 The graph induced by the Petersen graph on
{a1, a2, a3, a4, a5, a6, x, c} has Property Q2
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proof — All the odd cycles of the graph under consideration go through
a1, x and a4, so that whatever K in and K+, one of these three vertices
is neither in K+ nor in the splitter obtained by taking all other vertices.
It follows that a splitter H such that V (H) ∪K+ induces a perfect graph
exists. 2

Lemma 6.2 The Petersen graph has Property Q3.

proof — We rely on the representation of the Petersen graph G given on
Figure 4. It is well known that all pairs of adjacent vertices in the Petersen
graph are equivalent, that is for xy, x′y′ ∈ E(G), there is an automorphism
τ of G such that τ(x) = x′ and τ(y) = y′. This property is refered to as the
symmetry of G. Let G′ be an induced subgraph of G, and C = (K in,K+)
be a constraint for G′.

If |K in| = 2 (so |K+| = 0), then because of the symmetry of G, we may
assume that K in = {a1, a2} and V (G′) ∩ {a1, . . . , a6, c} induces a 1-splitter
for (G′,K in,K+).

If |K in| = 1, then we may assume because of the symmetry of G that
K in = {c} and K+ = {x} or K+ = ∅. In both cases, V (G′) ∩ {a1, . . . , a6, c}
induces a 2-splitter for (G′,K in,K+). Note that G[a1, . . . , a6, c, x] has Prop-
erty Q2 by Lemma 6.1.

We may therefore assume that K in = ∅. Because of the symmetry of
G, we may assume that K+ ⊆ {x, a1}. We now observe as above that
V (G′) ∩ {a1, . . . , a6, c, x} \K+ induces a 1-splitter for (G′,K in,K+) (it has
Property Q2 as above). 2

Lemma 6.3 Every long-unichord-free graph has Property Q3.

proof — As noted at the begining of the section, a part from the Petersen
graph, all basic graphs in Theorem 5.4 are perfect (and have therefore Prop-
erty Q1, and Property Q3 by Lemma 4.3). Also the Petersen graph has
Property Q3 by Lemma 6.2. The result now follows from Theorems 5.4
and 4.6. 2

Theorem 6.4 Long-unichord-free graphs are χ-bounded by f3 (in particu-
lar, by a polynomial of degree 3).

proof — Follows directly from Lemmas 6.3 and 4.7. 2
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7 Recognizing long-unichord-free graphs

In this section, we describe a polytime algorithm that decides whether a
graph contains a long-unichord. The next lemma is straightforward to check
(while a formal proof would be very long), so we prefer letting it without
proof.

Lemma 7.1 Suppose that (X1, X2, A1, A2,K) is a split of an amalgam of
a graph G and let H be a hole in G. Then, one of the following occurs:

(i) V (H) ⊆ X1;

(ii) V (H) ⊆ X2;

(iii) H = a1b1a2b2a1 where a1, a2 ∈ A1 and b1, b2 ∈ A2;

(iv) H = ba1p1...pka2b where k ≥ 1, b ∈ A2 ∪K, a1, a2 ∈ A1, p1, ..., pk ∈
X1 \A1;

(v) H = ab1p1...pkb2a where k ≥ 1, a ∈ A1 ∪K, b1, b2 ∈ A2, p1, ..., pk ∈
X2 \A2;

(vi) H = cp1...pkc where k ≥ 3, c ∈ K, p1...pk ∈ X1;

(vii) H = cp1...pkc where k ≥ 3, c ∈ K, p1...pk ∈ X2;

(viii) H = c1c2p1...pkc1c2 where k ≥ 2, c1, c2 ∈ K, p1...pk ∈ X1 \A1;

(ix) H = c1c2p1...pkc1c2 where k ≥ 2, c1, c2 ∈ K, p1...pk ∈ X2 \A2.

And we call them hole type 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.

A decomposition for a graph is either an amalgam or a cutvertex, and
blocks of decomposition of these are defined in Section 2.

Lemma 7.2 Let G be a graph that admits a decomposition. Then G is a
long-unichord-free graph if and only if the blocks of decomposition G1 and
G2 are long-unichord-free.

proof — If the decomposition under consideration is a cutvertex, the result
is clear. So, suppose it is an amalgam. Because G1 and G2 are induced
subgraph of G, if G is long-unichord-free then both G1 and G2 are long-
unichord-free. Conversely, suppose that G1 and G2 are long-unichord-free
and assume C is the cycle with unique chord with length at least 5 of G.
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Suppose first that the unique chord divides C into two holes. We say
that the type of C is XY , according to the types X and Y of the two holes
with respect to the amalgam. Based on Lemma 7.1, and the property that
these two holes share only one edges, there are 13 possible types for C: 11,
14, 16, 18, 22, 25, 27, 29, 46, 48, 59, 57, 89. If C belongs to type 89 then
any vertex of A2 (this vertex is exist since A2 6= ∅) with hole type 8 induces
a cycle with a long unichord in in G1, a contradiction. If C belongs to the
remaining types, either G1 or G2 contains C, contradiction.

Hence, we may assume that the unique chord divides C into a hole and
a triangle (C is a cap). This also means that C consists of a hole H plus a
vertex x that is adjacent to two adjacent vertices of this hole. If H is of type
3, then x does not exits. If H is of type 1, 2, 4, 5, 6, 7, every choice of x makes
C belong to G1 and G2. If H is of type 8 (or 9), this hole with a vertex of
A2 (or A1) induces a cycle with a long-unichord in G1, a contradiction.

This proves the lemma. 2

We now describe our algorithm (similar to the algorithm to recognize
cap-free graph from [10]). A graph is basic if it is chordal or unichord-free.
A decomposition tree TG of a graph G is defined as follows :

• The root of TG is G.

• If some node H of TG is not basic and has a universal vertex, then its
unique child is H \X where X is the set of all universal vertices of H.

• If some node of TG is not basic, has no universal vertex and has a
decomposition, then its children are its blocks of decomposition.

• All nodes not handled in the previous cases are leaves of TG (to be more
specific: basic nodes and nodes that are not basic, without universal
vertices and decomposition).

Note that the definition is not fully deterministic since different decom-
positions can be present in a graph. In this case, one of the decomposition
should be used (so a graph may have different decomposition trees). Note
that every graph has a decomposition tree, and that every decomposition
tree of a graph is finite (because the children of a given node are smaller
than the node).

For every graph G we define

f(G) = max
(
E(G), 1

)
.
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Lemma 7.3 Suppose that G is a non-basic graph, with no universal ver-
tex and with an amalgam or a cutvertex. Let G1 and G2 be the blocks
of decompostion of G with respect to this amalgam or cutvertex. Then
f(G1) + f(G2) ≤ f(G).

proof — If for i = 1, 2 we have f(Gi) = |E(Gi), then every pair {u, v}
such that uv /∈ Gi can be associated injectively to a similar pair in G, so the
inequality holds. Hence, we may assume that f(G1) = 1.

If we have f(G2) = |E(G2)|, then every pair {u, v} such that uv /∈ G2

can be associated injectively to a similar pair in G. Since G has no universal
vertex, some vertex v ∈ V (G1)∩V (G) has a non-neighbor in G and provides
an extra non-adjacent pair in G, so that the inequality holds. Hence, we
may assume that f(G2) = 1.

So, we just have to check that f(G) ≥ 2. This is the case because G
is not basic, so it is not chordal and contains a chordless cycle of length at
least 4 (that provides at least two non-adjacent pairs). 2

The next lemma is implicitly proved in [11] (as Corollary 2.16), but the
machinery there is much heavier and relies on many definitions, so we prefer
to give our own simple proof. Note that in [12], it is claimed without proof
that any graph with an amalgam should have an amalgam such that at least
one block of decomposition has no amalgam. Such a result would imply the
existence of a decomposition tree of linear size, but unfortunately, in [11], a
counter-example to the claim is provided.

Lemma 7.4 Any decomposition tree of a graph G has at most O(n2) nodes.

proof — If a graph H has a universal vertex v, then f(H) = f(H \ v).
Hence, by Lemma 7.3 the number of leaves of TG is at most f(G) ≤ O(n2).
Since removing the set of universal vertices can be done at most once to any
node of the decomposition tree, we obtain the bound O(n2). 2

Lemma 7.5 A graph is long-unichord-free if and only if all the leaves of its
decomposition tree are basic.

proof — Follows directly from Lemma 7.2 and Theorem 5.2. 2

Theorem 7.6 Deciding whether an input graph G has a long-unichord can
be performed in time O(n4m2) (where n = |V (G)| and m = |E(G)|).
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proof — The first step is to build a decomposition tree for G. Decid-
ing whether a graph is basic can be performed in time O(nm) (see [25]
for unichord-free graphs and [22] for chordal graphs). Finding a univer-
sal vertex, a cutvertex or an amalgam can be performed in time O(n2m)
(see [12] for the amalgam and the other claims are trivial). So, the tree
can be constructed. Once the tree is given, the algorithm checks whether
all leaves are basics, and by Lemma 7.5, this decides whether the graph is
long-unichord-free.
Complexity analysis: the most expensive step is to find an amalgam in
time O(n2m), and it is performed at most O(n2) times by Lemma 7.4. 2

8 Open questions

As observed by Esperet (personal communication), no counter-example to
the following statement is known: every hereditary χ-bounded class is χ-
bounded by some polynomial. This would have several consequences. For
instance, consider the following well known conjecture:

Conjecture 8.1 (Erdős and Hajnal, see [6]) For every hereditary class
C of graphs, except the class of all graphs, there exist a constant c such that
every graph G in C contains a clique or a stable set on at least |V (G)|c
vertices.

The conjecture is true for any class C that is χ-bounded by some poly-
nomial (because, if for some d, χ(G) ≤ ω(G)d, then α(G)ω(G)d ≥ |V (G)|).
Let us see several results and open problems related to the question of poly-
nomial χ-bounds.

“Big” χ-bounding functions

First, let us a recall a known observation, that is seemingly unpublished.
For every integers s, t, define the Ramsey number R(s, t) as the smallest
integer n such that every graph on n vertices contains a stable set of size
s or clique of size t. By celebrated theorems of Bohman and Keevash [4],
and Ajtai, Komlós and Szemerédi [1], for every fixed interger s, there exists
constants cs, c

′
s such that:

cst
s/2 ≤ R(s, t) ≤ c′sts
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The inequalities that we give are not as good than the ones in papers,
but are enough for our purpose. Now, for every integer s, consider the class
of graphs that do not contain a stable set of size s and denote it by Cs. This
class is clearly hereditary. By the definition of Ramsey numbers, a graph G
in Cs has less than R(s, ω(G) + 1) vertices, and therefore chromatic number
less than R(s, ω(G) + 1). It follows that

χ(G) ≤ c′s(ω(G) + 1)s

Hence, Cs is χ-bounded by some polynomial. But the interesting point
about Cs is that every graph G in Cs has chromatic number at least
|V (G)|/(s−1) (because the maximum stable set in G has size at most s−1).
Hence, if for every integer ω we choose in Cs a graph Gω on R(s, ω+ 1)− 1
vertices, we have :

χ(Gω) ≥ |V (G)|
(s− 1)

≥ R(s, ω + 1)− 1

s− 1
≥ cs
s− 1

ωs/2

It follows that there cannot exist an integer d such that every hereditary
class is χ-bounded by a polynomial of degree d. To our knowledge, this
example is the best attempt so far to construct a class with a “big” χ-
bounding function.

Constraints on χ-bounding functions

More generally, what are the functions that can be the minimal χ-bounding
function of some hereditary class of graph? We suppose that the class con-
tains complete graphs of all sizes (otherwise, that class is χ-bounded by a
constant, and any discussion about how big can be the χ-bounding function
is pointless). Let f be such a function. Let us see evidences that there
are restrictions on f . Clearly, f(0) = 0 and f(1) = 1 and for all integers
x, f(x) ≥ x. By classical constructions of triangle-free graph with high
chromatic number, we can see that f(2) can be any integer higher than 1.

Suppose now that f(2) = 2. Can f(3) be any integer ? It is not the
case. Since f(2) = 2, we know that any graph G in the class contains no
odd hole. Therefore, by a theorem of Chudnovsly, Robertson, Seymour and
Thomas [8], stating that any odd-hole-free graph with no K4 is 4-colourable,
we know that f(3) ≤ 4. More generally, odd-hole-free graphs are χ-bounded
by a theorem of Scott and Seymour [23]. So, in fact, for all integers x,
f(x) ≤ g(x) where g(x) is the function proven to χ-bound odd-hole-free
graphs (unfortunately, this function g is bigger than an exponential).
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This seems to be the only general statements that can be made about
χ-bounding functions in general. In particular, the following is still open :
suppose f(2) = 3. Can f(3) be any integer ?

Polynomial χ-bounding functions

For each particular χ-bounded class, one might want try to prove a polyno-
mial bound. The remarks above suggest that the most important class to
think of should be odd-hole-free graphs. Also, Pk-free graphs should be of
interest. Because they form the simplest case where the so-called method of
extending a path developped by Gyárfás can be applied (see [17]). And this
method seems to be the most succesfull to provide proofs of χ-boundedness,
see [23, 9] for instance. However, the method notoriously produces expo-
nential bounds.

The following is still open for all integers k greater than 4 : is the class
of Pk-free graphs χ-bounded by a polynomial ?

Polynomial χ-bounds and decomposition

It seems that the most successful attempts to prove polynomial χ-bounds
make use of decomposition theorems. It is therofore interesting to provide
proofs that operations preserve the property of being χ-bounded by a poly-
nomial. This is known only for gluing along a clique (trivial), substitutions
(see [7]) and gluing along a fixed number of vertices (see [20]). Is it true for
1-join compositions and amalgams ?
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