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COVERING 2-CONNECTED 3-REGULAR GRAPHS WITH DISJOINT PATHS

GEXIN YU

Abstract. A path cover of a graph is a set of disjoint paths so that every vertex in the graph is

contained in one of the paths. The path cover number p(G) of graph G is the cardinality of a path

cover with the minimum number of paths. Reed in 1996 conjectured that a 2-connected 3-regular

graph has path cover number at most ⌈n/10⌉. In this paper, we confirm this conjecture.
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1. Introduction

A path cover of a graph is a set of disjoint paths that contain all the vertices of the graph. The

path cover number of graph G, written as p(G), is the cardinality of a path cover with the minimum

number of paths.

Ore [11] initiated the study of path covers. A graph has path cover number 1 precisely when

it has a Hamiltonian path. It is well-known that if the minimum degree of an n-vertex graph is

at least n/2 then the graph is Hamiltonian. Because of its natural connection with hamiltonian

graphs, people were interested in the sufficient conditions for a graph to have path cover number

at most k ≥ 2, see, for example, [3, 8]. In more recent years, path covers have been used to study

other graph parameters, such as domination numbers [12, 5, 6], L(2, 1)-labelling [2], independence

number [3], and graphic-TSP [1], just to name a few.

Every n-vertex graph have a path cover of order at most n, and one would imagine that a graph

with more edges will require fewer paths to cover. However, an n-vertex graph with minimum

degree t could have path cover number as high as n − 2t, for example Kt,n−t. Thus, we are more

interested in path cover of regular graphs. Jackson [4] showed that 2-connected k-regular graphs

with at most 3k+1 vertices have a hamiltonian path (actually they have a hamiltonian cycle except

the Petersen graph), thus the path cover number is 1. Magnant and Martin [7] studied path cover

numbers of k-regular graphs for k ≥ 3, and they showed that for k ≤ 5, a k-regular graph has path

cover number at most n/(k + 1), which they conjectured to be true for k > 5. Note that if every

component of a graph G is a clique of k + 1 vertices, then p(G) = n/(k + 1), thus the bound is

sharp for general graphs. As they pointed out, it is more difficult to find the path cover numbers

of connected regular graphs.

The following example gives a general lower bound for the path cover numbers of connected

k-regular graphs. Take K2,k−1 and replace every vertex of degree 2 with K−

k+1 (a k+1-clique minus

an edge), and call this graph H, in which two vertices have degree k−1 and the rest have degree k.

Now let G be the k-regular graph with n vertices formed from n
k2+1

pairwise disjoint H by adding
n

k2+1
edges to link them in a ring. It is not hard to see that the path cover number of G is at least

n(k−3)
k2+1 for k ≥ 5. Therefore for k ≥ 13, one cannot find a path cover with fewer than n/(k + 4)
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paths in connected k-regular graphs (note that the examples are actually 2-connected). Some more

examples from [9, 10] also show that n/(k + 4) paths are necessary.

Intuitively, one may need more paths to cover the vertices when there are fewer edges in the

graphs. This initiated the study of path covers for connected 3-regular graphs. Reed [12] showed

that a connected 3-regular graph with n vertices has path cover number at most ⌈n/9⌉, and also

gave examples that need ⌈n/9⌉ paths. He conjectured [12] that it suffices to use at most ⌈n/10⌉

paths to cover 2-connected 3-regular graphs. In this article, we confirm this conjecture.

Theorem 1.1. Every 2-connected 3-regular graph with n ≥ 10 vertices has path cover number at

most n/10.

It follows that every 2-connected 3-regular graph with at most 20 vertices contains a hamiltonian

path. Reed [12] gave the following example to show that one cannot improve ⌈n/10⌉ in general: let

C = u1v1u2v2 . . . ukvk be a cycle of 2k vertices, let H be the the graph obtained from the Petersen

graph by removing an edge, say uv, and let G be the graph obtained by replacing edge uivi for

1 ≤ i ≤ k with H so that u = ui and v = vi. He claimed that the path cover number of G is

n/10, based on the observation that one needs a path to cover each H. However, we can use one

path to cover two consecutive copies of H, thus only need n/20 paths to cover V (G). Here we give

infinitely many 2-connected 3-regular n-vertex graphs whose path cover numbers are at least n/14.

Theorem 1.2. There are infinitely many 2-connected 3-regular n-vertex graphs whose path cover

numbers are at least n/14.

Proof. Let G be an arbitrary 2-connected 3-regular graph, and let H be the graph obtained from

G by replacing each edge of G with a K−

4 (that is, delete the edge, and connect two endpoints of

the edge to the two degree-2 vertices on K−

4 , respectively). Then n(H) = n(G)+4 · 3n(G)
2 = 7n(G).

We now show that p(H) ≥ n(G)/2 = n(H)/14.

Let P be a path cover of H. Let e = uv be the edge between u ∈ V (G) and v in some K−

4 . Then

either uv is on a path of P, or v is on some path in P that contains all vertices of the K−

4 . In the

latter case, we may reroute the path so that v is an endpoint, thus extend the path to include the

edge vu. Therefore, we may obtain a path decomposition P ′ of G (a set of edge-disjoint paths P ′

containing all the edges of G) with |P ′| = |P|. Each path in P ′ contains a vertex in G as either

an internal point or an endpoint, and only when it is an endpoint, the parity of its degree changes

when we remove the edges on the path. But each path can only change the degree parities of at

most two vertices in G. As G has n(G) vertices whose degree parity need to be changed, there are

at least n(G)/2 paths in P ′. Thus, P contains at least n(H)/14 paths. �

It is an interesting question to determine the sharp bounds for the path cover numbers of 2-

connected 3-regular graphs in terms of the orders of the graphs.

We will often use the following notation for a path and its segments. A k-path is a path of

k vertices. For a k-path P , if G[V (P )] contains a spanning cycle, we call it a cyclic k-path or a

k-cycle, otherwise non-cyclic. A vertex on a non-cyclic path P is called weighty if it is adjacent to

an endpoint of P by an edge not on P . If a path P contains vertex x, then we sometimes write P

as Pv, and let v−, v+ be the vertices (neighbors) next to v on P , respectively. If the endpoints of

Pv are x and y, then we also write Pv as xPy, or even as xPv−vv+Py. We will use uPv to denote

the segment on P from u to v. If v is an endpoint of Pv, we sometime use Pvv to denote the path

Pv with endpoint v. For other notation, we refer to West [13].
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2. Sketch of the proof of Theorem 1.1

The idea of the proof of the theorem is quite simple. We consider a specially chosen minimal

path cover P, and assign a weight of 10 to each path in the cover initially. We then redistribute

the weights among the paths and show that the final weight on each path is at most its order. It

follows that the total weight is 10|P| on one hand, and at most n on the other hand, therefore

|P| ≤ n/10. The difficulty lies on the choice of minimal path cover and on the way to redistribute

the weights. Below we give some insights on how we make the choices.

In the minimal path covers we can show that none of the paths are single vertices or contain a

spanning cycle. We may think that the weights of the paths are all on the endpoints, 5 for each.

Let x be an endpoint of a path P , and xu be an edge not on E(P ). Clearly, u is not an endpoint of

another path, or we will combine the paths into one to get a cover with fewer paths. We transfer a

weight of 2 from x to u. The vertex u is called weighty if u is on P and heavy otherwise. Then on

each path, the four edges incident with the endpoints will send out a weight of 8 and only a weight

of 1 remains on each endpoint.

Note that heavy vertices are not next to each other on the paths, or we can rearrange the paths

to get a cover with fewer paths. Therefore, if there are no consecutive vertices on paths that are

either heavy or weighty, and the number of vertices on a path is not odd, then the final weight on

each path is at most the number of vertices on the path, as desired. Therefore the problematic

cases are the existence of consecutive weighty and heavy vertices, or the number of vertices is odd

and every other vertex on a path is weighty or heavy. They force us to identify more vertices to

transfer weights from one path to another, and suggest such vertices to be the ones incident with

a vertex whose neighbors are weighty and heavy on the path. It turns out that we only need to

use such vertices, namely P(seudo)E(ndpoint)-vertices, to transfer a weight of 1. PE-vertices share

a lot of common features with the endpoints. For example, a light vertex cannot be next to a

heavy vertex on a path, where a light vertex is the neighbor of a PE-vertex not on the path of the

PE-vertex. Light vertices make the proof more complicated.

There are still bad situations that a path may have too much weight. For example, a 3-path

with a heavy middle vertex, or a 5-path P = xu1u2u3y such that xu2, xu3 ∈ E(G), or a 6-path

P = xu1u2u3u4y such that xu3, x
′u1, x

′u4 ∈ E(G) where x′ is an endpoint of another path, or a

7-path P = xu1u2u3u4u5y such that xu4, x
′u1, x

′u5 ∈ E(G) where x′ is an endpoint of another

path. Fortunately, we can carefully define the optimal path covers to avoid all those situations.

Each pair of consecutive heavy/weighty vertices on a path contains a neighbor of the endpoints,

so there are at most four such pairs on each path. To show that each path has no more weight than

its number of vertices, we show that in each of the bad cases, the path has enough neutral vertices

(vertices do not receive weights) and/or PE-vertices.

We define optimal path covers and study their properties in Section 3. The special vertices

(heavy, light, PE-vertices) and their properties are studied in Section 4. Then in Section 5, we

prove the main lemma that the total weight on each path does not exceed its order and finish the

proof of the theorem.

3. Optimal path covers and their basic properties

Let G be a minimum counterexample to Theorem 1.1. Among all path covers of G, choose P to

be an optimal path cover subject to the following:

(i) the number of paths is minimized.
3



(ii) subject to (i), the number of 1-paths is minimized.

(iii) subject to (i)-(ii), the number of 3-paths and cyclic paths is minimized.

(iv) subject to (i)-(iii), the number of bad endpoints is minimized, where an endpoint x′ ∈ P ′ ∈ P

is bad if (v1) x′ is adjacent to u1, u4 ∈ P and xu3 ∈ E(G), or (v2) x′ is adjacent to u1, u5 ∈ P

and xu4 ∈ E(G), where P = xu1u2u3u4 . . . uky ∈ P − {P ′}.

(v) subject to (i)-(iv), the number of annoying endpoints is minimized, where an endpoint x′ ∈

P ′ = x′u′1 . . . u
′
ly

′ is annoying if x′u′s+1, x
′ui, xu

′
s−1, u

′
sui+1 ∈ E(G) with P = xu1u2 . . . uky ∈

P − {P ′} and 2 ≤ s ≤ l − 1.

(vi) subject to (i)-(v), the number of weighty vertices is minimized.

(vii) subject to (i)-(vi), for each non-cyclic path P , the number of vertices on P between the

endpoints and their corresponding furthest neighbors on P is maximized.

We shall call a path cover satisfying the first t conditions above as Pt. Thus P is P7, and P0 is

just a path cover to G. Clearly, Pi+1 ⊆ Pi, so Pi+1 has all the properties that Pi has.

A net is a triangle whose three neighbors not on the triangle are distinct. The following was

observed in [12].

Lemma 3.1. The graph G contains no net.

Proof. For otherwise, let u1u2u3 be a triangle with uiu
′
i ∈ E(G) such that u′i’s are distinct. Then

we contract the triangle to a single vertex u and get a graph G′. Now G′ has a path cover with at

most |V (G′)|/10 paths, but then we can get a path cover of G by replacing u with a path containing

u1, u2, u3. �

Lemma 3.2. The following are true about P1:

(1) Endpoints of different paths in P1 are not adjacent. In particular, there is no edge between

cyclic paths or between a cyclic path and an endpoint of a non-cyclic path.

(2) every cyclic path has at least two neighbors not on the path.

Proof. (1) is true because our cover used the minimum number of paths. (2) is true because G has

no cut-vertices. �

The following lemma from [7] says that a path cover subject to (i) and (ii) contains no 1-paths.

We give an alternative proof here, whose idea will be used to prove more results about path covers.

Lemma 3.3 ([7]). The path cover P2 contains no 1-paths.

Proof. Suppose that P ∈ P2 consists of vertex v. By Lemma 3.2, v is not adjacent to an endpoint

of another path. We also note that v is not adjacent to an interior vertex on a path P ′ of order

at least 4, for otherwise, one can easily decompose P ∪ P ′ into two paths, each of order at least

2. Therefore v must be adjacent to the midpoints of 3-paths. Furthermore, if v is adjacent to the

vertex w ∈ P ′ = xwy, then we may rearrange paths to form the paths xwv and y or vwy and x.

This implies x and y must also be adjacent only to the midpoints of 3-paths.

Let T be the set of 1-paths and 3-paths that are involved in the above rearrangement process.

We consider an auxiliary digraph D whose vertices are the paths in T , and there is a directed edge

from P1 ∈ T to P2 ∈ T if and only if an endpoint of P1 is adjacent to the midpoint of P2. Clearly,

each vertex in D has in-degree at most 1 and out-degree at least 3, which is impossible. Therefore,

P contains no 1-paths. �

Lemma 3.4. The path cover P3 contains no 1-paths, 3-paths, or cyclic paths.
4



Proof. We call a path bad if it is cyclic or has order 1 or 3. By Lemma 3.3, we may assume that

each bad path in P3 is a non-cyclic 3-path (note that a cyclic 3-path must be a net) or a cyclic

path with order at least 4.

Let P be a bad path in P3 and x ∈ P be a potential endpoint of P , which is an endpoint if P is

non-cyclic, or any vertex on P if P is cyclic. Suppose that xw ∈ E(G) with w ∈ Q ∈ P3 − {P}.

Then Q is not cyclic, and Q−w splits into two paths Q1 and Q2. In fact, the path P ′ obtained by

concatenating P,w,Qi cannot be cyclic (as then P +Q would have a Hamilton path contradicting

minimality) or have length less than 4. Thus both Q1 and Q2 must be bad by the minimality of

the cover. Furthermore, neither Q1 nor Q2 is a cyclic 3-path, or we would have a net or a path

cover with fewer paths. We shall call w a special vertex on Q, and Q1, Q2 bad components on Q.

Now, for i ∈ {1, 2}, provided Qi has order more than one, replacing P,Q in P with Qi and

P ′ = P + w +Q3−i gives a new minimal path cover. We can repeat our argument using Qi in the

place of P and any other non-bad path of the new cover other than P ′ in the place of Q.

We build a directed graph whose vertices are the paths in P, and a family F of subpaths of these

paths as follows.

(A) The set F0 consists of bad paths in P3; and we add a directed edge from P ∈ F0 to Q ∈ F0

if a potential endpoint of P is adjacent to a special vertex on Q (note that this can only

happen if Q is a non-cyclic 3-path);

(B) If an endpoint of a Hamilton path on the vertex set of a bad path P ∈ F0 is adjacent to

w on a non-bad path Q ∈ P, we add to F1 all the bad components of Q− w which do not

have order 1, and add to our digraph an edge from P to Q;

(C) For i ≥ 1, if an endpoint of a Hamilton path on the vertex set of some bad path P ∈ Fi

is adjacent to a special vertex w of some non-bad path R ∈ P3, we add to Fi+1 all the

components of R−w which do not have order 1, and we add to the digraph the edge from

the path in P3 that contains P as a bad component described in (B) to R. Note that

multi-edges are allowed, but we only allow one directed edge implied by the middle vertex

of each 5-path.

We let F be the union of the Fi. By definition, the in-degree of a path equals to the number of

special vertices on it. Note that a cyclic bad path or component does not contain special vertices. It

follows that if a non-bad path P contains two special vertices w1 and w2, then the bad component

in P − w1 that contains w2 must be a 3-path, and the bad component in P − w2 that contains

w1 must also be a 3-path, so P must be a non-cyclic 5-path. Therefore, the in-degrees of 5-paths

are at most 2 and all other paths are at most 1. Note that there may be isolated vertices in the

digraph.

Now we count the out-degrees. The out-degree of a path P equals to the number of edges that

connect one endpoint of a bad component of order more than 1 and a special vertex not on P . Let

Q1, Q2 be the two bad components of a path P ∈ P3 in the digraph.

If Q1 and Q2 both have order 1, then P is a bad 3-path. By (A), P has out-degree 4. So let Q1

have order more than 1. Note that Q1 has at least two edges out of Q1 (as G is 2-connected), one

of which is not adjacent to the special vertex on P .

If Q1 and Q2 are both cyclic or have order 1, then there can be no edge between them, as if

Q′ = Q1 ∪ Q2 has a Hamiltonian cycle, we can rearrange P ∪ Q into one path, contradicting the

minimality of the cover, and otherwise P ′ = P + w and Q′ are both non-cyclic and we contradict

the minimality of the number of bad paths in the cover. So P has out-degree at least 1 (actually 2

if both Q1, Q2 are cyclic).
5



Now, if Q1 has order three and Q2 is cyclic or has order 1, then (a) the endpoint of Q1 which

is an endpoint of Q cannot be adjacent to any vertex on Q2 or we could find a Hamilton path

on P ∪ Q contradicting the minimality of the cover, and (b) the other endpoint x′ of Q1 can be

adjacent to none of the vertices on Q2 or we could find a Hamiltonian path P ′ on P ∪Q2 +w+ x′,

which together with Q = Q1 − x′ contradicts the minimality of the cover. Similar arguments show

that if Q1 and Q2 both have order three then there are no edges joining their endpoints. So P has

out-degree at least 3.

Since the out-degrees of the paths are as large as their in-degrees, and the bad paths have higher

out-degrees than their in-degrees, such a digraph does not exist, a contradiction. �

From now on, we assume that P3 consists of non-cyclic paths with order other than 1 and 3.

Lemma 3.5. There are no bad endpoints described in (iv) in P4.

Proof. Suppose otherwise. Consider an endpoint x′ ∈ P ′ = x′u′1u
′
2 . . . u

′
ty

′ in (v1). We replace P,P ′

with P ′x′u1x and u2Py. We lose x′, and do not create cyclic paths or we would contradict the

minimality of the cover. We do not gain a new bad endpoint described in (v1) because (a) x is

not adjacent to u′1 or we could rearrange P ′ + P into one path P ′u′1xu3u2u1x
′u4Py, and (b) u2

is not adjacent to u5 or we could rearrange P ′ + P into one path P ′x′u4u3xu1u2u5Py. We also

do not gain a new bad endpoint described in (v2) because (a) x cannot be, or u2u6, xu7 ∈ E(G),

which allows us to reroute P,P ′ into one path P ′x′u1u2u6u5u4u3xu7Py, and (b) u2 cannot be, or

u2u
′
3, xu

′
2 ∈ E(G), which allows us to reroute P,P ′ into one path P ′u′3u2u1x

′u′1u
′
2xu3u4Py.

Consider an endpoint x′ ∈ P ′ in (v2). If u5Py is a 3-path, then we replace P,P ′ with u6y and

xPu5x
′P ′. We lose x′, and do not create cyclic paths, but clearly do not gain a new bad endpoint,

as u1 is now adjacent to a vertex on the path, and u6 has at most one neighbor on other paths. If

u5Py is not a 3-path, then we replace P,P ′ with u5Py and u2u3u4xu1x
′P ′. We lose x′, and do not

create cyclic paths. We do not gain new bad endpoints, since u2, u5 cannot be as they have at most

one neighbor on other paths, and no other vertex can be adjacent to x′ as it is already adjacent

to u5, u1, u
′
1, and no vertex from other path can be a bad endpoint (to u5Py) as u5 has only one

neighbor on the path. �

Lemma 3.6. There are no annoying endpoints described in (v) in P5.

Proof. Let x′ ∈ P ′ = x′u′1 . . . u
′
ly

′ ∈ P5 be an annoying endpoint. Then for P = xu1 . . . uky ∈

P5−{P ′}, x′ui, x
′u′s+1, xu

′
s−1, u

′
sui+1 ∈ E(G). Note that P,P ′ can be decomposed into yPui+1u

′
sP

′y′

and cyclic path x′P ′u′s−1xPui. So y, y′, and endpoint of the paths in P5 − {P,P ′} cannot have

neighbors on the cyclic path.

Case 1. s = 3 and u′1ui+2 ∈ E(G). We replace P,P ′ with P1 = x′u′1 and P ′
1 = yPxu′2P

′y′.

Since P1 is a 2-path and xy, xy′ 6∈ E(G), P1, P
′
1 are not 1-paths, 3-paths, or cyclic paths, and none

of the endpoints (x′, u′1, y, y
′) becomes bad or annoying. But we have fewer annoying endpoints, a

contradiction.

Case 2. s > 3, or s = 3 but u′1ui+2 6∈ E(G). We replace P,P ′ with P2 = uiPxu′s−1P
′x′u′s+1P

′y′

and P ′
2 = u′sui+1ui+2Py. Note that none of P2, P

′
2 can be 1-paths, 3-paths, or cyclic paths. Since

ui has at most one neighbor on paths other than P2, ui is not bad. Since u
′
s−1 is nto next to ui (the

endpoint of P2), u
′
s is not bad. Since u

′
s has only one neighbor on P ′

2, it is not annoying. Note that

ui is annoying only if u′1ui+2 ∈ E(G) and s = 3 (so that u′s−1 = u′2), so ui is not annoying. Since

y, y′ have no neighbors in uiP2x
′, they cannot become new bad or annoying endpoints. Therefore,

we have fewer annoying endpoints, a contradiction. �
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Lemma 3.7. Let P = xu1u2 . . . uky ∈ P7 be a non-cyclic path so that xui, xuj ∈ E(G) with

1 < i < j ≤ k. Then j 6= i + 1, and the neighbors of ui−1 and uj−1 are on P . Furthermore, if y

has no neighbors on xPuj, then the neighbors of uj−1 and ui−1 must be on xPuj.

Proof. If j = i+1 and i 6= 2, then xuiui+1 is a net, a contradiction to Lemma 3.1. If j = i+1 = 3,

then u1 will be a better endpoint than x subject to (vi) (with fewer weighty vertices) or (vii)

(weighty neighbors are further away from the endpoints). Let j > i + 1. If ui−1 (or uj−1) has a

neighbor outside of P , then we can reroute P so that ui−1 (or uj−1) is an endpoint, which would

give fewer weighty vertices, a contradiction to the optimality of P. If y has no neighbors on xPuj ,

and uj−1 (or ui−1) has a neighbor ut with t > j, but then uj−1 (or ui−1) is a better endpoint

than x subject to (vii) (and we do not change the number of vertices between y and its furthest

neighbor). �

4. Properties of heavy, light, and PE-vertices

In this section, we study the properties of some special vertices on the paths in P.

Definition 4.1. Let u be an endpoint of a path P ∈ P4 and uv ∈ E(G) − E(P ). Then v is called

a heavy vertex if v 6∈ V (P ) (and a weighty vertex is v ∈ V (P )).

Definition 4.2. Let uv be an edge between u = ui ∈ P = xu1 . . . uky ∈ P4 and v ∈ Pv ∈ P4 −{P}.

Then u is called a PE-vertex (aka, pseudo-endpoint) and v is called a light vertex if one of the

following is true

(1a) xui+1, yui−1 ∈ E(G); or

(1b) xui+1 ∈ E(G), and ui−1 is heavy; or yui−1 ∈ E(G) and ui+1 is heavy; or

(1c) both ui−1 and ui+1 are heavy.

A vertex is neutral if it is not heavy or light or weighty.

Note that a PE-vertex is also a neutral vertex. Also note that if u is a PE-vertex defined in (1a)

and (1b), then Pu can be rerouted so that u (and x or y) is an endpoint of the path.

Lemma 4.3. Let u ∈ P ∈ P, v ∈ Pv ∈ P − {P} with uv ∈ E(G). If P = xPy can be rerouted

so that u is an endpoint, then v cannot be an endpoint or a PE-vertex, unless xv−, yv+ ∈ E(G).

Consequently, if u and y are the endpoints, then ux ∈ E(G) or u is neutral.

Proof. If Pv can also be routed so that v is an endpoint, then P,Pv can be combined into one path,

a contradiction. So v cannot be an endpoint or a PE-vertex defined as in (1a) or (1b).

Let v be a PE-vertex defined as in (1c). Let Pv = xvPvv
−vv+Pvyv. Then v− and v+ are heavy.

We assume that v−xs, v
+xt ∈ E(G), where xs, xt are endpoints of Ps, Pt ∈ P − {Pv}, respectively.

If one of Ps and Pt, say Ps, is not P , then we can decompose P,Ps, Pv into two paths: Psxsv
−Pvxv

and yvPvvuP , a contradiction. So Ps = Pt = P . If y (and by symmetry, x) has only one neighbor

on P , then y must be the other endpoint when u is an endpoint of P , thus yv+ 6∈ E(G) (and

similarly, yv− 6∈ E(G)), or P,Pv can be combined into one path yvPvv
+yPuvPvxv. It follows that

xv−, xv+ ∈ E(G), and thus x has only one neighbor on P , a contradiction. So both x and y have

at least two neighbors on P . Then we must have xv−, yv+ ∈ E(G).

When u and y are the endpoints, v cannot be an endpoint or a PE-vertex, so u is not heavy or

light and uy 6∈ E(G). Then u is neutral or weighty, and when it is weighty, we have xu ∈ E(G). �

Corollary 4.4. Let P = xu1 . . . uky ∈ P and 1 ≤ i < j ≤ k. Then
7



• if xuj ∈ E(G), then uj−1 is neutral;

• if xui+1 ∈ E(G) and uiuj ∈ E(G), then uj−1 is neutral or xuj−1 ∈ E(G);

• if xuj+1 ∈ E(G) and uiuj ∈ E(G), then ui+1 is neutral or xui+1 ∈ E(G);

• if xuj−1 ∈ E(G) and uiuj ∈ E(G), then ui−1 and ui+1 are neutral or adjacent to x;

• if xui+1, xuj+1, uiuj ∈ E(G), then u1, uj−1 are neutral.

Corollary 4.5. Let P = xu1 . . . uky ∈ P. If xPui is cyclic and ui+1 is heavy or light, then a vertex

u ∈ xPui−1 is adjacent to y or uj with yuj−1 ∈ E(G) only when ui+1 is light and is adjacent to

vs ∈ P ′ = x′P ′vs−1vsvs+1P
′y′ such that xvs−1, yvs+1 ∈ E(G).

Proof. Under the condition, P can be rerouted so that ui+1 is an endpoint. So the statement follows

from Lemma 4.3. �

Lemma 4.6. PE-vertices form an independent set. Consequently, no light vertex is a PE-vertex.

Proof. Let u, u′ ∈ E(G) be PE-vertices such that uu′ ∈ E(G) with u ∈ Pu = xPu−uu+Py and

u′ ∈ Pu′ = x′Pu′−u′u′+Py′ ∈ P − {P}. By Lemma 4.3, we may assume that u, u′ are PE-vertices

defined as in (1c), thus assume that u−, u+, u′−, u′+ are adjacent to endpoints s ∈ Ps, t ∈ Pt, s
′ ∈

Ps′ , t
′ ∈ Pt′ , respectively, where Ps, Pt 6= Pu and Ps′ , Pt′ 6= Pu′ .

First assume that none of the pairs (Ps, Ps′), (Ps, Pt′), (Pt, Ps′), (Pt, Pt′) contains two different

paths. Then Ps = Ps′ = Pt′ = Pt. Without loss of generality, we may assume that s, s′ are the

endpoints of Ps. Then Pu, Pu′ and Ps can be combined into two paths: xPuu
−sPss

′u′−Pu′x′ and

yPuuu
′Pu′y′, a contradiction. Therefore, without loss of generality, we assume that Ps 6= Ps′ .

If Ps 6= Pu′ and Ps′ 6= Pu, then we reach a contradiction by combining Pu, Ps, Pu′ , Ps′ into three

paths: Psu
−Pux, Ps′u

′−Pu′x′ and yPuuu
′Pu′y′. Thus, we may assume that Ps = Pu′ and let s = x′.

If Ps′ 6= Pu, we can decompose Ps′ , Pu, Pu′ into fewer paths: xPuu
−x′Pu′u′−s′Ps′ and yPuu′Pu′y′,

again a contradiction. Therefore, we may assume that Ps′ = Pu. By symmetry, we also know that

Pt = Pu′ and Pt′ = Pu.

Let xu′− ∈ E(G). If x′u+ ∈ E(G) (or by symmetry y′u− ∈ E(G)), then we reach a contradiction

by combing Pu and Pu′ into one path yPuu
+x′Pu′u′−xPuuu

′Pu′y′. Thus, we let x′u−, y′u+ ∈ E(G).

But we again can combine the two paths into one path yPuu
+y′Pu′u′uPuxu

′−Pu′x′. �

Lemma 4.7. Let P = xu1u2 . . . uky ∈ P4. Assume that for some 1 < s < i < t < k, the subgraphs

induced by V (xPui) and V (ui+1Py) contain spanning paths so that us and ut are the endpoints,

respectively. If us, ut are heavy or light, then

(a) us and ut are both light; or

(b) us, ut are heavy and adjacent to a same endpoint of P ′ ∈ P4 − {P}; or

(c) us is heavy and ut is light (or by symmetry ut is heavy and us is light) with xwus, vut ∈ E(G),

where xw is an endpoint of Pw ∈ P4 − {P} and v ∈ Pv = xvPvv
−vv+Pvyv, such that

(c1) Pw = Pv, and xvus, xvv
+ ∈ E(G) and v− is adjacent to x or y, or

(c2) Pw 6= Pv, and v−, v+ are adjacent to x, y or xw.

Consequently, let xPui be cyclic, then

(1) if ui+1 is heavy, then xPui contains at most one heavy or light vertex; and

(2) if ui+1 is light, then xPui contains at most one heavy vertex.

Proof. Let P1, P2 be the spanning paths on V (xPui) and V (ui+1Py) so that us, x
′ and ut, y

′ are

endpoints, respectively. We may assume that at least one of us, ut (say us) is heavy, or we have
8



(a). Let xwus ∈ E(G) from the endpoint xw ∈ Pw ∈ P4 − {P} and vut ∈ E(G) from v ∈ Pv =

xvPvv
−vv+Pvyv ∈ P4 − {P}.

Assume first that Pv can be rerouted such that v is an endpoints. If v is heavy, then we must

have (b), or P,Pw, Pv can be replaced with paths PwwuP1 and Pvvui+1P2 to obtain a better path

cover. So let v be light, and by symmetry let xvv
+ ∈ E(G) and v− be heavy and adjacent to

an endpoint z ∈ Pz ∈ P − {Pv}. Then xv = xw, or we replace P,Pv , Pw with yvPv+xvPvvutP2y
′

and ywPwxwusP1x
′ (when xw 6= yv) or x

′P1usP1yvPvv
+xvPvvutP2y

′ (when xw = yv). Now z must

be x or y, as in (c1), or we could get a cover with fewer paths: P ′
1 = Pzzv

−PvxvusP1x
′ and

P ′
2 = yvPvvutP2y

′.

Now assume that both v− and v+ are heavy. We may assume that v− is adjacent to an

endpoint z ∈ Pz ∈ P − {Pv}. If z 6∈ {x, y, xw}, then we can replace P,Pw, Pz , Pv with paths

PwwuP1, P2ui+1vPvyv and Pzzv
−Pvxv, a contradiction. So v−, and by symmetry v+, is adjacent

to x, y or xw, as in (c2). �

Lemma 4.8. The subgraph induced by the set of heavy and light vertices contains no edges.

Proof. By Lemma 4.6, two vertices that are heavy or light are adjacent only if they are consecutive

vertices on a path in P. Let ui, ui+1 be two vertices on P that are heavy or light. We may assume

that ui+1 is adjacent to xv or the vertex v on Pv = xvPvv
−vv+Pvyv ∈ P − {P}. As xPui and

ui+1Py contain spanning trees such that ui (and x) and ui+1 (and y) are endpoints, respectively,

by Lemma 4.7, the following are the possible cases:

Case 1. both ui and ui+1 are heavy. Then they are adjacent to the same endpoint xv ∈ Pv . In

this case, xvuiui+1 is a net, which cannot occur by Lemma 3.1.

Case 2. ui is heavy and ui+1 is light. Then by Lemma 4.7, we consider the following cases.

Case 2.1. xvui, xv
−, vui+1, xvv

+ ∈ E(G), or xvui, yv
−, vui+1, xvv

+ ∈ E(G). In the former

case, xv is an annoying endpoint, which by Lemma 3.6 cannot exist, and in the latter case, we can

combine P,Pv into one path: xPuixvPvv
−yPui+1vPvyv.

Case 2.2. vui+1, xv
−, xwui ∈ E(G), where xw is an endpoint of Pw ∈ P − {P,Pv}, and v+

is adjacent to y or xw. Then P,Pv , Pw can be combined into two paths: PwxwuiPxv−Pvxv and

yvPvvui+1Py, a contradiction.

Case 3. both ui and ui+1 are light. Then wui, vui+1 ∈ E(G) for PE-vertices w ∈ Pw =

xww1 . . . ws−1wws+1 . . . wlyw ∈ P − {P} and v ∈ Pv = xvv1 . . . vt−1vvt+1 . . . vmyv ∈ P − {P}.

Case 3.1 w and v are PE-vertices defined as in (1a) or (1b). Then Pw can be rerouted so that

w and yw are endpoints, and Pv can be rerouted so that v and yv are endpoints.

• If Pw 6= Pv, then P,Pv, Pw can be combined into paths PwwuiPx and Pvvui+1Py, a con-

tradiction.

• If Pw = Pv, then xw or yw cannot be adjacent to two weighty vertices, by Lemma 3.7,

so we may assume that xwws+1 ∈ E(G) and v = wj so that ywwj−1 ∈ E(G). Clearly,

j < s, or P,Pw can be combined into one path xPuiwPwxwws+1Pwwj−1ywPwwjui+1Py.

By definition, wj+1 is heavy is adjacent to an endpoint z ∈ Pz 6= Pw, so P,Pw, Pz can be

decomposed into paths Pzzwj+1PwwsuiPx and yPui+1wjPwxwws+1Pwyw, a contradiction.

Case 3.2 w is a PE-vertex defined as in (1a) or (1b), and v is a PE-vertex defined as in (1c).

Let xwws+1 ∈ E(G). By definition, vt−1 and vt+1 are heavy, then at least one of them, say vt−1, is

not adjacent to xw. Let vt−1 be adjacent to the endpoint z ∈ Pz 6= Pv. When Pz = P , we assume

that z = y.
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• If Pv 6= Pw, then P,Pw, Pv , Pz can be decomposed into fewer paths:

Pzzvt−1Pvxv, yvPvvui+1Py, PwwuiPx.

• If Pv = Pw and v = wj with j > s, then P,Pw, Pz can also be decomposed into fewer paths:

Pzzwj−1Pwws+1xwPwwuiPx, ywPwwjui+1Py.

• If Pv = Pw and v = wj with j < s, then P,Pw, Pz can be decomposed into fewer paths:

Pzzwj−1Pwxwws+1Pwyw, xPuiwPwwjui+1Py.

There is a contradiction in each of the cases.

Case 3.3. Both w and v are PE-vertices defined as in (1c).

Let z1ws−1, z2ws+1, z3vt−1, z4vt+1 ∈ E(G) such that zi is an endpoint of Pzi ∈ P, respectively.

Let Pw 6= Pv. As each endpoint is adjacent to at most two heavy vertices, we may assume that

Pz1 6= Pz4 or Pz1 = Pz4 and z1, z4 are the endpoints. Then P,Pw, Pv , Pz1 , Pz4 can be decomposed

into fewer paths: Pz1z1ws−1Pwxw, Pz4z4vt+1Pvyv, ywPwwuiPx, xvPvvui+1Py.

Let Pw = Pv . Assume that v = wt for some t > s. Note that Pz1 = Pz4 and z1 = z4,

or P,Pw, z1, z4 can be decomposed into fewer paths: xPuiwsPwwtui+1Py, Pz1z1ws−1Pwxw and

Pz4z4wt+1Pwyw. We may also assume that Pz2 = Pz4 (and similarly, Pz3 = Pz4), or P,Pw, Pz2 , Pz4

can be combined into fewer paths: xPuiwPwxw, Pz2ws+1Pwvui+1Py, Pz4z4wt+1Pwyw. Therefore

Pz1 = Pz2 = Pz3 = Pz4 , and z1 and z2 are the endpoints. But then P,Pw and Pz1 can be combined

into two paths: xPuiwsPwwt−1z2Pz2z1ws−1Pwxw and yPui+1wtPwyw, a contradiction. �

Lemma 4.9. Let P = xu1u2 . . . uky ∈ P4 and uiuj ∈ E(G) for some i, j with j 6= i− 1, i+ 1.

(a) Let ui−1 and ui+1 be heavy. Then uj−1 is not weighty, and uj−1 is heavy only if ui−1 and uj−1

are adjacent to the same endpoint of P ′ ∈ P − {P}; Similarly, uj+1 is heavy only ui+1 and

uj+1 are adjacent to the same endpoint of P ′′ ∈ P − {P}. Furthermore, if both uj−1 and uj+1

are heavy, then P ′ = P ′′.

(b) Let xui+1 ∈ E(G) and ui−1 be heavy or yui−1 ∈ E(G). Then uj−1 is neutral when j > i, and

uj+1 is neutral when j < i.

Proof. (a) As ui−1 and ui+1 are heavy, we may assume that they are adjacent to endpoints x′, x′′

of P ′, P ′′ ∈ P − {P}, respectively.

First note that uj−1 is not weighty. If xuj−1 ∈ E(G), then P,P ′ can be combined into one path

P ′x′ui−1Pxuj−1PuiujPy, a contradiction. If yuj−1 ∈ E(G), then P,P ′′ can be combined into one

path P ′′x′′ui+1Puj−1yPujuiPx, a contradiction again.

Note that ui−1 and uj−1 are the endpoints of the spanning paths xPui−1 and uj−1PuiujPy,

respectively. By Lemma 4.7, if uj−1 is not neutral, then it is adjacent to x′, as claimed, or it is

light as in (c1) or (c2) in Lemma 4.7.

If it is the case as (c1), then uj−1 is adjacent to a PE-vertex v ∈ P ′ such that x′v+ ∈ E(G).

Now P ′, P ′′, P can be combined into fewer paths: P ′′ui+1Puj−1vP
′x′v+P ′y′ and xPuiujPy. So

we may assume that it is the case as (c2). Then uj−1 is adjacent to a PE-vertex v ∈ Pv =

xvPvv
−vv+Pvyv ∈ P − {P,P ′} such that v−, v+ are adjacent to x, y or x′. We may assume that

v− is adjacent to x or y. Then P ′, Pv, P can be combined into two paths in either case: in the

former case xvPvv
−Pui−1x

′P ′ and yvPvvuj−1PuiujPy, and in the latter case, P ′x′ui−1Px and

xvPvv
−yPujuiPuj−1vPvyv, a contradiction.

For the furthermore part, if both uj−1 and uj+1 are heavy and adjacent to different paths, say P ′

and P ′′, then we can replace P,P ′, P ′′ with P ′x′uj−1Pui+1x
′′P ′′ and xPuiujPy, a contradiction.
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(b) When j > i, P can be rerouted so that uj−1, y (or uj+1, y when j < i) are endpoints, it follows

from Lemma 4.3 that uj−1 is neutral or xuj−1 ∈ E(G); but in the latter case, P can be rerouted

so that ui−1 and y are endpoints, thus by the same lemma, ui−1 cannot be heavy or adjacent to y,

a contradiction. �

Lemma 4.10. Let P = xu1u2 . . . uky ∈ P. If xu3 ∈ E(G) and u4 is heavy, then u1, u2 are neutral.

Proof. By Lemma 3.7, u2x 6∈ E(G), and then by Lemma 4.3, u2 is neutral, and u1y 6∈ E(G).

Assume that u1 is not neutral. Then u1 must be light or heavy. If u1 is heavy, then by Lemma 4.7,

u1 and u4 are adjacent to the same endpoint of a path, thus we have a bad endpoint, a contradiction

to Lemma 3.5. So u1 must be light.

Let u1 be adjacent to the PE-vertex v ∈ Pv = xvPvv
−vv+Pyv ∈ P −{P}. Let u4 be adjacent to

an endpoint xw ∈ Pw ∈ P − {P}. The following cases (c1) and (c2) from Lemma 4.7 must be true.

(c1). Pw = Pv, and xvu4, xvv
+ ∈ E(G) and v− is adjacent to x or y. If v−x ∈ E(G), then P,Pv

can be combined into one path yPu4xvPvv
−xu3u2u1vPvyv, a contradiction. So yv− ∈ E(G).

Note that P,Pv can be replaced by yvPvvu1u2u3x (or yvPvvu1xu3u2) and cyclic path xvPv−yPu4,

so x, u2, yv have no neighbors on xvPvv
− and u4Py, or we can combine P,Pv into one path.

If x has no neighbors on Pv and u4Py is not a 3-path, let P1 = yvPv+xvPvvu1u2u3x and

P2 = u4Py; If x has no neighbors on Pv and u4Py is a 3-path, let P1 = yvPxvu4Px and P2 = u5y;

If x has a neighbor on Pv, let P1 = xu3u4Py and P2 = yvPvv
+xvPvvu1u2. Note that each of x, xv

is adjacent to at least one weighty vertex in P,Pv , respectively. We replace P,Pv with P1, P2 in the

corresponding cases, and claim that there are fewer weighty vertices in the new cover. In the first

two cases, x has one weighty neighbor on P1 and u4 or u5 has none in P2, and in the last case, x

has no weighty neighbors on P1, and u2 has at most one weighty neighbor on P2. Clearly, we do

not add bad paths (1-, 3- or cyclic paths) to the cover. To obtain a contradiction, we show below

that we do not create new bad or annoying endpoints.

Only x in the last case could be a bad endpoint described in (iv), and when it is, we must have

u2g, xg
− ∈ E(G), where Pv = xvPvg

−gv−vv+Pvyv; but in this case, we can combine P,Pv into one

path yvPvvu1xu3u2gv
−yPu4xvPvg

−, a contradiction.

We also claim that no new annoying endpoints are added. In the first case, u4 cannot be, since

it has only one neighbors on P2, and if x is one, then u2 must be adjacent to a vertex in u5Py,

which is impossible. In the second case, no vertex is an annoying endpoint as P2 is a 2-path. In

the last case, x cannot be as it has only one neighbor on P1, and if u2 is one, then u4 should be

light and be adjacent to a PE-vertex, but u4xv ∈ E(G) and xv is not a PE-vertex in P2.

(c2). Pw 6= Pv, and v−, v+ are adjacent to xw, x or y. If xv− ∈ E(G), then P,Pv , Pw can

be combined into two paths: Pwxwu4Py and xvPvv
−xu3u2u1vPvyv, a contradiction. So we may

assume that xv−, xv+ 6∈ E(G). It follows, by symmetry, that yv+ ∈ E(G). But again, P,Pv , Pw

can be combined into two paths: Pwxwu4Pyv+Pvyv and xvPvvu1u2u3x, a contradiction. �

5. Weights on paths

We give an initial weight of 10 to each path in P. By Lemma 3.4, all paths in P are non-cyclic

paths with order more than 1. So we may think that each endpoint of the paths in P gets an initial

weight of 5. Here is the rule to transfer weights between (vertices on) paths:

Rule to transfer weights: Each endpoint sends a weight of 2 to the adjacent

weighty or heavy vertex, and each PE-vertex transfers 1 to the adjacent light vertex.
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For convenience, we let w(P ) be the final weight on a path or a segment P . For a path P ∈ P, let

s1(P ), s2(P ), s3(P ) and no(P ) be the number of weighty and heavy vertices, light vertices, neutral

vertices, and PE-vertices, respectively. Then

(1) w(P ) = 2 + 2s1(P ) + s2(P )− no(P ).

Definition 5.1. Let P = xu1u2 . . . uky ∈ P. For each 1 ≤ i ≤ j ≤ k − 1,

• a neutral vertex ui is free if there are neither heavy nor weighty vertices on P between ui
and an endpoint (x or y);

• uiPuj is a heavy segment if both ui and uj are heavy or weighty and there is no neutral

vertices on it; (so a single heavy or weighty vertex is also a heavy segment)

• uiPuj is a neutral segment if ui, uj are non-free neutral and there is no heavy or weighty

vertices on it. (so a single neutral vertex is also a neutral segment)

Note that a light vertex may be on a heavy or neutral segment. By Corollary 4.4 and Lemma 4.8,

there are at least one neutral vertices between any two heavy vertices, so a heavy segment with

more than one vertices must contain at least one weighty vertex, and contain at most three vertices,

and when it contains three vertices, it must be a light vertex adjacent to two weighty vertices. Let

a heavy pair be a pair of vertices in a heavy segment that are both heavy or weighty. So every heavy

segment contains either 0 or 1 heavy pair. Let nh(P ) be the number of heavy pairs on P ∈ P. So

nh(P ) ≤ 4 for each P ∈ P.

Similarly, a pair of neutral vertices in a neutral segment that are consecutive or separated by a

light vertex is called a neutral pair. So a neutral segment with s neutral vertices contains s − 1

neutral pairs. A heavy segment (and similarly, a neutral segment) is maximal if it is not contained

in a larger heavy segment (neutral segment).

Lemma 5.2. For a path P ∈ P with w(P ) > |V (P )|,

nh(P ) ≥ no(P ) + nq(P ) + nr(P ),

where nh(P ), no(P ), nq(P ), nr(P ) are the numbers of heavy pairs, PE-vertices, neutral pairs, and

free neutral vertices on P , respectively.

Proof. As above, assume that P contains a maximal heavy segments, then P contains a−1 maximal

neutral segments. It follows that s1(P ) = nh(P ) + a and s3(P ) = nq(P ) + a− 1 + nr(P ). By (1),

w(P ) = 2 + s1(P ) + s2(P ) + (nh(P ) + s3(P )− nq(P ) + 1− nr(P )) − no(P )

= |V (P )|+ nh(P ) + 1− (nq(P ) + nr(P ) + no(P )).

It follows that if w(P ) > |V (P )| then nh(P ) ≥ nq(P ) + nr(P ) + no(P ), as claimed. �

For convenience, we call the number no(P ) + nq(P ) + nr(P ) the good number of P , and in

particular, it is called the good number of the segment if P is a segment of a path.

Lemma 5.3. If for some i > 1, xui ∈ E(G) and ui+1 is heavy (so {ui, ui+1} is a heavy pair), then

the good number of xPui is at least 1, with equality if and only if i = 4 and u2 is heavy.

Proof. First of all, xPui−1 contains no neighbors of y by Corollary 4.5, and contains at most one

heavy or light vertex by Lemma 4.7. We may assume that the good number of xPui is at most 1.

Clearly, i > 2, or xu1u2 is a net. Also, i 6= 3, or by Lemma 4.10, both u1, u2 are neutral (and

free), so the good number of xPui is 2. So i ≥ 4, and xPui−1 contains at least one heavy, weighty,

or light vertices, or there are at least two free neutral vertices on xPui.
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First assume that xPui−1 contains no weighty vertices. Then it must contain exactly one heavy

or light vertex, by Lemma 4.7. If it contains a light vertex, then all neutral vertices on xPui−1

are free, thus the good number is at least i − 1 − 1 ≥ 2. Therefore, it contains a heavy vertex.

If u1 is heavy, then u2, . . . , ui−1 are all neutral, so it contains i − 3 distinct neutral pairs, namely,

{u2, u3}, {u3, u4}, . . . , {ui−2, ui−1}; If u2 is heavy, then u1 is free and {u3, u4}, . . . , {ui−2, ui−1} are

i− 4 distinct neutral pairs; if u1, u2 are not heavy, then u1, u2 are free neutral vertices. So in either

case, the good number is at least i−3. Then i = 4 and u1 or u2 is heavy. By Lemma 3.5, u1 cannot

be heavy, so u2 is heavy.

Now assume that xPui−1 contains a weighty vertex, say uj for some 1 < j < i. Then xuj ∈ E(G).

If j = 2, then u1u3 ∈ E(G), or we will have a net. Note that u4 6= ui (otherwise u4u5 is a cut-edge),

u4 cannot be neutral (otherwise, {u3, u4} is a neutral pair and u1 is free, so the good number of

xPui is at least 2), and u4 cannot be light (otherwise, u5 must be neutral by Corollary 4.3, thus

{u3, u5} is a neutral pair and u1 is free, so the good number of xPui is at least 2). So u4 is heavy.

Now u5 is neutral and u6 must be ui, or {u5, u6} is a neutral pair. But then by Lemma 3.7, u5
must be adjacent to some vertex on xPui other than u4, u6, which is impossible.

So j ≥ 3, and one vertex on xPuj−1 must be heavy or light (otherwise there are at least two free

neutral vertices). As xPuj−1 contains no weighty vertices, the above argument shows that xPuj−1

has good number at least 2, unless j = 4 and u2 is heavy. In the bad case, i = j + 2 = 6 (for

otherwise {uj+1, uj+2} is a neutral pair), and by Lemma 3.7, u1, u3, u5 must be adjacent only to

vertices on xPu6, which is impossible. �

Lemma 5.4. Let P = xu1 . . . uky ∈ P. If for some 1 < i < k, xui, yui+2 ∈ E(G) and ui+1 is light,

then w(P ) ≤ |V (P )|.

Proof. Assume that w(P ) > |V (P )|. Then by Lemma 5.2, nh(P ) ≥ no(P ) + nq(P ) + nr(P ).

By Lemma 4.7, xPui and yPui+2 contain at most one heavy vertex altogether. By Corollary 4.5,

xPui contains no neighbors of y and ui+1Py contains no neighbor of x. We may assume that yPui+2

contains no heavy vertices. As i+2 6= k− 1 (otherwise ui+2uky is a net), yPui+2 contains at least

one free neutral vertex, so the good number of yPui+2 is at least one.

If xPui contains no heavy vertices, then similarly the good number of xPui is also at least one,

so the good number of P is at least 2, but P has only one heavy pair, a contradiction. Thus, we

may assume that xPui contains exactly one heavy vertex.

If xPui contain no heavy pairs, then its good number must be zero. It follows that u1 is heavy

(otherwise nr ≥ 1), xu3 ∈ E(G) (otherwise nq ≥ 1), and i ≥ 3. As u2 cannot be a PE-vertex

(otherwise no + nr + nq ≥ 2 but nh = 1), u2ua ∈ E(G) for some a 6= 1, 3. By Lemma 3.7, i > a.

By Lemma 4.9 (b), ua−1 is neutral, so nq ≥ 1 thus nq + nr ≥ 2, a contradiction.

Thus, we may assume that xPui contains a heavy pair, that is, xuj ∈ E(G) and uj+1 is heavy

for some 2 ≤ j < i − 1. By Lemma 5.3, the good number of xPuj is at least 1. Thus it must be

exactly 1, j = 4 and u2 is heavy. But then xPui contains two heavy vertices, a contradiction. �

Lemma 5.5. For each P ∈ P, w(P ) ≤ |V (P )|.

Proof. Let P = xu1u2 . . . uky ∈ P. By Lemma 3.5, P is non-cyclic and is not a 1-path or a 3-path.

Assume that w(P ) > |V (P )|. Let nh, no, nq, nr, as defined in the Lemma 5.2, be the numbers of

heavy pairs, PE-vertices, neutral pairs, and free neutral vertices on P , respectively. By Lemma 5.2,

(2) no + nq + nr ≤ nh ≤ 4.
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By Lemma 5.4 and Lemma 4.8, we may assume that each heavy pair consists of two consecutive

vertices on P , at least one of which is a weighty vertex.

Case 1. P contains a heavy pair consisting of two weighty vertices. Assume that xui, yui+1 ∈

E(G) for some 1 < i < k − 1. Note that by Lemma 3.7, xui−1, yui+2 6∈ E(G).

Case 1.1. P contains at least two heavy pairs.

First assume that P contains another heavy pair consisting of two weighty vertices, say {uj , uj+1}

with xuj , yuj+1 ∈ E(G) for some j > i. In this case, there are no other heavy pairs. So nh = 2. As

P can be rerouted so that u1 and uk are the endpoints, u1, uk must be neutral by Corollary 4.3,

thus free, so nr = 2 and no = nq = 0. Then uj−1 is not in a neutral pair. It follows that uj−2

is heavy or uj−2 = ui+1, and in either case, uj−1us ∈ E(G) for some s 6= j − 2, j, or uj−1 is a

PE-vertex (a contradiction to no = 0). By Lemma 4.9, us+1 (if s < j) or us−1 (if s > j) is neutral,

so we have a neutral pair, a contradiction to nq = 0.

Now we assume that {ui, ui+1} is the only heavy pair containing two weighty vertices. Note that

if a heavy pair is {us, us+1} such that xus ∈ E(G) and us+1 is heavy, then by Corollary 4.5, s < i.

Similarly for such a heavy pair involving y. Also note that nh ≤ 3.

Consider the case nh = 3. Let {us, us+1} and {ut, ut−1} be the other two heavy pairs such that

s < i, t > i + 1, xus, yut ∈ E(G), and us+1, ut−1 are heavy. By Lemma 4.7, P contains no other

heavy or light vertices. Now by Lemma 5.3, each of xPui and ut+1Py has the good number at

least two, thus the good number of P is at least 4, a contradiction.

Now let nh = 2 and {us, us+1} be the only other heavy pair such that xus ∈ E(G) and us+1 is

heavy. By Lemma 5.3, xPus has the good number at least 2 or s = 4 such that u2 is heavy. In

the latter case, ui+1Py contains no heavy or light vertices by Lemma 4.7, so has at least two free

neutral vertices, thus the good number of P is at least 3, a contradiction. For the former case, the

good number of ui+1Py is 0. It follows that uk must be heavy, and by Lemma 4.7, there are no

other heavy or light vertices on P other than us+1 and uk. Then s = 3 and i = 6. Now ui−1 must

be adjacent ut for some t 6= i − 2, i. Clearly, t 6= 1, 2, i + 2. Then t > i + 1, and by Corollary 4.4,

ut−1 is neutral, so {ut−1, ut} is a neutral pair, a contradiction to the fact that the good number of

ui+1Py is 0.

Case 1.2. {ui, ui+1} is the only heavy pair on P . Then the good number of P is at most one.

By symmetry, we may assume that the good number of xPui is at most one and the good number

of ui+1Py is 0. It follows that uk cannot be neutral (otherwise it is free).

Let xuj ∈ E(G) for some j > i. Then P can be rerouted so that u1 is an endpoint. By

Lemma 4.3, u1 is neutral (and free). So nr ≥ 1. It follows that nr = 1 and no = nq = 0. By

Lemma 3.7, uj−1us ∈ E(G) for some s 6= j − 2, j. By Corollary 4.4, us+1 (if s < j) or us−1 (if

s > j) is neutral, thus nq ≥ 1, a contradiction. It follows that ui+1Py contains no neighbor of x,

and by symmetry, xPui contains no neighbour of y.

Now that uk cannot be neutral or weighty, it must be light or heavy. But if it is light, then

uk−1 cannot be a neighbour of y (otherwise yukuk−1 is a net), or heavy by Lemma 4.8, so uk−1 is

neutral, thus the good number of ui+1Py is not 0, a contradiction. So we assume that uk is heavy.

Observe that uk−1 is neutral. We may assume that uk−2 is not neutral, or we have a neutral

pair {uk−2, uk−1} on ui+1Py, a contradiction. So uk−2 is heavy, light or yuk−2 ∈ E(G).

Note that uk−2 cannot be heavy. Suppose otherwise. By Lemma 4.7, xPui contains no heavy or

light vertices. So u1, u2 are free neutral vertices. It follows that nr ≥ 2, a contradiction.
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We also have uk−2y 6∈ E(G). Suppose otherwise. Then uk−1us ∈ E(G) for some i+1 < s < k−2,

or uk−1 is a PE-vertex. By Lemma 4.9, us+1 is neutral, thus {us, us+1} is a neutral pair on ui+1Py,

a contradiction.

So let uk−2 be light. By Lemma 4.8, uk−3 is not heavy or light. But uk−3 is not a neighbour

of x or y, so uk−3 must be neutral. Now {uk−3, uk−1} is a neutral pair, a contradiction to the

assumption that the good number of ui+1Py is 0.

Case 2. P contains no heavy pairs consisting of only weighty vertices.

Case 2.1. nh = 0. It follows that no = nq = nr = 0. Recall that k > 1, by Lemma 3.4.

Assume first that P contains no weighty vertices. Then u1, uk are heavy, and the vertices on

u1Puk are alternatively heavy and neutral. Let v 6= u1, u3 be the third neighbor of u2. Then

v = ut ∈ P for some t > 3, or u2 is a PE-vertex (this contradicts to the fact that no = 0). But ut−1

and ut+1 are heavy. So by Lemma 4.9 (a), u1, ut−1 are adjacent to one endpoint of a path Q 6= P

and u3, ut+1 are adjacent to the other endpoint of Q. Note that t 6= 4, or u2u3u4 is a net. Now

u4 is neutral and must be adjacent to v′ 6∈ P or us for some s > 5. In the former case, ui+3 is a

PE-vertex, and in the latter case, us−1 or us+1 cannot be heavy by Lemma 4.9 (a), a contradiction.

Now let xui ∈ E(G) for some i > 1, and we may assume that xuj 6∈ E(G) for 1 < j < i. First

let i > 2. Then ui−2 cannot be neutral (or {ui−2, ui−1} is a neutral pair) or light (otherwise, ui−1

is free if i = 3, or ui−3 must be neutral thus {ui−3, ui−1} is a neutral pair). So ui−2 is heavy or

yui−2 ∈ E(G). Now ui−1 must be adjacent to ut for some t 6= i− 3, i− 1, or it is a PE-vertex. By

Lemma 4.9 (b), ut−1 (if t > i − 1) or ut+1 (if t < i − 3) is neutral, thus ut is in a neutral pair, a

contradiction to nq = 0. Now let i = 2. Then u1u3 ∈ E(G), or xu1u2 is a net. So xuj ∈ E(G) for

some j > 3, or u1 is a better endpoint of P than x. Clearly j 6= 4, or u4u5 is a cut-edge. So uj−2

must be heavy or adjacent to y. Now a similar argument as above shows nq > 0, a contradiction.

Case 2.2. nh = 1. Let {ui, ui+1} be the only heavy pair with xui ∈ E(G) for some 1 < i < k

and ui+1 is heavy. As the good number of xPui is at most 1, by Lemma 5.3, i = 4 and u2 is heavy.

So u1 is free, and nq = no = 0.

Now, u3ut for some t 6= 2, 4, or u3 is a PE-vertex, a contradiction to no = 0. Clearly, t 6= 1, so

t ≥ 6. By Lemma 4.3, ut−1 is neutral or xut−1 ∈ E(G). In the former case, we have a neutral pair,

thus nq > 0, a contradiction. As y has no neighbors on xu1u2u3, Lemma 3.7 implies that the latter

case cannot happen.

Case 2.3. nh = 2. Let {ui, ui+1} and {ut−1, ut} be the two heavy pairs for some i < t− 1.

First assume that xui, xut−1 ∈ E(G) and ui+1, ut are both heavy. By Lemma 4.7, ui+1, ut are

adjacent to the same endpoint x′ ∈ P ′ ∈ P, and they are the only heavy/light vertices on xPut.

As i ≥ 3 (otherwise there is a net) and u1, u2, . . . , ui−1 are free neutral vertices, nr ≥ 2. It follows

that nr = 2 and i = 3, and no = nq = 0. By Lemma 3.7, u2 can only be adjacent to vertices on P ,

thus u2ua ∈ E(G) for some a ≥ 4, and by Lemma 4.9, ua−1 is neutral, so nq ≥ 1, a contradiction.

Note that if xut−1, yui+1 ∈ E(G) and ut, ui are heavy, then P can be rerouted so that ui and ut
are endpoints, a contradiction to Lemma 4.3. Thus, we assume that 1 < i < t < k, xui, yut ∈ E(G)

and ui+1, ut−1 are heavy, and y has no neighbors on xPui and x has no neighbors on utPy. Let

ui+1 be adjacent to an endpoint x′ ∈ P ′ ∈ P − {P}.

By Lemma 5.3, xPui−1 and ut+1Py both have the good number at least 1, thus i = 4, t = k − 3

and u2 and uk−1 are heavy. So there are two free neutral vertices, and nq = no = 0. Note that

i+1 < t−1. For otherwise, by Lemma 4.7, xPui and utPy contain at most one heavy/light vertex

altogether, a contradiction.
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Now, u3ut for some t 6= 2, 4, or u3 is a PE-vertex. Clearly, t 6= 1, so t ≥ 6. By Lemma 4.3, ut−1

is neutral or xut−1 ∈ E(G). In the former case, we have a neutral pair, a contradiction. As y has

no neighbors on xu1u2u3, Lemma 3.7 implies that the latter case cannot happen.

Case 2.4. nh ∈ {3, 4}. As in Case 2.3, we may assume that the neighbors of x are u1, ui, uj and

the neighbor of y are us, ut, uk with 1 < i < j < s ≤ t < k such that ui+1, uj+1, us−1, ut−1 are all

heavy.

By Lemma 4.7, ui+1, uj+1 are adjacent to the same endpoint of a path in P, and there are no

other heavy or light vertices on xPuj. Note that i ≥ 3 (otherwise xu1u2 is a net), so xPui contains

at least i−1 ≥ 2 free neutral vertices, i.e., u1, u2, . . . , ui−1. Similarly, usPy contains at least k−t ≥ 2

free neutral vertices when nh = 4 (that is, s < t). Note that when nh = 3 (that is, s = t), the good

number of usPy is 1, thus by Lemma 5.3, s = k − 3, uk−1 is heavy and uk is free. So P contains

nh free neutral vertices. It follows that nq = no = 0, and i = 3 and j = 6. By Lemma 3.7, u5 must

be adjacent to u1 or u2, but then P,P ′ can be combined into one path: P ′x′u4u5u1u2u3xu6Py if

u5u1 ∈ E(G), and P ′x′u4u3xu1u2u5Py if u5u2 ∈ E(G), a contradiction. �

Proof of Theorem 1.1: Consider an optimal path cover P of G, and assign a weight of 10 to each

path in P. By Lemma 5.5, the total weight is 10|P| =
∑

P∈P
w(P ) ≤

∑
P∈P

|V (P )| = n. So

|P| ≤ n/10, that is, G has a path cover with at most n/10 paths. �
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