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COVERING 2-CONNECTED 3-REGULAR GRAPHS WITH DISJOINT PATHS

GEXIN YU

ABSTRACT. A path cover of a graph is a set of disjoint paths so that every vertex in the graph is
contained in one of the paths. The path cover number p(G) of graph G is the cardinality of a path
cover with the minimum number of paths. Reed in 1996 conjectured that a 2-connected 3-regular
graph has path cover number at most [n/10]. In this paper, we confirm this conjecture.
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1. INTRODUCTION

A path cover of a graph is a set of disjoint paths that contain all the vertices of the graph. The
path cover number of graph G, written as p(G), is the cardinality of a path cover with the minimum
number of paths.

Ore [11] initiated the study of path covers. A graph has path cover number 1 precisely when
it has a Hamiltonian path. It is well-known that if the minimum degree of an n-vertex graph is
at least n/2 then the graph is Hamiltonian. Because of its natural connection with hamiltonian
graphs, people were interested in the sufficient conditions for a graph to have path cover number
at most k > 2, see, for example, [3, [§]. In more recent years, path covers have been used to study
other graph parameters, such as domination numbers [12] Bl [6], L(2, 1)-labelling [2], independence
number [3], and graphic-TSP [1], just to name a few.

Every n-vertex graph have a path cover of order at most n, and one would imagine that a graph
with more edges will require fewer paths to cover. However, an n-vertex graph with minimum
degree t could have path cover number as high as n — 2¢, for example K;,_;. Thus, we are more
interested in path cover of regular graphs. Jackson [4] showed that 2-connected k-regular graphs
with at most 3k+ 1 vertices have a hamiltonian path (actually they have a hamiltonian cycle except
the Petersen graph), thus the path cover number is 1. Magnant and Martin [7] studied path cover
numbers of k-regular graphs for k > 3, and they showed that for & < 5, a k-regular graph has path
cover number at most n/(k + 1), which they conjectured to be true for £ > 5. Note that if every
component of a graph G is a clique of k + 1 vertices, then p(G) = n/(k + 1), thus the bound is
sharp for general graphs. As they pointed out, it is more difficult to find the path cover numbers
of connected regular graphs.

The following example gives a general lower bound for the path cover numbers of connected
k-regular graphs. Take K ;1 and replace every vertex of degree 2 with K, (a k+ 1-clique minus
an edge), and call this graph H, in which two vertices have degree k — 1 and the rest have degree k.
Now let G be the k-regular graph with n vertices formed from p% pairwise disjoint H by adding
kQLH edges to link them in a ring. It is not hard to see that the path cover number of G is at least

”,5’;;? for k > 5. Therefore for k > 13, one cannot find a path cover with fewer than n/(k + 4)
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paths in connected k-regular graphs (note that the examples are actually 2-connected). Some more
examples from [9] [10] also show that n/(k + 4) paths are necessary.

Intuitively, one may need more paths to cover the vertices when there are fewer edges in the
graphs. This initiated the study of path covers for connected 3-regular graphs. Reed [12] showed
that a connected 3-regular graph with n vertices has path cover number at most [n/9], and also
gave examples that need [n/9] paths. He conjectured [I2] that it suffices to use at most [n/10]
paths to cover 2-connected 3-regular graphs. In this article, we confirm this conjecture.

Theorem 1.1. Every 2-connected 3-reqular graph with n > 10 vertices has path cover number at
most n/10.

It follows that every 2-connected 3-regular graph with at most 20 vertices contains a hamiltonian
path. Reed [12] gave the following example to show that one cannot improve [n/10] in general: let
C = uyviugvs . . . upvE be a cycle of 2k vertices, let H be the the graph obtained from the Petersen
graph by removing an edge, say uv, and let G be the graph obtained by replacing edge u;v; for
1 <14 < k with H so that v = u; and v = v;. He claimed that the path cover number of G is
n/10, based on the observation that one needs a path to cover each H. However, we can use one
path to cover two consecutive copies of H, thus only need n/20 paths to cover V(G). Here we give
infinitely many 2-connected 3-regular n-vertex graphs whose path cover numbers are at least n/14.

Theorem 1.2. There are infinitely many 2-connected 3-regular n-vertex graphs whose path cover
numbers are at least n/14.

Proof. Let G be an arbitrary 2-connected 3-regular graph, and let H be the graph obtained from
G by replacing each edge of G with a K, (that is, delete the edge, and connect two endpoints of
the edge to the two degree-2 vertices on K, respectively). Then n(H) = n(G)+4- % = Tn(G).
We now show that p(H) > n(G)/2 = n(H)/14.

Let P be a path cover of H. Let e = uv be the edge between v € V(G) and v in some K . Then
either uv is on a path of P, or v is on some path in P that contains all vertices of the K, . In the
latter case, we may reroute the path so that v is an endpoint, thus extend the path to include the
edge vu. Therefore, we may obtain a path decomposition P’ of G (a set of edge-disjoint paths P’
containing all the edges of G) with |P’| = |P|. Each path in P’ contains a vertex in G as either
an internal point or an endpoint, and only when it is an endpoint, the parity of its degree changes
when we remove the edges on the path. But each path can only change the degree parities of at
most two vertices in G. As G has n(G) vertices whose degree parity need to be changed, there are
at least n(G)/2 paths in P’. Thus, P contains at least n(H)/14 paths. O

It is an interesting question to determine the sharp bounds for the path cover numbers of 2-
connected 3-regular graphs in terms of the orders of the graphs.

We will often use the following notation for a path and its segments. A k-path is a path of
k vertices. For a k-path P, if G[V(P)] contains a spanning cycle, we call it a cyclic k-path or a
k-cycle, otherwise non-cyclic. A vertex on a non-cyclic path P is called weighty if it is adjacent to
an endpoint of P by an edge not on P. If a path P contains vertex z, then we sometimes write P
as P,, and let v~ ,vT be the vertices (neighbors) next to v on P, respectively. If the endpoints of
P, are x and y, then we also write P, as xPy, or even as xPv~vv™ Py. We will use uPv to denote
the segment on P from u to v. If v is an endpoint of P,, we sometime use P,v to denote the path

P, with endpoint v. For other notation, we refer to West [13].
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2. SKETCH OF THE PROOF OF THEOREM [L.1]

The idea of the proof of the theorem is quite simple. We consider a specially chosen minimal
path cover P, and assign a weight of 10 to each path in the cover initially. We then redistribute
the weights among the paths and show that the final weight on each path is at most its order. It
follows that the total weight is 10|P| on one hand, and at most n on the other hand, therefore
|P| < n/10. The difficulty lies on the choice of minimal path cover and on the way to redistribute
the weights. Below we give some insights on how we make the choices.

In the minimal path covers we can show that none of the paths are single vertices or contain a
spanning cycle. We may think that the weights of the paths are all on the endpoints, 5 for each.
Let x be an endpoint of a path P, and xu be an edge not on E(P). Clearly, u is not an endpoint of
another path, or we will combine the paths into one to get a cover with fewer paths. We transfer a
weight of 2 from x to u. The vertex u is called weighty if u is on P and heavy otherwise. Then on
each path, the four edges incident with the endpoints will send out a weight of 8 and only a weight
of 1 remains on each endpoint.

Note that heavy vertices are not next to each other on the paths, or we can rearrange the paths
to get a cover with fewer paths. Therefore, if there are no consecutive vertices on paths that are
either heavy or weighty, and the number of vertices on a path is not odd, then the final weight on
each path is at most the number of vertices on the path, as desired. Therefore the problematic
cases are the existence of consecutive weighty and heavy vertices, or the number of vertices is odd
and every other vertex on a path is weighty or heavy. They force us to identify more vertices to
transfer weights from one path to another, and suggest such vertices to be the ones incident with
a vertex whose neighbors are weighty and heavy on the path. It turns out that we only need to
use such vertices, namely P(seudo)E(ndpoint)-vertices, to transfer a weight of 1. PE-vertices share
a lot of common features with the endpoints. For example, a light vertex cannot be next to a
heavy vertex on a path, where a light vertex is the neighbor of a PE-vertex not on the path of the
PE-vertex. Light vertices make the proof more complicated.

There are still bad situations that a path may have too much weight. For example, a 3-path
with a heavy middle vertex, or a 5-path P = xujusugy such that zug,zus € E(G), or a 6-path
P = zujususugy such that zug,x’'uy, 2’'uy € E(G) where 2/ is an endpoint of another path, or a
7-path P = zujugusugqusy such that zuy, 2'uy,2’us € E(G) where 2’ is an endpoint of another
path. Fortunately, we can carefully define the optimal path covers to avoid all those situations.

Each pair of consecutive heavy/weighty vertices on a path contains a neighbor of the endpoints,
so there are at most four such pairs on each path. To show that each path has no more weight than
its number of vertices, we show that in each of the bad cases, the path has enough neutral vertices
(vertices do not receive weights) and/or PE-vertices.

We define optimal path covers and study their properties in Section The special vertices
(heavy, light, PE-vertices) and their properties are studied in Section @l Then in Section B we
prove the main lemma that the total weight on each path does not exceed its order and finish the
proof of the theorem.

3. OPTIMAL PATH COVERS AND THEIR BASIC PROPERTIES

Let G be a minimum counterexample to Theorem [Tl Among all path covers of G, choose P to
be an optimal path cover subject to the following:

(i) the number of paths is minimized.



(ii) subject to (i), the number of 1-paths is minimized.

(iii) subject to (i)-(ii), the number of 3-paths and cyclic paths is minimized.

(iv) subject to (i)-(iii), the number of bad endpoints is minimized, where an endpoint 2’ € P’ € P
is bad if (v1) 2’ is adjacent to ui,us € P and zuz € E(G), or (v2) a’ is adjacent to ui,us € P
and zuy € E(G), where P = zujugusuy ... upy € P — {P'}.

(v) subject to (i)-(iv), the number of annoying endpoints is minimized, where an endpoint =’ €
P' = g'u} ... wy is annoying if @', ¥'u;, 2wl uluie € E(G) with P = zujug ... upy €
P—{Pland2<s<l-1

(vi) subject to (i)-(v), the number of weighty vertices is minimized.

(vii) subject to (i)-(vi), for each non-cyclic path P, the number of vertices on P between the
endpoints and their corresponding furthest neighbors on P is maximized.

We shall call a path cover satisfying the first ¢ conditions above as P;. Thus P is Pr, and Py is
just a path cover to G. Clearly, P;+1 C P;, so P;+1 has all the properties that P; has.
A net is a triangle whose three neighbors not on the triangle are distinct. The following was

observed in [12].
Lemma 3.1. The graph G contains no net.

Proof. For otherwise, let ujusus be a triangle with u,u; € F(G) such that u;’s are distinct. Then
we contract the triangle to a single vertex u and get a graph G’. Now G’ has a path cover with at
most [V (G")|/10 paths, but then we can get a path cover of G by replacing u with a path containing
Uy, U2, Us3. O

Lemma 3.2. The following are true about Py :

(1) Endpoints of different paths in Py are not adjacent. In particular, there is no edge between
cyclic paths or between a cyclic path and an endpoint of a non-cyclic path.
(2) every cyclic path has at least two neighbors not on the path.

Proof. (1) is true because our cover used the minimum number of paths. (2) is true because G has
no cut-vertices. O

The following lemma from [7] says that a path cover subject to (i) and (ii) contains no 1-paths.
We give an alternative proof here, whose idea will be used to prove more results about path covers.

Lemma 3.3 ([7]). The path cover Py contains no 1-paths.

Proof. Suppose that P € Py consists of vertex v. By Lemma [3.2] v is not adjacent to an endpoint
of another path. We also note that v is not adjacent to an interior vertex on a path P’ of order
at least 4, for otherwise, one can easily decompose P U P’ into two paths, each of order at least
2. Therefore v must be adjacent to the midpoints of 3-paths. Furthermore, if v is adjacent to the
vertex w € P’ = zwy, then we may rearrange paths to form the paths zwv and y or vwy and x.
This implies x and y must also be adjacent only to the midpoints of 3-paths.

Let T be the set of 1-paths and 3-paths that are involved in the above rearrangement process.
We consider an auxiliary digraph D whose vertices are the paths in T', and there is a directed edge
from P, € T to P, € T if and only if an endpoint of P, is adjacent to the midpoint of P,. Clearly,
each vertex in D has in-degree at most 1 and out-degree at least 3, which is impossible. Therefore,
‘P contains no 1-paths. O

Lemma 3.4. The path cover P3 contains no 1-paths, 3-paths, or cyclic paths.
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Proof. We call a path bad if it is cyclic or has order 1 or 3. By Lemma B.3] we may assume that
each bad path in P5 is a non-cyclic 3-path (note that a cyclic 3-path must be a net) or a cyclic
path with order at least 4.

Let P be a bad path in P3 and x € P be a potential endpoint of P, which is an endpoint if P is
non-cyclic, or any vertex on P if P is cyclic. Suppose that zw € E(G) with w € @Q € P3 — {P}.
Then @ is not cyclic, and ) — w splits into two paths Q1 and Q2. In fact, the path P’ obtained by
concatenating P, w, Q; cannot be cyclic (as then P + @ would have a Hamilton path contradicting
minimality) or have length less than 4. Thus both @; and @2 must be bad by the minimality of
the cover. Furthermore, neither Q1 nor (s is a cyclic 3-path, or we would have a net or a path
cover with fewer paths. We shall call w a special vertex on @@, and Q1, Qs bad components on Q.

Now, for i € {1,2}, provided @; has order more than one, replacing P,Q in P with @; and
P' = P +w+ Q3_; gives a new minimal path cover. We can repeat our argument using (Q; in the
place of P and any other non-bad path of the new cover other than P’ in the place of Q.

We build a directed graph whose vertices are the paths in P, and a family F of subpaths of these
paths as follows.

(A) The set Fy consists of bad paths in Ps3; and we add a directed edge from P € Fj to Q € Fy
if a potential endpoint of P is adjacent to a special vertex on @) (note that this can only
happen if @) is a non-cyclic 3-path);

(B) If an endpoint of a Hamilton path on the vertex set of a bad path P € Fy is adjacent to
w on a non-bad path Q € P, we add to F; all the bad components of () — w which do not
have order 1, and add to our digraph an edge from P to Q;

(C) For ¢ > 1, if an endpoint of a Hamilton path on the vertex set of some bad path P € F;
is adjacent to a special vertex w of some non-bad path R € Ps3, we add to F;41 all the
components of R —w which do not have order 1, and we add to the digraph the edge from
the path in Ps that contains P as a bad component described in (B) to R. Note that
multi-edges are allowed, but we only allow one directed edge implied by the middle vertex
of each 5-path.

We let F be the union of the F;. By definition, the in-degree of a path equals to the number of
special vertices on it. Note that a cyclic bad path or component does not contain special vertices. It
follows that if a non-bad path P contains two special vertices wq and ws, then the bad component
in P — w; that contains wy must be a 3-path, and the bad component in P — wy that contains
wy must also be a 3-path, so P must be a non-cyclic 5-path. Therefore, the in-degrees of 5-paths
are at most 2 and all other paths are at most 1. Note that there may be isolated vertices in the
digraph.

Now we count the out-degrees. The out-degree of a path P equals to the number of edges that
connect one endpoint of a bad component of order more than 1 and a special vertex not on P. Let
Q1, Q2 be the two bad components of a path P € P3 in the digraph.

If @1 and Q2 both have order 1, then P is a bad 3-path. By (A), P has out-degree 4. So let Q)4
have order more than 1. Note that ()1 has at least two edges out of )1 (as G is 2-connected), one
of which is not adjacent to the special vertex on P.

If @1 and Q)2 are both cyclic or have order 1, then there can be no edge between them, as if
Q' = Q1 U Q2 has a Hamiltonian cycle, we can rearrange P U (Q into one path, contradicting the
minimality of the cover, and otherwise P’ = P + w and @’ are both non-cyclic and we contradict
the minimality of the number of bad paths in the cover. So P has out-degree at least 1 (actually 2
if both @1, Q2 are cyclic).



Now, if @; has order three and Q9 is cyclic or has order 1, then (a) the endpoint of @)1 which
is an endpoint of () cannot be adjacent to any vertex on ()2 or we could find a Hamilton path
on P U Q contradicting the minimality of the cover, and (b) the other endpoint 2’ of @ can be
adjacent to none of the vertices on Q5 or we could find a Hamiltonian path P’ on PUQs + w + 2/,
which together with @Q = Q1 — 2’ contradicts the minimality of the cover. Similar arguments show
that if (1 and @2 both have order three then there are no edges joining their endpoints. So P has
out-degree at least 3.

Since the out-degrees of the paths are as large as their in-degrees, and the bad paths have higher
out-degrees than their in-degrees, such a digraph does not exist, a contradiction. O

From now on, we assume that P3 consists of non-cyclic paths with order other than 1 and 3.
Lemma 3.5. There are no bad endpoints described in (iv) in Py.

Proof. Suppose otherwise. Consider an endpoint 2’ € P’ = z'uju), ... v}y in (v1). We replace P, P’
with P'z’uix and usPy. We lose x/, and do not create cyclic paths or we would contradict the
minimality of the cover. We do not gain a new bad endpoint described in (v1) because (a) x is
not adjacent to u} or we could rearrange P’ + P into one path P'u}zugusuiz’uyPy, and (b) us
is not adjacent to us or we could rearrange P’ + P into one path P'z’ujusxujususPy. We also
do not gain a new bad endpoint described in (v2) because (a) x cannot be, or usug, zu; € E(G),
which allows us to reroute P, P’ into one path P'x’ujusugusususrur Py, and (b) us cannot be, or
uguly, zuy € E(G), which allows us to reroute P, P’ into one path P'ufugu;x’u)ubzususPy.
Consider an endpoint 2’ € P’ in (v2). If uz Py is a 3-path, then we replace P, P’ with ugy and
xPusz’P'. We lose 2/, and do not create cyclic paths, but clearly do not gain a new bad endpoint,
as u1 is now adjacent to a vertex on the path, and ug has at most one neighbor on other paths. If
us Py is not a 3-path, then we replace P, P’ with usPy and usuguszui;z’ P'. We lose 2/, and do not
create cyclic paths. We do not gain new bad endpoints, since us, u5 cannot be as they have at most
one neighbor on other paths, and no other vertex can be adjacent to x’ as it is already adjacent
to us, ui,u), and no vertex from other path can be a bad endpoint (to usPy) as us has only one
neighbor on the path. O

Lemma 3.6. There are no annoying endpoints described in (v) in Ps.

Proof. Let 2/ € P' = a'u}...ujy’ € Ps be an annoying endpoint. Then for P = zu;...uzy €
Ps—{P'}, 2'uj, x'ulq, 2wy, uuiy1 € E(G). Note that P, P’ can be decomposed into yPu;iu, Py’
and cyclic path 2/P'u’_zPu;. So y,y’, and endpoint of the paths in P; — {P, P’} cannot have
neighbors on the cyclic path.

Case 1. s = 3 and wju;12 € E(G). We replace P, P’ with P, = z/v} and P| = yPzu5P'y'.
Since P is a 2-path and zy, 2y’ € E(G), Py, P{ are not 1-paths, 3-paths, or cyclic paths, and none
of the endpoints (2/,u),y,y’) becomes bad or annoying. But we have fewer annoying endpoints, a
contradiction.

Case 2. s > 3, or s = 3 but vju;y2 & E(G). We replace P, P’ with P, = u;Pxu),_ P'z'u_  P'y
and Pj = wju;11ui+2Py. Note that none of P, Py can be 1-paths, 3-paths, or cyclic paths. Since
u; has at most one neighbor on paths other than P, u; is not bad. Since u/,_; is nto next to u; (the
endpoint of P,), u} is not bad. Since u/, has only one neighbor on Pj, it is not annoying. Note that
w; is annoying only if wju; 1o € E(G) and s = 3 (so that u),_; = u)), so u; is not annoying. Since
¥,y have no neighbors in u; P2’, they cannot become new bad or annoying endpoints. Therefore,

we have fewer annoying endpoints, a contradiction. O
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Lemma 3.7. Let P = zujus...ury € Pr be a non-cyclic path so that xu;,zu; € E(G) with
1<i<j<k. Then j# i+ 1, and the neighbors of ui—1 and uj_1 are on P. Furthermore, if y
has no neighbors on xPuj, then the neighbors of uj_1 and u;—1 must be on xPu;.

Proof. If j =i+ 1 and i # 2, then zu;u;11 is a net, a contradiction to LemmaB.Il If j =i+ 1 = 3,
then u; will be a better endpoint than = subject to (vi) (with fewer weighty vertices) or (vii)
(weighty neighbors are further away from the endpoints). Let j > i+ 1. If u;—1 (or u;—1) has a
neighbor outside of P, then we can reroute P so that w;—1 (or u;_1) is an endpoint, which would
give fewer weighty vertices, a contradiction to the optimality of P. If y has no neighbors on xPu;,
and wu;_; (or u;—;) has a neighbor u; with ¢t > j, but then w;_; (or u;—1) is a better endpoint
than x subject to (vii) (and we do not change the number of vertices between y and its furthest
neighbor). O

4. PROPERTIES OF HEAVY, LIGHT, AND PE-VERTICES
In this section, we study the properties of some special vertices on the paths in P.

Definition 4.1. Let u be an endpoint of a path P € Py and uwv € E(G) — E(P). Then v is called
a heavy vertex if v ¢ V(P) (and a weighty vertez is v € V(P)).

Definition 4.2. Let uv be an edge between u = u; € P = zuy ... upy € Py and v € P, € Py — {P}.
Then u is called a PE-vertex (aka, pseudo-endpoint) and v is called a light vertex if one of the
following is true

(1a) zuiy1,yui—1 € E(G); or

(1b) zu;y1 € E(GQ), and u;j—1 is heavy; or yu;,—1 € E(G) and u;11 is heavy; or

(1c) both u;—1 and u;41 are heavy.

A wvertex is neutral if it is not heavy or light or weighty.

Note that a PE-vertex is also a neutral vertex. Also note that if u is a PE-vertex defined in (1a)
and (1b), then P, can be rerouted so that u (and x or y) is an endpoint of the path.

Lemma 4.3. Let w € P € P,v € P, € P — {P} with wwv € E(G). If P = xPy can be rerouted
so that u is an endpoint, then v cannot be an endpoint or a PE-vertex, unless zv~,yvt € E(G).
Consequently, if u and y are the endpoints, then ux € E(G) or u is neutral.

Proof. If P, can also be routed so that v is an endpoint, then P, P, can be combined into one path,
a contradiction. So v cannot be an endpoint or a PE-vertex defined as in (1a) or (1b).

Let v be a PE-vertex defined as in (1c). Let P, = x, Pyo~vvT Pyy,. Then v~ and vt are heavy.
We assume that v~ xs,vT 2y € E(G), where zg,x; are endpoints of Ps, P, € P — {P,}, respectively.
If one of P; and F;, say P, is not P, then we can decompose P, P, P, into two paths: Psxsv™ Py,
and y, P,ouP, a contradiction. So P; = P, = P. If y (and by symmetry, x) has only one neighbor
on P, then y must be the other endpoint when u is an endpoint of P, thus yv™ ¢ E(G) (and
similarly, yv~ ¢ E(Q)), or P, P, can be combined into one path y,P,v"yPuvP,z,. It follows that
xv~,zvT € F(G), and thus z has only one neighbor on P, a contradiction. So both z and y have
at least two neighbors on P. Then we must have zv™,yv* € E(G).

When v and y are the endpoints, v cannot be an endpoint or a PE-vertex, so u is not heavy or
light and uy ¢ E(G). Then u is neutral or weighty, and when it is weighty, we have zu € E(G). O

Corollary 4.4. Let P=xuj...upy € P and 1 <i < j < k. Then
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if xuj € E(G), then uj_1 is neutral;

if zu;iy1 € E(G) and wju; € E(G), then uj_y is neutral or zuj_ € E(G);

if zujy1 € E(G) and viu; € E(G), then w1 is neutral or zu;i4q1 € E(G);

if xuj_1 € E(G) and uyu; € E(G), then ui—1 and w41 are neutral or adjacent to x;
if T, 2uj1, winy € E(G), then ui,uj—q are neutral.

Corollary 4.5. Let P = zuy ... ugpy € P. If xPu; is cyclic and u;11 is heavy or light, then a vertex
uw € xPu;_q is adjacent to y or u; with yu;j_1 € E(G) only when u;q is light and is adjacent to
vs € P! = 2/ Plus_1vsvs11 Py such that zvs_1,yvs11 € E(G).

Proof. Under the condition, P can be rerouted so that ;1 is an endpoint. So the statement follows
from Lemma 3l U

Lemma 4.6. PFE-vertices form an independent set. Consequently, no light vertex is a PE-vertez.

Proof. Let u,u’ € E(G) be PE-vertices such that vu’ € E(G) with v € P, = xPu”uu™ Py and
W € Py = 2'Pu~u'v'TPy € P—{P}. By Lemma[43] we may assume that u,u’ are PE-vertices
defined as in (1c), thus assume that w=,u™, v/~ u'T are adjacent to endpoints s € Ps,t € P, s' €
Py, t' € Py, respectively, where Py, P, # P, and Py, Py # P,.

First assume that none of the pairs (Ps, Py ), (Ps, Py), (P, Py), (P;, Py) contains two different
paths. Then P, = Py, = Py, = P,. Without loss of generality, we may assume that s, s’ are the
endpoints of P;. Then P,, P, and P, can be combined into two paths: xP,u~sP,s'u'~ Pya’ and
yP,uu’ Py, a contradiction. Therefore, without loss of generality, we assume that Py # Py.

If Py # P, and Py # P,, then we reach a contradiction by combining P,, Ps, P,s, Py into three
paths: Psu~ P,x, Pyu'~ Pyx' and yP,uu’ P,y'. Thus, we may assume that Py = P, and let s = 2.

If P, # P,, we can decompose Py, P,, P, into fewer paths: xP,u”x' Pyu'~s' Py and yPuu' Py,
again a contradiction. Therefore, we may assume that Py = P,. By symmetry, we also know that
Pt:Pu/ and Pt/ :Pu

Let zu'~ € E(G). If z’u™ € E(G) (or by symmetry y'u~ € E(G)), then we reach a contradiction
by combing P, and P,/ into one path yP,u™z' Pyu'~zP,uu’Pyy'. Thus, we let 2'u™,y'u™ € E(G).
But we again can combine the two paths into one path yP,u™y'Pyu'uPyaxu'™ Pyx'. O

Lemma 4.7. Let P = zujus ... ury € Py. Assume that for some 1 < s <1i <t <k, the subgraphs
induced by V(xPu;) and V (u;+1Py) contain spanning paths so that us and ug are the endpoints,
respectively. If ug,us are heavy or light, then

(a) us and ug are both light; or

(b) us,ur are heavy and adjacent to a same endpoint of P' € Py — {P}; or

(c) us is heavy and uy is light (or by symmetry uy is heavy and us is light) with x,us, vu; € E(Q),
where x,, is an endpoint of P, € Py — {P} and v € P, = x,P,v~vv™ Pyy,, such that
(cl) P, = P,, and zyus, z,0" € E(G) and v~ is adjacent to x ory, or
(¢2) P, # P,, and v—,v" are adjacent to z,y or x.

Consequently, let xPu; be cyclic, then

(1) if uiy1 is heavy, then xPu; contains at most one heavy or light vertex; and
(2) if uiyq is light, then xPu; contains at most one heavy vertez.

Proof. Let Py, P, be the spanning paths on V(zPu;) and V (u;41Py) so that ug,z’ and wu,y’ are

endpoints, respectively. We may assume that at least one of ug,u; (say us) is heavy, or we have
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(a). Let zyus € E(G) from the endpoint z,, € P, € Py — {P} and vu; € E(G) from v € P, =
Py~ vvT Py, € Py — {P}.

Assume first that P, can be rerouted such that v is an endpoints. If v is heavy, then we must
have (b), or P, Py, P, can be replaced with paths P,wuP; and P,vu;+1 P, to obtain a better path
cover. So let v be light, and by symmetry let z,o7 € E(G) and v~ be heavy and adjacent to
an endpoint z € P, € P — {P,}. Then z, = z,, or we replace P, P,, P, with y, Pv*x, Pyvu; Poy’
and Yy, Pyrypus P12’ (when xy, # y,) or @' Pyus Py, Pyvt o, Pyvuy Pyy' (when zy, = y,). Now 2z must
be z or y, as in (cl), or we could get a cover with fewer paths: P{ = P,zv™ P,z,usPi2’ and
P} = y,Pyou Pay'.

Now assume that both v~ and v™ are heavy. We may assume that v~ is adjacent to an
endpoint z € P, € P —{PR,}. If 2 & {z,y,z,}, then we can replace P, P,, P., P, with paths
Py,wuPy, Pouii1vP,y, and P,zv™ P,x,, a contradiction. So v~, and by symmetry v*, is adjacent
to z,y or my, as in (c2). O

Lemma 4.8. The subgraph induced by the set of heavy and light vertices contains no edges.

Proof. By Lemma[4.6], two vertices that are heavy or light are adjacent only if they are consecutive
vertices on a path in P. Let u;, u;1+1 be two vertices on P that are heavy or light. We may assume
that u;yq is adjacent to x, or the vertex v on P, = z,P,v~vvT Py, € P — {P}. As xPu; and
u;+1 Py contain spanning trees such that u; (and x) and w;y; (and y) are endpoints, respectively,
by Lemma 7] the following are the possible cases:

Case 1. both u; and u;41 are heavy. Then they are adjacent to the same endpoint z, € P,. In
this case, x,u;u;y1 is a net, which cannot occur by Lemma B.1]

Case 2. wu; is heavy and u;y1 is light. Then by Lemma 4.7 we consider the following cases.

Case 2.1. zyu;,zv " ,vuip1, vt € E(G), or xyu;, yv~,vuir1, T,vT € E(G). In the former
case, T, is an annoying endpoint, which by Lemma [3.6] cannot exist, and in the latter case, we can
combine P, P, into one path: zPu;x,P,v™yPu;1vP,yy.

Case 2.2. vuji1, 20", 1,u; € E(G), where x,, is an endpoint of P, € P — {P,P,}, and v*
is adjacent to y or z,. Then P, P,, P, can be combined into two paths: P,xz,u;Pzv~ P,x, and
Yo Pyvuir1 Py, a contradiction.

Case 3. both u; and w;y; are light. Then wu;,vu;y1 € E(G) for PE-vertices w € P, =
TyyW1 « o Ws—1WWsy] - .. WYy € P —{P} and v € Py = 201 ... 04— 10041 . .. UYyy € P — {P}.

Case 3.1 w and v are PE-vertices defined as in (1a) or (1b). Then P, can be rerouted so that
w and y,, are endpoints, and P, can be rerouted so that v and y, are endpoints.

o If P, # P,, then P, P,, P, can be combined into paths P,wu;Px and P,vu;+1 Py, a con-
tradiction.

e If P, = P,, then z, or y, cannot be adjacent to two weighty vertices, by Lemma B.7,
so we may assume that z,ws11 € E(G) and v = wj so that y,w;—1 € E(G). Clearly,
Jj < s, or P, P, can be combined into one path xPu;wP,T,ws+1Pyw;j—_1YwPuw;ui11Py.
By definition, w;1; is heavy is adjacent to an endpoint z € P, # P,, so P, P, P, can be
decomposed into paths P, zw; 1 Pywsu; Pr and yPu;1w; PyXywsi1 Py, a contradiction.

Case 3.2 w is a PE-vertex defined as in (1a) or (1b), and v is a PE-vertex defined as in (1c).
Let xyws11 € E(G). By definition, v;—; and vy are heavy, then at least one of them, say v;_1, is
not adjacent to x,,. Let v;_1 be adjacent to the endpoint z € P, # P,. When P, = P, we assume
that z = y.



e If P, # P,, then P, P, P,, P, can be decomposed into fewer paths:
P.zvi1 Pyxy, yuPyvuir1 Py, Pywu;Pz.

o If P, = P, and v = w; with j > s, then P, P,,, P, can also be decomposed into fewer paths:
P, zwj_1 Pywsi 12y Pywu; Px, 3y Pywjuipq Py.

o If P, = P, and v = w; with j < s, then P, P,, P, can be decomposed into fewer paths:
Pzzwj—lpwxwws—i-lpwywy xPuinwwjui-l—le’

There is a contradiction in each of the cases.

Case 3.3. Both w and v are PE-vertices defined as in (1c).

Let z1ws—1, 20Ws41, 23V¢—1, 240141 € F(G) such that z; is an endpoint of P,; € P, respectively.

Let P, # P,. As each endpoint is adjacent to at most two heavy vertices, we may assume that
P, # P,, or P, = P,, and 21, 24 are the endpoints. Then P, P, P,, P,,, P,, can be decomposed
into fewer paths: P, z1ws_1Py%w, Puz4vi41PpYy, YuwPowu;Px, x,P,vu;yiPy.

Let P, = P,. Assume that v = w; for some t > s. Note that P,, = P,, and 2z = z4,
or P, P,, 2,24 can be decomposed into fewer paths: xPu;wsP,wiuiyi Py, Py z1ws—1 Py, and
P., zawi 11 Pyyw. We may also assume that P,, = P,, (and similarly, P,, = P,,), or P, P, P,,, P.,
can be combined into fewer paths: xPu,wP,x,, P.wsi1Pyvuit1 Py, Py, zawi1 Pyyyw. Therefore
P, =P, =P,, = P,,, and 2 and 23 are the endpoints. But then P, P, and P,, can be combined
into two paths: xPu;wsPywi_122P;, z1ws—1 Py and yPu;pi1wi Pyyy, & contradiction. O

Lemma 4.9. Let P = zujuy ... upy € Py and wyu; € E(G) for some i,j with j #i— 1,4+ 1.

(a) Let ui—1 and u;4q be heavy. Then uj_y is not weighty, and w;j—y is heavy only if u;—1 and uj_;
are adjacent to the same endpoint of P' € P — {P}; Similarly, u;i1 is heavy only u;y1 and
wjt1 are adjacent to the same endpoint of P" € P — {P}. Furthermore, if both uj_; and wji;
are heavy, then P’ = P".

(b) Let zu;q € E(G) and ui—1 be heavy or yu;—1 € E(G). Then uj_y is neutral when j > i, and
ujy1 is neutral when j < i.

Proof. (a) As u;—1 and w;+1 are heavy, we may assume that they are adjacent to endpoints 2/, 2"
of P', P" € P — {P}, respectively.

First note that u;j_; is not weighty. If zu;_1 € E(G), then P, P’ can be combined into one path
P'z'u;_y Pruj_1 Pujuj Py, a contradiction. If yu;_; € E(G), then P, P” can be combined into one
path P"x"u;1 Puj_1yPuju; Px, a contradiction again.

Note that u;_; and wuj_; are the endpoints of the spanning paths xPu;_1 and u;_1Pu;u; Py,
respectively. By Lemma (7], if u;_; is not neutral, then it is adjacent to 2, as claimed, or it is
light as in (c1) or (c¢2) in Lemma 7]

If it is the case as (cl), then uj_; is adjacent to a PE-vertex v € P’ such that z'vt € E(G).
Now P’,P" P can be combined into fewer paths: P"u;11Puj_1vP'2’vt P’y and xPu;u;Py. So
we may assume that it is the case as (c2). Then u;_; is adjacent to a PE-vertex v € P, =
Ty Pov"vvt Py, € P — {P, P'} such that v—,v" are adjacent to x,y or /. We may assume that
v~ is adjacent to x or y. Then P’, P,, P can be combined into two paths in either case: in the
former case x,P,v” Puj—12’P" and y,P,vuj_1PujujPy, and in the latter case, P'z'u;—1Px and
Lo Pyv~yPuju; Puj_1vP,y,, a contradiction.

For the furthermore part, if both u;_; and ;4 are heavy and adjacent to different paths, say P’

and P”, then we can replace P, P', P" with P'z'u;_1Puj;12” P" and zPu;u;Py, a contradiction.
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(b) When j > i, P can be rerouted so that uj_1,y (or uj;1,y when j < 7) are endpoints, it follows
from Lemma that u;_; is neutral or zuj_; € E(G); but in the latter case, P can be rerouted
so that u;_1 and y are endpoints, thus by the same lemma, u;_1 cannot be heavy or adjacent to y,
a contradiction. O

Lemma 4.10. Let P = zuqus ... upy € P. If zug € E(G) and uy is heavy, then uy,us are neutral.

Proof. By Lemma B usz ¢ E(G), and then by Lemma B3] us is neutral, and uy ¢ E(G).
Assume that uq is not neutral. Then w; must be light or heavy. If uq is heavy, then by Lemma 7]
uy and uy are adjacent to the same endpoint of a path, thus we have a bad endpoint, a contradiction
to Lemma So w1 must be light.

Let u; be adjacent to the PE-vertex v € P, = x, P,v~vv™ Py, € P — {P}. Let uy be adjacent to
an endpoint z,, € P, € P —{P}. The following cases (cl) and (c¢2) from Lemma .7 must be true.

(cl). P, = P,, and zyuy, z,0" € E(G) and v~ is adjacent to z or y. If v~ € E(G), then P, P,
can be combined into one path yPuyz,P,v~ zususuivPy,y,, a contradiction. So yv~ € E(G).

Note that P, P, can be replaced by y, P,vujugusz (or y, P,ouixugus) and cyclic path x, Pv~yPuy,
SO T, U9, Y, have no neighbors on z,P,v~ and u4 Py, or we can combine P, P, into one path.

If  has no neighbors on P, and usPy is not a 3-path, let P = y,PvTx,P,vujususx and
P, = uy Py; If  has no neighbors on P, and u4 Py is a 3-path, let P = y, Px,us Px and Py = usy;
If 2 has a neighbor on P,, let P, = zususPy and P = y,P,v"x,P,vujus. Note that each of x, x,
is adjacent to at least one weighty vertex in P, P,, respectively. We replace P, P, with P, P» in the
corresponding cases, and claim that there are fewer weighty vertices in the new cover. In the first
two cases, x has one weighty neighbor on P; and w4 or us has none in P, and in the last case, x
has no weighty neighbors on P;, and us has at most one weighty neighbor on P,. Clearly, we do
not add bad paths (1-, 3- or cyclic paths) to the cover. To obtain a contradiction, we show below
that we do not create new bad or annoying endpoints.

Only z in the last case could be a bad endpoint described in (iv), and when it is, we must have
usg, g~ € E(Q), where P, = x,P,g~ gv~vv™ P,y,; but in this case, we can combine P, P, into one
path y, Pyvuixugusgv™yPusz, Pyg~, a contradiction.

We also claim that no new annoying endpoints are added. In the first case, u4 cannot be, since
it has only one neighbors on P, and if x is one, then us must be adjacent to a vertex in usPy,
which is impossible. In the second case, no vertex is an annoying endpoint as P is a 2-path. In
the last case, x cannot be as it has only one neighbor on P;, and if us is one, then w4 should be
light and be adjacent to a PE-vertex, but usx, € E(G) and z, is not a PE-vertex in P;.

(c2). P, # P,, and v—,v" are adjacent to @,z or y. If zv~ € E(G), then P, P,, P, can
be combined into two paths: P,z,u4Py and x,P,v~ zususuivPyy,, a contradiction. So we may
assume that zv~, 20" ¢ E(G). It follows, by symmetry, that yo™ € E(G). But again, P, P,, P,
can be combined into two paths: P,z,usPyv™ Py, and z,P,vuiususx, a contradiction. Il

5. WEIGHTS ON PATHS

We give an initial weight of 10 to each path in P. By Lemma [3.4] all paths in P are non-cyclic
paths with order more than 1. So we may think that each endpoint of the paths in P gets an initial
weight of 5. Here is the rule to transfer weights between (vertices on) paths:

Rule to transfer weights: Each endpoint sends a weight of 2 to the adjacent

weighty or heavy vertex, and each PE-vertex transfers 1 to the adjacent light vertex.
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For convenience, we let w(P) be the final weight on a path or a segment P. For a path P € P, let
s1(P), s2(P), s3(P) and n,(P) be the number of weighty and heavy vertices, light vertices, neutral
vertices, and PE-vertices, respectively. Then

(1) w(P) =2+ 251 (P) + s2(P) — no(P).

Definition 5.1. Let P = zuquo ... upy € P. Foreach 1 <i<j<k-—1,
e a neutral vertex u; is free if there are neither heavy nor weighty vertices on P between u;
and an endpoint (x or y);
o u;Pu; is a heavy segment if both u; and u; are heavy or weighty and there is no neutral
vertices on it; (so a single heavy or weighty vertex is also a heavy segment)
e u;Pu; is a neutral segment if u;, u; are non-free neutral and there is no heavy or weighty
vertices on it. (so a single neutral vertex is also a neutral segment)

Note that a light vertex may be on a heavy or neutral segment. By Corollary £4l and Lemma [£.§],
there are at least one neutral vertices between any two heavy vertices, so a heavy segment with
more than one vertices must contain at least one weighty vertex, and contain at most three vertices,
and when it contains three vertices, it must be a light vertex adjacent to two weighty vertices. Let
a heavy pair be a pair of vertices in a heavy segment that are both heavy or weighty. So every heavy
segment contains either 0 or 1 heavy pair. Let nj,(P) be the number of heavy pairs on P € P. So
np(P) < 4 for each P € P.

Similarly, a pair of neutral vertices in a neutral segment that are consecutive or separated by a
light vertex is called a neutral pair. So a neutral segment with s neutral vertices contains s — 1
neutral pairs. A heavy segment (and similarly, a neutral segment) is mazimal if it is not contained
in a larger heavy segment (neutral segment).

Lemma 5.2. For a path P € P with w(P) > |V (P)]|,
np(P) > no(P) + ng(P) + n.(P),
where np(P),no(P), ng(P),n,(P) are the numbers of heavy pairs, PE-vertices, neutral pairs, and

free neutral vertices on P, respectively.

Proof. As above, assume that P contains a maximal heavy segments, then P contains a— 1 maximal
neutral segments. It follows that s1(P) = nj(P) 4+ a and s3(P) = ng(P) +a — 1+ n,(P). By (),

w(P) =2+ 51(P) + 52(P) + (na(P) + 83(P) = ng(P) + 1 = n,(P)) — no(P)
= V(P)| +np(P) + 1 = (1ng(P) + np(P) + 10(P)).
It follows that if w(P) > |V (P)| then np(P) > ng(P) + n,(P) + no(P), as claimed. O

For convenience, we call the number n,(P) + ny(P) + n.(P) the good number of P, and in
particular, it is called the good number of the segment if P is a segment of a path.

Lemma 5.3. If for some i > 1, xzu; € E(G) and u;11 is heavy (so {u;,ui+1} is a heavy pair), then
the good number of xPu; is at least 1, with equality if and only if i = 4 and usy is heavy.

Proof. First of all, xPu;_1 contains no neighbors of y by Corollary .5 and contains at most one
heavy or light vertex by Lemma [£77. We may assume that the good number of zPu; is at most 1.

Clearly, ¢ > 2, or zujus is a net. Also, i # 3, or by Lemma FT0l both uq,uy are neutral (and
free), so the good number of zPu; is 2. So i > 4, and xPu;_; contains at least one heavy, weighty,

or light vertices, or there are at least two free neutral vertices on xPu;.
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First assume that zPu;_1 contains no weighty vertices. Then it must contain exactly one heavy
or light vertex, by Lemma (A7 If it contains a light vertex, then all neutral vertices on xPu;_1
are free, thus the good number is at least ¢ — 1 — 1 > 2. Therefore, it contains a heavy vertex.
If wy is heavy, then wuo,...,u;_1 are all neutral, so it contains ¢ — 3 distinct neutral pairs, namely,
{ug,us}, {us,us}, ..., {ui—2,u;—1}; If uy is heavy, then u; is free and {us,ug},...,{uj—2,u;—1} are
1 — 4 distinct neutral pairs; if uy, us are not heavy, then uy, us are free neutral vertices. So in either
case, the good number is at least i —3. Then ¢ = 4 and uy or us is heavy. By Lemma [3.5] u; cannot
be heavy, so us is heavy.

Now assume that 2 Pu;_; contains a weighty vertex, say u; for some 1 < j < i. Then zu; € E(G).
If j = 2, then ujug € E(G), or we will have a net. Note that uy # u; (otherwise uqus is a cut-edge),
uy cannot be neutral (otherwise, {us,us} is a neutral pair and u; is free, so the good number of
xPu; is at least 2), and uy cannot be light (otherwise, us must be neutral by Corollary [£3] thus
{us,us} is a neutral pair and wu; is free, so the good number of zPu; is at least 2). So uy is heavy.
Now us is neutral and ug must be u;, or {us,us} is a neutral pair. But then by Lemma B.7] us
must be adjacent to some vertex on xPu; other than uy, ug, which is impossible.

So j > 3, and one vertex on xPu;_; must be heavy or light (otherwise there are at least two free
neutral vertices). As xPu;_; contains no weighty vertices, the above argument shows that xPu;_q
has good number at least 2, unless j = 4 and uy is heavy. In the bad case, i = j + 2 = 6 (for
otherwise {u;41,uj42} is a neutral pair), and by Lemma B7 u;,us, us must be adjacent only to
vertices on xPug, which is impossible. O

Lemma 5.4. Let P = zuy ... uxy € P. If for some 1 <i < k, xu;,yu;r2 € E(G) and uit is light,
then w(P) < |V (P)|.

Proof. Assume that w(P) > |V (P)|. Then by Lemma 5.2 ny(P) > no(P) + ng(P) + n,.(P).

By Lemma [T xPu; and yPu; o contain at most one heavy vertex altogether. By Corollary .5,
2 Pu; contains no neighbors of y and u;4.1 Py contains no neighbor of . We may assume that yPu; 4o
contains no heavy vertices. As i+ 2 # k — 1 (otherwise u;;ouyy is a net), yPu;1o contains at least
one free neutral vertex, so the good number of yPu; s is at least one.

If z Pu; contains no heavy vertices, then similarly the good number of xPu; is also at least one,
so the good number of P is at least 2, but P has only one heavy pair, a contradiction. Thus, we
may assume that xPu; contains exactly one heavy vertex.

If xPu; contain no heavy pairs, then its good number must be zero. It follows that u; is heavy
(otherwise n, > 1), zuz € E(G) (otherwise n, > 1), and ¢ > 3. As up cannot be a PE-vertex
(otherwise n, + n, +ng, > 2 but n, = 1), ugu, € E(G) for some a # 1,3. By Lemma 3.7, i > a.
By Lemma 9] (b), us—1 is neutral, so ny > 1 thus ng, 4+ n, > 2, a contradiction.

Thus, we may assume that zPu; contains a heavy pair, that is, zu; € E(G) and u;4; is heavy
for some 2 < j < i — 1. By Lemma [5.3] the good number of zPu; is at least 1. Thus it must be
exactly 1, 7 = 4 and us is heavy. But then xPu; contains two heavy vertices, a contradiction. [

Lemma 5.5. For each P € P, w(P) < |V(P)|.

Proof. Let P = xujqus ... upy € P. By Lemma 3.3l P is non-cyclic and is not a 1-path or a 3-path.
Assume that w(P) > |V(P)|. Let np,ny,ng,ny, as defined in the Lemma [5.2] be the numbers of
heavy pairs, PE-vertices, neutral pairs, and free neutral vertices on P, respectively. By Lemma [5.2]

(2) No + ng +n, <np < 4.
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By Lemma [5.4] and Lemma 4.8 we may assume that each heavy pair consists of two consecutive
vertices on P, at least one of which is a weighty vertex.

Case 1. P contains a heavy pair consisting of two weighty vertices. Assume that zu;, yu;+1 €
E(G) for some 1 < i < k— 1. Note that by Lemma B7, zu;—1, yu;ro & E(G).

Case 1.1. P contains at least two heavy pairs.

First assume that P contains another heavy pair consisting of two weighty vertices, say {u;, uj4+1}
with zuj, yujy1 € E(G) for some j > 4. In this case, there are no other heavy pairs. So nj, = 2. As
P can be rerouted so that u; and wuy are the endpoints, u1, u; must be neutral by Corollary 3]
thus free, so n, = 2 and n, = ny = 0. Then u;_; is not in a neutral pair. It follows that u;_o
is heavy or wj_s = w11, and in either case, u;_jus € E(G) for some s # j — 2,7, or uj_1 is a
PE-vertex (a contradiction to n, = 0). By Lemma [£9] usq (if s < j) or us—q (if s > j) is neutral,
so we have a neutral pair, a contradiction to ng, = 0.

Now we assume that {u;, u;11} is the only heavy pair containing two weighty vertices. Note that
if a heavy pair is {us, us41} such that zus € F(G) and ugy; is heavy, then by Corollary 5] s < .
Similarly for such a heavy pair involving y. Also note that n; < 3.

Consider the case np = 3. Let {ug, usy1} and {us, ur—1} be the other two heavy pairs such that
s <i,t >1i+4 1, zus,yu € E(G), and usy1,us—1 are heavy. By Lemma [£77] P contains no other
heavy or light vertices. Now by Lemma [53] each of xPu; and us1 Py has the good number at
least two, thus the good number of P is at least 4, a contradiction.

Now let np, = 2 and {us,usy1} be the only other heavy pair such that zus, € E(G) and ugyq is
heavy. By Lemma [5.3] xPug has the good number at least 2 or s = 4 such that us is heavy. In
the latter case, u;+1 Py contains no heavy or light vertices by Lemma 7] so has at least two free
neutral vertices, thus the good number of P is at least 3, a contradiction. For the former case, the
good number of u;+1 Py is 0. It follows that u; must be heavy, and by Lemma [L7] there are no
other heavy or light vertices on P other than us41 and ug. Then s =3 and ¢ = 6. Now w;_; must
be adjacent wu; for some ¢t # i — 2,4. Clearly, t # 1,2, + 2. Then ¢t > i + 1, and by Corollary [£4]
u¢—1 is neutral, so {us—1,us} is a neutral pair, a contradiction to the fact that the good number of
’LLZ'_|_1P y is 0.

Case 1.2. {u;,u;y1} is the only heavy pair on P. Then the good number of P is at most one.
By symmetry, we may assume that the good number of zPu; is at most one and the good number
of u;+1 Py is 0. Tt follows that uj cannot be neutral (otherwise it is free).

Let zu; € E(G) for some j > i. Then P can be rerouted so that w; is an endpoint. By
Lemma 3] w; is neutral (and free). So n, > 1. It follows that n, = 1 and n, = n, = 0. By
Lemma B, u;_1us € E(G) for some s # j — 2,j. By Corollary B4} usi1 (if s < j) or ug—y (if
s > j) is neutral, thus n, > 1, a contradiction. It follows that u;1; Py contains no neighbor of z,
and by symmetry, zPu; contains no neighbour of y.

Now that uj; cannot be neutral or weighty, it must be light or heavy. But if it is light, then
ug—1 cannot be a neighbour of y (otherwise yuiug_1 is a net), or heavy by Lemma [4.8] so uj_1 is
neutral, thus the good number of u; 1 Py is not 0, a contradiction. So we assume that wug is heavy.

Observe that wug_1 is neutral. We may assume that up_o is not neutral, or we have a neutral
pair {ug_9,ur_1} on u;4+1 Py, a contradiction. So uy_o is heavy, light or yuy_o € E(G).

Note that u;_o cannot be heavy. Suppose otherwise. By Lemma [L.7], x Pu; contains no heavy or

light vertices. So u1,uo are free neutral vertices. It follows that n, > 2, a contradiction.
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We also have u,_oy ¢ E(G). Suppose otherwise. Then ug_qus € E(G) for somei+1 < s < k—2,
or up_1 is a PE-vertex. By Lemma [L9] usy; is neutral, thus {us, us+1} is a neutral pair on ;41 Py,
a contradiction.

So let up_s be light. By Lemma A8 u;_3 is not heavy or light. But uj_3 is not a neighbour
of x or y, so ug_3 must be neutral. Now {up_3,ur_1} is a neutral pair, a contradiction to the
assumption that the good number of u;1 Py is 0.

Case 2. P contains no heavy pairs consisting of only weighty vertices.

Case 2.1. ny, = 0. It follows that n, = ny = n, = 0. Recall that £ > 1, by Lemma [3.4]

Assume first that P contains no weighty vertices. Then wy,u; are heavy, and the vertices on
w1 Puy, are alternatively heavy and neutral. Let v # wuq,us be the third neighbor of ws. Then
v =wuy € P for some t > 3, or ug is a PE-vertex (this contradicts to the fact that n, = 0). But u;_y
and u;y1 are heavy. So by Lemma (a), ui,u;—1 are adjacent to one endpoint of a path @ # P
and ug, w41 are adjacent to the other endpoint of Q. Note that ¢ # 4, or ususuy is a net. Now
uy is neutral and must be adjacent to v € P or ug for some s > 5. In the former case, u;y3 is a
PE-vertex, and in the latter case, us_1 or us;+1 cannot be heavy by Lemmal4.9 (a), a contradiction.

Now let zu; € F(G) for some i > 1, and we may assume that zu; ¢ E(G) for 1 < j <i. First
let i > 2. Then u;_9 cannot be neutral (or {u;_2,u;—1} is a neutral pair) or light (otherwise, u;_1
is free if i = 3, or w;_3 must be neutral thus {u;_3,u;—1} is a neutral pair). So u;_o is heavy or
yu;—o € E(G). Now w;—1 must be adjacent to u; for some t # i — 3,7 — 1, or it is a PE-vertex. By
Lemma (b), ug—1 (if ¢ > i —1) or gy (if t < i — 3) is neutral, thus u; is in a neutral pair, a
contradiction to ny = 0. Now let i = 2. Then ujug € E(G), or zujus is a net. So zu; € E(G) for
some j > 3, or u; is a better endpoint of P than x. Clearly j # 4, or uqus is a cut-edge. So u;j_o
must be heavy or adjacent to y. Now a similar argument as above shows n, > 0, a contradiction.

Case 2.2. np, = 1. Let {u;,u;4+1} be the only heavy pair with zu; € E(G) for some 1 < i < k
and wu;11 is heavy. As the good number of x Pu; is at most 1, by Lemma 53] ¢ = 4 and uy is heavy.
So uy is free, and ny = n, = 0.

Now, ugu; for some t # 2,4, or ug is a PE-vertex, a contradiction to n, = 0. Clearly, t # 1, so
t > 6. By Lemma 3] u;_1 is neutral or xu;—1 € E(G). In the former case, we have a neutral pair,
thus ny > 0, a contradiction. As y has no neighbors on zujugus, Lemma [3.7 implies that the latter
case cannot happen.

Case 2.3. ny = 2. Let {u;,u;+1} and {us—1,u;} be the two heavy pairs for some i < ¢t — 1.

First assume that zu;, xu;—1 € E(G) and u;41,u; are both heavy. By Lemma [T w;41,u; are
adjacent to the same endpoint 2 € P’ € P, and they are the only heavy/light vertices on zPus.
As i > 3 (otherwise there is a net) and wuj,us, ..., u;—1 are free neutral vertices, n, > 2. It follows
that n, =2 and ¢ = 3, and n, = ny = 0. By LemmaB.7] uy can only be adjacent to vertices on P,
thus uou, € E(G) for some a > 4, and by Lemma 9] u,_; is neutral, so n, > 1, a contradiction.

Note that if zu;—1, yu;+1 € E(G) and wuy, u; are heavy, then P can be rerouted so that u; and uy
are endpoints, a contradiction to Lemma[£3] Thus, we assume that 1 < i <t < k, zu;, yu; € E(Q)
and w;41,us—1 are heavy, and y has no neighbors on xPu; and = has no neighbors on u;Py. Let
u;4+1 be adjacent to an endpoint ' € P’ € P — {P}.

By Lemma B3] xPu;—1 and w1 Py both have the good number at least 1, thus i =4,t =k —3
and up and ug_; are heavy. So there are two free neutral vertices, and n, = n, = 0. Note that
i+1 < t—1. For otherwise, by Lemma[L7] xPu; and u; Py contain at most one heavy/light vertex

altogether, a contradiction.
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Now, ugu; for some ¢ # 2,4, or ug is a PE-vertex. Clearly, ¢ # 1, so t > 6. By Lemma [4.3] u;
is neutral or zu;—1 € E(G). In the former case, we have a neutral pair, a contradiction. As y has
no neighbors on zujusus, Lemma B.7] implies that the latter case cannot happen.

Case 2.4. nj, € {3,4}. As in Case 2.3, we may assume that the neighbors of x are u, u;, u; and
the neighbor of y are ug, us, u, with 1 <7 < j < s <t <k such that w1, ujy1,us—1,u1 are all
heavy.

By Lemma .7, w41, uj4+1 are adjacent to the same endpoint of a path in P, and there are no
other heavy or light vertices on xPu;. Note that ¢ > 3 (otherwise zujus is a net), so xPu; contains
at least 1—1 > 2 free neutral vertices, i.e., uy, us, ..., u;—1. Similarly, us Py contains at least k—t > 2
free neutral vertices when ny, = 4 (that is, s < t). Note that when n;, = 3 (that is, s = ¢), the good
number of ugPy is 1, thus by Lemma B3] s = k — 3, up_1 is heavy and uy is free. So P contains
ny, free neutral vertices. It follows that ny =n, =0, and ¢ = 3 and j = 6. By Lemma B.7] us must
be adjacent to uj or ug, but then P, P’ can be combined into one path: P'x’'ususuiusuzzugPy if
usuy € E(G), and P'x'uquszruiugus Py if usus € E(G), a contradiction. O

Proof of Theorem [I1: Consider an optimal path cover P of G, and assign a weight of 10 to each
path in P. By Lemma [55, the total weight is 10|P| = > pcpw(P) < Y pep |[V(P)] = n. So
|P| < n/10, that is, G has a path cover with at most n/10 paths. O

Acknowledgement: The author would like to thank the referees for their valuable comments,
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