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Abstract

A 2-matching of a graph G is a spanning subgraph with maximum degree two. The size

of a 2-matching U is the number of edges in U and this is at least n − κ(U) where n is the

number of vertices of G and κ denotes the number of components. In this paper, we analyze

the performance of a greedy algorithm 2greedy for finding a large 2-matching on a random

3-regular graph. We prove that with high probability, the algorithm outputs a 2-matching U

with κ(U) = Θ̃
(

n1/5
)

.

1 Introduction

In this paper we analyze the performance of a generalization of the well-known Karp-Sipser algo-

rithm [13, 12, 1, 4] for finding a large matching in a sparse random graph. A 2-matching U of a

graph G is a spanning subgraph with maximum degree two. Our aim is to show that w.h.p. our

algorithm finds a large 2-matching in a random cubic graph. The algorithm 2greedy is described

below and has been partially analyzed on the random graph Gδ≥3
n,cn, c ≥ 10 in Frieze [9]. The random

graph Gδ≥3
n,m is chosen uniformly at random from the collection of all graphs that have n vertices,

m edges and minimum degree δ(G) ≥ 3. In [9], the 2-matching output by the algorithm is used to

find a Hamilton cycle in O(n1.5+o(1)) time w.h.p. Previously, the best known result for this model

was that Gδ≥3
n,cn is Hamiltonian for c ≥ 64 due to Bollobás, Cooper, Fenner and Frieze [7]. It is

conjectured that Gδ≥3
n,cn is Hamiltonian w.h.p. for all c ≥ 3/2.

The existence of Hamilton cycles in other random graph models with O(n) edges has also been

the subject of much research. In such graphs, the requirement δ ≥ 3 is necessary to avoid three

vertices of degree two sharing a common neighbor. This obvious obstruction occurs with positive
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probability in many models with O(n) edges and δ = 2. G3-out is a random graph where each vertex

chooses 3 neighbors uniformly at random. This graph has minimum degree 3 and average degree 6.

Bohman and Frieze proved that G3-out is Hamiltonian w.h.p. also by building a large 2-matching

into a Hamilton cycle [3]. Robinson and Wormald proved that r-regular graphs with r ≥ 3 are

Hamiltonian w.h.p. using an intricate second moment approach [14],[15]. Before this result, Frieze

proved Hamiltonicity of r-regular graphs w.h.p. for r ≥ 85 using an algorithmic approach [10]. An

algorithmic proof of Hamiltonicity for r ≥ 3 was given in [11].

In addition to the Hamiltonicity of Gδ≥3
n,cn for 3/2 < c < 10, the Hamiltonicity of random graphs

with O(n) edges and a fixed degree sequence is a widely open question. One natural example is the

Hamiltonicity of a graph chosen uniformly at random from all the collection of all graphs with n/2

vertices of degree 3 and n/2 vertices of degree 4 (this particular question was posed by Wormald).

For both Gδ≥3
n,cn and graphs with a fixed degree sequence one might hope to prove Hamiltonicity by

first using 2greedy to produce a large 2-matching and then using an extension rotation argument

to convert this 2-matching into a Hamilton cycle. In this paper we provide evidence that the first

half of this broad program is feasible by showing that 2greedy finds a very large 2-matching for

the sparsest of the models with minimum degree 3, the random cubic graph itself.

The size of a 2-matching U is the number of edges in U and this is at least n − κ(U) where κ

denotes the number of components. It was shown in [12] that w.h.p. the Karp-Sipser algorithm

only leaves Θ̃(n1/5) vertices unmatched. Here we prove the corresponding result for 2greedy on

a random cubic graph.

Theorem 1.1. Algorithm 2greedy run on a random 3-regular graph with n vertices outputs a

2-matching U with κ(U) = Θ̃(n1/5), w.h.p.

We prove Theorem 1.1 using the differential equations method for establishing dynamic concentra-

tion. The remainder of the paper is organized as follows. The 2greedy algorithm is introduced in

the next Section, and the random variables we track are given in Section 3. The trajectories that

we expect these variables to follow are given in Section 4. A heuristic explanation of why 2greedy

should produce a 2-matching with roughly n1/5 components is also given in Section 4. In Section 5

we state and prove our dynamic concentration result. The proof of Thereom 1.1 is then completed

in Sections 5, 6, and 7.

2 The Algorithm

The Karp-Sipser algorithm for finding a large matching in a sparse random graph is essentially

the greedy algorithm, with one slight modification that makes a big difference. While there are

vertices of degree one in the graph, the algorithm adds to the matching an edge incident with such

a vertex. Otherwise, the algorithm chooses a random edge to add to the matching. The idea is

that no mistakes are made while pendant edges are chosen since such edges are always contained

in some maximum matching. The algorithm presented in [9] is a generalization of Karp-Sipser

for 2-matchings. Our algorithm is essentially the same as that presented in [9] applied to random

cubic graphs. A few slight modifications have been made to ease the analysis and to account for

the change in model. We assume that our input (multi-)graph G = G([n], E) is generated by
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the configuration model of Bollobas [6]. Let W = [3n] be our set of configuration points and let

Wi = [3(i − 1) + 1, 3i], i ∈ [n], partition W . The function φ : W → [n] is defined by w ∈ Wφ(w).

Given a pairing F (i.e. a partition of W into m = 3n/2 pairs) we obtain a (multi-)graph GF with

vertex set [n] and an edge (φ(u), φ(v)) for each {u, v} ∈ F . Choosing a pairing F uniformly at

random from among all possible pairings Ω of the points of W produces a random (multi-)graph

GF . It is known that conditional on GF being simple, i.e. having no loops or multiple edges,

that it is equally likely to be any (simple) cubic graph. Further, GF is simple with probability

(1− o(1))e−2. So from now on we work with G = GF .

We only reveal adjacencies (pairings) of GF as the need arises in the algorithm. As the algorithm

progresses, it grows a 2-matching and deletes vertices and edges from the input graph G. We let

Γ = (VΓ, EΓ) be the current state of G. Throughout the algorithm we keep track of the following:

• U is the set of edges of the current 2-matching. The internal vertices and edges of the paths

and cycles in U will have been deleted from Γ.

• b(v) is the 0-1 indicator for vertex v ∈ [n] being adjacent to an edge of U .

• Yk = {v ∈ VΓ : dΓ(v) = k, b(v) = 0}, k = 0, 1, 2, 3.

• Zk = {v ∈ VΓ : dΓ(v) = k, b(v) = 1}, k = 0, 1, 2.

We refer to the sets Y3 and Z2 as Y and Z throughout. The basic idea of the algorithm is as

follows. We add edges to the 2-matching one by one, which sometimes forces us to delete edges.

These deletions may put vertices in danger of having degree less than 2 in the final 2-matching.

Thus, we prioritize the edges that we add to U , so as to match the dangerous vertices first. More

precisely, At each iteration of the algorithm, a vertex v is chosen and an adjacent edge is added

to U . We choose v from the first non-empty set in the following list: Y1, Y2, Z1, Y, Z. As in the

Karp-Sipser algorithm, taking edges adjacent to the vertices in Y1, Y2 and Z1 is not a mistake. We

will prove that by proceeding in this manner, we do not create too many components.

When a vertex v is chosen and its neighbor in the configuration is exposed it is called a

selection move. Call the revealed neighbor, w the selection. The edge (v,w) is removed from

Γ and added to U . If the selction w is a vertex in Z, then once (v,w) is added to U , we must delete

the other edge adjacent to w. Hence we reveal the other edge in the configuration adjacent to w.

Call this exposure a deletion move.

Details of the algorithm are now given.

Algorithm 2Greedy:

Initially, all vertices are in Y . Iterate the following steps as long as one of the conditions holds.

Step 1(a) Y1 6= ∅.
Choose a random vertex v of Y1. Suppose its neighbor in Γ is w. Remove (v,w) from Γ and

add it to U . Set b(v) = 1 and move v to Z0.

re-assign(w).
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Step 1(b) Y1 = ∅, Y2 6= ∅.
Choose a random vertex v of Y2. Randomly choose one of the two neighbors of v in Γ to

expose and call it w.

If w = v ({v} comprises an isolated component in Γ with a loop), then remove (v, v) from Γ

and move v from Y2 to Y0.

Otherwise, remove (v,w) from Γ and add it to U . Set b(v) = 1 and move it to Z1.

re-assign(w).

Step 1(c) Y1 = Y2 = ∅, Z1 6= ∅.
Choose a random vertex v of Z1. v is the endpoint of a path in U . Let u be the other endpoint

of this path. Suppose the neighbor of v in Γ is w. Remove (v,w) from Γ and add it to U .

Remove v from Γ.

re-assign(w).

Step 2 Y1 = Y2 = Z1 = ∅, Y 6= ∅.
Choose a random vertex v of Y . Randomly choose one of the three neighbors of v in Γ to

expose and call it w.

If w = v, then we remove (v, v) from Γ and move v to Y1.

Otherwise, remove (v,w) from Γ and add it to U . Set b(v) = 1 and move it to Z.

re-assign(w).

Step 3 Y1 = Y2 = Z1 = Y = ∅, Z 6= ∅
The remaining graph is a random 2-regular graph on |Z| many vertices. Put a maximum

matching on the remaining graph. Add the edges of this matching to U .

Subroutine re-assign(w):

1. If b(w) = 0:

Set b(w) = 1 and move w from Y to Z, Y2 to Z1 or Y1 to Z0 depending on the initial state of

w.

2. If b(w) = 1:

Remove w from Γ. If w was in Z prior to removal, then the removal of w from Γ causes an

edge (w,w′), to be deleted from Γ. Move w′ to the appropriate new set. For example, if w′

were in Z, it would be moved to Z1; if w
′ were in Y , it would be moved to Y2, etc.

3 The Variables

In this section we will describe the variables which are tracked as the algorithm proceeds. Through-

out the paper, in a slight abuse of notation, we let Y,Z, etc. refer to both the sets and the size of

the set. Let M refer to the size of EΓ. We also define the variable

ζ := Y1 + 2Y2 + Z1.
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If X is a variable indexed by i, we define

∆X(i) := X(i + 1)−X(i).

3.1 The sequences σ, δ

We define two sequences σ, δ indexed by the step number i. σ(i) will indicate what type of vertex

is selected during a selection move, and δ(i) will do the same for deletion moves.

Formally, σ is a sequence of the following symbols: Y,Z, ζ, loop,multi. We will put σ(i) = loop

only when step i is of type 2 and the selection move reveals a loop. We put σ(i) = multi only

when step i is of type 1(c), and w = u ∈ Z. The only way this happens is when v ∈ Z1, u ∈ Z,

(v, u) ∈ U , and the selection made at step i happens to select the vertex u. Otherwise we just put

σ(i) = Y,Z, ζ according to whether the selected vertex is in Y,Z, ζ.

Note that the symbols loop,multi are for very specific events, and not just any loop or multi-

edge. If step i is of type 1(b) and our selection move reveals a loop, then we put σ(i) = ζ. Also, if

step i is of type 1(c) and the selection move reveals a multi-edge whose other endpoint is also in

Z1 then we put σ(i) = ζ as well.

δ is a sequence of symbols: Y,Z, ζ, ∅. We will put δ(i) = ∅ when there is no deletion move

at step i (i.e. when σ(i) /∈ {Z,multi}). Otherwise δ(i) just indicates the type of vertex that the

deletion move picks (here we don’t make any distinctions regarding loops or multi-edges).

3.2 The variables A,B

We will define the following two important variables:

A := Y + ζ

B := 2Y + Z + ζ.

A is a natural quantity to define, since the algorithm terminates precisely when A = 0. B is also

natural because it represents the number of half-edges which will (optimistically) be added to our

current 2-matching before termination. We will see that A and B are also nice variables in that

their 1-step changes ∆A(i),∆B(i) do not depend on what type of step we take at step i. We have

∆Y (i) = −1ζ(i)=0 − 1σ(i)=Y −
(

1σ(i)=Z + 1σ(i)=multi

)

1δ(i)=Y (3.1)

∆Z(i) = 1ζ(i)=0 + 1σ(i)=Y − 1σ(i)=Z − 1σ(i)=loop − 1σ(i)=multi

−
(

1σ(i)=Z + 1σ(i)=multi

)

1δ(i)=Z (3.2)

∆ζ(i) = −1ζ(i)>0 + 1σ(i)=loop − 1σ(i)=ζ

+
(

1σ(i)=Z + 1σ(i)=multi

) (

−1δ(i)=ζ + 1δ(i)=Z + 2 · 1δ(i)=Y

)

(3.3)

and note that these all depend on whether ζ = 0 (i.e. whether step i is of type 1 or 2). However,

∆A(i) = −1− 1σ(i)=Y − 1σ(i)=ζ + 1σ(i)=loop − 1σ(i)=multi + 1σ(i)=Z

−
(

1σ(i)=Z + 1σ(i)=multi

)

2 · 1δ(i)=ζ (3.4)

∆B(i) = −2 + 1σ(i)=loop − 1δ(i)=ζ (3.5)
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which do not depend on whether ζ = 0. For ∆A, we have used the identity

1δ=Y + 1δ=Z + 1δ=ζ = 1σ=Z + 1σ=multi

which states that we make a deletion move if and only if our selection move was Z or multi. Note

also that if we establish dynamic concentration on A,B, ζ then we implicitly establish concentration

on Y,Z,M since

Y = A− ζ (3.6)

Z = B − 2A+ ζ (3.7)

2M = 3Y + 2Z + ζ = 2B −A. (3.8)

4 The expected behavior of A,B, ζ

In this section, we we will non-rigorously predict the behavior of the variables and some facts about

the process. Throughout the paper, unless otherwise specified, t refers to the scaled version of i, so

t :=
i

n
.

Heuristically, we assume there exist differentiable functions a, b such that A(i) ≈ na(t), B(i) ≈ nb(t).

Further, we assume that ζ stays “small”. We will prove that these assumptions are indeed valid.

We also let

pz :=
2Z

2M
, py :=

3Y

2M
, pζ :=

ζ

2M

where we have omitted the dependence on i for ease of notation.

4.1 The trajectory b(t)

Since B(0) = 2n, and recalling (3.5), we see that

B(i) = 2n− 2i+
∑

j≤i

(

1σ(j)=loop − 1δ(j)=ζ

)

. (4.1)

The probability that σ(j) = loop or δ(j) = ζ on any step j should be negligible. Thus we expect

B(i) ≈ 2n− 2i = 2n(1− t)

so we will set

b(t) = 2(1 − t).

4.2 The trajectory a(t)

We derive an ODE that a should satisfy:

a′(t) ≈ E[∆A(i)] ≈ −1− py + pz ≈ − 6a(t)

2b(t)− a(t)
.
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Note that we have used (3.4). Thus a(t) should satisfy

a′ = − 6a

4− 4t− a
. (4.2)

The substitution x = a
1−t yields a separable ODE, which can be integrated to arrive at

(a+ 2− 2t)3 − 27a2 = 0.

So a(t) is given implicitly as the solution to the above cubic equation with coefficients depending

on t. We may actually solve that cubic to get three continuous explicit functions a1(t), a2(t), a3(t)

(though the formulas are nasty to look at). From the initial condition a(0) = 1 and the fact that

0 ≤ a(t) ≤ 1, it’s clear that the solution we want is

a(t) = 7 + 2t− 6
√
5 + 4t cos

(

1

3
arccos

(

11 + 14t+ 2t2

(5 + 4t)
3

2

)

+
π

3

)

.

From here we can see that a(t) → 0 as t→ 1−. More precisely,

lim
t→1−

a(t)

(1− t)
3

2

=

(

2

3

) 3

2

. (4.3)

To confirm this, note that

arccos (1− ε) =
√
2ε+O(ε3/2)

and
11 + 14(1 − ε) + 2(1 − ε)2

(5 + 4(1 − ε))3/2
= 1− 4ε3

729
+O(ε4).

Rewriting the cos term using the angle addition formula and Taylor expansion, we see (4.3). Ad-

ditionally,

d

dt

(

a(t)

(1− t)3/2

)

= − 6a

2b− a
(1− t)−3/2 +

3

2
a · (1− t)−5/2 (4.4)

= a · (1− t)−5/2

(

3

2
− 6(1− t)

4(1 − t)− a

)

(4.5)

< 0. (4.6)

Since a(0) = 1, for all 0 ≤ t ≤ 1 we have

(

2

3

)
3

2

(1− t)3/2 ≤ a(t) ≤ (1− t)3/2. (4.7)

4.3 Downward drift of ζ

We expect ζ to be “small”, and to justify that claim we will show that whenever ζ is positive, it

is likely to decrease. Assume that ζ(i) > 0. In the following table, we make use of the fact that

δ(i) 6= ∅ if and only if σ(i) ∈ {Z,multi}. So for example,

1δ=Y = (1σ=Z + 1σ=multi)1δ=Y .
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Then from (3.3) we see that if ζ(i) > 0,

∆ζ =



























1 with prob. pzpy +O
(

1
M

)

0 with prob. p2z +O
(

1
M

)

−1 with prob. py +O
(

1
M

)

−2 with prob. pζ + pzpζ +O
(

1
M

)

(4.8)

To illuminate this table, we provide an example.

P [∆ζ(i) = 1] = P [σ(i) = Z, δ(i) = Y ] =
2Z

2M − 1

3Y

2M − 3
= pzpy +O

(

1

M

)

.

Therefore, roughly speaking we have

E[∆ζ(i)] = pzpy − py +O (pζ) ≈ − 9a2

(2b− a)2
(4.9)

and are motivated to define

Φ(t) :=
9a2

(2b− a)2
= Θ(1− t)

to represent the downward drift of ζ(i) (if it is positive) at step i.

4.4 Expected behavior of ζ

In the last subsection we estimated E[∆ζ(i)] when ζ > 0, using (4.8). We can also use (4.8) to

estimate the variance when ζ > 0. We see that

V ar[∆ζ(i)|ζ > 0] = Θ(py) = Θ
(

(1− t)
1

2

)

.

Thus, to model the behavior of ζ(i) we consider a simpler variable: a lazy random walk Xτ (k) with

Xτ (0) = 0, expected 1-step change E [∆Xτ ] = −(1 − τ) and V ar[∆Xτ ] = (1 − τ)
1

2 . After s steps,

we have E [Xτ (s)] = −(1 − τ)s and V ar[Xτ (s)] = (1 − τ)
1

2 s. There is at least constant (bounded

away from 0) probability that Xτ (s) is, say, 1 standard deviation above its mean. However, the

probability that Xτ (s) is very many standard deviations larger than that is negligible. In other

words, it is reasonable to have a displacement as large as Xτ (s) = −(1− τ)s+ (1− τ)
1

4 s
1

2 , but not

much larger. The quantity ψ(s) := −(1− τ)s+ (1− τ)
1

4 s
1

2 is negative for s > (1− τ)−
3

2 . Also ψ(s)

is maximized when s = 1
2(1− τ)−

3

2 , where we have ψ(s) = 1
4 (1− τ)−

1

2 .

Now we reconsider the variable ζ. Roughly speaking, ζ(i) behaves like the lazy random walk

considered above, so long as we restrict the variable i to a short range (so that t does not change

significantly), and we have ζ(i) > 0 for this range of i. We have ζ(0) = 0, and ζ has a negative drift

so it’s likely that ζ(j) = 0 for many j > 0. Specifically, if j is an index such that ζ(j) = 0, then

we expect ζ(i) to behave like Xτ (i − j) with τ = j
n , so long as i is not significantly larger than j.

Thus we expect to have ζ(i) = 0 for some j ≤ i ≤ j+ (1− τ)−
3

2 . Also, for all j ≤ i ≤ j +(1− τ)−
3

2

we should have ζ(i) ≤ 1
4(1− τ)−

1

2 . But this rough analysis does not make sense toward the end of

the process: indeed, for j > n − n
3

5 (i.e. for 1 − τ < n−
2

5 ), we have j + (1 − t)−
3

2 > n. However,

we can still say something about what happens when j is large, since the variable s cannot be any

bigger than n− j. Now for j ≥ n− n
3

5 and s ≤ n− j we have ψ(s) ≤ n
1

5 . Thus, we never expect ζ

to be larger than n
1

5 , even towards the end of the process.
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4.5 Why do we have Θ̃
(

n
1

5

)

many components?

At any step of the algorithm, we expect the components of the 2-matching to be mostly paths

(and a few cycles). We would like the algorithm to keep making the paths longer, but sometimes it

isn’t possible to make a path any longer because of deletion moves. Specifically, for example, if one

endpoint of a path is in Z1, and then there is a deletion move and the deletion is that endpoint,

then that end of the path will never grow. If the same thing happens to the other endpoint of the

path, then the path will never get longer, and will never be connected to any of the other paths.

Similarly, the number of components in the final 2-matching is increased whenever the algorithm

deletes a Y1 or a Y2. Thus we can bound the number of components in the final 2-matching by

bounding the number of steps i such that δ(i) = ζ.

Roughly, P[δ(i) = ζ] = 2Z
2M · ζ

2M = Θ

(

1
n min

{

(1− t)−
3

2 , n
1
5

1−t

})

. So integrating, we estimate

the total number of components as

Θ

(

∫ 1− 1

n

0
min

{

(1− t)−
3

2 ,
n

1

5

1− t

}

dt

)

= Θ
(

n
1

5 log n
)

.

5 The stopping time T and dynamic concentration

In this section, we introduce a stopping time T , before which A and B stay close to their trajectories,

and ζ does roughly what we expect it to do. We will also introduce “error” terms for both A,B

and a “correction” term α for the variable A. For most of the process, α will stay smaller than

the error term for A. However, toward the end of the process α will be significant. Using α in our

calculations thus allows us to track the process farther. As it turns out, the variable B does not

need an analogous “correction” term.

We define the following random variables which represent “actual error” in A,B:

ea(i) := A(i)− na(t)− α(i)

eb(i) := B(i)− nb(t).

We define the stopping time T as the minimum of n − CTn
7

15 log
6

5 n and the first step i such that

any of the three following conditions fail:

|ea(i)| ≤ fa (t) , (5.1)

|eb(i)| ≤ fb (t) , (5.2)

and for every step j < i such that ζ is positive on steps j, . . . , i,

ζ(i) ≤ ζ(j)−
∑

j≤k<i

Φ

(

k

n

)

+ ℓj (t) (5.3)

for some as-yet unspecified error functions fa, fb, ℓj and absolute constant CT . Throughout the

paper we will use C? to refer to unspecified but existent absolute constants. In subsection 5.6, we

present actual values for these constants.
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We anticipate that the conditions on ζ will imply that for some function fζ we have

ζ(i) ≤ fζ (t)

for all i ≤ T . Our goal for now is to prove that for some suitable error functions, w.h.p. T is not

triggered by any of the conditions (5.1), (5.2), (5.3).

Theorem 5.1. With high probability,

T = n− CTn
7

15 log
6

5 n.

The remainder of this section contains the proof of Theorem 5.1. Here we define the error

functions fa, fb, fζ (up to the choice of constants). While these definitions are not very enlightening

at this point, they will aid the reader in confirming many of the calculations that appear below.

Those same calculations will motivate the choice of these functions.

fa(t) := CA(1− t)
3

4n
1

2 log
1

2 n (5.4)

fb(t) := CB ·
{

(1− t)−
1

2 log n : 1− t > n−
2

5 log
2

5 n

−n 1

5 log
4

5 n log(1− t) : otherwise
(5.5)

fζ(t) := Cζ min
{

(1− t)−
1

2 log n, n
1

5 log
4

5 n
}

. (5.6)

5.1 A useful lemma

We’ll use the following simple lemma several times to estimate fractions.

Lemma 5.2. For any real numbers x, y, εx, εy, if we have x, y 6= 0 and
∣

∣

εx
x

∣

∣ ,
∣

∣

∣

εy
y

∣

∣

∣ ≤ 1
2 , then

x+ εx
y + εy

− x

y
=
yεx − xεy

y2
+O

(

yεxεy + xε2y
y3

)

Proof.

x+ εx
y + εy

− x

y
=
x

y

{

(

1 +
εx
x

)

· 1

1 +
εy
y

− 1

}

=
x

y

{

(

1 +
εx
x

)

·
[

1− εy
y

+O

(

ε2y
y2

)]

− 1

}

=
x

y

{

εx
x

− εy
y

+O

(

εxεy
xy

+
ε2y
y2

)}

=
yεx − xεy

y2
+O

(

yεxεy + xε2y
y3

)
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5.2 T is not triggered by A

We define

A+(i) := A(i)− na(t)− α(i) − fa(t) = ea(i)− fa(t)

and let the stopping time Tj be the maximum of j, T , and the least index i ≥ j such that ea(i) is

not in the critical interval

[ga(t), fa(t)] (5.7)

where 0 < ga < fa is an as-yet unspecified function of n, t. Our strategy is to show that w.h.p. A

never goes above na+ α+ fa because every time ea enters the critical interval, w.h.p. it does not

exit the interval at the top. The use of critical intervals in a similar context was first introduced in

[5].

Let Fi be the natural filtration of the process (so conditioning on Fi tells us the values of all

the variables, among other things).

For i < T , we have from (3.4) that

E[∆A(i)|Fi] = −1− 3Y

2M
− ζ

2M
+

2Z

2M
− 2 · 2Z

2M
· ζ

2M
+O

(

1

M

)

= − 6A

2B −A
+

4ζ(A+B)

(2B −A)2
+O

(

1

2B −A
+

ζ2

(2B −A)2

)

= − 6 (na+ α+ ea)

2(nb+ eb)− (na+ α+ ea)
+

4ζ [(na+ α+ ea) + (nb+ eb)]

[2(nb+ eb)− (na+ α+ ea)]
2 +O

(

1

2B −A
+

ζ2

(2B −A)2

)

= − 6a

2b− a
+

12aeb − 12b (α+ ea)

n(2b− a)2
+

4(a + b)ζ

n(2b− a)2
+O

(

1

n(2b− a)
+
α2 + f2a + f2b + f2ζ

n2(2b− a)2

)

The last equality follows from Lemma 5.2. Note that the lemma actually implies that the big-O

term includes mixed products of terms like α · fζ for example. We have simplified by using the fact

that for all real numbers x and y, |xy| ≤ 1
2

(

x2 + y2
)

. We are now motivated to cancel out the ζ

term in the last line by recursively defining

α(0) := 0 (5.8)

α(i+ 1) := α(i) +
4(a+ b)ζ − 12bα(i)

n(2b− a)2
. (5.9)

From this definition and the defintion of fζ , it follows that for i ≤ T ,

0 ≤ α(i) ≤
i
∑

j=0

4(a+ b)fζ
n(2b− a)2

≤ Cα ·
{

log n(1− t)−1/2 for i ≤ n− n3/5 log2/5 n

n1/5 log9/5 n for n− n3/5 log2/5 n < i ≤ T.
(5.10)

as long as

Cα > 8Cζ . (5.11)
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Now for j ≤ i < Tj, we have the supermartingale condition

E[∆A+(i)|Fi] = E[∆A(i)|Fi]− a′(t)− 4(a+ b)ζ − 12bα(i)

n(2b− a)2
− 1

n
f ′a(t)

+O

(

1

n
a′′(t) +

1

n2
f ′′a (t)

)

(5.12)

≤ − 12bga
n(2b− a)2

− 1

n
f ′a(t)

+O

(

afb
n(2b− a)2

+
1

n(2b− a)
+
α2 + f2a + f2b + f2ζ

n2(2b− a)2
+

1

n
a′′(t) +

1

n2
f ′′a (t)

)

(5.13)

Note that in the last line we have used (5.9), the fact that ea ≥ ga, and also that a satisfies the dif-

ferential equation (4.2). By taking ga = Ω(fa), we see that A
+(j), . . . , A+(Tj) is a supermartingale

since

− 12bga
n(2b− a)2

− 1

n
f ′a = −Ω

(

n−1/2 log1/2 n(1− t)−1/4
)

which dominates the big-O term in (5.13).

We use the following asymmetric version of the Azuma-Hoeffding inequality (for a proof see

[2]):

Lemma 5.3. Let Xj be a supermartingale, such that −C ≤ ∆X(j) ≤ c for all j, for c < C
10 . Then

for any a < cm we have Pr(Xm −X0 > a) ≤ exp
(

− a2

3cCm

)

We have

−2 ≤ ∆A ≤ 0

and

−2 (1− t)
1

2 ≤ a′(t) ≤ 0.

This follows from analysis of the function a(t). So

−2 ≤ ∆A+ ≤ 2

(

1− j

n

)
1

2

for the supermartingale A+(j) · · ·A+(Tj). Thus, if A crosses its upper boundary at the stopping

time T , then there is some step j (with T = Tj) such that

A+(j) ≤ ga

(

j

n

)

− fa

(

j

n

)

+ 2

and A+ (Tj) > 0. In this case, j is intended to represent the step when ea enters the crtical interval,

(5.7). Applying the lemma we see that the probability of the supermartingale A+ having such a

large upward deviation has probability at most

exp











−

(

fa

(

j
n

)

− ga

(

j
n

)

− 2
)2

12n
(

1− j
n

)
3

2











.
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As there are O (n) supermartingales A+(j), . . . , A+(Tj), we must choose fa, ga to make the above

probability o
(

1
n

)

. The following choice suffices:

fa(t) = CA(1− t)
3

4n
1

2 log
1

2 n

ga(t) =
3

4
fa(t).

as long as the constant CA is chosen so that

(

1
4CA

)2

12
> 1. (5.14)

If we define

A− := A− na− α+ fa = ea + fa

then we may prove that A− stays positive w.h.p. in a completely analogous fashion.

5.3 T is not triggered by ζ

Referring to (4.8), we may say that if ζ(i) > 0,

E[∆ζ(i)|Fi] = pzpy − py +O (pζ) = − 9A2

(2B −A)2
+O

(

ζ

2B −A

)

. (5.15)

Now, before T we have

9a2

(2b− a)2
− 9A2

(2B −A)2
= −9

(

A

2B −A
− a

2b− a

)(

A

2B −A
+

a

2b− a

)

= −9

[

2b(α + ea)− 2aeb
n(2b− a)2

+O

(

α2 + f2a + f2b
n2(2b− a)2

)]

×
[

2

(

a

2b− a

)

+
2b(α+ ea)− 2aeb

n(2b− a)2
+O

(

α2 + f2a + f2b
n2(2b− a)2

)]

=
36a(aeb − bα− bea)

n(2b− a)3
+O

(

α2 + f2a + f2b
n2(2b− a)2

)

. (5.16)

In the last step we have cleaned up the big-O using the facts

α+ fa + fb
n(2b− a)

= o(1) and
a

2b− a
= O(1).

For every step j, we define a stopping time

Tj := min {i(j),max(j, T )}

where i(j) is the least index i ≥ j such that ζ(i) = 0. Also, define a sequence ζ+j (j) · · · ζ+j (Tj),
where

ζ+j (i) := ζ(i) +
∑

j≤k<i

Φ

(

k

n

)

− hj

(

i

n

)
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where hj is some function we will choose that will make ζ+j (i) a supermartingale. Now for j ≤ i < Tj ,

using (5.16), we have

E[∆ζ+j (i)|Fi] = − 9A2

(2B −A)2
+

9a2

(2b− a)2
− 1

n
h′j(t) +O

(

ζ

2B −A
+

1

n2
h′′j (t)

)

(5.17)

≤ 36a(afb + bfa)

n(2b− a)3
− 1

n
h′j(t) +O

(

α2 + f2a + f2b
n2(2b− a)2

+
fζ

n(2b− a)
+

1

n2
h′′j (t)

)

. (5.18)

Note that
36a(afb + bfa)

(2b− a)3
≤
(

9

8
CA + o(1)

)

n
1

2 log
1

2 n (1− t)
1

4 (5.19)

so the choice

hj(t) := Ch

(

1− j

n

) 1

4

n
1

2 log
1

2 n

(

t− j

n

)

makes the sequence a supermartingale as long as the constant Ch is chosen so that

Ch >
9

8
CA. (5.20)

Since hj

(

j
n

)

= 0, we will always have ζ+j (j) = ζ(j).

We’ll use the following supermartingale inequality due to Freedman [8]:

Lemma 5.4. Let Xi be a supermartingale, with ∆Xi ≤ C for all i, and V (i) :=
∑

k≤i

V ar[∆X(k)|Fk]

Then

P [∃i : V (i) ≤ v,Xi −X0 ≥ d] ≤ exp

(

− d2

2(v +Cd)

)

.

Referring to (4.8), before T we can put

V ar[∆ζ+j (i)|Fi] = V ar[∆ζ(i)|Fi]

≤ E
[

(∆ζ(i))2 | Fi

]

= 1 · pzpy + 1 · py + 4 · (pζ + pzpζ) +O

(

1

M

)

≤ 3py

and note that before T , we have

py =
3Y

2M
≤ 3A

2B −A
≤ 3[n(1 − t)

3

2 + α+ fa]

4n(1− t)− 2fb − n(1− t)
3

2 − α− fa
≤



1 +
Cα

C
3

2

T

+ o(1)



 (1− t)
1

2 (5.21)

so we will just say py ≤ Cpy(1− t)
1

2 for some constant Cpy such that

Cpy > 1 +
Cα

C
3

2

T

. (5.22)

Also, note that ∆ζ+ ≤ 2.
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Suppose the variable ζ triggers the stopping time T . Then there are steps j < i = T such that

ζ > 0 all the way from step j to step i, and ζ+j (i) > ℓj(t) − hj(t). We’ll need to apply the lemma

to the supermartingale ζ+j to show this event has low probability (guiding our choice for ℓj). Note

that in the lemma we can plug in the following for v:

V (i) =
∑

j≤k≤i

V ar[∆ζ+j (k)|Fk ] ≤ 3Cpy

(

1− j

n

)
1

2

(i− j).

So the unlikely event has probability at most

exp















− (ℓj − hj)
2

2

[

3Cpy

(

1− j
n

)
1

2

(i− j) + 2(ℓj − hj)

]















.

As there are O
(

n2
)

pairs of steps j, i we’d like to make the above probability o
(

1
n2

)

. Towards

this end we consider 2 cases.

If
(

1− j
n

) 1

4

(i− j)
1

2 ≤ log
1

2 n, then it suffices to put ℓj − hj = Cℓ log n as long as

C2
ℓ

6Cpy + 4Cℓ
> 2. (5.23)

If
(

1− j
n

) 1

4

(i− j)
1

2 > log
1

2 n, then it suffices to put ℓj − hj = Cℓ

(

1− j
n

) 1

4

(i− j)
1

2 log
1

2 n.

Thus we choose

ℓj(t) := hj(t) + Cℓmax

{

log n,

(

1− j

n

)
1

4

(i− j)
1

2 log
1

2 n

}

.

With this choice, w.h.p. T is not triggered by ζ.

5.4 An upper bound on ζ

In this section we’ll motivate our choice of the function fζ .

Lemma 5.5. W.h.p. for all j < n− 2C
2

5
x n

3

5 log
2

5 n such that ζ(j − 1) = 0, we have

1. ζ(j′) = 0 for some j ≤ j′ ≤ j + Cx

(

1− j
n

)− 3

2

log n, and

2. ζ(i) ≤ 2C2
ℓ

(

1− j
n

)− 1

2

log n for all j ≤ i ≤ j′ − 1

Proof. Suppose ζ(j − 1) = 0. Note that we then have ζ(j) ≤ 2. Φ(t)/(1 − t) is decreasing since

d

dt

(

Φ(t)

1− t

)

= 2

(

3a

2b− a

)





(2b− a) · 3
(

− 6a
2b−a

)

− 3a
(

−4 + 6a
2b−a

)

(2b− a)2(1− t)



+ (1− t)−2

(

3a

2b− a

)2

= − 9a3(8b− a)

(1− t)2(2b− a)4
≤ 0.
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Also, using (4.3) and the defintion of b,

lim
t→1−

Φ(t)

1− t
=

1

6
.

Hence Φ(t) ≥ 1
6 (1− t) for all 0 ≤ t ≤ 1. If we substitute x = i−j

n then

∑

j≤k<i

Φ

(

k

n

)

≥ 1

6

(

1− i+ j − 1

2n

)

(i− j) ≥ − 1

12
nx2 +

1

6
n

(

1− j

n

)

x.

Plugging in the value of ℓj(t), we have that for any i ≥ j such that ζ(j) . . . ζ(i) are all positive,

ζ(i) ≤ ζ(j)−
∑

j≤k<i

Φ

(

k

n

)

+ ℓj(t) (5.24)

≤ 1

12
nx2 −

[

1

6
n

(

1− j

n

)

− Chn
1

2 log
1

2 n

(

1− j

n

) 1

4

]

x (5.25)

+Cℓ max

{

log n,

(

1− j

n

)
1

4

n
1

2 log
1

2 nx
1

2

}

+ 2.

Consider (5.25) for x = xj := Cxn
−1 log n

(

1− j
n

)− 3

2

. As long as Cx > 1 and j < n−2C
2

5
x n

3

5 log
2

5 n,

we have
(

1− j

n

)
1

4

n
1

2 log
1

2 nx
1

2

j > log n

so we can evaluate the “max” in ℓj . Also note that the coefficient of x is dominated by −1
6n
(

1− j
n

)

,

so the coefficient of x is at most, say −1
7n
(

1− j
n

)

. Thus (5.25) gives

ζ(j + nxj) ≤
C2
x

12
n−1 log2 n

(

1− j

n

)−3

−
(

Cx

7
− Cℓ

√

Cx

)

log n

(

1− j

n

)− 1

2

+ 2

which is negative for this range of j as long as we pick Cx such that

Cx

7
− Cℓ

√

Cx > 0. (5.26)

Therefore, ζ must have hit 0 again before step i = j+nxj. This proves the first part of the lemma.

To prove the second part, consider (5.25) for j < i < j + nxj (i.e. for 0 < x < xj). If

x ≤ n−1 log n
(

1− j
n

)− 1

2

then we can put

ζ(i) ≤ 1

12
nx2 − 1

7
n

(

1− j

n

)

x+ Cℓ log n < 2Cℓ log n

and for x larger than that, we’ll put

ζ(i) ≤ 1

12
nx2 − 1

7
n

(

1− j

n

)

x+ Cℓ

(

1− j

n

)
1

4

n
1

2 log
1

2 nx
1

2

≤ C2
x

12
n−1 log2 n

(

1− j

n

)−3

+
7C2

ℓ

4

(

1− j

n

)− 1

2

log n

< 2C2
ℓ

(

1− j

n

)− 1

2

log n.

16



where to justify the second line we use the inequality c
√
x−dx ≤ c2

4d for real numbers x, c, d > 0.

We would also like to say something about ζ(i) for i > n− 2C
2

5
x n

3

5 log
2

5 n.

Lemma 5.6. There exists a constant Cζ such that w.h.p. for all i ≤ T we have ζ(i) ≤ Cζn
1

5 log
4

5 n.

Proof. Suppose step j′ ≥ n − 2C
2

5
x n

3

5 log
2

5 n with ζ(j′) = 0. It follows from Lemma 5.5 that

w.h.p. such a j′ exists. Let i ≥ j′ such that ζ(j′) . . . ζ(i) are all positive. Note that we again

have the bound (5.25). But now 0 ≤ x ≤ n−j′

n ≤ 2C
2

5
x n

− 2

5 log
2

5 n, and (5.25) gives ζ(i) ≤
(

1
3C

4

5
x + 2

3

4CℓC
3

10
x

)

n
1

5 log
4

5 n.

So in particular we can say that for i ≤ T we have

ζ(i) ≤ fζ(t) = Cζ min
{

(1− t)−
1

2 log n, n
1

5 log
4

5 n
}

,

where

Cζ > max

{

2C2
ℓ ,

1

3
C

4

5
x + 2

3

4CℓC
3

10
x

}

(5.27)

5.5 T is not triggered by B

Recall from (4.1) that

eb(i) =
∑

j≤i

(

1σ(i)=loop − 1δ(j)=ζ

)

.

First we’ll bound
∑

j≤i

1δ(j)=ζ . Define B−(i) := −
∑

j≤i

1δ(j)=ζ +
1

2
fb(t). Then

E[∆B−(i)|Fi] = − 2Z

2M
· ζ

2M − 2
+

1

2n
f ′b(t) +O

(

1

n2
f ′′b (t)

)

≥ − fζ
n(2b− a)

+
1

2n
f ′b(t) +O

(

1

n2
f ′′b (t)

)

.

Note that by (4.7),

3(1− t) ≤ 2b− a ≤ 4(1 − t),

so we can put

fb = CB ·
{

(1− t)−
1

2 log n : 1− t > n−
2

5 log
2

5 n

−n 1

5 log
4

5 n log(1− t) : otherwise
(5.28)

and B− will be a submartingale as long as

CB >
4

3
Cζ . (5.29)
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We’ll apply Lemma 5.4 to −B−. Note that before T we can put

V ar[∆B−(i)|Fi] = V ar[1δ(i)=ζ |Fi]

≤ pζ ≤
fζ

4n(1− t)− na− α− fa − fb
≤ fζ

3n(1− t)

and therefore, referring to V (i) as in Lemma 5.4,

V (i) ≤
∑

0≤k≤i

fζ
3n(1− t)

.

So for v we will plug in

v = CvB ·
{

(1− t)−
1

2 log n : 1− t > n−
2

5 log
2

5 n

n
1

5 log
9

5 n : otherwise.
(5.30)

which is an upper bound on V (i) as long as

CvB ≥ 2

3
Cζ (5.31)

Note |∆B−| ≤ 1, so the probability that −B−(i) > 1
2fb(t) is at most

exp

{

−
1
4f

2
b

2
[

v + 1
2fb
]

}

which is o
(

1
n

)

as long as
1
4C

2
B

2[CvB + 1
2CB ]

> 1. (5.32)

So w.h.p. for all i ≤ T , we have
∑

j<i

1δ(j)=ζ ≤ fb(t).

The sum
∑

j<i

1σ(j)=loop presents less difficulty, since w.h.p. the configuration has at most CB log n

loops total. So we can trivially say that
∑

j<i

1σ(j)=loop ≤ fb(t)

and hence w.h.p. the stopping time T is not triggered by variable B.

5.6 Values for the constants

Throughout the proof above, we collect various constraints on the constants in (5.11), (5.14), (5.20),

(5.22), (5.23), (5.26), (5.27), (5.29), (5.31) and (5.32). The reader may chack that the following

values satisfy all the conditions.

CA = 16, Ch = 20, Cpy = 2, Cℓ = 12, Cx = 8000,

Cζ = 800, Cα = 70000, CvB = 700, CB = 1200, CT = 2000.

This completes the proof of Theorem 5.1.
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6 Upper bound on the number of components

In this section we prove the following lemma which provides the upper bound for the proof of

Theorem 1.1:

Lemma 6.1. W.h.p. the algorithm outputs a 2-matching with O
(

n
1

5 log
9

5 n
)

components.

Proof. The components of our 2-matching at any step i consist of cycles and paths (including paths

of length 0). First we’ll bound the number of paths in the final 2-matching. Note that these final

paths have both endpoints in Z0, meaning that each endpoint had a half-edge in ζ that got deleted

(or for paths of length 0 there is only one vertex which is in Y0). So to bound the number of these

paths, we bound the sum
∑

j

1δ(j)=ζ . Note that in light of Section 5.5, we have the bound

∑

j<T

1δ(j)=ζ = O
(

n
1

5 log
9

5 n
)

.

Next we’ll bound the terms corresponding to steps after T , but before A = 0. By Theorem 5.1

we have w.h.p.

A(T ) = O
(

n
1

5 log
9

5 n
)

since

0 ≤ α(T ) = O
(

n
1

5 log
9

5 n
)

by (5.10), and

na

(

T

n

)

, fa

(

T

n

)

= O
(

n1/5 log9/5 n
)

.

Now note that by (3.4), on each step j such that σ(j) ∈ {Z,multi} and δ(j) = ζ, the variable A

decreases by 2. Also, the variable A is nonincreasing. Therefore there can be at most O
(

n
1

5 log
9

5 n
)

such steps j until A = 0.

Once we have A = 0, the algorithm finds a maximum matching on the remaining random 2-

regular graph Γ. Thus, to complete the bound on the number of paths in the final 2-matching,

we’ll bound the number of vertices in Γ that are unsaturated by the matching (i.e. the number

of odd cycles in the remaining 2-regular graph Γ). But Γ has at most O (log n) cycles total, since

it’s a random 2-regular graph. Thus, the sum
∑

j

1δ(j)=ζ , and therefore the number of paths in the

final 2-matching, are O
(

n
1

5 log
9

5 n
)

.

Now we bound the number of cycles in the final 2-matching. Note that at any step, the

probability of closing a cycle is at most 1
2M−1 . Therefore, the number of cycles created for the

whole process is stochastically dominated by the random variable

C :=

3n
∑

j=1

cj

where

cj =

{

1 : with prob. 1
j

0 : with prob. j−1
j .

(6.1)
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So if we define the martingale

C(i) :=

i
∑

j=1

(

cj −
1

j

)

then we have V ar[∆C(i)] = i−1
i2

, and note
∑3n

i=1
i−1
i2

= O(log(3n)). Now, applying Lemma 5.4 to

C(i) shows that w.h.p. it is always at most O(log
1

2 n), and since E[C] = O(log n), we have that

C = O(log n) w.h.p..

7 Lower bound on the number of components

In this section we will prove that near the end of the process, there is a non-zero probability that

ζ becomes large and stays large for a significant amount of time. In this case, the algorithm will

likely delete an edge adjacent to a ζ vertex. In particular, we will prove the following lemma which

provides the lower bound and thus completes the proof of Theorem 1.1:

Lemma 7.1. W.h.p. the algorithm outputs a 2-matching with Ω
(

n
1

5 log−4 n
)

components.

Proof. We show that ζ stochastically dominates a suitably defined martingale and then apply the

following central limit theorem of Freedman.

Lemma 7.2. Let Si be a martingale adapted to the filtration Fi with Xi := Si − Si−1, |Xi| ≤ C

for some constant C, and let Vi :=
∑

k≤i V ar [Xk|Fk−1]. For each n, let 0 < γn < γ′n be real

numbers, and let σn be a stopping time. As n → ∞, suppose γn → ∞ and γ′n/γn → 1 and

P [γn < Vσn < γ′n] → 1. Then Sσn/
√
γn converges in distribution to N (0, 1).

Let

w(i) =
3a(i/n)

2b(i/n) − a(i/n)
.

In this section we will consider steps from i0 = n−n3/5 to iend = n−n3/5+n3/5 log−1 n ≤ n− 1
2n

3/5.

From Theorem 5.1, w.h.p., T occurs after this time frame. Hence we have dynamic concentration

on our variables and can say in this range,

py(i) = w(i)−O(n−2/5 log n) (7.1)

pζ(i) = O(n−2/5 log n) (7.2)

pz(i) = 1− py(i) − pζ(i). (7.3)

Note that in this range we also have w(i) = Θ(n−1/5). Our martingale will have independent

increments given by

X(i) =



























1 with prob. w(i) − Ln−2/5 log n

0 with prob. 1− 2w(i) − Ln−2/5 log n

−1 with prob. w(i) − Ln−2/5logn

−2 with prob. 3Ln−2/5 log n

(7.4)
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where L is a positive contstant large enough that for all i0 ≤ i ≤ iend

pz(i)py(i) ≥ w(i) − Ln−2/5 log n, pz(i)py(i) + pz(i)
2 ≥ 1− w(i) − 2Ln−2/5 log n

and

pz(i)py(i) + pz(i)
2 + py(i) ≥ 1− 3Ln−2/5 log n.

In this case, ∆ζ(i) stochastically dominates X(i). This follows from (4.8) in the case when ζ > 0

and trivially when ζ = 0.

For any i0 < i ≤ iend we have

E[X(i)|Fi−1] = −6Ln−2/5 log n

and

V ar[X(i)|Fi−1] = 2w(i) + 4Ln−2/5 log n.

We will split the time range i0 to iend into d = log n many chunks of length n3/5 log−2 n. Recall

that i0 = n− n3/5 and for all 1 ≤ ℓ ≤ d define

iℓ = iℓ−1 + n3/5 log−2 n.

For 0 ≤ ℓ < d, we define a martingale starting at iℓ to be

Sℓ(k) =

k
∑

i=iℓ+1

(X(i) − E[X(i)|Fi−1]) .

Then for 0 ≤ ℓ < d we have

Sℓ(iℓ+1) =





iℓ+1
∑

i=iℓ+1

X(i)



 + 6Ln1/5 log−1 n.

We also have that

Vℓ :=

iℓ+1
∑

i=iℓ+1

V ar[X(i)|Fi−1] = Θ
(

n2/5 log−2 n
)

.

Further, using the fact that for the expression for Vℓ is completely deterministic, we may choose

γ(n, ℓ) such that γ(n, ℓ) < Vℓ < γ(n, ℓ)+o(γ(n, ℓ)). By using the facts about a(t) and b(t) presented

in Section 4, we may take γ(n, ℓ) = Cℓn
2/5 log−2 n for come constant Cℓ. Note here that there is

an absolute constant c such that Cℓ ≤ c for all 0 ≤ ℓ < d.

Hence applying Lemma 7.2 to Sℓ with stopping time iℓ+1, we see that
(

∑iℓ+1

i=iℓ+1X(i)
)

+ 6Ln1/5 log−1 n
√

Cℓn2/5 log
−2 n

d→ N (0, 1).

So there exists some constant p0 > 0 such that for each 0 ≤ ℓ < d (and n sufficiently large),

P





(

∑iℓ+1

i=iℓ+1X(i)
)

+ 6Ln1/5 log−1 n
√

Cℓn2/5 log
−2 n

≥ 6L+ 1√
c



 ≥ p0
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So we get that

P

[

∀ 0 < ℓ ≤ d, ζ(iℓ) ≤ n1/5 log−1 n
]

≤ P



∀ 0 ≤ ℓ < d,

iℓ+1
∑

i=iℓ+1

X(i) ≤ n1/5 log−1 n





≤ (1− p0)
logn

= o(1).

So we know that w.h.p. there is a point ib where ζ(ib) > n1/5 log−1 n. We would like to show that

after n3/5 log−3 n steps, ζ has not decreased below 1
2n

1/5 log−1 n. To prove this, we consider the

martingale

Sb(k) = n1/5 log−1 n+
k
∑

i=ib

(X(i) −E[X(i)|Fi−1]) .

Let ic = ib + n3/5 log−3 n. Then

ic
∑

i=ib+1

V ar[X(i)|Fi−1] = Θ
(

n2/5 log−3 n
)

By applying Lemma 5.4 to this martingale, we have that after n3/5 log−3 n steps,

P

[

∃i : ib ≤ i ≤ ic, ζ(i) ≤
1

2
n1/5 log−1 n

]

≤ P

[

∃i ≤ ic : Sb(i) ≤
1

2
n1/5 log−1 n

]

≤ exp

(

−Ω

(

n2/5 log−2 n

n2/5 log−3 n
(

1 + n−1/5 log−2 n
)

))

≤ o(1).

So we know that whp, ζ(i) ≥ 1
2n

1/5 log−1 n for ib ≤ i ≤ ic. In this time, the algorithm is likely to

delete an edge adjacent to a ζ vertex. Formally, we have that there exists some q0 such that for all

ib ≤ i ≤ ic,

pz(i)pζ(i) ≥ q0 = Ω
(

n−2/5 log−1 n
)

so that if W is a random variable representing the number of i between ib and ic when δ(i) = ζ,

then W stochastically dominates Bin(n3/5 log−3 n, q0).

E[Bin(n3/5 log−3 n, q0)] = Ω
(

n1/5 log−4 n
)

,

so an application of the Chernoff bound tells us that, w.h.p., W = Ω
(

n1/5 log−4 n
)

.
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