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Abstract

Let k ≥ 3. We prove the following three bounds for the matching number, α′(G), of
a graph, G, of order n size m and maximum degree at most k.

• If k is odd, then α′(G) ≥
(

k−1
k(k2

−3)

)

n +
(

k
2
−k−2

k(k2
−3)

)

m − k−1
k(k2

−3) .

• If k is even, then α′(G) ≥ n

k(k+1) + m

k+1 − 1
k
.

• If k is even, then α′(G) ≥
(

k+2
k2+k+2

)

m −
(

k−2
k2+k+2

)

n − k+2
k2+k+2 .

In this paper we actually prove a slight strengthening of the above for which the
bounds are tight for essentially all densities of graphs.

The above three bounds are in fact powerful enough to give a complete description
of the set Lk of pairs (γ, β) of real numbers with the following property. There exists a
constant K such that α′(G) ≥ γn+βm−K for every connected graph G with maximum
degree at most k, where n and m denote the number of vertices and the number of edges,
respectively, in G. We show that Lk is a convex set. Further, if k is odd, then Lk is the
intersection of two closed half-spaces, and there is exactly one extreme point of Lk, while
if k is even, then Lk is the intersection of three closed half-spaces, and there are precisely
two extreme points of Lk.
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1 Introduction

Two edges in a graph G are independent if they are not adjacent in G. A set of pairwise
independent edges of G is called a matching in G, while a matching of maximum cardinality
is a maximum matching. The number of edges in a maximum matching of G is called the
matching number of G which we denote by α′(G). Matchings in graphs are extensively
studied in the literature (see, for example, the classical book on matchings my Lovász and
Plummer [11], and the excellent survey articles by Plummer [14] and Pulleyblank [15]).

For k ≥ 3, let Lk be the set of all pairs (γ, β) of real numbers for which there exists a
constant K such that

α′(G) ≥ γn+ βm−K

holds for every connected graph G with maximum degree at most k, where n and m denote
the number of vertices and the number of edges, respectively, in G. Our main result is to give
a complete description of the set Lk. For this purpose, let ℓ1, ℓ2, ℓ3 and ℓ4 be the following
four closed half-spaces over the reals γ and β:

ℓ1 : β ≤ −γ + 1
k

ℓ2 : β ≤ −
(

2
k

)

γ + k3−k2−2
k2(k2−3)

ℓ3 : β ≤ −
(

2
k

)

γ + k2+4
k(k2+k+2)

ℓ4 : β ≤ −
(

2k2

k3−k+2

)

γ + k2−k+2
k3−k+2

We are now in a position to state our main result.

Theorem A For k ≥ 3, the set Lk is a convex set. Further, the following holds.

(a) If k ≥ 3 is odd, then Lk is the intersection of the two closed half-spaces ℓ1 and ℓ2, and
there is exactly one extreme point of Lk, namely

(

k − 1

k(k2 − 3)
,
k2 − k − 2

k(k2 − 3)

)

.

(b) If k ≥ 4 is even, then Lk is the intersection of the three closed half-spaces ℓ1, ℓ3 and
ℓ4, and there are precisely two extreme points of Lk, namely

(

1

k(k + 1)
,

1

k + 1

)

and

(

−
k − 2

k2 + k + 2
,

k + 2

k2 + k + 2

)

.

Theorem A is illustrated in Figure 1 for small values of k, namely k ∈ {3, 4, 5, 6}, where
the convex set Lk corresponds to the grey area in the pictures.

In order to prove Theorem A, we shall prove the following two key results on the matching
number.
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Figure 1: The convex set Lk for small k

Theorem B If k ≥ 3 is an odd integer and G is a connected graph of order n, size m, and
with maximum degree ∆(G) ≤ k, then

α′(G) ≥

(

k − 1

k(k2 − 3)

)

n +

(

k2 − k − 2

k(k2 − 3)

)

m −
k − 1

k(k2 − 3)
.

Further, this lower bound is achieved for infinitely many trees, and for infinitely many k-
regular graphs.

In fact, Theorem B is tight for essentially all possible densities of connected graphs with
maximum degree k.
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Theorem C If k ≥ 4 is an even integer and G is a connected graph of order n, size m and
maximum degree ∆(G) ≤ k, then the following holds.

(a) α′(G) ≥
n

k(k + 1)
+

m

k + 1
−

1

k

(b) α′(G) ≥

(

k + 2

k2 + k + 2

)

m −

(

k − 2

k2 + k + 2

)

n −
k + 2

k2 + k + 2

We will later see how to slightly improve the bounds in Theorem C, such that they are also
achieved for infinitely many trees and for infinitely many k-regular graphs and essentially for
all possible densities in between.

2 Known Matching Results

We shall need the following theorem of Berge [1] about the matching number of a graph,
which is sometimes referred to as the Tutte-Berge formulation for the matching number.

Theorem 1 (Tutte-Berge Formula) For every graph G,

α′(G) = min
X⊆V (G)

1

2
(|V (G)| + |X| − oc(G −X)) .

An elegant proof of Theorem 1 was given by West [16]. We remark that as a consequence
of the Tutte-Berge Formula, it is well-known that if X is a proper subset of vertices of G such
that (|V (G)|+ |X| − oc(G−X))/2 is minimum, then every odd component C of G contains
an almost perfect matching; that is, α′(C) = (|V (C)| − 1)/2.

The following results from [7] establishes a tight lower bound on the matching number of
a regular graph.

Theorem 2 ([7]) For k ≥ 2 even, if G is a connected k-regular graph of order n, then

α′(G) ≥ min

{(

k2 + 4

k2 + k + 2

)

×
n

2
,
n− 1

2

}

,

and this bound is tight.

Theorem 3 ([7]) For k ≥ 3 odd, if G is a connected k-regular graph of order n, then

α′(G) ≥
(k3 − k2 − 2)n − 2k + 2

2(k3 − 3k)
,

and this bound is tight.
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For small values of k ≥ 3, the results of Theorem 2 and 3 are summarized in Table 1.

G is a connected k-regular graph

k 3 4 5 6 7 8

α′(G) ≥
4n− 1

9
min

{

5n

11
,
n− 1

2

}

49n− 4

110
min

{

5n

11
,
n− 1

2

}

73n− 3

161
min

{

17n

37
,
n− 1

2

}

Table 1. Tight lower bounds on the matching number of a k-regular, connected graph.

3 Main Results

Our main result establishes tight lower bounds on the matching number of a graph in terms of
its maximum degree, order, size, and number of components. Our first result is the following
result, a proof of which is given in Section 4.

Theorem 4 Let k ≥ 3 be an integer and let G be a graph with c components and of order n
and size m and maximum degree ∆(G) ≤ k. If no component of G is k-regular, then

α′(G) ≥



















(

1

k(k + 1)

)

(n− c) +

(

1

k + 1

)

m if k is even

(

k − 1

k(k2 − 3)

)

(n− c) +

(

k2 − k − 2

k(k2 − 3)

)

m if k is odd.

For small values of k ≥ 3, the results of Theorem 4 are summarized in Table 2.

k Exact bound Approximate equivalent to
3 9α′(G) ≥ n+ 2m− c α′(G) ≥ 0.11111 · n+ 0.22222 ·m− 0.11111 · c
4 20α′(G) ≥ n+ 4m− c α′(G) ≥ 0.05000 · n+ 0.20000 ·m− 0.05000 · c
5 55α′(G) ≥ 2n+ 9m− 2c α′(G) ≥ 0.03636 · n+ 0.16364 ·m− 0.03636 · c
6 42α′(G) ≥ n+ 6m− c α′(G) ≥ 0.02381 · n+ 0.14286 ·m− 0.02381 · c
7 161α′(G) ≥ 3n+ 20m− 3c α′(G) ≥ 0.01863 · n+ 0.12422 ·m− 0.01863 · c
8 72α′(G) ≥ n+ 8m− c α′(G) ≥ 0.01389 · n+ 0.11111 ·m− 0.01389 · c
9 351α′(G) ≥ 4n+ 35m− 4c α′(G) ≥ 0.01140 · n+ 0.09972 ·m− 0.01140 · c
10 110α′(G) ≥ n+ 10m− c α′(G) ≥ 0.00909 · n+ 0.09091 ·m− 0.00909 · c
11 649α′(G) ≥ 5n+ 54m− 5c α′(G) ≥ 0.00770 · n+ 0.08320 ·m− 0.00770 · c

Table 2. Tight lower bounds on the matching number of a graph with maximum degree k and with
no k-regular component.

The following result presents another lower bound on the matching number when k ≥ 2 is
even. A proof of Theorem 5 is given in Section 5.
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Theorem 5 Let k ≥ 2 be an even integer and let G be any graph of order n and size m and
maximum degree ∆(G) ≤ k. If no component of G is k-regular, then

α′(G) ≥

(

k + 2

k2 + k + 2

)

m −

(

k − 2

k2 + k + 2

)

n.

If G is a connected graph of order n with maximum degree at most 2, then G is a either
a path or a cycle, implying that α′(G) = ⌈n−1

2 ⌉. Hence, it is only of interest to focus on
connected graphs with maximum degree at most k, where k ≥ 3. As a consequence of
Theorem 2 and Theorem 4, we have the following result when k ≥ 4 is even. A proof of
Corollary 1 is given in Section 6.

Corollary 1 If k ≥ 4 is an even integer and G is a connected graph of order n, size m and
maximum degree ∆(G) ≤ k, then

α′(G) ≥
n

k(k + 1)
+

m

k + 1
−

1

k(k + 1)
,

unless the following holds.

(a) G is k-regular and n = k + 1, in which case α′(G) = n−1
2 = n

k(k+1) + m
k+1 −

1
k
.

(b) G is k-regular and n = k + 3, in which case α′(G) = n−1
2 = n

k(k+1) + m
k+1 −

3
k(k+1) .

As a consequence of Theorem 3 and Theorem 4, we have the following result when k ≥ 3
is odd. A proof of Corollary 2 is given in Section 7.

Corollary 2 If k ≥ 3 is an odd integer and G is a connected graph of order n, size m, and
with maximum degree ∆(G) ≤ k, then

α′(G) ≥

(

k − 1

k(k2 − 3)

)

n +

(

k2 − k − 2

k(k2 − 3)

)

m −
k − 1

k(k2 − 3)
.

As a consequence of Theorem 2 and Theorem 5, we have the following result when k ≥ 4
is even. A proof of Corollary 3 is given in Section 8.

Corollary 3 If k ≥ 4 is an even integer and G is a graph of order n, size m and maximum
degree ∆(G) ≤ k, then

α′(G) ≥

(

k + 2

k2 + k + 2

)

m −

(

k − 2

k2 + k + 2

)

n

unless the following holds.

(a) G is k-regular and n = k+1, in which case α′(G) ≥
(

k+2
k2+k+2

)

m−
(

k−2
k2+k+2

)

n− k+2
k2+k+2

.

(b) G is k-regular and n = k+3, in which case α′(G) ≥
(

k+2
k2+k+2

)

m−
(

k−2
k2+k+2

)

n− 4
k2+k+2 .

(c) G is 4-regular and n = 9, in which case α′(G) ≥
(

k+2
k2+k+2

)

m −
(

k−2
k2+k+2

)

n − 2
k2+k+2 .
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Theorem B and Theorem C follow from Corollaries 1, 2, and 3.

Let ni denotes the number of vertices of degree i in a graph G. We remark that substituting
k = 3, n = n1 + n2 + n3, and m = 1

2(n1 + 2n2 + 3n3) into the lower bound in the statement
of Corollary 2 yields the following result of Haxwell and Scott [5].

Corollary 4 ([5]) If G is a graph with maximum degree ∆(G) ≤ 3, then

α′(G) ≥
4

9
n3 +

1

3
n2 +

2

9
n1 −

1

9
c.

3.1 Motivation

Our aim in this paper, is for all k ≥ 3, to give a complete description of the set Lk of pairs
(γ, β) of real numbers for which there exists a constant K such that α′(G) ≥ γn + βm−K
holds every connected graph G with maximum degree at most k, where n and m denote the
number of vertices and the number of edges, respectively, in G. Similar work was done by
Chvátal and McDiarmid [3] for the transversal number of a k-uniform hypergraph, for k ≥ 2,
in terms of its order and size. In their case, the resulting convex set has infinitely many
extreme points. In our case, we show that in contrast to the Chvátal-McDiarmid result, our
convex set has exactly one extreme point when k is odd and exactly two extreme points when
k is even.

Various lower bounds on the matching number for regular graphs have appeared in the
literature. For example, Biedl et. al [2] proved that if G is a cubic graph, then α′(G) ≥
(4n − 1)/9. This result was generalized to regular graphs of higher degree by Henning and
Yeo [7] (see also, O and West [12]). O and West [13] established lower bounds on the matching
number with given edge-connectivity in regular graphs. Cioabă, Gregory, and Haemers [4]
studied matchings in regular graphs from eigenvalues. Lower bounds on the matching number
for general graphs and bipartite graphs were obtained by Jahanbekam and West [9].

Lower bounds on the matching number in subcubic graphs (graphs with maximum degree at
most 3) were studied by, among others, Henning, Löwenstein, and Rautenbach [6]. Recently,
Haxell and Scott [5] gave a complete description of the set of triples (α, β, γ) of real numbers
for which there exists a constant K such that α′(G) ≥ αn3 + βn2 + γn1 − K for every
connected subcubic graph G, where ni denotes the number of vertices of degree i for each
i ∈ [3]. Here, the resulting convex set is shown to be a 3-dimensional polytope determined
by the the intersection of the six half-spaces.

In this paper, we establish a tight lower bound on the matching number of a graph with
given maximum degree in terms of its order and size.

For graph theory and terminology, we generally follow [8]. In particular, we denote the
degree of a vertex v in the graph G by dG(v). The maximum degree among the vertices of G
is denoted by ∆(G). For a subset S of vertices of a graph G, we let G[S] denote the subgraph
induced by S. The number of odd components of a graph G we denote by oc(G). We use
the standard notation [k] = {1, 2, . . . , k}.
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4 Proof of Theorem 4

Let

εk =



















2

k(k + 1)
for k ≥ 2 even

2k − 2

k(k2 − 3)
for k ≥ 3 odd.

For k ≥ 2, let

ak =
εk
2

and bk =
2− kεk

2k
.

We note that for k ≥ 2 even,

ak =
1

k(k + 1)
and bk =

1

k + 1
,

and for k ≥ 3 odd,

ak =
k − 1

k(k2 − 3)
and bk =

k2 − k − 2

k(k2 − 3)
.

Further, in both cases,

ak + bk =
1

k
,

and so kak + kbk = 1. Theorem 4 can now be restated as follows.

Theorem 4 Let k ≥ 4 be an integer and let G be a graph with c components and of order
n and size m and maximum degree ∆(G) ≤ k. If no component of G is k-regular, then
α′(G) ≥ akn+ bkm− akc.

Proof of Theorem 4. Let c(G∗) denote the number of components of a graph G∗. Define
the following five values of a graph G∗ and vertex set X∗ ⊆ V (G∗).

(1): β1(G
∗,X∗) is the number of edges in G∗[X∗].

(2): β2(G
∗,X∗) is the number of even components in G∗ −X∗.

(3): β3(G
∗,X∗) is the number of vertices in X∗ with degree less than k.

(4): β4(G
∗,X∗) is the number of components in G∗ −X∗ that do not have exactly one edge

to X∗.

(5): β5(G
∗,X∗) is the number of odd components in G∗ − X∗ with order between 1 and

k + 1.

For the sake of contradiction suppose that the theorem is false and that G is a counter
example to the theorem. That is, G has maximum degree at most k and no component of G

8



is k-regular and α′(G) < ak · |V (G)| + bk · |E(G)| − ak · c(G). By the Tutte-Berge formula in
Theorem 1 we may assume that G and X are chosen such that the following holds.

1

2
(n+ |X| − oc(G−X)) < ak · |V (G)| + bk · |E(G)| − ak · c(G). (1)

Furthermore we may assume that (β1(G,X), β2(G,X), . . . , β5(G,X)) is lexicographically
minimum of all G and X satisfying the above. We proceed further with the following series
of claims.

Claim A β1(G,X) = 0.

Proof. Suppose, to the contrary, that β1(G,X) ≥ 1, and let x1x2 ∈ E(G) be arbitrary
where x1, x2 ∈ X. Delete the edge x1x2 and add a new vertex u and the edges x1u and
ux2. Let G′ be the resulting graph. We note that c(G′) = c(G), |V (G′)| = |V (G)| + 1,
|E(G′)| = |E(G)|+1 and oc(G′−X) = oc(G−X)+1. Also, no component in G′ is k-regular
(as if any component in G′ is k-regular, then the corresponding component in G would also
be k-regular). The following now holds.

1
2 (|V (G′)|+ |X| − oc(G′ −X)) = 1

2((|V (G)| + 1) + |X| − (oc(G−X) + 1))

= 1
2 (|V (G)| + |X| − oc(G−X))

< ak · |V (G)| + bk · |E(G)| − ak · c(G)

< ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′).

As β1(G
′,X) < β1(G,X) this contradicts the lexicographical minimality of (β1(G,X),

β2(G,X), . . . , β5(G,X)). (✷)

Claim B β2(G,X) = 0.

Proof. Suppose, to the contrary, that β2(G,X) ≥ 1. Let C be an even component C in
G−X, and let u be a leaf in some spanning tree of C. In this case C−{u} is connected. Let
G′ = G− u and note that |V (G′)| = |V (G)| − 1, |E(G′)| ≥ |E(G)| − k, c(G′) ≤ c(G) + k − 1
(as we delete at most k − 1 edges not in C incident to u) and oc(G′ −X) = oc(G−X) + 1.
The following now holds (as we have shown that kak + kbk = 1).

1
2 (|V (G′)|+ |X| − oc(G′ −X)) = 1

2((|V (G)| − 1) + |X| − (oc(G−X) + 1))

= 1
2 (|V (G)| + |X| − oc(G−X))− 1

< ak · |V (G)| + bk · |E(G)| − ak · c(G) − 1

≤ ak · (|V (G′)|+ 1) + bk · (|E(G′)|+ k)− ak · (c(G
′)− k + 1)− 1

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′) + (kak + kbk − 1)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′).

9



Any component in G′ is either a component in G or contains a vertex of degree at most
k− 1 (adjacent to u in G), which implies that no component of G′ is k-regular. Furthermore
as β1(G

′,X) = β1(G,X) = 0 and β2(G
′,X) < β2(G,X) we obtain a contradiction to the

lexicographical minimality of (β1(G,X), β2(G,X), . . . , β5(G,X)). (✷)

Claim C β3(G,X) = 0.

Proof. Suppose, to the contrary, that β3(G,X) ≥ 1. Let x be a vertex in X with dG(x) <
k. Let G′ be obtained by adding s = k − dG(x) new vertices u1, u2, . . . , us and the edges
u1x, u2x, . . . , usx to G. Note that |V (G′)| = |V (G)| + s and |E(G′)| = |E(G)| + s and
c(G′) = c(G) and oc(G′ −X) = oc(G−X) + s. The following now holds.

1
2 (|V (G′)|+ |X| − oc(G′ −X)) = 1

2((|V (G)| + s) + |X| − (oc(G−X) + s))

= 1
2 (|V (G)| + |X| − oc(G−X))

< ak · |V (G)| + bk · |E(G)| − ak · c(G)

≤ ak · (|V (G′)| − s) + bk · (|E(G′)| − s)− ak · c(G
′)

< ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′).

Any component in G′ is either a component in G or contains vertices of degree 1 < k − 1
(adjacent to x in G), which implies that no component of G′′ is k-regular. As βi(G

′,X) =
βi(G,X) for i ∈ [2] and β3(G

′,X) < β3(G,X) we obtain a contradiction to the lexicographical
minimality of (β1(G,X), β2(G,X), . . . , β5(G,X)). (✷)

Claim D β4(G,X) = 0.

Proof. Suppose, to the contrary, that β4(G,X) ≥ 1. Let C be an odd component in G−X
with s edges to X, where s 6= 1. Let q = |V (C)|.

Suppose that s = 0 and let G′ = G−C. Suppose further that q ≤ k. In this case, we note
that |E(C)| ≤

(

q
2

)

, which implies the following (as kak + kbk = 1).

1
2 (|V (G′)|+ |X| − oc(G′ −X)) ≤ 1

2((|V (G)| − q) + |X| − (oc(G−X)− 1))

= 1
2 (|V (G)| + |X| − oc(G−X)) + 1−q

2

< ak · |V (G)| + bk · |E(G)| − ak · c(G) + 1−q
2

≤ ak · (|V (G′)|+ q) + bk ·
(

|E(G′)|+ q(q−1)
2

)

− ak · (c(G
′) + 1) + 1−q

2

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)− q−1

2 (1− 2ak − bkq)

≤ ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)− q−1

2 (1− k ak − k bk)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′).
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As βi(G
′,X) = βi(G,X) for i ∈ [3] and β4(G

′,X) < β4(G,X) we obtain a contradiction to
the lexicographical minimality of (β1(G,X), β2(G,X), . . . , β5(G,X)). Therefore, q ≥ k + 1.

Suppose that k is even. Recall that ak = 1/(k(k + 1)) and bk = 1/(k + 1). In this case, as
∆(G) ≤ k and C is not k-regular we have |E(C)| ≤ 1

2kq − 1. This implies the following, as
q ≥ k + 1.

1
2 (|V (G′)|+ |X| − oc(G′ −X)) = 1

2 ((|V (G)| − q) + |X| − (oc(G−X)− 1))

= 1
2 (|V (G)| + |X| − oc(G−X)) + 1−q

2

< ak · |V (G)| + bk · |E(G)| − ak · c(G) + 1−q
2

≤ ak · (|V (G′)|+ q) + bk ·
(

|E(G′)|+ kq
2 − 1

)

− ak · (c(G
′) + 1) + 1−q

2

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)−

(

q−1
2 − ak(q − 1)− bk

kq
2 + bk

)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)−

(

q−1
2 − q−1

k(k+1) −
kq

2(k+1) +
1

k+1

)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)− q

2(k+1)

(

(k + 1)− 2
k
− k
)

+ 1
2 −

1
k(k+1) −

1
k+1

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)− q

2(k+1)

(

1− 2
k

)

+ k(k+1)−2−2k
2k(k+1)

≤ ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)− 1

2

(

k−2
k

)

+ k2−k−2
2k(k+1)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′) + −(k−2)(k+1)+k2−k−2

2k(k+1)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′).

As βi(G
′,X) = βi(G,X) for i ∈ [3] and β4(G

′,X) < β4(G,X) we obtain a contradiction
to the lexicographical minimality of (β1(G,X), β2(G,X), . . . , β5(G,X)). Therefore, k is odd,
and so ak = (k− 1)/(k(k2 − 3)) and bk = (k2 − k− 2)/(k(k2 − 3)). In this case, as ∆(G) ≤ k
and C is not k-regular we have |E(C)| ≤ 1

2(kq − 1). Further, since C is an odd component,
we note that q is odd and q ≥ k + 2. This implies the following.
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1
2 (|V (G′)|+ |X| − oc(G′ −X)) = 1

2((|V (G)| − q) + |X| − (oc(G−X)− 1))

= 1
2 (|V (G)| + |X| − oc(G−X)) + 1−q

2

< ak · |V (G)| + bk · |E(G)| − ak · c(G) + 1−q
2

≤ ak · (|V (G′)|+ q) + bk ·
(

|E(G′)|+ 1
2 (kq − 1)

)

− ak · (c(G
′) + 1) + 1−q

2

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)−

(

q−1
2 − (q − 1)ak −

1
2(kq − 1)bk

)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)−

(

q−1
2 − (k−1)(q−1)

k(k2−3) − (kq−1)(k2−k−2)
2k(k2−3)

)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)−

q
2k(k2−3)

(

k(k2 − 3)− 2(k − 1)− k(k2 − k − 2)
)

+

1
2k(k2−3)

(

k(k2 − 3)− 2(k − 1)− (k2 − k − 2)
)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)− q(k2−3k+2)

2k(k2−3) + k3−k2−4k+4
2k(k2−3)

≤ ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)− (k+2)(k2−3k+2)

2k(k2−3)
+ k3−k2−4k+4

2k(k2−3)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′).

As βi(G
′,X) = βi(G,X) for i ∈ [3] and β4(G

′,X) < β4(G,X) we obtain a contradiction to
the lexicographical minimality of (β1(G,X), β2(G,X), . . . , β5(G,X)). Therefore, s ≥ 2.

Let x1u1, x2u2, . . . , xsus be distinct edges from xi ∈ X to ui ∈ V (C) for i ∈ [s]. Let
G′ be obtained from G by adding s − 1 new vertices w2, w3, . . . , ws, deleting the edges
x2u2, x3u3, . . . , xsus and adding the edges x2w2, x3w3, . . . , xsws. It is not difficult to see that
no component of G′ is k-regular. Note that |V (G′)| = |V (G)| + s − 1 and |E(G′)| = |E(G)|
and c(G′) ≤ c(G) + s− 1 and oc(G′ −X) = oc(G−X) + s− 1. The following now holds.

1
2 (|V (G′)|+ |X| − oc(G′ −X)) = 1

2 ((|V (G)| + s− 1) + |X| − (oc(G−X) + s− 1))

= 1
2 (|V (G)| + |X| − oc(G−X))

< ak · |V (G)| + bk · |E(G)| − ak · c(G)

≤ ak · (|V (G′)| − s+ 1) + bk · |E(G′)| − ak · (c(G
′)− s+ 1)

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′).

As βi(G
′,X) = βi(G,X) for i ∈ [3] and β4(G

′,X) < β4(G,X) we obtain a contradiction to
the lexicographical minimality of (β1(G,X), β2(G,X), . . . , β5(G,X)). (✷)

Claim E β5(G,X) = 0.

Proof. Suppose, to the contrary, that β5(G,X) ≥ 1. Let C be an odd component C in
G −X with 1 < |V (C)| < k + 1. As β4(G,X) = 0 there is exactly one edge from C to X.
Let xc be the edge with x ∈ X and c ∈ C. Let r = |V (C)| − 1.
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Let G′ = G − (V (C) \ {c}). That is, G′ is obtained from G by removing all vertices of
C, except c, from G. Note that |V (G′)| = |V (G)| − r and |E(G′)| = |E(G)| − |E(C)| and
c(G′) = c(G) and oc(G′ −X) = oc(G−X). It is not difficult to see that no component of G′

is k-regular. The following now holds.

1
2 (|V (G′)|+ |X| − oc(G′ −X)) = 1

2 ((|V (G)| − r) + |X| − (oc(G−X)))

= 1
2 (|V (G)| + |X| − oc(G−X)) − r

2

< ak · |V (G)| + bk · |E(G)| − ak · c(G)− r
2

= ak · (|V (G′)|+ r) + bk · (|E(G′)|+ |E(C)|)− ak · c(G
′)− r

2

= ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′)−

(

r
2 − akr − bk|E(C)|

)

.

We will now evaluate r
2 − akr − bk|E(C)|. Note that |E(C)| ≤ r(r+1)

2 as |V (C)| = r + 1 and
r ≤ k−1. If k is even, then ak = 1/(k(k+1)) and bk = 1/(k+1), which implies the following
(as 0 < r < k and k ≥ 2).

r
2 − akr − bk|E(C)| ≥ r

2 −
1

k(k+1)r −
1

k+1 ×
r(r+1)

2

= r
2k(k+1) (k(k + 1)− 2− k(r + 1))

= r
2k(k+1) (k(k − r)− 2)

≥ 0.

If k is odd, then ak = (k− 1)/(k(k2 − 3)) and bk = (k2 − k− 2)/(k(k2 − 3)), which implies
the following (as 0 < r < k and k ≥ 3).

r
2 − akr − bk|E(C)| ≥ r

2 −
(k−1)r
k(k2−3)

− r(r+1)(k2−k−2)
2k(k2−3)

= r
2k(k2−3)

(

k(k2 − 3)− 2(k − 1)− (k2 − k − 2)(r + 1)
)

≥ r
2k(k2−3)

(

k3 − 5k + 2− (k2 − k − 2)k
)

≥ r
2k(k2−3)

(

k2 − 3k + 2
)

≥ r(k−1)(k−2)
2k(k2−3)

> 0.

In both cases, r
2 − akr − bk|E(C)| ≥ 0. This implies the following.

1

2

(

|V (G′)|+ |X| − oc(G′ −X)
)

< ak · |V (G′)| + bk · |E(G′)| − ak · c(G
′).

As βi(G
′,X) = βi(G,X) for i ∈ [4] and β5(G

′,X) < β5(G,X) we obtain a contradiction to
the lexicographical minimality of (β1(G,X), β2(G,X), . . . , β5(G,X)). (✷)
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We now return to the proof of Theorem 4. Let C be the set of all components of G, and so
|C(G)| = c(G).

Claim F If C ∈ C, then

1

2
(|V (C)|+ |XC | − oc(C −XC)) ≥ ak · |V (C)| + bk · |E(C)| − ak.

Proof. Let C ∈ C, and let XC = X ∩ V (C). By Claim A, β1(G,X) = 0, and so there is no
edge in G[XC ]. By Claim D, β4(G,X) = 0, and so every component in C −XC has exactly
one edge to XC . Since C is connected, we therefore note that |XC | = 1. Let Xc = {x}. By
Claim C, β3(G,X) = 0, and so dG(x) = dC(x) = k. Let ni denote that number of components
in C −XC of order i, and so

oc(C −XC) = k =

∞
∑

i=1

ni.

By Claim B, β2(G,X) = 0 and by Claim E, β5(G,X) = 0, implying that all ni are
zero except possibly if i = 1 or i ≥ k + 1 and i is odd. We note that the expression
1
2(|V (C)|+ |XC | − oc(C −XC)) can be written in terms of k and εk as follows.

1

2
(|V (C)|+ |XC | − oc(C −XC))

=
1

2

(

|XC |+

(

∞
∑

i=1

i · ni

)

+ |XC | − oc(G−XG)

)

=
1

2

(

2 +

(

∞
∑

i=1

i · ni

)

− (1− εk) oc(G−XG)− εk oc(G−XG)

)

=
1

2

(

2 +

(

∞
∑

i=1

i · ni

)

− (1− εk)

(

∞
∑

i=1

ni

)

− εk k

)

= 1−
(εk
2

)

k +

∞
∑

i=1

(i− 1 + εk)
ni

2

= 1−
(εk
2

)

k +
(εk
2

)

n1 +
∞
∑

i=k+1

(i− 1 + εk)
ni

2
.

Recall that

ak =
εk
2

and bk =
2− kεk

2k
.

Hence, the expression 1
2(|V (C)|+ |XC | − oc(C −XC)) can be written as follows.

1

2
(|V (C)|+ |XC | − oc(C −XC)) = kbk + akn1 +

∞
∑

i=k+1

(i− 1 + εk)
ni

2
. (2)
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We consider two cases, depending on the parity of k.

Case 1. k is even. For all components, C∗, in C −XC we note that C∗ is not k-regular.
Further, if C∗ has order r, then since k is even, |E(C∗)| ≤ (rk − 2)/2. Thus,

ak · |V (C)|+ bk · |E(C)| − ak

≤ ak

(

|XC |+
∞
∑

i=1

i · ni

)

+ bk

(

k +

∞
∑

i=k+1

ki− 2

2

)

− ak

= ak

(

1 + n1 +
∞
∑

i=k+1

i · ni

)

+ bk

(

k +
∞
∑

i=k+1

ki− 2

2

)

− ak

= kbk + akn1 +

∞
∑

i=k+1

(

ai · i+ bk

(

ki− 2

2

))

ni. (3)

By Equation (2) and Inequality (3), we note that the desired result follows if the following
is true for all i ≥ k + 1.

1

2
(i− 1 + εk) ≥ ak · i+ bk

(

ki− 2

2

)

m
1

2
(i− 1 + εk) ≥

(εk
2

)

i+

(

1

k
−

εk
2

)(

ki− 2

2

)

m
2k (i− 1 + εk) ≥ 2kεki+ (2− kεk) (ki− 2)

m
2ki− 2k + 2kεk ≥ 2kεki+ 2ki− ik2εk − 4 + 2kεk

m
ikεk(k − 2) ≥ 2k − 4

⇑
(k + 1)kεk(k − 2) ≥ 2(k − 2)

m

εk ≥
2

k(k + 1)

The above clearly holds since in this case when k is even, εk = 2/(k(k + 1).

Case 2. k ≥ 3 is odd. In this case, we note that all ni are zero except possibly if i = 1 or
i ≥ k + 2 and i is odd. In particular, we note that in Equation (2) the term nk+1 = 0. For
all components, C∗, in C −XC we note that C∗ is not k-regular. Further, if C∗ has order r,
then since k is odd, |E(C∗)| ≤ (rk − 1)/2. Thus,
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ak · |V (C)|+ bk · |E(C)| − ak

≤ ak

(

|XC |+
∞
∑

i=1

i · ni

)

+ bk

(

k +

∞
∑

i=k+2

(

ki− 1

2

)

ni

)

− ak

= ak

(

1 + n1 +
∞
∑

i=k+2

i · ni

)

+ bk

(

k +
∞
∑

i=k+2

(

ki− 1

2

)

ni

)

− ak

= kbk + akn1 +
∞
∑

i=k+2

(

ak · i+ bk

(

ki− 1

2

))

ni.
(4)

By Equation (2) and Inequality (4), we note that the desired result follows if the following
is true for all i ≥ k + 2.

1

2
(i− 1 + εk) ≥ ak · i+ bk

(

ki− 1

2

)

m
1

2
(i− 1 + εk) ≥

εk
2
i+

(

1

k
−

εk
2

)(

ki− 1

2

)

m
2k (i− 1 + εk) ≥ 2kεki+ (2− kεk) (ki− 1)

m
2ki− 2k + 2kεk ≥ 2kεki+ 2ki− ik2εk − 2 + kεk

m
ikεk(k − 2) ≥ 2k − kεk − 2

⇑
(k + 2)kεk(k − 2) ≥ 2k − kεk − 2

m
kεk(k

2 − 4 + 1) ≥ 2k − 2
m

εk ≥
2k − 2

k(k2 − 3)

The above clearly holds in this case when k is odd, εk = (2k − 2)/(k(k2 − 3)). This
completes the proof of Claim F. (✷)

Applying Claim F to each component C in C, the following holds.

1

2
(n+ |X| − oc(G−X)) =

∑

C∈C

1

2
(|V (C)|+ |XC | − oc(C −XC))

≥
∑

C∈C

(ak · |V (C)| + bk · |E(C)| − ak)

= ak · |V (G)| + bk · |E(G)| − ak · c(G),

which contradicts Inequality (1), thereby proving the theorem. ✷
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5 Proof of Theorem 5

For all even k ≥ 4, let

ak =
k − 2

k2 + k + 2
and bk =

k + 2

k2 + k + 2
.

We note that for k ≥ 2 even,

k bk − ak =
k(k + 2)− (k − 2)

k2 + k + 2
= 1.

Theorem 5 can now be restated as follows.

Theorem 5 Let k ≥ 2 be an even integer and let G be any graph of order n and size m and
maximum degree ∆(G) ≤ k. If no component of G is k-regular, then α′(G) ≥ bk ·m− ak · n.

Proof of Theorem 5. Let Kk+1 − e denote the complete graph on k + 1 vertices after
removing one edge. Define the following five values of a graph G∗ and vertex set X∗ ⊆ V (G∗).

(1): ξ1(G
∗,X∗) is the number of edges in G∗[X∗].

(2): ξ2(G
∗,X∗) is the number of even components in G∗ −X∗.

(3): ξ3(G
∗,X∗) is the number of vertices in X∗ with degree less than k.

(4): ξ4(G
∗,X∗) is the number of components in G∗ −X∗ that do not have exactly one edge

to X∗.

(5): ξ5(G
∗,X∗) is the number of odd components in G∗ −X∗ not isomorphic to Kk+1 − e.

For the sake of contradiction suppose that the theorem is false and that G is a counter
example to the theorem. That is, G has maximum degree at most k and no component of G
is k-regular and α′(G) < bk · |E(G)| − ak · |V (G)|. By Theorem 1 (the Tutte-Berge formula)
we may assume that G and X are chosen such that the following holds.

1

2
(n+ |X| − oc(G−X)) < bk · |E(G)| − ak · |V (G)|. (5)

Furthermore we may assume that (ξ1(G,X), ξ2(G,X), . . . , ξ5(G,X)) is lexicographically
minimum of all G and X satisfying the above. Note that if G is not connected, then one of
the components of G is also a counter example to the theorem and this component either has
the same value of (ξ1(G,X), ξ2(G,X), . . . , ξ5(G,X)) or smaller. We may therefore assume
that G is connected, for otherwise we consider the before mentioned component of G. We
proceed further with the following series of claims.
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Claim I ξ1(G,X) = 0.

Proof. Suppose, to the contrary, that ξ1(G,X) ≥ 1, and let x1x2 ∈ E(G) be arbitrary where
x1, x2 ∈ X. Delete the edge x1x2 and add a new vertex u and the edges x1u and ux2. Let
G′ be the resulting graph. We note that |V (G′)| = |V (G)| + 1, |E(G′)| = |E(G)| + 1 and
oc(G′ − X) = oc(G −X) + 1. Also, no component in G′ is k-regular (as if any component
in G′ is k-regular, then the corresponding component in G would also be k-regular). The
following now holds, as bk > ak.

1
2 (|V (G′)|+ |X| − oc(G′ −X)) = 1

2((|V (G)| + 1) + |X| − (oc(G−X) + 1))

= 1
2 (|V (G)| + |X| − oc(G−X))

< bk · |E(G)| − ak · |V (G)|

< bk(|E(G)| + 1)− ak(|V (G)|+ 1)

= bk · |E(G′)| − ak · |V (G′)|.

As ξ1(G
′,X) < ξ1(G,X) this contradicts the lexicographical minimality of (ξ1(G,X),

ξ2(G,X), . . . , ξ5(G,X)). (✷)

Claim II ξ2(G,X) = 0.

Proof. Suppose, to the contrary, that ξ2(G,X) ≥ 1. Let C be an even component C in G−X,
and let u be a leaf in some spanning tree of C. In this case C−{u} is connected. LetG′ = G−u
and note that |V (G′)| = |V (G)| − 1, |E(G′)| ≥ |E(G)| − k and oc(G′ −X) = oc(G−X) + 1.
The following now holds (as we have shown that kbk − ak = 1).

1
2 (|V (G′)|+ |X| − oc(G′ −X)) = 1

2((|V (G)| − 1) + |X| − (oc(G−X) + 1))

= 1
2 (|V (G)| + |X| − oc(G−X))− 1

< bk · |E(G)| − ak · |V (G)| − 1

≤ bk · (|E(G′)|+ k) − ak · (|V (G′)|+ 1)− 1

= bk · |E(G′)| − ak · |V (G′)|.

Any component in G′ is either a component in G or contains a vertex of degree at most
k− 1 (adjacent to u in G), which implies that no component of G′ is k-regular. Furthermore
as ξ1(G

′,X) = ξ1(G,X) = 0 and ξ2(G
′,X) < ξ2(G,X) we obtain a contradiction to the

lexicographical minimality of (ξ1(G,X), ξ2(G,X), . . . , ξ5(G,X)). (✷)
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Claim III ξ3(G,X) = 0.

Proof. Suppose, to the contrary, that ξ3(G,X) ≥ 1. Let x be a vertex in X with dG(x) <
k. Let G′ be obtained by adding s = k − dG(x) new vertices u1, u2, . . . , us and the edges
u1x, u2x, . . . , usx to G. Note that |V (G′)| = |V (G)| + s and |E(G′)| = |E(G)| + s and
oc(G′ −X) = oc(G−X) + s. The following now holds, as bk > ak.

1
2 (|V (G′)|+ |X| − oc(G′ −X)) = 1

2((|V (G)| + s) + |X| − (oc(G−X) + s))

= 1
2 (|V (G)| + |X| − oc(G−X))

< bk · |E(G)| − ak · |V (G)|

= bk · (|E(G′)| − s) − ak · (|V (G′)| − s)

= bk · |E(G′)| − ak · |V (G′)| − s(bk − ak)

< bk · |E(G′)| − ak · |V (G′)|.

Any component in G′ is either a component in G or contains vertices of degree 1 < k
(adjacent to x in G), which implies that no component of G′ is k-regular. As ξi(G

′,X) =
ξi(G,X) for i ∈ [2] and ξ3(G

′,X) < ξ3(G,X) we obtain a contradiction to the lexicographical
minimality of (ξ1(G,X), ξ2(G,X), . . . , ξ5(G,X)). (✷)

Claim IV ξ4(G,X) = 0.

Proof. Suppose, to the contrary, that ξ4(G,X) ≥ 1. Let C be an odd component in G−X
with s edges to X, where s 6= 1. Let q = |V (C)|.

Suppose that s = 0, which as G is connected (which was proved before Claim I) implies
that |X| = 0. By Claim II we note that q is odd. By Equation (5) the following holds.

q − 1

2
=

1

2
(n+ |X| − oc(G−X)) < bk · |E(G)| − ak · |V (G)|. (6)

Suppose that q ≤ k. In this case, we note that |E(C)| ≤
(

q
2

)

, which implies the following.

q − 1

2
< bk · |E(G)| − ak · |V (G)| ≤ bk ·

q(q − 1)

2
− ak · q = q

((

q − 1

2

)

bk − ak

)

.

If q = 1, then bk · |E(G)| − ak · |V (G)| ≤ −ak < 0 = (q−1)/2, a contradiction. By Claim II

we note that q is odd, and so q ≥ 3, which implies that bk
(q−1)

2 − ak > 0. Therefore the
following holds.
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q−1
2 < q

(

bk
(q−1)

2 − ak

)

≤ k
(

bk
(q−1)

2 − ak

)

= k
(

k+2
k2+k+2

× (q−1)
2 − k−2

k2+k+2

)

= q−1
2 +

(

q−1
2

)(

k(k+2)
k2+k+2

− 1
)

− k(k−2)
k2+k+2

= q−1
2 +

(

q−1
2

)(

k−2
k2+k+2

)

− k
(

k−2
k2+k+2

)

= q−1
2 +

(

k−2
k2+k+2

)(

q−1
2 − k

)

< q−1
2 .

This is clearly a contradiction, which implies that, q ≥ k + 1. Therefore, since G is not
k-regular, |E(G)| ≤ kq

2 − 1 and

q−1
2 < bk

(

qk−2
2

)

− ak · q

= q
2 (kbk − ak) − akq

2 − bk

= q
2 − akq

2 − bk

≤ q
2 − ak(k+1)

2 − bk

= q
2 − (k−2)(k+1)

2(k2+k+2)
− k+2

k2+k+2

= q
2 − k2+k+2

2(k2+k+2)

= q−1
2 .

This is a contradiction which implies that s ≥ 2. Recall that C is an odd component in
G−X with s edges to X. Let Hk+1 denote Kk+1 − e and let the two vertices of Hk+1 with
degree k − 1 be called link vertices. Let x1u1, x2u2, . . . , xsus be distinct edges from xi ∈ X
to ui ∈ V (C) for i ∈ [s]. Let G′ be obtained from G by adding s − 1 vertex disjoint copies,
G1, G2, . . . , Gs−1, of Hk+1, and deleting the edges x1u1, x2u2, . . . , xs−1us−1 and adding an
edge from xi to a link vertex of Gi for all i ∈ [s − 1]. Since no component of G is k-regular,
it is not difficult to see that no component of G′ is k-regular. Note that the following holds.

• |V (G′)| = |V (G)| + (s− 1)(k + 1)

• |E(G′)| = |E(G)| + (s− 1)
(

k(k+1)
2 − 1

)

• oc(G′ −X) = oc(G−X) + s− 1

This implies the following.
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1
2 (|V (G′)|+ |X| − oc(G′ −X))

= 1
2((|V (G)| + (s− 1)(k + 1)) + |X| − (oc(G−X) + s− 1))

= 1
2 (|V (G)| + |X| − oc(G−X)) + (s−1)(k+1)

2 − s−1
2

< bk · |E(G)| − ak · |V (G)|+ k(s−1)
2

= bk ·
(

|E(G′)| − (s− 1)
(

k2+k−2
2

))

− ak · (|V (G′)| − (s− 1)(k + 1)) + k(s−1)
2

= bk · |E(G′)| − ak · |V (G′)| + (s− 1)
(

k
2 − bk

(

k2+k−2
2

)

+ ak(k + 1)
)

.

As ξi(G
′,X) = ξi(G,X) for i ∈ [3] and ξ4(G

′,X) < ξ4(G,X) we would obtain a contradic-
tion to the lexicographical minimality of (ξ1(G,X), ξ2(G,X), . . . , ξ5(G,X)) if the following
holds.

0 ≥ k
2 − bk

(

k2+k−2
2

)

+ ak(k + 1)

m
k
2 ≤ k+2

k2+k+2
× k2+k−2

2 −
(

k−2
k2+k+2

)

(k + 1)

m
k(k2 + k + 2) ≤ (k + 2)(k2 + k − 2)− 2(k − 2)(k + 1)

m
k3 + k2 + 2k ≤ k3 + 3k2 − 4− (2k2 − 2k − 4)

m
k3 + k2 + 2k ≤ k3 + k2 + 2k

As the last statement is clearly true, Claim IV is proved. (✷)

Claim V ξ5(G,X) = 0.

Proof. Suppose, to the contrary, that ξ5(G,X) ≥ 1. Let C be a component in G−X which
in not isomorphic to Kk+1 − e. By Claim II and Claim IV we note that C is odd and has
exactly one edge to X. Let q = |V (C)| and let G′ be obtained from G by deleting C and
adding a copy of Kk+1 − e and adding an edge from a degree k− 1 vertex in Kk+1 − e to the
vertex of X that was adjacent to a vertex of C in G. The following now holds.

• |V (G′)| = |V (G)| + k + 1− q

• |E(G′)| = |E(G)| + k(k+1)
2 − 1− |E(C)|

• oc(G′ −X) = oc(G−X)

Since no component of G is k-regular, it is not difficult to see that no component of G′ is
k-regular. The following now holds.
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1
2 (|V (G′)|+ |X| − oc(G′ −X)))

= 1
2 ((|V (G)|+ k + 1− q) + |X| − (oc(G−X))

= 1
2 (|V (G)|+ |X| − oc(G−X)) + k+1−q

2

< bk · |E(G)| − ak · |V (G)| + k+1−q
2

= bk ·
(

|E(G′)| − k(k+1)
2 + 1 + |E(C)|

)

− ak · (|V (G′)| − (k + 1− q)) + k+1−q
2

= bk · |E(G′)| − ak · |V (G′)|+ k+1−q
2 + bk

(

|E(C)| − k2+k−2
2

)

+ ak(k + 1− q).

We will now consider the cases when q ≤ k and q ≥ k + 1 seperately. First consider the
case when q ≤ k. In this case, |E(C)| ≤ q(q − 1)/2 and the above implies the following.

1
2 (|V (G′)|+ |X| − oc(G′ −X))

< bk · |E(G′)| − ak · |V (G′)|+ k+1−q
2 + bk

(

|E(C)| − k2+k−2
2

)

+ ak(k + 1− q)

≤ bk · |E(G′)| − ak · |V (G′)|+ k+1−q
2 + bk

(

q(q−1)
2 − k2+k−2

2

)

+ ak(k + 1− q).

As ξi(G
′,X) = ξi(G,X) for i ∈ [4] and ξ5(G

′,X) < ξ5(G,X) we obtain a contradiction to
the lexicographical minimality of (ξ1(G,X), ξ2(G,X), . . . , ξ5(G,X)) if the following holds

k+1−q
2 + bk

(

q(q−1)
2 − k2+k−2

2

)

+ ak(k + 1− q) ≤ 0

m
−q + bkq(q − 1)− 2akq ≤ bk(k

2 + k − 2)− (k + 1)− 2ak(k + 1)

Recall that 1 ≤ q ≤ k. Differentiating the left-hand-side twice with respect to q we note
that the largest value of −q + bkq(q − 1) − 2akq in the interval [1, q] is obtained at the end
points of the interval, when q = 1 or q = k. When q = 1,

−q + bkq(q − 1)− 2akq = −1− 2ak

and when q = k, we get

−q + bkq(q − 1)− 2akq = −k + bkk(k − 1)− 2akk

= −1 + (k − 1)(−1 + bkk − ak)− ak(k + 1)

= −1− ak(k + 1)

< −1− 2ak.

Therefore the following holds.
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k+1−q
2 + bk

(

q(q−1)
2 − k2+k−2

2

)

+ ak(k + 1− q) ≤ 0

m
−q + bkq(q − 1)− 2akq ≤ bk(k

2 + k − 2)− (k + 1)− 2ak(k + 1)
⇑

−1− 2ak ≤ bk(k
2 + k − 2)− (k + 1)− 2ak(k + 1)

m
0 ≤ bk(k

2 + k)− 2bk − (k + 1)− 2ak(k + 1) + 1 + 2ak
m

0 ≤ (k + 1)(kbk − ak − 1)− 2bk − ak(k + 1) + 1 + 2ak
m

0 ≤ −2bk − (k − 1)ak + 1
m

0 ≤ −2(k+2)
k2+k+2 − (k−1)(k−2)

k2+k+2 + k2+k+2
k2+k+2

m

0 ≤ (−2k−4)−(k2−3k+2)+(k2+k+2)
k2+k+2

m
0 ≤ 2k−4

k2+k+2

As the last statement is true we have completed the proof for the case when q ≤ k. Now
consider the case when q ≥ k + 1. In this case |E(C)| ≤ qk

2 − 1 (as C is not k-regular) and
the following holds.

1
2 (|V (G′)|+ |X| − oc(G′ −X))

< bk · |E(G′)| − ak · |V (G′)|+ k+1−q
2 + bk

(

|E(C)| − k2+k−2
2

)

+ ak(k + 1− q)

≤ bk · |E(G′)| − ak · |V (G′)|+ k+1−q
2 + bk

(

qk−2
2 − k2+k−2

2

)

+ ak(k + 1− q).

As ξi(G
′,X) = ξi(G,X) for i ∈ [4] and ξ5(G

′,X) < ξ5(G,X) we obtain a contradiction to
the lexicographical minimality of (ξ1(G,X), ξ2(G,X), . . . , ξ5(G,X)) if the following holds

k+1−q
2 + bk

(

qk−2
2 − k2+k−2

2

)

+ ak(k + 1− q) ≤ 0

m
q(−1 + kbk − 2ak) ≤ bk(k

2 + k − 2 + 2)− (k + 1)− 2ak(k + 1)
m

q(−1 + 1− ak) ≤ bkk(k + 1)− (k + 1)− 2ak(k + 1)
⇑

(k + 1)(−ak) ≤ (k + 1) (bkk − 1− 2ak)
m

−ak ≤ (bkk − ak)− 1− ak
m

−ak ≤ −ak

The last statement is clearly true which completes the proof of Claim V. (✷)
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We now return to the proof of Theorem 5. As mentioned before the statement of Claim I,
we may assume that G is connected. By Claim I, ξ1(G,X) = 0, and so there is no edge in
G[X]. By Claim IV, ξ4(G,X) = 0, and so every component in C −X has exactly one edge
to X. Since C is connected, we therefore note that |X| = 1. Let X = {x}. By Claim III,
ξ3(G,X) = 0, and so dG(x) = k. By Claim V, every component in C −X is isomorphic to
Kk+1 − e, which implies the following.

• |V (G)| = k(k + 1) + 1 = k2 + k + 1.

• |E(G)| = k
(

k(k+1)
2 − 1

)

+ d(x) = k
(

k2+k−2
2

)

+ k.

• α′(G) = k
(

k
2

)

+ 1 = k2+2
2 .

Therefore, the following holds.

bk|E(G)| − ak|V (G)| = k+2
k2+k+2

× k ×
(

k2+k−2
2 + 1

)

− k−2
k2+k+2

× (k2 + k + 1)

= 1
2(k2+k+2)

(

k(k + 2)(k2 + k)− 2(k − 2)(k2 + k + 2)
)

= (k4+3k3+2k2)−(2k3−2k2−2k−4)
2(k2+k+2)

= k4+k3+4k2+2k+4
2(k2+k+2)

= (k2+2)(k2+k+2)
2(k2+k+2)

= k2+2
2

= α′(G).

This contradicts the fact that G was a counter example to the theorem. ✷

6 Proof of Corollary 1

Recall the statement of Corollary 1.

Corollary 1 If k ≥ 4 is an even integer and G is a connected graph of order n, size m and
maximum degree ∆(G) ≤ k, then

α′(G) ≥
n

k(k + 1)
+

m

k + 1
−

1

k(k + 1)
,

unless the following holds.

(a) G is k-regular and n = k + 1, in which case α′(G) = n−1
2 = n

k(k+1) + m
k+1 −

1
k
.

(b) G is k-regular and n = k + 3, in which case α′(G) = n−1
2 = n

k(k+1) + m
k+1 −

3
k(k+1) .
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Proof of Corollary 1. If G is not k-regular, then the result follows from Theorem 4, so
assume that G is k-regular. By the k-regularity of G we have nk = 2m, which together with
the observation that

k2 + 2

k2 + k
≤

k2 + 4

k2 + k + 2
.

when k ≥ 4, implies the following.

n

k(k + 1)
+

m

k + 1
−

1

k(k + 1)
=

n

k(k + 1)
+

nk

2(k + 1)
−

1

k(k + 1)

=
n

2

(

2

k(k + 1)
+

k

k + 1

)

−
1

k(k + 1)

<
n

2

(

2

k(k + 1)
+

k2

k(k + 1)

)

=
n

2
×

k2 + 2

k(k + 1)
.

≤
n

2
×

k2 + 4

k2 + k + 2
.

By Theorem 2 we therefore have the following.

α′(G) ≥ min

{

k2 + 4

k2 + k + 2
×

n

2
,
n− 1

2

}

≥ min

{

n

k(k + 1)
+

m

k + 1
−

1

k(k + 1)
,
n− 1

2

}

.

As n
k(k+1) +

m
k+1 −

1
k(k+1) <

n
2 by the above, this proves the theorem when n is even. So let

n be odd. We will now determine when the following holds.

n

k(k + 1)
+

nk

2(k + 1)
−

1

k(k + 1)
>

n− 1

2
.

Define r such that n = k + r and note that the above is equivalent to the following.

0 <
n

k(k + 1)
+

nk

2(k + 1)
−

1

k(k + 1)
−

n− 1

2

= n

(

2 + k2 − k(k + 1)

2k(k + 1)

)

−
1

k(k + 1)
+

1

2

= (k + r)

(

2− k

2k(k + 1)

)

+
−2 + k(k + 1)

2k(k + 1)

=
−k2 + 2k + 2r − kr

2k(k + 1)
+

k2 + k − 2

2k(k + 1)

=
3k + 2r − kr − 2

2k(k + 1)
.
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This is equivalent to 3k− 2− r(k− 2) > 0, which is equivalent to the following (as k ≥ 4).

r <
3k − 2

k − 2
.

When k ≥ 4 this is equivalent to r < 5 (as r is odd) and therefore the following holds (as
we already handled the case when n was even).

α′(G) ≥ min

{

n

k(k + 1)
+

m

k + 1
−

1

k(k + 1)
,
n− 1

2

}

=



















n

k(k + 1)
+

m

k + 1
−

1

k(k + 1)
if n 6∈ {k + 1, k + 3}

n− 1

2
if n ∈ {k + 1, k + 3}.

We will therefore determine θ such that the following holds.

n− 1

2
=

n

k(k + 1)
+

m

k + 1
−

θ

k(k + 1)

m

2θ = 2n+ 2km− (n− 1)(k(k + 1))

= 2n+ nk2 − n(k2 + k) + (k2 + k)

= n(2− k) + k2 + k

= (k + r)(2− k) + k2 + k

= 3k + 2r − rk.

So, if r = 3, then θ = 3 and if r = 1, then θ = k+1. This completes the proof of Corollary 1. ✷

The lower bound in Corollary 1 is tight when G is k-regular and n ∈ {k + 1, k + 3}. We
will furthermore show that they are tight for infinite classes of trees and infinite classes of
graphs with any given average degree between 2 and k − k−2

k2
, implying that the corollaries

are tight for almost all possible densities. Note that for small values of k the value k − k−2
k2

is the following.

k 4 6 8 10 12 14

k − k−2
k2

3.875 5.888 . . . 7.906 . . . 9.92 11.93 . . . 13.938 . . .

Table 3. The value k − k−2
k2

for small values of k ≥ 4 with k even.
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We will illustrate how to obtain the above. Let k ≥ 4 be even and let r ≥ 1 be arbitrary
and let ℓ = r(k− 1) + 1. Let X1,X2, . . . ,Xℓ be a number of vertex disjoint graphs such that
each Xi where i ∈ [ℓ] is either a single vertex or it is a Kk+1 where an arbitrary edge has been
deleted. Let Y = {y1, y2, . . . , yr} and build the graph Gk,r as follows. Let Gk,r be obtained
from the disjoint union of the graphs X1,X2, . . . ,Xℓ by adding to it the vertices in Y and
furthermore, for every i ∈ [r], adding an edge from yi to a vertex in each graph X(i−1)(k−1)+1,
X(i−1)(k−1)+2, X(i−1)(k−1)+3, . . . ,X(i−1)(k−1)+k in such a way that no vertex degree becomes
more than k. Let Gk,r be the family of all such graph Gk,r.

When k = 4 and r = 2, an example of a graph G in the family Gk,r is illustrated in Figure 2,
where G has order n = 21, size m = 35 and matching number α′(G) = 8.

Figure 2: A graph G in the family G4,2

Proposition 1 For k ≥ 4 an even integer and r ≥ 1 arbitrary, if G ∈ Gk,r has order n and
size m, then

α′(G) =
n

k(k + 1)
+

m

k + 1
−

1

k
.

Proof. Assume that in X1,X2, . . . ,Xℓ we have ℓ1 single vertices and ℓ2 copies of Kk+1’s
minus an edge. Note that ℓ = ℓ1 + ℓ2 and n = r + ℓ1 + ℓ2(k + 1). Furthermore we have
m = rk + ℓ2(k(k + 1)/2 − 1) and α′(G) = r + ℓ2(k/2). Therefore the following holds.

27



n

k(k + 1)
+

m

k + 1
−

1

k(k + 1)

=
r + ℓ1 + ℓ2(k + 1)

k(k + 1)
+

2rk + ℓ2(k
2 + k − 2)

2(k + 1)
−

1

k(k + 1)

=
r + (ℓ− ℓ2) + ℓ2k + ℓ2

k(k + 1)
+

2rk2 + ℓ2k(k
2 + k − 2)

2k(k + 1)
−

2

2k(k + 1)

=
2r + 2ℓ+ 2ℓ2k + 2rk2 + ℓ2k(k

2 + k − 2)− 2

2k(k + 1)

=
2r + 2(r(k − 1) + 1) + 2rk2 + ℓ2k(k

2 + k)− 2

2k(k + 1)

=
2r + 2rk − 2r + 2 + 2rk2 + ℓ2k

2(k + 1)− 2

2k(k + 1)

=
2r(k2 + k) + ℓ2k

2(k + 1)

2k(k + 1)

= r +
1

2
kℓ2

= α′(G). ✷

By Proposition 1, the lower bound on the matching number in Corollary 1 is tight for every
graph in the family Gk,r. We remark that if all X1,X2, . . . ,Xℓ used to construct a graph in
the family Gk,r are single vertices, then clearly we have a tree and as r ≥ 1 was arbitrary we
obtain an infinite class of trees where the corollaries are tight. If all X1,X2, . . . ,Xℓ are copies
of Kk+1 minus an edge, then we denote the resulting subfamily of graphs of Gk,r by G′

k,r.
Hence, each graph in the family G′

k,r achieves the lower bound in Corollary 1. We remark,
further, that if we build a graph in the family Gk,r using only single vertices for the copies of
Xi for each i ∈ [ℓ], then the resulting graph G is a tree. Hence, as an immediate consequence
of Proposition 1 and the above observations, we have the following result.

Proposition 2 The lower bound in Corollary 1 is achieved for both trees and for the class
of graphs in the family G′

k,r.

We note that the average degree of a graph in the family G′
k,r is the following, as n =

ℓ(k + 1) + r and there are ℓ− (r − 1) vertices of degree k − 1.

1

n

∑

v∈V (G)

d(v) =
1

n
(nk − (ℓ− (r − 1)))

= k −
1

n
(ℓ− r + 1)

= k −
r(k − 1) + 1− r + 1

(r(k − 1) + 1)(k + 1) + r

= k −
r(k − 2) + 2

rk2 + k + 1
.
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So when r is large the average degree can get arbitrarily close to k − k−2
k2

. Clearly, as the
average degree of a tree is less than 2, the average degree can be made arbitrarily close to any
β where 2 ≤ β < k− k−2

k2
by picking the correct proportion of single vertices in X1,X2, . . . ,Xℓ.

7 Proof of Corollary 2

Recall the statement of Corollary 2.

Corollary 2 If k ≥ 3 is an odd integer and G is a connected graph of order n, size m, and
with maximum degree ∆(G) ≤ k, then

α′(G) ≥

(

k − 1

k(k2 − 3)

)

n +

(

k2 − k − 2

k(k2 − 3)

)

m −
k − 1

k(k2 − 3)
.

Proof of Corollary 2. If G is not k-regular, then the result follows from Theorem 4, so
assume that G is k-regular. By the k-regularity of G we have nk = 2m, which implies the
following by Theorem 3.

(

k − 1

k(k2 − 3)

)

n +

(

k2 − k − 2

k(k2 − 3)

)

m −
k − 1

k(k2 − 3)

=

(

k − 1

k(k2 − 3)

)

n +

(

k(k2 − k − 2)

2k(k2 − 3)

)

n −
k − 1

k(k2 − 3)

=
(k3 − k2 − 2)n − 2k + 2

2k(k2 − 3)

(Thm 3)
≤ α′(G). ✷

We show that the lower bound on the matching number in Corollary 2 is tight for infinite
classes of trees and other infinite classes (including the class of k-regular graphs) of connected
graphs with maximum degree at most k.

For k ≥ 3 odd, let Hk+2 be the graph of (odd) order k+2 obtained from Kk+2 by removing
the edges of an almost perfect matching; that is, the complement Hk+2 of Hk+2 is isomorphic
to P3 ∪ (k−1

2 )P2. We note that every vertex in Hk+2 has degree k, except for exactly one
vertex, which has degree k− 1. We call the vertex of degree k− 1 in Hk+2 the link vertex of
Hk+2. We note that Hk+2 has size m(Hk+2) =

1
2(k

2 + 2k − 1).

For k ≥ 3 odd and r ≥ 1 arbitrary, let Tk,r be a tree with maximum degree at most k
and with partite sets V1 and V2, where |V2| = r. Let Hk,r be obtained from Tk,r as follows:
For every vertex x in V2 with dTk,r

(x) < k, add k − dTk,r
(x) copies of the subgraph Hk+2 to

Tk,r and in each added copy of Hk+2, join the link vertex of Hk+2 to x. We note that every
vertex in the resulting graph Hk,r has degree k, except possibly for vertices in the set V1

whose degrees belong to the set {1, 2, . . . , k}. Let Hk,r be the family of all such graph Hk,r.
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When k = 3 and r = 4, an example of a graph G in the family Hk,r is illustrated in
Figure 3, where G has order n = 29, size m = 40 and matching number α′(G) = 12.

V1

V2

Figure 3: A graph G in the family H3,4

Proposition 3 For k ≥ 3 an odd integer and r ≥ 1 arbitrary, if G ∈ Hk,r has order n and
size m, then

α′(G) =

(

k − 1

k(k2 − 3)

)

n +

(

k2 − k − 2

k(k2 − 3)

)

m −
k − 1

k(k2 − 3)
.

Proof. Let G ∼= Hk,r ∈ Hk,r have order n and size m. Suppose that ℓ copies of the graph
Hk+2 were added when constructing the graph G. Thus,

ℓ = k|V2| −
∑

x∈V2

dTk,r
(x)

= k|V2| −m(Tk,r)

= k|V2| − (|V1|+ |V2| − 1)

= (k − 1)|V2| − |V1|+ 1.

The graph G has order

n = n(G) = |V1|+ |V2|+ ℓ(k + 2)

= |V1|+ |V2|+ ((k − 1)|V2| − |V1|+ 1)(k + 2)

= (k2 + k − 1)|V2| − (k + 1)|V1|+ (k + 2).

and size

m = m(G) = k|V2|+
1
2ℓ(k

2 + 2k − 1)

= k|V2|+
1
2 ((k − 1)|V2| − |V1|+ 1)(k2 + 2k − 1)

= 1
2(k

3 + k2 − k + 1)|V2| −
1
2 (k

2 + 2k − 1)|V1|+
1
2 (k

2 + 2k − 1).

Furthermore by deleting the vertices V2 from G we obtain ℓ + |V1| = (k − 1)|V2| + 1 odd
components. Therefore, by Theorem 1,

2α′(G) ≤ |V (G)| + |V2| − oc(G− V2)

= ((k2 + k − 1)|V2| − (k + 1)|V1|+ (k + 2)) + |V2| − ((k − 1)|V2|+ 1)

= (k2 + 1)|V2| − (k + 1)|V1|+ (k + 1).
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However, the lower bound of Corollary 2 shows that

2α′(G)

≥ 2

(

k − 1

k(k2 − 3)

)

n + 2

(

k2 − k − 2

k(k2 − 3)

)

m −
2(k − 1)

k(k2 − 3)

= 2

(

k − 1

k(k2 − 3)

)

((k2 + k − 1)|V2| − (k + 1)|V1|+ (k + 2))

+

(

k2 − k − 2

k(k2 − 3)

)

(

(k3 + k2 − k + 1)|V2| − (k2 + 2k − 1)|V1|+ (k2 + 2k − 1)
)

−
2(k − 1)

k(k2 − 3)

=

(

k5 − 2k3 − 3k

k(k2 − 3)

)

|V2| −

(

k4 + k3 − 3k2 − 3k

k(k2 − 3)

)

|V1|+

(

k4 + k3 − 3k2 − 3k

k(k2 − 3)

)

= (k2 + 1)|V2| − (k + 1)|V1|+ (k + 1).

Consequently, we must have equality throughout the above inequality chains. In particular,

α′(G) =

(

k − 1

k(k2 − 3)

)

n +

(

k2 − k − 2

k(k2 − 3)

)

m −
k − 1

k(k2 − 3)
.

This completes the proof of the proposition. ✷

We remark that if the tree Tk,r used to construct the graph Hk,r is chosen so that every
vertex in V2 has degree k, then Hk,r is a tree. If, however, tree Tk,r used to construct the
graph Hk,r is chosen so that every vertex in V1 has degree k, then Hk,r is a k-regular graph.
Hence, as an immediate consequence of Proposition 3, we have the following result.

Proposition 4 The lower bound in Corollary 2 is achieved for an infinite class of both trees
and k-regular graphs.

8 Proof of Corollary 3

Recall the statement of Corollary 3.

Corollary 3 If k ≥ 4 is an even integer and G is a graph of order n, size m and maximum
degree ∆(G) ≤ k, then

α′(G) ≥

(

k + 2

k2 + k + 2

)

m −

(

k − 2

k2 + k + 2

)

n

unless the following holds.

(a) G is k-regular and n = k+1, in which case α′(G) ≥
(

k+2
k2+k+2

)

m−
(

k−2
k2+k+2n

)

− k+2
k2+k+2 .
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(b) G is k-regular and n = k+3, in which case α′(G) ≥
(

k+2
k2+k+2

)

m−
(

k−2
k2+k+2

)

n− 4
k2+k+2 .

(c) G is 4-regular and n = 9, in which case α′(G) ≥
(

k+2
k2+k+2

)

m −
(

k−2
k2+k+2

)

n − 2
k2+k+2

.

Proof of Corollary 3. If G is not k-regular, then the result follows from Theorem 5, so
assume that G is k-regular. By the k-regularity of G we have nk = 2m, which implies the
following

(

k + 2

k2 + k + 2

)

m −

(

k − 2

k2 + k + 2

)

n =
k + 2

k2 + k + 2
×

nk

2
−

(

2k − 4

2(k2 + k + 2)

)

n

=
n

2
×

k(k + 2)− (2k − 4)

k2 + k + 2

=
n

2
×

k2 + 4

k2 + k + 2

Applying Theorem 2 to the k-regular graph G, the matching number of G is bounded below
as follows.

α′(G) ≥ min

{

k2 + 4

k2 + k + 2
×

n

2
,
n− 1

2

}

Therefore we have shown that the corollary holds in all cases, except when

k2 + 4

k2 + k + 2
×

n

2
> α′(G) ≥

n− 1

2
.

So assume that this exceptional case occurs. Since k ≥ 4, we note that in this case

n− 1

2
≤ α′(G) <

k2 + 4

k2 + k + 2
×

n

2
< 1×

n

2
=

n

2
,

implying that α′(G) = (n − 1)/2, and so n ≥ k + 1 is odd. Thus, n = k + i for some i ≥ 1
odd. This implies the following.

bk|E(G)| − ak|V (G)| − α′(G) =

(

k + 2

k2 + k + 2

)

m −

(

k − 2

k2 + k + 2

)

n− α′(G)

=
k2 + 4

k2 + k + 2
×

n

2
−

n− 1

2

=
k2 + 4

k2 + k + 2
×

k + i

2
−

(k + i− 1)(k2 + k + 2)

2(k2 + k + 2)

=
1

2(k2 + k + 2)

(

(k + i)(k2 + 4)− (k + i− 1)(k2 + k + 2)
)

=
1

2(k2 + k + 2)

(

(k + i)(2 − k) + k2 + k + 2
)

=
1

2(k2 + k + 2)
(3k + 2− i(k − 2)) ,
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or, equivalently,

α′(G) = bk|E(G)| − ak|V (G)| −
3k + 2− i(k − 2)

2(k2 + k + 2)
. (7)

This proves the case when n = k + 1, as when i = 1 the right-hand side of Equation (7) is
equivalent to the lower bound on α′(G) in the statement of Corollary 3(a). We also get the
case when n = k+3, as when i = 3 we again note that the the right-hand side of Equation (7)
is equivalent to the lower bound on α′(G) in the statement of Corollary 3(b). When n = k+5,
we have i = 5 and in this case 3k + 2− i(k − 2) = 12− 2k. When k = 4, the right-hand side
of Equation (7) is equivalent to the lower bound on α′(G) in the statement of Corollary 3(c).
When k ≥ 6, we note that 12 − 2k ≤ 0, implying that

α′(G) ≥ bk|E(G)| − ak|V (G)| =
k2 + 4

k2 + k + 2
×

n

2
,

a contradiction to our exceptional case. When n ≥ k+7, then i ≥ 7 and 3k+ 2− i(k − 2) ≤
16 − 4k ≤ 0, implying that α′(G) ≥ bk|E(G)| − ak|V (G)|, again a contradiction to our
exceptional case. ✷

Following the notation in the proof of Proposition 1, for k ≥ 4 an even integer and r ≥ 1
arbitrary, let G be a graph in the family G′

k,r of order n and size m. We recall that contains
ℓ copies of Kk+1 − e with ℓ = r(k − 1) + 1. Note that in this case, n = r + ℓ(k + 1),
m = rk + 1

2ℓ(k
2 + k − 2) and α′(G) = r + 1

2ℓk. Therefore the following holds.

(

k + 2

k2 + k + 2

)

m −

(

k − 2

k2 + k + 2

)

n

=

(

k + 2

k2 + k + 2

)(

rk +
ℓ(k2 + k − 2)

2

)

−

(

k − 2

k2 + k + 2

)

(r + ℓ(k + 1))

=
1

2(k2 + k + 2)
(rk(k + 2)− r(k + 2))

+
ℓ

2(k2 + k + 2)

(

(k + 2)(k2 + k − 2)− 2(k − 2)(k + 1)
)

=
2r(k2 + k + 2)

2(k2 + k + 2)
+

ℓ(k3 + k2 + 2k)

2(k2 + k + 2)

= r +
1

2
ℓk

= α′(G).

Thus, the lower bound in Corollary 3 is tight for the class of graphs in the family G′
k,r.

We show next that Corollary 3 is tight for an infinite family of k-regular graphs. For k ≥ 4
an even integer and r ≥ 1 arbitrary, let Fk,r be a graph of order n and size m obtained
of the disjoint union of kr/2 copies of Kk+1 − e by adding a set X of r new vertices, and
adding edges between X and the kr link vertices of degree k − 1 in the copies of Kk+1 − e
in such a way that Fk,r is a connected, k-regular graph. We note that n = r + 1

2kr(k + 1),
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m = rk+ 1
2kr×

1
2(k

2 + k− 2) = rk+ 1
4k(k

2 + k− 2)r and α′(G) = r+ 1
2kr×

1
2k = r+ 1

4k
2r.

Therefore the following holds.

(

k + 2

k2 + k + 2

)

m −

(

k − 2

k2 + k + 2

)

n

=

(

r(k + 2)

k2 + k + 2

)(

k +
k(k2 + k − 2)

4

)

−

(

r(k − 2)

k2 + k + 2

)(

1 +
k(k + 1)

2

)

=

(

r(k + 2)

k2 + k + 2

)(

k(k2 + k + 2)

4

)

−

(

r(k − 2)

k2 + k + 2

)(

k2 + k + 2

2

)

=
1

4
rk(k + 2) −

1

2
r(k − 2)

= r +
1

4
k2r

= α′(G).

Thus, Corollary 3 is tight for an infinite family of k-regular graphs. We state these results
formally as follows.

Proposition 5 The lower bound in Corollary 3 is achieved for both k-regular graphs and for
the class of graphs in the family G′

k,r.

9 The convex set Lk

Let k ≥ 3 be an integer. Let Gk denote the class of connected graphs with maximum degree
at most k. For every pair (a, b) of real numbers a and b we define the concept of k-good,
k-bad and k-tight as follows.

• (a, b) is called k-good if there exists a constant Ta,b such that

α′(G) ≥ a|V (G)| + b|E(G)| − Ta,b

holds for all G ∈ Gk.

• (a, b) is called k-bad if it is not k-good.

• (a, b) is called k-tight if it is k-good and there exists a constant Sa,b such that

α′(G) ≤ a|V (G)| + b|E(G)| − Sa,b

holds for infinitely many graphs G ∈ Gk.

If we say that (a, b) is k-tight for a certain subset of Gk (for example, the class of trees or
k-regular graphs), then we mean that there are infinitely many graphs from this class that
satisfy α′(G) ≤ a|V (G)|+ b|E(G)| − Sa,b for some constant Sa,b.
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Suppose that (a, b) is k-good and ε ≥ 0. Then, there exists a constant Ta,b such that
α′(G) ≥ a|V (G)| + b|E(G)| − Ta,b ≥ a|V (G)| + (b− ε)|E(G)| − Ta,b, implying that (a, b − ε)
is k-good where Ta,b−ε = Ta,b. We state this formally as follows.

Observation 1 If (a, b) is k-good and ε ≥ 0, then (a, b− ε) is k-good.

Lemma 6 If (a, b) is k-good and ε ≥ 0, then both (a + ε, b − ε) and (a − ε · k, b + 2ε) are
k-good. Furthermore the following holds.
(a) If (a, b) is k-tight for trees, then (a+ ε, b− ε) is k-tight.

(b) If (a, b) is k-tight for k-regular graphs, then (a− ε · k, b+ 2ε) is k-tight.

Proof. Let G ∈ Gk have order n and size m. Since G is connected, we note that m ≥ n− 1.
Since (a, b) is k-good, this implies that there exists a constant Ta,b such that the following
also holds for ε ≥ 0.

α′(G) ≥ a · n+ b ·m− Ta,b

≥ a · n+ b ·m− Ta,b + ε(n − 1−m)

= (a+ ε)n+ (b− ε)m− (Ta,b + ε).

So letting Ta+ε,b−ε = Ta,b + ε, the pair (a + ε, b − ε) is k-good. If (a, b) is k-tight for
trees, then there exists a constant Sa,b such that for infinitely many trees, G′, in Gk we have
α′(G′) ≤ a|V (G′)|+ b|E(G′)| −Sa,b. Let G

′ has order n′ and size m′. Then, m′ = n′ − 1 and,
analogously as before, the following holds.

α′(G′) ≤ a · n′ + b ·m′ − Sa,b = (a+ ε)n′ + (b− ε)m′ − (Sa,b + ε).

So letting Sa+ε,b−ε = Sa,b + ε, the pair (a + ε, b − ε) is k-tight in this case. Recall that
G ∈ Gk has order n and size m. As G has maximum degree at most k, we have nk ≥
∑

v∈V (G) dG(v) = 2m, which implies that the following also holds for all ε ≥ 0.

α′(G) ≥ a · n+ b ·m− Ta,b

≥ a · n+ b ·m− Ta,b + ε(2m− nk)

= (a− ε · k)n + (b+ 2ε)m− Ta,b.

So letting Ta−ε·k,b+2ε = Ta,b, we note that (a − ε · k, b + 2ε) is k-good. If (a, b) is k-
tight for k-regular graphs, then for infinitely many k-regular graphs, G′, in Gk we have
α′(G′) ≤ a|V (G′)|+ b|E(G′)| − Sa,b. Let G

′ has order n′ and size m′. Then, n′k = 2m′ and,
analogously as before, the following holds.

α′(G) ≤ a · n′ + b ·m′ − Sa,b

= a · n′ + b ·m′ − Sa,b + ε(2m′ − n′k)

= (a− ε · k)n′ + (b+ 2ε)m′ − Sa,b.

So letting Sa−ε·k,b+2ε = Sa,b, the pair (a− ε · k, b+ 2ε) is k-tight in this case. ✷
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Lemma 7 If (a, b) is k-tight, then (a+ ε, b) and (a, b+ ε) are both k-bad for all ε > 0.

Proof. Assume that (a, b) is k-tight and, for the sake of contradiction, suppose that (a+ε, b)
is k-good for some ε > 0. That is, there exists a constant Ta+ε,b such that

α′(G) ≥ (a+ ε) · |V (G)| + b · |E(G)| − Ta+ε,b

holds for all G ∈ Gk. Since (a, b) is k-tight, there exists a constant Sa,b such that

α′(G) ≤ a · |V (G)| + b · |E(G)| − Sa,b = (a+ ǫ) · |V (G)| + b · |E(G)| − Sa,b − ε|V (G)|

holds for infinitely many G ∈ Gk. However as there are infinitely many such graphs, we can
choose such a graph G (of sufficiently large order) such that Sa,b + ε|V (G)| > Ta+ε,b. For
this graph G, we have α′(G) < (a+ ε)|V (G)|+ b|E(G)| − Ta+ε,b, a contradiction. Therefore,
(a+ ε, b) is k-bad.

The fact that (a, b+ ε) is k-bad can be proved analogously. ✷

Lemma 8 If (a1, b1) and (a2, b2) are both k-good, then (εa1 + (1 − ε)a2, εb1 + (1 − ε)b2) is
also k-good for all 0 ≤ ε ≤ 1.

Furthermore if (a1, b1) and (a2, b2) are both k-tight for the same infinite class G′ ⊆ Gk, then
(εa1 + (1− ε)a2, εb1 + (1− ε)b2) is also k-tight.

Proof. Since (a1, b1) and (a2, b2) are both k-good, there exists constants Ta1,b1 and Ta2,b2

such that

α′(G) ≥ a1|V (G)|+ b1|E(G)| − Ta1,b1 and α′(G) ≥ a2|V (G)| + b2|E(G)| − Ta2,b2

hold for all G ∈ Gk. Let 0 ≤ ε ≤ 1. Multiplying the first equation by ε and the second by
(1− ε), and then adding the equations together shows that

α′(G) ≥ (εa1 + (1− ε)a2)|V (G)| + (εb1 + (1− ε)b2)|E(G)| − εTa1,b1 − (1− ε)Ta2,b2

holds for all G ∈ Gk. This proves that (εa1 + (1 − ε)a2, εb1 + (1 − ε)b2) is k-good, with
Tεa1+(1−ε)a2,εb1+(1−ε)b2 = εTa1,b1 + (1− ε)Ta2,b2 .

Assume that (a1, b1) and (a2, b2) are both k-tight for the same infinite class G′ ⊆ Gk. Thus
there exists constants Sa1,b1 and Sa2,b2 such that

α′(G) ≤ a1|V (G)| + b1|E(G)| − Sa1,b1 and α′(G) ≤ a2|V (G)| + b2|E(G)| − Sa2,b2

hold for all G ∈ G′. Again, multiplying the first equation by ε and the second by (1− ε) and
adding the equations together shows that

α′(G) ≤ (εa1 + (1− ε)a2)|V (G)| + (εb1 + (1− ε)b2)|E(G)| − εSa1,b1 − (1− ε)Sa2,b2 .

holds for all G ∈ G′. Therefore, (εa1 + (1− ε)a2, εb1 + (1− ε)b2) is k-tight letting

Sεa1+(1−ε)a2,εb1+(1−ε)b2 = εSa1,b1 + (1− ε)Sa2,b2 . ✷
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9.1 k odd

Theorem 9 Let k ≥ 3 be odd and let a∗ = k−1
k(k2−3)

and b∗ = k2−k−2
k(k2−3)

. For any pair (a, b), the

following holds.

(a) If a ≤ a∗, then (a, b) is k-good if and only if b ≤ b∗ + 2
(

a∗−a
k

)

.

(b) If a > a∗, then (a, b) is k-good if and only if b ≤ b∗ + a∗ − a.

Proof. By Corollary 2, the pair (a∗, b∗) is k-good with

Ta∗,b∗ =
k − 1

k(k2 − 3)
.

By Proposition 4, the lower bound in Corollary 2 is achieved for an infinite class of both
trees and k-regular graphs, implying that (a∗, b∗) is k-tight for both trees and k-regular
graphs.

Suppose a ≤ a∗, and let ε = (a∗ − a)/k. By Lemma 6, we note that (a∗ − ε · k, b∗ + 2ε) is
k-good. Further, since (a∗, b∗) is k-tight for k-regular graphs, by Lemma 6(b), we note that
(a∗ − ε · k, b∗ + 2ε) is k-tight. Since ε = (a∗ − a)/k, this is equivalent to (a, b∗ + 2

(

a∗−a
k

)

)

being k-tight. If b ≤ b∗ + 2
(

a∗−a
k

)

, then by Observation 1, the pair (a, b) is k-good. If

b > b∗ + 2
(

a∗−a
k

)

, then by Lemma 7 and our earlier observation that (a, b∗ + 2
(

a∗−a
k

)

) is
k-tight, the pair (a, b) is k-bad. This completes the case when a ≤ a∗.

Suppose next that a > a∗, and let ε = a− a∗. By Lemma 6, we note that (a∗ + ε, b∗ − ε) is
k-good. Further since (a∗, b∗) is k-tight for trees, we note by Lemma 6(a) that (a∗+ ε, b∗− ε)
is k-tight. Since ε = (a∗ − a)/k, this is equivalent to (a, b∗ + a∗ − a) being k-tight. If
b ≤ b∗ + a∗ − a, then by Observation 1, the pair (a, b) is k-good. If b > b∗ + a∗ − a, then by
Lemma 7 and our earlier observation that (a, b∗+a∗−a) is k-tight, the pair (a, b) is k-bad. ✷

We remark that the equation in Theorem 9(a) corresponds to the half-plane ℓ2 described
in the introductory section, noting that

b ≤ b∗ + 2

(

a∗ − a

k

)

= −

(

2

k

)

a +
k3 − k2 − 2

k2(k2 − 3)
.

The equation in Theorem 9(b) corresponds to the half-plane ℓ1 described in the introductory
section, noting that

b ≤ b∗ + a∗ − a = −a +
1

k
.

Theorem 9 is illustrated in Figure 1 when k = 3 and k = 5. The grey area corresponds to
all k-good pairs (a, b) while the non-grey area corresponds to the k-bad pairs.
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9.2 k even

Theorem 10 Let k ≥ 4 be even and let a∗1 = 1
k(k+1) and b∗1 = 1

k+1 and a∗2 = − k−2
k2+k+2

and

b∗2 =
k+2

k2+k+2
. For any pair (a, b), the following holds.

(a) If a ≤ a∗2, then (a, b) is k-good if and only if b ≤ b∗2 + 2
(

a∗−a
k

)

.

(b) If a > a∗1, then (a, b) is k-good if and only if b ≤ b∗1 + a∗1 − a.

(c) If a∗2 < a ≤ a∗1, then (a, b) is k-good if and only if b ≤ b∗2 +
(b∗1−b∗2)(a−a∗2)

a∗1−a∗2
.

Proof. By Corollary 1, the pair (a∗1, b
∗
1) is k-good with Ta∗1 ,b

∗

1
= −1/k, while by Corollary 3,

the pair (a∗2, b
∗
2) is k-good with

Ta∗2 ,b
∗

2
= −

k + 2

k2 + k + 2
.

By Proposition 2, the lower bound in Corollary 1 is achieved for both trees and for the
class of graphs in the family G′

k,r, implying that (a∗1, b
∗
1) is k-tight for both trees and graphs

in the family G′
k,r. By Proposition 5, the lower bound in Corollary 3 is achieved for the class

of graphs in the family G′
k,r and for the class of k-regular graphs, implying that (a∗2, b

∗
2) is

k-tight for these classes of graphs.

Suppose that a ≤ a∗2, and let ε = (a∗2−a)/k. By Lemma 6, we note that (a∗2− ε ·k, b∗2 +2ε)
is k-good. Further, since (a∗2, b

∗
2) is k-tight for k-regular graphs, by Lemma 6(b), we note that

(a∗2 − ε · k, b∗2 + 2ε) is k-tight. Since ε = (a∗2 − a)/k, this is equivalent to (a, b∗2 + 2
(

a∗2−a

k

)

)

being k-tight. If b ≤ b∗2 + 2
(

a∗−a
k

)

, then by Observation 1, the pair (a, b) is k-good. If

b > b∗2 + 2
(

a∗−a
k

)

, then by Lemma 7 and our earlier observation that (a, b∗2 + 2
(

a∗2−a

k

)

) is

k-tight, the pair (a, b) is k-bad. This completes the case when a ≤ a∗2.

Suppose that a > a∗1, and let ε = a1 − a∗. By Lemma 6, we note that (a∗1 + ε, b∗1 − ε) is
k-good. Further since (a∗1, b

∗
1) is k-tight for trees, we note by Lemma 6(a) that (a∗1+ ε, b∗1− ε)

is k-tight. Since ε = (a∗ − a)/k, this is equivalent to (a, b∗1 + a∗1 − a) being k-tight. If
b ≤ b∗1 + a∗1 − a, then by Observation 1, the pair (a, b) is k-good. If b > b∗1 + a∗1 − a, then by
Lemma 7 and our earlier observation that (a, b∗1 + a∗1 − a) is k-tight, the pair (a, b) is k-bad.

Finally, suppose that a∗2 < a ≤ a∗1 and let ε = (a − a∗2)/(a
∗
1 − a∗2). By Lemma 8, we note

that (εa∗1 + (1 − ε)a∗2, εb
∗
1 + (1 − ε)b∗2) is k-good. Furthermore, since (a∗1, b

∗
1) and (a∗2, b

∗
2) are

both k-tight for graphs in the family G′
k,r, we note that (εa∗1 + (1− ε)a∗2, εb

∗
1 +(1− ε)b∗2) is k-

tight. Since ε = (a−a∗2)/(a
∗
1−a∗2), this is equivalent to

(

a, b∗2 +
(b∗1−b∗2)(a−a∗2)

a∗1−a∗2

)

being k-tight. If

b ≤ b∗2+
(b∗1−b∗2)(a−a∗2)

a∗1−a∗2
, then by Observation 1, the pair (a, b) is k-good. If b > b∗2+

(b∗1−b∗2)(a−a∗2)
a∗1−a∗2

,

then by Lemma 7 and our earlier observation that
(

a, b∗2 +
(b∗1−b∗2)(a−a∗2)

a∗1−a∗2

)

is k-tight, the pair

(a, b) is k-bad. ✷
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We remark that the equation in Theorem 10(a) corresponds to the half-plane ℓ3 described
in the introductory section, noting that

b ≤ b∗2 + 2

(

a∗2 − a

k

)

= −

(

2

k

)

a +
k2 + 4

k(k2 + k + 2)
.

The equation in Theorem 10(b) corresponds to the half-plane ℓ1 described in the introductory
section, noting that

b ≤ b∗1 + a∗1 − a = −a +
1

k
.

The equation in Theorem 10(c) corresponds to the half-plane ℓ4 described in the introductory
section, noting that

b ≤ b∗2 +
(b∗1 − b∗2)(a− a∗2)

a∗1 − a∗2
= −

(

2k2

k3 − k + 2

)

a +
k2 − k + 2

k3 − k + 2
.

Theorem 10 is illustrated in Figure 1 when k = 4 and k = 6. The grey area corresponds
to all k-good pairs (a, b) while the non-grey area corresponds to the k-bad pairs.
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