Extensions of a theorem of Erdős on nonhamiltonian graphs*

Zoltán Füredi ${ }^{\dagger} \quad$ Alexandr Kostochka ${ }^{\ddagger} \quad$ Ruth Luo ${ }^{\S}$

March 29, 2017

Abstract

Let n, d be integers with $1 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, and set $h(n, d):=\binom{n-d}{2}+d^{2}$. Erdős proved that when $n \geq 6 d$, each nonhamiltonian graph G on n vertices with minimum degree $\delta(G) \geq d$ has at most $h(n, d)$ edges. He also provides a sharpness example $H_{n, d}$ for all such pairs n, d. Previously, we showed a stability version of this result: for n large enough, every nonhamiltonian graph G on n vertices with $\delta(G) \geq d$ and more than $h(n, d+1)$ edges is a subgraph of $H_{n, d}$.

In this paper, we show that not only does the graph $H_{n, d}$ maximize the number of edges among nonhamiltonian graphs with n vertices and minimum degree at least d, but in fact it maximizes the number of copies of any fixed graph F when n is sufficiently large in comparison with d and $|F|$. We also show a stronger stability theorem, that is, we classify all nonhamiltonian n-graphs with $\delta(G) \geq d$ and more than $h(n, d+2)$ edges. We show this by proving a more general theorem: we describe all such graphs with more than $\binom{n-(d+2)}{k}+(d+2)\binom{d+2}{k-1}$ copies of K_{k} for any k. Mathematics Subject Classification: 05C35, 05C38.

Keywords: Subgraph density, hamiltonian cycles, extremal graph theory.

1 Introduction

Let $V(G)$ denote the vertex set of a graph $G, E(G)$ denote the edge set of G, and $e(G)=|E(G)|$. Also, if $v \in V(G)$, then $N(v)$ is the neighborhood of v and $d(v)=|N(v)|$. If $v \in V(G)$ and $D \subset V(G)$ then for shortness we will write $D+v$ to denote $D \cup\{v\}$. For $k, t \in \mathbb{N},(k)_{t}$ denotes the falling factorial $k(k-1) \ldots(k-t+1)=\frac{k!}{(k-t)!}$.
The first Turán-type result for nonhamiltonian graphs was due to Ore [11]:
Theorem 1 (Ore [11]). If G is a nonhamiltonian graph on n vertices, then $e(G) \leq\binom{ n-1}{2}+1$.
This bound is achieved only for the n-vertex graph obtained from the complete graph K_{n-1} by adding a vertex of degree 1. Erdős [4] refined the bound in terms of the minimum degree of the graph:

[^0]Theorem 2 (Erdős 44). Let n, d be integers with $1 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, and set $h(n, d):=\binom{n-d}{2}+d^{2}$. If G is a nonhamiltonian graph on n vertices with minimum degree $\delta(G) \geq d$, then

$$
e(G) \leq \max \left\{h(n, d), h\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}=: e(n, d) .
$$

This bound is sharp for all $1 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.
To show the sharpness of the bound, for $n, d \in \mathbb{N}$ with $d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, consider the graph $H_{n, d}$ obtained from a copy of K_{n-d}, say with vertex set A, by adding d vertices of degree d each of which is adjacent to the same d vertices in A. An example of $H_{11,3}$ is on the left of Fig 1 .

Figure 1: Graphs $H_{11,3}$ (left) and $K_{11,3}^{\prime}$ (right).
By construction, $H_{n, d}$ has minimum degree d, is nonhamiltonian, and $e\left(H_{n, d}\right)=\binom{n-d}{2}+d^{2}=$ $h(n, d)$. Elementary calculation shows that $h(n, d)>h\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)$ in the range $1 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ if and only if $d<(n+1) / 6$ and n is odd or $d<(n+4) / 6$ and n is even. Hence there exists a $d_{0}:=d_{0}(n)$ such that

$$
e(n, 1)>e(n, 2)>\cdots>e\left(n, d_{0}\right)=e\left(n, d_{0}+1\right)=\cdots=e\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right),
$$

where $d_{0}(n):=\left\lceil\frac{n+1}{6}\right\rceil$ if n is odd, and $d_{0}(n):=\left\lceil\frac{n+4}{6}\right\rceil$ if n is even. Therefore $H_{n, d}$ is an extremal example of Theorem 2 when $d<d_{0}$ and $H_{n,\lfloor(n-1) / 2\rfloor}$ when $d \geq d_{0}$.
In [10] and independently in [6] a stability theorem for nonhamiltonian graphs with prescribed minimum degree was proved. Let $K_{n, d}^{\prime}$ denote the edge-disjoint union of K_{n-d} and K_{d+1} sharing a single vertex. An example of $K_{11,3}^{\prime}$ is on the right of Fig 1 .
Theorem 3 ([10, [6]). Let $n \geq 3$ and $d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. Suppose that G is an n-vertex nonhamiltonian graph with minimum degree $\delta(G) \geq d$ such that

$$
\begin{equation*}
e(G)>e(n, d+1)=\max \left\{h(n, d+1), h\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\} . \tag{1}
\end{equation*}
$$

Then G is a subgraph of either $H_{n, d}$ or $K_{n, d}^{\prime}$.
One of the main results of this paper shows that when n is large enough with respect to d and t, $H_{n, d}$ not only has the most edges among n-vertex nonhamiltonian graphs with minimum degree at least d, but also has the most copies of any t-vertex graph. This is an instance of a generalization of the Turán problem called subgraph density problem: for $n \in \mathbb{N}$ and graphs T and H, let $e x(n, T, H)$ denote the maximum possible number of (unlabeled) copies of T in an n-vertex H-free graph. When $T=K_{2}$, we have the usual extremal number $e x(n, T, H)=e x(n, H)$.

Some notable results on the function $e x(n, T, H)$ for various combinations of T and H were obtained in [5, 2, 1, 8, 9, 7, In particular, Erdős [5] determined $e x\left(n, K_{s}, K_{t}\right)$, Bollobás and Győri [2] found the order of magnitude of $e x\left(n, C_{3}, C_{5}\right)$, Alon and Shikhelman [1] presented a series of bounds on $e x(n, T, H)$ for different classes of T and H.

In this paper, we study the maximum number of copies of T in nonhamiltonian n-vertex graphs, i.e. ex $\left(n, T, C_{n}\right)$. For two graphs G and T, let $N(G, T)$ denote the number of labeled copies of T that are subgraphs of G, i.e., the number of injections $\phi: V(T) \rightarrow V(G)$ such that for each $x y \in E(T), \phi(x) \phi(y) \in E(G)$. Since for every T and $H,|\operatorname{Aut}(T)| e x(n, T, H)$ is the maximum of $N(G, T)$ over the n-vertex graphs G not containing H, some of our results are in the language of labeled copies of T in G. For $k \in \mathbb{N}$, let $N_{k}(G)$ denote the number of unlabeled copies of K_{k} 's in G. Since $\left|\operatorname{Aut}\left(K_{k}\right)\right|=k$!, we have $N_{k}(G)=N\left(G, K_{k}\right) / k$!.

2 Results

As an extension of Theorem 2, we show that for each fixed graph F and any d, if n is large enough with respect to $|V(F)|$ and d, then among all n-vertex nonhamiltonian graphs with minimum degree at least $d, H_{n, d}$ contains the maximum number of copies of F.

Theorem 4. For every graph F with $t:=|V(F)| \geq 3$, any $d \in \mathbb{N}$, and any $n \geq n_{0}(d, t):=$ $4 d t+3 d^{2}+5 t$, if G is an n-vertex nonhamiltonian graph with minimum degree $\delta(G) \geq d$, then $N(G, H) \leq N\left(H_{n, d}, F\right)$.

On the other hand, if F is a star $K_{1, t-1}$ and $n \leq d t-d$, then $H_{n, d}$ does not maximize $N(G, F)$. At the end of Section 4 we show that in this case, $N\left(H_{n,\lfloor(n-1) / 2\rfloor}, F\right)>N\left(H_{n, d}, F\right)$. So, the bound on $n_{0}(d, t)$ in Theorem 4 has the right order of magnitude when $d=O(t)$.
An immediate corollary of Theorem 4 is the following generalization of Theorem 1
Corollary 5. For every graph F with $t:=|V(F)| \geq 3$ and any $n \geq n_{0}(t):=9 t+3$, if G is an n-vertex nonhamiltonian graph, then $N(G, H) \leq N\left(H_{n, 1}, F\right)$.

We consider the case that F is a clique in more detail. For $n, k \in \mathbb{N}$, define on the interval $[1,\lfloor(n-1) / 2\rfloor]$ the function

$$
\begin{equation*}
h_{k}(n, x):=\binom{n-x}{k}+x\binom{x}{k-1} . \tag{2}
\end{equation*}
$$

We use the convention that for $a \in \mathbb{R}, b \in \mathbb{N},\binom{a}{b}$ is the polynomial $\frac{1}{b!} a \times(a-1) \times \ldots \times(a-b+1)$ if $a \geq b-1$ and 0 otherwise.

By considering the second derivative, one can check that for any fixed k and n, as a function of x, $h_{k}(n, x)$ is convex on $[1,\lfloor(n-1) / 2\rfloor]$, hence it attains its maximum at one of the endpoints, $x=1$ or $x=\lfloor(n-1) / 2\rfloor$. When $k=2, h_{2}(n, x)=h(n, x)$. We prove the following generalization of Theorem 2.

Theorem 6. Let n, d, k be integers with $1 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ and $k \geq 2$. If G is a nonhamiltonian graph
on n vertices with minimum degree $\delta(G) \geq d$, then the number $N_{k}(G)$ of k-cliques in G satisfies

$$
N_{k}(G) \leq \max \left\{h_{k}(n, d), h_{k}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}
$$

Again, graphs $H_{n, d}$ and $H_{n,\lfloor(n-1) / 2\rfloor}$ are sharpness examples for the theorem.
Finally, we present a stability version of Theorem 6. To state the result, we first define the family of extremal graphs.

Fix $d \leq\lfloor(n-1) / 2\rfloor$. In addition to graphs $H_{n, d}$ and $K_{n, d}^{\prime}$ defined above, define $H_{n, d}^{\prime}: V\left(H_{n, d}^{\prime}\right)=$ $A \cup B$, where A induces a complete graph on $n-d-1$ vertices, B is a set of $d+1$ vertices that induce exactly one edge, and there exists a set of vertices $\left\{a_{1}, \ldots, a_{d}\right\} \subseteq A$ such that for all $b \in B$, $N(b)-B=\left\{a_{1}, \ldots, a_{d}\right\}$. Note that contracting the edge in $H_{n, d}^{\prime}[B]$ yields $H_{n-1, d}$. These graphs are illustrated in Fig. 2

Figure 2: Graphs $H_{n, d}$ (left), $K_{n, d}^{\prime}$ (center), and $H_{n, d}^{\prime}$ (right), where shaded background indicates a complete graph.
We also have two more extremal graphs for the cases $d=2$ or $d=3$. Define the nonhamiltonian n-vertex graph $G_{n, 2}^{\prime}$ with minimum degree 2 as follows: $V\left(G_{n, 2}^{\prime}\right)=A \cup B$ where A induces a clique or order $n-3, B=\left\{b_{1}, b_{2}, b_{3}\right\}$ is an independent set of order 3 , and there exists $\left\{a_{1}, a_{2}, a_{3}, x\right\} \subseteq A$ such that $N\left(b_{i}\right)=\left\{a_{i}, x\right\}$ for $i \in\{1,2,3\}$ (see the graph on the left in Fig. 3).

The nonhamiltonian n-vertex graph $F_{n, 3}$ with minimum degree 3 has vertex set $A \cup B$, where A induces a clique of order $n-4, B$ induces a perfect matching on 4 vertices, and each of the vertices in B is adjacent to the same two vertices in A (see the graph on the right in Fig. 3).

Figure 3: Graphs $G_{n, 2}^{\prime}$ (left) and $F_{n, 3}$ (right).
Our stability result is the following:
Theorem 7. Let $n \geq 3$ and $1 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. Suppose that G is an n-vertex nonhamiltonian graph
with minimum degree $\delta(G) \geq d$ such that there exists $k \geq 2$ for which

$$
\begin{equation*}
N_{k}(G)>\max \left\{h_{k}(n, d+2), h_{k}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\} . \tag{3}
\end{equation*}
$$

Let $\mathcal{H}_{n, d}:=\left\{H_{n, d}, H_{n, d+1}, K_{n, d}^{\prime}, K_{n, d+1}^{\prime}, H_{n, d}^{\prime}\right\}$.
(i) If $d=2$, then G is a subgraph of $G_{n, 2}^{\prime}$ or of a graph in $\mathcal{H}_{n, 2}$;
(ii) if $d=3$, then G is a subgraph of $F_{n, 3}$ or of a graph in $\mathcal{H}_{n, 3}$;
(iii) if $d=1$ or $4 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, then G is a subgraph of a graph in $\mathcal{H}_{n, d}$.

The result is sharp because $H_{n, d+2}$ has $h_{k}(n, d+2)$ copies of K_{k}, minimum degree $d+2>d$, is nonhamiltonian and is not contained in any graph in $\mathcal{H}_{n, d} \cup\left\{G_{n, 2}^{\prime}, F_{n, 3}\right\}$.

The outline for the rest of the paper is as follows: in Section 3 we present some structural results for graphs that are edge-maximal nonhamiltonian to be used in the proofs of the main theorems, in Section 4 we prove Theorem 4, in Section 5 we prove Theorem 6 and give a cliques version of Theorem 3, and in Section 6 we prove Theorem 7 .

3 Structural results for saturated graphs

We will use a classical theorem of Pósa (usually stated as its contrapositive).
Theorem 8 (Pósa [12]). Let $n \geq 3$. If G is a nonhamiltonian n-vertex graph, then there exists $1 \leq k \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ such that G has a set of k vertices with degree at most k.

Call a graph G saturated if G is nonhamiltonian but for each $u v \notin E(G), G+u v$ has a hamiltonian cycle. Ore's proof [11] of Dirac's Theorem [3] yields that

$$
\begin{equation*}
d(u)+d(v) \leq n-1 \tag{4}
\end{equation*}
$$

for every n-vertex saturated graph G and for each $u v \notin E(G)$.
We will also need two structural results for saturated graphs which are easy extensions of Lemmas 6 and 7 in [6].

Lemma 9. Let G be a saturated n-vertex graph with $N_{k}(G)>h_{k}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)$ for any $k \geq 2$. Then for some $1 \leq r \leq\left\lfloor\frac{n-1}{2}\right\rfloor, V(G)$ contains a subset D of r vertices of degree at most r such that $G-D$ is a complete graph.

Proof. Since G is nonhamiltonian, by Theorem 8 , there exists some $1 \leq r \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ such that G has r vertices with degree at most r. Pick the maximum such r, and let D be the set of the vertices with degree at most r. Since $h_{k}(G)>h\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right), r<\left\lfloor\frac{n-1}{2}\right\rfloor$. So, by the maximality of $r,|D|=r$. Suppose there exist $x, y \in V(G)-D$ such that $x y \notin E(G)$. Among all such pairs, choose x and y with the maximum $d(x)$. Since $y \notin D, d(y)>r$. Let $D^{\prime}:=V(G)-N(x)-\{x\}$ and $r^{\prime}:=\left|D^{\prime}\right|=n-1-d(x)$. By (4),

$$
\begin{equation*}
d(z) \leq n-1-d(x)=r^{\prime} \text { for all } z \in D^{\prime} \tag{5}
\end{equation*}
$$

So D^{\prime} is a set of r^{\prime} vertices of degree at most r^{\prime}. Since $y \in D^{\prime}, r^{\prime} \geq d(y)>r$. Thus by the maximality of r, we get $r^{\prime}=n-1-d(x)>\left\lfloor\frac{n-1}{2}\right\rfloor$. Equivalently, $d(x)<\left\lceil\frac{n-1}{2}\right\rceil$. For all $z \in D^{\prime}+\{x\}$, either $z \in D$ where $d(z) \leq r \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, or $z \in V(G)-D$, and so $d(z) \leq d(x) \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.
Now we count the number of k-cliques in G : Among $V(G)-D^{\prime}$, there are at most $\binom{n-r^{\prime}}{k} k$-cliques. Also, each vertex in D^{\prime} can be in at most $\binom{r^{\prime}}{k-1} k$-cliques. Therefore $N_{k}(G) \leq\binom{ n-r^{\prime}}{k}+r^{\prime}\binom{r^{\prime}}{k-1} \leq$ $h_{k}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)$, a contradiction.

Also, repeating the proof of Lemma 7 in [6] gives the following lemma.
Lemma 10 (Lemma 7 in [6]). Under the conditions of Lemma 9, if $r=\delta(G)$, then $G=H_{n, \delta(G)}$ or $G=K_{n, \delta(G)}^{\prime}$.

4 Maximizing the number of copies of a given graph and a proof of Theorem 4

In order to prove Theorem 4, we first show that for any fixed graph F and any d, of the two extremal graphs of Lemma 10 , if n is large then $H_{n, d}$ has at least as many copies of F as $K_{n, d}^{\prime}$.

Lemma 11. For any $d, t, n \in \mathbb{N}$ with $n \geq 2 d t+d+t$ and any graph F with $t=|V(F)|$ we have $N\left(K_{n, d}^{\prime}, F\right) \leq N\left(H_{n, d}, F\right)$.

Proof. Fix F and $t=|V(F)|$. Let $K_{n, d}^{\prime}=A \cup B$ where A and B are cliques of order $n-d$ and $d+1$ respectively and $A \cap B=\left\{v^{*}\right\}$, the cut vertex of $K_{n, d}^{\prime}$. Also, let D denote the independent set of order d in $H_{n, d}$. We may assume $d \geq 2$, because $H_{n, 1}=K_{n, 1}^{\prime}$. If x is an isolated vertex of F then for any n-vertex graph G we have $N(G, F)=(n-t+1) N(G, F-x)$. So it is enough to prove the case $\delta(F) \geq 1$, and we may also assume $t \geq 3$.

Because both $K_{n, d}^{\prime}[A]$ and $H_{n, d}-D$ are cliques of order $n-d$, the number of embeddings of F into $K_{n, d}^{\prime}[A]$ is the same as the number of embeddings of F into $H_{n, d}-D$. So it remains to compare only the number of embeddings in $\Phi:=\left\{\varphi: V(F) \rightarrow V\left(K_{n, d}^{\prime}\right)\right.$ such that $\varphi(F)$ intersects $\left.B-v^{*}\right\}$ to the number of embeddings in $\Psi:=\left\{\psi: V(F) \rightarrow V\left(H_{n, d}\right)\right.$ such that $\psi(F)$ intersects $\left.D\right\}$.
Let $C \cup \bar{C}$ be a partition of the vertex set $V(F), s:=|C|$. Define the following classes of Φ and Ψ $-\Phi(C):=\left\{\varphi: V(F) \rightarrow V\left(K_{n, d}^{\prime}\right)\right.$ such that $\varphi(C)$ intersects $B-v^{*}, \varphi(C) \subseteq B$, and $\varphi(\bar{C}) \subseteq V-B\}$,
$-\Psi(C):=\left\{\psi: V(F) \rightarrow V\left(H_{n, d}\right)\right.$ such that $\psi(C)$ intersects $D, \psi(C) \subseteq(D \cup N(D))$, and $\psi(\bar{C}) \subseteq V-(D \cup N(D))\}$.
By these definitions, if $C \neq C^{\prime}$ then $\Phi(C) \cap \Phi\left(C^{\prime}\right)=\emptyset$, and $\Psi(C) \cap \Psi\left(C^{\prime}\right)=\emptyset$. Also $\bigcup_{\emptyset \neq C \subseteq V(F)} \Phi(C)=$ Φ. We claim that for every $C \neq \emptyset$,

$$
\begin{equation*}
|\Phi(C)| \leq|\Psi(C)| \tag{6}
\end{equation*}
$$

Summing up the number of embeddings over all choices for C will prove the lemma. If $\Phi(C)=\emptyset$, then (6) obviously holds. So from now on, we consider the cases when $\Phi(C)$ is not empty, implying $1 \leq s \leq d+1$.
Case 1: There is an F-edge joining \bar{C} and C. So there is a vertex $v \in C$ with $N_{F}(v) \cap \bar{C} \neq \emptyset$. Then for every mapping $\varphi \in \Phi(C)$, the vertex v must be mapped to v^{*} in $K_{n, d}^{\prime}, \varphi(v)=v^{*}$. So this
vertex v is uniquely determined by C. Also, $\varphi(C) \cap\left(B-v^{*}\right) \neq \emptyset$ implies $s \geq 2$. The rest of C can be mapped arbitrarily to $B-v^{*}$ and \bar{C} can be mapped arbitrarily to $A-v^{*}$. We obtained that $|\Phi(C)|=(d)_{s-1}(n-d-1)_{t-s}$.
We make a lower bound for $|\Psi(C)|$ as follows. We define a $\psi \in \Psi(C)$ by the following procedure. Let $\psi(v)=x \in N(D)$ (there are d possibilities), then map some vertex of $C-v$ to a vertex $y \in D$ (there are ($s-1$) d possibilities). Since $N+y$ forms a clique of order $d+1$ we may embed the rest of C into $N-v$ in $(d-1)_{s-2}$ ways and finish embedding of F into $H_{n, d}$ by arbitrarily placing the vertices of \bar{C} to $V-(D \cup N(D))$. We obtained that $|\Psi(C)| \geq d^{2}(s-1)(d-1)_{s-2}(n-2 d)_{t-s}=d(s-1)(d)_{s-1}(n-2 d)_{t-s}$.

Since $s \geq 2$ we have that

$$
\begin{aligned}
\frac{|\Psi(C)|}{|\Phi(C)|} \geq \frac{d(s-1)(d)_{s-1}(n-2 d)_{t-s}}{(d)_{s-1}(n-d-1)_{t-s}} & \geq d(2-1)\left(\frac{n-2 d+1-t+s}{n-d-t+s}\right)^{t-s} \\
& =d\left(1-\frac{d-1}{n-d-t+s}\right)^{t-s} \\
& \geq d\left(1-\frac{(d-1)(t-s)}{n-d-t+s}\right) \\
& \geq d\left(1-\frac{(d-1) t}{n-d-t}\right) \\
& >1 \text { when } n>d t+d+t .
\end{aligned}
$$

Case 2: C and \bar{C} are not connected in F. We may assume $s \geq 2$ since C is a union of components with $\delta(F) \geq 1$. In $K_{n, d}^{\prime}$ there are at exactly $(d+1)_{s}(n-d-1)_{t-s}$ ways to embed F into B so that only C is mapped into B and \bar{C} goes to $A-v^{*}$, i.e., $|\Phi(C)|=(d+1)_{s}(n-d-1)_{t-s}$.

We make a lower bound for $|\Psi(C)|$ as follows. We define a $\psi \in \Psi(C)$ by the following procedure. Select any vertex $v \in C$ and map it to some vertex in D (there are $s d$ possibilities), then map $C-v$ into $N(D)$ (there are $(d)_{s-1}$ possibilities) and finish embedding of F into $H_{n, d}$ by arbitrarily placing the vertices of \bar{C} to $V-(D \cup N(D))$. We obtained that $|\Psi(C)| \geq d s(d)_{s-1}(n-2 d)_{t-s}$. We have

$$
\begin{aligned}
\frac{|\Psi(C)|}{|\Phi(C)|} \geq \frac{d s(d)_{s-1}(n-2 d)_{t-s}}{(d+1)_{s}(n-d-1)_{t-s}} & \geq \frac{d s}{d+1}\left(1-\frac{(d-1) t}{n-d-t}\right) \\
& \geq \frac{2 d}{d+1}\left(1-\frac{(d-1) t}{n-d-t}\right) \text { because } s \geq 2 \\
& >1 \text { when } n>2 d t+d+t .
\end{aligned}
$$

We are now ready to prove Theorem 4.
Theorem 4. For every graph F with $t:=|V(F)| \geq 3$, any $d \in \mathbb{N}$, and any $n \geq n_{0}(d, t):=$ $4 d t+3 d^{2}+5 t$, if G is an n-vertex nonhamiltonian graph with minimum degree $\delta(G) \geq d$, then $N(G, H) \leq N\left(H_{n, d}, F\right)$.

Proof. Let $d \geq 1$. Fix a graph F with $|V(F)| \geq 3$ (if $|V(F)|=2$, then either $F=K_{2}$ or $F=\bar{K}_{2}$). The case where G has isolated vertices can be handled by induction on the number of isolated
vertices, hence we may assume each vertex has degree at least 1 . Set

$$
\begin{equation*}
n_{0}=4 d t+3 d^{2}+5 t \tag{7}
\end{equation*}
$$

Fix a nonhamiltonian graph G with $|V(G)|=n \geq n_{0}$ and $\delta(G) \geq d$ such that $N(G, F)>$ $N\left(H_{n, d}, F\right) \geq(n-d)_{t}$. We may assume that G is saturated, as the number of copies of F can only increase when we add edges to G.

Because $n \geq 4 d t+t$ by (7),

$$
\begin{aligned}
\frac{(n-d)_{t}}{(n)_{t}} & \geq\left(\frac{n-d-t}{n-t}\right)^{t}=\left(1-\frac{d}{n-t}\right)^{t} \\
& \geq 1-\frac{d t}{n-t} \geq 1-\frac{1}{4}=\frac{3}{4}
\end{aligned}
$$

So, $(n-d)_{t} \geq \frac{3}{4}(n)_{t}$.
After mapping edge $x y$ of F to an edge of G (in two labeled ways), we obtain the loose upper bound,

$$
2 e(G)(n-2)_{t-2} \geq N(G, F) \geq(n-d)_{t} \geq \frac{3}{4}(n)_{t},
$$

therefore

$$
\begin{equation*}
e(G) \geq \frac{3}{4}\binom{n}{2}>h_{2}(n,\lfloor(n-1) / 2\rfloor) \tag{8}
\end{equation*}
$$

By Pósa's theorem (Theorem 8), there exists some $d \leq r \leq\lfloor(n-1) / 2\rfloor$ such that G contains a set R or r vertices with degree at most r. Furthermore by (8), $r<d_{0}$. So by integrality, $r \leq d_{0}-1 \leq(n+3) / 6$. If $r=d$, then by Lemma 10, either $G=H_{n, d}$ or $G=K_{n, d}^{\prime}$. By Lemma 11 and (7), $G=H_{n, d}$, a contradiction. So we have $r \geq d+1$.
Let \mathcal{I} denote the family of all nonempty independent sets in F. For $I \in \mathcal{I}$, let $i=i(I):=|I|$ and $j=j(I):=\left|N_{F}(I)\right|$. Since F has no isolated vertices, $j(I) \geq 1$ and so $i \leq t-1$ for each $I \in \mathcal{I}$. Let $\Phi(I)$ denote the set of embeddings $\varphi: V(F) \rightarrow V(G)$ such that $\phi(I) \subseteq R$ and I is a maximum independent subset of $\phi^{-1}(R \cap \varphi(F))$. Note that $\varphi(I)$ is not necessarily independent in G. We show that

$$
\begin{equation*}
|\Phi(I)| \leq(r)_{i} r(n-r)_{t-i-1} . \tag{9}
\end{equation*}
$$

Indeed, there are $(r)_{i}$ ways to choose $\phi(I) \subseteq R$. After that, since each vertex in R has at most r neighbors in G, there are at most r^{j} ways to embed $N_{F}(I)$ into G. By the maximality of I, all vertices of $F-I-N_{F}(I)$ should be mapped to $V(G)-R$. There are at most $(n-r)_{t-i-j}$ to do it. Hence $|\Phi(I)| \leq(r)_{i} r^{j}(n-r)_{t-i-j}$. Since $2 r+t \leq 2\left(d_{0}-1\right)+t<n$, this implies (9).
Since each $\varphi: V(F) \rightarrow V(G)$ with $\varphi(V(F)) \cap R \neq \emptyset$ belongs to $\Phi(I)$ for some nonempty $I \in \mathcal{I}$, (9) implies

$$
\begin{equation*}
N(G, F) \leq(n-r)_{t}+\sum_{\emptyset \neq I \in \mathcal{I}}|\Phi(I)| \leq(n-r)_{t}+\sum_{i=1}^{t-1}\binom{t}{i}(r)_{i} r(n-r)_{t-i-1} . \tag{10}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\frac{N(G, F)}{N\left(H_{n, d}, F\right)} & \leq \frac{(n-r)_{t}+\sum_{i=1}^{t-1}\binom{t}{i}(r)_{i} r(n-r)_{t-i-1}}{(n-d)_{t}} \\
& \leq \frac{(n-r)_{t}}{(n-d)_{t}}+\frac{1}{(n-d)_{t}} \times \frac{r}{n-r-t+2} \sum_{i=1}^{t-1}\binom{t}{i}(r)_{i}(n-r)_{t-i} \\
& =\frac{(n-r)_{t}}{(n-d)_{t}}+\frac{(n)_{t}-(n-r)_{t}-(r)_{t}}{(n-d)_{t}} \times \frac{r}{n-r-t+2} \\
& \leq \frac{(n-r)_{t}}{(n-d)_{t}} \times \frac{n-t+2-2 r}{n-t+2-r}+\frac{(n)_{t}}{(n-d)_{t}} \times \frac{r}{n-t+2-r}:=f(r) .
\end{aligned}
$$

Given fixed n, d, t, we claim that the real function $f(r)$ is convex for $0<r<(n-t+2) / 2$.
Indeed, the first term $g(r):=\frac{(n-r)_{t}}{(n-d)_{t}} \times \frac{n-t+2-2 r}{n-t+2-r}$ is a product of t linear terms in each of which r has a negative coefficient (note that the $n-t+2-r$ term cancels out with a factor of $n-r-t+2$ in $(n-r)_{t}$). Applying product rule, the first derivative g^{\prime} is a sum of t products, each with $t-1$ linear terms. For $r<(n-t+2) / 2$, each of these products is negative, thus $g^{\prime}(r)<0$. Finally, applying product rule again, $g^{\prime \prime}$ is the sum of $t(t-1)$ products. For $r<(n-t+2) / 2$ each of the products is positive, thus $g^{\prime \prime}(r)>0$.

Similarly, the second factor of the second term (as a real function of r, of the form $r /(c-r)$) is convex for $r<n-t+2$.

We conclude that in the interval $[d+1,(n+3) / 6]$ the function $f(r)$ takes its maximum either at one of the endpoints $r=d+1$ or $r=(n+3) / 6$. We claim that $f(r)<1$ at both end points.

In case of $r=d+1$ the first factor of the first term equals $(n-d-t) /(n-d)$. To get an upper bound for the first factor of the second term one can use the inequality $\Pi\left(1+x_{i}\right)<1+2 \sum x_{i}$ which holds for any number of non-negative x_{i} 's if $0<\sum x_{i} \leq 1$. Because $d t /(n-d-t+1) \leq 1$ by (7), we obtain that

$$
\begin{aligned}
f(d+1) & <\frac{n-d-t}{n-d} \times \frac{n-t-2 d}{n-t-d+1}+\left(1+\frac{2 d t}{n-d-t+1}\right) \times \frac{d+1}{n-t-d+1} \\
& =\left(1-\frac{t}{n-d}\right) \times\left(1-\frac{d+1}{n-t-d+1}\right)+\left(\frac{d+1}{n-t-d+1}\right)+\left(\frac{2 d t(d+1)}{(n-t-d+1)^{2}}\right) \\
& =1-\frac{t}{n-d}+\frac{t}{n-d} \times \frac{d+1}{n-t-d+1}+\frac{t}{n-d} \times \frac{2 d(d+1)}{n-t-d+1} \times \frac{n-d}{n-t-d+1} \\
& =1-\frac{t}{n-d} \times\left(1-\frac{d+1}{n-t-d+1}-\frac{2 d(d+1)}{n-t-d+1} \times\left(1+\frac{t-1}{n-t-d+1}\right)\right) \\
& <1-\frac{t}{n-d} \times\left(1-\frac{1}{4 t}-\frac{2}{3}\left(1+\frac{1}{4 d}\right)\right) \\
& \leq 1-\frac{t}{n-d} \times(1-1 / 12-2 / 3 \times 5 / 4) \\
& <1 .
\end{aligned}
$$

Here we used that $n \geq 3 d^{2}+2 d+t$ and $n \geq 4 d t+5 t+d$ by (7), $t \geq 3$, and $d \geq 1$.

To bound $f(r)$ for other values of r, let us use $1+x \leq e^{x}$ (true for all x). We get

$$
f(r)<\exp \left\{-\frac{(r-d) t}{n-d-t+1}\right\}+\frac{r}{n-r-t+2} \times \exp \left\{\frac{d t}{n-d-t+1}\right\} .
$$

When $r=(n+3) / 6, t \geq 3$, and $n \geq 24 d$ by (7), the first term is at most $e^{-18 / 46}=0.676 \ldots$. Moreover, for $n \geq 9 t(7)$ (therefore $n \geq 27$) we get that $\frac{r}{n-r-t+2}$ is maximized when t is maximized, i.e., when $t=n / 9$. The whole term is at most $(3 n+9) /(13 n+27) \times e^{1 / 4} \leq 5 / 21 \times e^{1 / 4}=0.305 \ldots$, so in this range, $f((n+3) / 6)<1$.
By the convexity of $f(r)$, we have $N(G, F)<N\left(H_{n, d}, F\right)$.
When F is a star, then it is easy to determine $\max N(G, F)$ for all n.
Claim 12. Suppose $F=K_{1, t-1}$ with $t:=|V(F)| \geq 3$, and $t \leq n$ and d are integers with $1 \leq d \leq$ $\lfloor(n-1) / 2\rfloor$. If G is an n-vertex nonhamiltonian graph with minimum degree $\delta(G) \geq d$, then

$$
\begin{equation*}
N(G, F) \leq \max \left\{H_{n, d}, H_{n,\lfloor(n-1) / 2\rfloor}\right\}, \tag{11}
\end{equation*}
$$

and equality holds if and only if $G \in\left\{H_{n, d}, H_{n,\lfloor(n-1) / 2\rfloor}\right\}$.
Proof. The number of copies of stars in a graph G depends only on the degree sequence of the graph: if a vertex v of a graph G has degree $d(v)$, then there are $(d(v))_{t-1}$ labeled copies of F in G where v is the center vertex. We have

$$
\begin{equation*}
N(G, F)=\sum_{v \in V(G)}\binom{d(v)}{t-1} . \tag{12}
\end{equation*}
$$

Since G is nonhamiltonian, Pósa's theorem yields an $r \leq\lfloor(n-1) / 2\rfloor$, and an r-set $R \subset V(G)$ such that $d_{G}(v) \leq r$ for all $v \in R$. Take the minimum such r, then there exists a vertex $v \in R$ with $\operatorname{deg}(v)=r$. We may also suppose that G is edge-maximal nonhamiltonian, so Ore's condition (4) holds. It implies that $\operatorname{deg}(w) \leq n-r-1$ for all $w \notin N(v)$. Altogether we obtain that G has r vertices of degree at most r, at least $n-2 r$ vertices (those in $V(G)-R-N(v)$) of degree at most $(n-r-1)$. This implies that the right hand side of 12$)$ is at most

$$
r \times(r)_{t-1}+(n-2 r) \times(n-r-1)_{t-1}+r \times(n-1)_{t-1}=N\left(H_{n, r}, F\right)
$$

(Here equality holds only if $\left.G=H_{n, r}\right)$. Note that $r \in\left[d,\left\lfloor\frac{1}{2}(n-1)\right\rfloor\right]$. Since for given n and t the function $N\left(H_{n, r}, F\right)$ is strictly convex in r, it takes its maximum at one of the endpoints of the interval.

Remark 13. As it was mentioned in Section 2, $O(d t)$ is the right order for $n_{0}(d, t)$ when $d=O(t)$.
To see this, fix $d \in \mathbb{N}$ and let F be the star on $t \geq 3$ vertices. If $d<\lfloor(n-1) / 2\rfloor, t \leq n$ and $n \leq d t-d$, then $H_{n,\lfloor(n-1) / 2\rfloor}$ contains more copies of F than $H_{n, d}$ does, the maximum in (11) is reached for $r=\lfloor(n-1) / 2\rfloor$. We present the calculation below only for $2 d+7 \leq n \leq d t-d$, the case $2 d+3 \leq n \leq 2 d+6$ can be checked by hand by plugging n into the first line of the formula below. We can proceed as follows.

$$
\begin{aligned}
N\left(H_{n,\lfloor(n-1) / 2}, F\right)-N\left(H_{n, d}, F\right)= & \left(\lfloor(n-1) / 2\rfloor(n-1)_{t-1}+\lceil(n+1) / 2\rceil(\lfloor(n-1) / 2\rfloor)_{t-1}\right) \\
& -\left(d(n-1)_{t-1}+(n-2 d)(n-d-1)_{t-1}+d(d)_{t-1}\right) \\
= & (\lfloor(n-1) / 2\rfloor-d)(n-1)_{t-1}-(n-2 d)(n-d-1)_{t-1} \\
& +\lceil(n+1) / 2\rceil(\lfloor(n-1) / 2\rfloor)_{t-1}-d(d)_{t-1} \\
> & (\lfloor(n-1) / 2\rfloor-d)(n-1)_{t-1}-\left((n-2 d)(1-d / n)^{t-1}\right)(n-1)_{t-1} \\
> & (n-1)_{t-1}\left(\lfloor(n-1) / 2\rfloor-d-(n-2 d) e^{-(d t-d) / n}\right) \\
\geq & (n-1)_{t-1}(\lfloor(n-1) / 2\rfloor-d-(n-2 d) / e) \\
\geq & 0 .
\end{aligned}
$$

5 Theorem 6 and a stability version of it

In general, it is difficult to calculate the exact value of $N\left(H_{n, d}, F\right)$ for a fixed graph F. However, when $F=K_{k}$, we have $N\left(H_{n, d}, K_{k}\right)=h_{k}(n, d) k$!. Recall Theorem 6;

Let n, d, k be integers with $1 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ and $k \geq 2$. If G is a nonhamiltonian graph on n vertices with minimum degree $\delta(G) \geq d$, then

$$
N_{k}(G) \leq \max \left\{h_{k}(n, d), h_{k}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\} .
$$

Proof of Theorem 6. By Theorem 8, because G is nonhamiltonian, there exists an $r \geq d$ such that G has r vertices of degree at most r. Denote this set of vertices by D. Then $N_{k}(G-D) \leq\binom{ n-r}{k}$, and every vertex in D is contained in at most $\binom{r}{k-1}$ copies of K_{k}. Hence $N_{k}(G) \leq h_{k}(n, r)$. The theorem follows from the convexity of $h_{k}(n, x)$.

Our older stability theorem (Theorem 3) also translates into the the language of cliques, giving a stability theorem for Theorem 6;

Theorem 14. Let $n \geq 3$, and $d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. Suppose that G is an n-vertex nonhamiltonian graph with minimum degree $\delta(G) \geq d$ and there exists a $k \geq 2$ such that

$$
\begin{equation*}
N_{k}(G)>\max \left\{h_{k}(n, d+1), h_{k}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\} . \tag{13}
\end{equation*}
$$

Then G is a subgraph of either $H_{n, d}$ or $K_{n, d}^{\prime}$.
Proof. Take an edge-maximum counterexample G (so we may assume G is saturated). By Lemma 9. G has a set D of $r \leq\lfloor(n-1) / 2\rfloor$ vertices such that $G-D$ is a complete graph. If $r \geq d+1$, then $N_{k}(G) \leq \max \left\{h_{k}(n, d+1), h_{k}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$. Thus $r=d$, and we may apply Lemma 10 .

6 Discussion and proof of Theorem 7

One can try to refine Theorem 3 in the following direction: What happens when we consider n vertex nonhamiltonian graphs with minimum degree at least d and less than $e(n, d+1)$ but more than $e(n, d+2)$ edges?

Note that for $d<d_{0}(n)-2$,

$$
e(n, d)-e(n, d+2)=2 n-6 d-7,
$$

which is greater than n. Theorem 7 answers the question above in a more general form - in terms of s-cliques instead of edges. In other words, we classify all n-vertex nonhamiltonian graphs with more than max $\left\{h_{s}(n, d+2), h_{s}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$ copies of K_{s}.
As in Lemma 14, such G can be a subgraph of $H_{n, d}$ or $K_{n, d}^{\prime}$. Also, G can be a subgraph of $H_{n, d+1}$ or $K_{n, d+1}^{\prime}$. Recall the graphs $H_{n, d}, K_{n, d}^{\prime}, H_{n, d}^{\prime}, G_{n, 2}^{\prime}$, and $F_{n, 3}$ defined in the first two sections of this paper and the statement of Theorem 33

Figure 4: Graphs $H_{n, d}, K_{n, d}^{\prime}, H_{n, d}^{\prime}, G_{n, 2}^{\prime}$, and $F_{n, 3}$.
Theorem 77. Let $n \geq 3$ and $1 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. Suppose that G is an n-vertex nonhamiltonian graph with minimum degree $\delta(G) \geq d$ such that exists a $k \geq 2$ for which

$$
N_{k}(G)>\max \left\{h_{k}(n, d+2), h_{k}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\} .
$$

Let $\mathcal{H}_{n, d}:=\left\{H_{n, d}, H_{n, d+1}, K_{n, d}^{\prime}, K_{n, d+1}^{\prime}, H_{n, d}^{\prime}\right\}$.
(i) If $d=2$, then G is a subgraph of $G_{n, 2}^{\prime}$ or of a graph in $\mathcal{H}_{n, 2}$;
(ii) if $d=3$, then G is a subgraph of $F_{n, 3}$ or of a graph in $\mathcal{H}_{n, 3}$;
(iii) if $d=1$ or $4 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, then G is a subgraph of a graph in $\mathcal{H}_{n, d}$.

Proof. Suppose G is a counterexample to Theorem 7 with the most edges. Then G is saturated. In particular, degree condition (4) holds for G. So by Lemma 9, there exists an $d \leq r \leq\lfloor(n-1) / 2\rfloor$ such that $V(G)$ contains a subset D of r vertices of degree at most r and $G-D$ is a complete graph.
If $r \geq d+2$, then because $h_{k}(n, x)$ is convex, $N_{k}(G) \leq h_{k}(n, r) \leq \max \left\{h_{k}(n, d+2), h_{k}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$. Therefore either $r=d$ or $r=d+1$. In the case that $r=d$ (and so $r=\delta(G)$), Lemma 10 implies that $G \subseteq H_{n, d}$. So we may assume that $r=d+1$.
If $\delta(G) \geq d+1$, then we simply apply Theorem 3 with $d+1$ in place of d and get $G \subseteq H_{n, d+1}$ or
$G \subseteq K_{n, d+1}^{\prime}$. So, from now on we may assume

$$
\begin{equation*}
\delta(G)=d \tag{14}
\end{equation*}
$$

Now (14) implies that our theorem holds for $d=1$, since each graph with minimum degree exactly 1 is a subgraph of $H_{n, 1}$. So, below $2 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.
Let $N:=N(D)-D \subseteq V(G)-D$. The next claim will be used many times throughout the proof.
Lemma 15. (a) If there exists a vertex $v \in D$ such that $d(v)=d+1$, then $N(v)-D=N$.
(b) If there exists a vertex $u \in N$ such that u has at least 2 neighbors in D, then u is adjacent to all vertices in D.

Proof. If $v \in D, d(v)=d+1$ and some $u \in N$ is not adjacent to v, then $d(v)+d(u) \geq d+1+(n-$ $d-2)+1=n$. A contradiction to (4) proves (a).

Similarly, if $u \in N$ has at least 2 neighbors in D but is not adjacent to some $v \in D$, then $d(v)+d(u) \geq d+(n-d-2)+2=n$, again contradicting (4).

Define $S:=\{u \in V(G)-D: u \in N(v)$ for all $v \in D\}, s:=s$, and $S^{\prime}:=V(G)-D-S$. By Lemma 15 (b), each vertex in S^{\prime} has at most one neighbor in D. So, for each $v \in D$, call the neighbors of v in S^{\prime} the private neighbors of v.

We claim that

$$
\begin{equation*}
D \text { is not independent. } \tag{15}
\end{equation*}
$$

Indeed, assume D is independent. If there exists a vertex $v \in D$ with $d(v)=d+1$, then by Lemma $15(\mathrm{~b}), N(v)-D=N$. So, because D is independent, $G \subseteq H_{n, d+1}$. Assume now that every vertex $v \in D$ has degree d, and let $D=\left\{v_{1}, \ldots, v_{d+1}\right\}$.

If $s \geq d$, then because each $v_{i} \in D$ has degree $d, s=d$ and $N=S$. Then $G \subseteq H_{n, d+1}$. If $s \leq d-2$, then each vertex $v_{i} \in D$ has at least two private neighbors in S^{\prime}; call these private neighbors $x_{v_{i}}$ and $y_{v_{i}}$. The path $x_{v_{1}} v_{1} y_{v_{1}} x_{v_{2}} v_{2} y_{v_{2}} \ldots x_{v_{d+1}} v_{d+1} y_{v_{d+1}}$ contains all vertices in D and can be extended to a hamiltonian cycle of G, a contradiction.

Finally, suppose $s=d-1$. Then every vertex $v_{i} \in D$ has exactly one private neighbor. Therefore $G=G_{n, d}^{\prime}$ where $G_{n, d}^{\prime}$ is composed of a clique A of order $n-d-1$ and an independent set $D=\left\{v_{1}, \ldots, v_{d+1}\right\}$, and there exists a set $S \subset A$ of size $d-1$ and distinct vertices z_{1}, \ldots, z_{d+1} such that for $1 \leq i \leq d+1, N\left(v_{i}\right)=S \cup z_{i}$. Graph $G_{n, d}^{\prime}$ is illustrated in Fig. 6.
For $d=2$, we conclude that $G \subseteq G_{n, 2}^{\prime}$, as claimed, and for $d \geq 3$, we get a contradiction since $G_{n, d}^{\prime}$ is hamiltonian. This proves (15).

Call a vertex $v \in D$ open if it has at least two private neighbors, half-open if it has exactly one private neighbor, and closed if it has no private neighbors.
We say that paths P_{1}, \ldots, P_{q} partition D, if these paths are vertex-disjoint and $V\left(P_{1}\right) \cup \ldots \cup V\left(P_{q}\right)=$ D. The idea of the proof is as follows: because $G-D$ is a complete graph, each path with endpoints in $G-D$ that covers all vertices of D can be extended to a hamiltonian cycle of G. So such a path does not exist, which implies that too few paths cannot partition D :

Figure 5: $G_{n, d}^{\prime}$.
Lemma 16. If $s \geq 2$ then the minimum number of paths in $G[D]$ partitioning D is at least s.

Proof. Suppose D can be partitioned into $\ell \leq s-1$ paths P_{1}, \ldots, P_{ℓ} in $G[D]$. Let $S=\left\{z_{1}, \ldots, z_{s}\right\}$. Then $P=z_{1} P_{1} z_{2} \ldots z_{\ell} P_{\ell} z_{\ell+1}$ is a path with endpoints in $V(G)-D$ that covers D. Because $V(G)-D$ forms a clique, we can find a $z_{1}, z_{\ell+1}$ - path P^{\prime} in $G-D$ that covers $V(G)-D-\left\{z_{2}, \ldots, z_{\ell}\right\}$. Then $P \cup P^{\prime}$ is a hamiltonian cycle of G, a contradiction.

Sometimes, to get a contradiction with Lemma 16 we will use our information on vertex degrees in $G[D]$:

Lemma 17. Let H be a graph on r vertices such that for every nonedge $x y$ of $H, d(x)+d(y) \geq r-t$ for some t. Then $V(H)$ can be partitioned into a set of at most t paths. In other words, there exist t disjoint paths P_{1}, \ldots, P_{t} with $V(H)=\bigcup_{i=1}^{t} V\left(P_{i}\right)$.

Proof. Construct the graph H^{\prime} by adding a clique T of size t to H so that every vertex of T is adjacent to each vertex in $V(H)$. For each nonedge $x, y \in H^{\prime}$,

$$
d_{H^{\prime}}(x)+d_{H^{\prime}}(y) \geq(r-t)+t+t=r+t=\left|V\left(H^{\prime}\right)\right|
$$

By Ore's theorem, H^{\prime} has a hamiltonian cycle C^{\prime}. Then $C^{\prime}-T$ is a set of at most t paths in H that cover all vertices of H.

The next simple fact will be quite useful.
Lemma 18. If $G[D]$ contains an open vertex, then all other vertices are closed.
Proof. Suppose $G[D]$ has an open vertex v and another open or half-open vertex u. Let $v^{\prime}, v^{\prime \prime}$ be some private neighbors of v in S^{\prime} and u^{\prime} be a neighbor of u in S^{\prime}. By the maximality of G, graph $G+v u^{\prime}$ has a hamiltonian cycle. In other words, G has a hamiltonian path $v_{1} v_{2} \ldots v_{n}$, where $v_{1}=v$ and $v_{n}=u^{\prime}$. Let $V^{\prime}=\left\{v_{i}: v v_{i+1} \in E(G)\right\}$. Since G has no hamiltonian cycle, $V^{\prime} \cap N\left(u^{\prime}\right)=\emptyset$.
Since $d(v)+d\left(u^{\prime}\right)=n-1$, we have $V(G)=V^{\prime} \cup N\left(u^{\prime}\right)+u^{\prime}$. Suppose that $v^{\prime}=v_{i}$ and $v^{\prime \prime}=v_{j}$. Then $v_{i-1}, v_{j-1} \in V^{\prime}$, and $v_{i-1}, v_{j-1} \notin N\left(u^{\prime}\right)$. But among the neighbors of v_{i} and v_{j}, only v is not adjacent to u^{\prime}, a contradiction.

Now we show that S is non-empty and not too large.

Lemma 19. $s \geq 1$.

Proof. Suppose $S=\emptyset$. If D has an open vertex v, then by Lemma 18, all other vertices are closed. In this case, v is the only vertex of D with neighbors outside of D, and hence $G \subseteq K_{n, d}^{\prime}$, in which v is the cut vertex. Also if D has at most one half-open vertex v, then similarly $G \subseteq K_{n, d}^{\prime}$.
So suppose that D contains no open vertices but has two half-open vertices u and v with private neighbors z_{u} and z_{v} respectively. Then $\delta(G[D]) \geq d-1$. By Pósa's Theorem, if $d \geq 4$, then $G[D]$ has a hamiltonian v, u-path. This path together with any hamiltonian z_{u}, z_{v}-path in the complete graph $G-D$ and the edges $u z_{u}$ and $v z_{v}$ forms a hamiltonian cycle in G, a contradiction.

If $d=3$, then by Dirac's Theorem, $G[D]$ has a hamiltonian cycle, i.e. a 4 -cycle, say C. If we can choose our half-open v and u consecutive on C, then $C-u v$ is a hamiltonian v, u-path in $G[D]$, and we finish as in the previous paragraph. Otherwise, we may assume that $C=v x u y$, where x and y are closed. In this case, $d_{G[D]}(x)=d_{G[D]}(y)=3$, thus $x y \in E(G)$. So we again have a hamiltonian v, u-path, namely $v x y u$, in $G[D]$. Finally, if $d=2$, then $|D|=3$, and $G[D]$ is either a 3 -vertex path whose endpoints are half-open or a 3 -cycle. In both cases, $G[D]$ again has a hamiltonian path whose ends are half-open.

Lemma 20. $s \leq d-3$.
Proof. Since by (14), $\delta(G)=d$, we have $s \leq d$. Suppose $s \in\{d-2, d-1, d\}$.
Case 1: All vertices of D have degree d.
Case 1.1: $s=d$. Then $G \subseteq H_{n, d+1}$.
Case 1.2: $s=d-1$. In this case, each vertex in graph $G[D]$ has degree 0 or 1. By (15), $G[D]$ induces a non-empty matching, possibly with some isolated vertices. Let m denote the number of edges in $G[D]$.

If $m \geq 3$, then the number of components in $G[D]$ is less than s, contradicting Lemma 16. Suppose now $m=2$, and the edges in the matching are $x_{1} y_{1}$ and $x_{2} y_{2}$. Then $d \geq 3$. If $d=3$, then $D=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ and $G=F_{n, 3}$ (see Fig 3 (right)). If $d \geq 4$, then $G[D]$ has an isolated vertex, say x_{3}. This x_{3} has a private neighbor $w \in S^{\prime}$. Then $|S+w|=d$ which is more than the number of components of $G[D]$ and we can construct a path from w to S visiting all components of $G[D]$.

Finally, suppose $G[D]$ has exactly one edge, say $x_{1} y_{1}$. Recall that $d \geq 2$. Graph $G[D]$ has $d-1$ isolated vertices, say x_{2}, \ldots, x_{d}. Each of x_{i} for $2 \leq i \leq d$ has a private neighbor u_{i} in S^{\prime}. Let $S=\left\{z_{1}, \ldots, z_{d-1}\right\}$. If $d=2$, then $S=\left\{z_{1}\right\}, N(D)=\left\{z_{1}, u_{2}\right\}$ and hence $G \subset H_{n, 2}^{\prime}$. So in this case the theorem holds for G. If $d \geq 3$, then G contains a path $u_{d} x_{d} z_{d-1} x_{d-1} z_{d-2} x_{d-2} \ldots z_{2} x_{1} y_{1} z_{1} x_{2} u_{2}$ from u_{d} to u_{2} that covers D.

Case 1.3: $s=d-2$. Since $s \geq 1, d \geq 3$. Every vertex in $G[D]$ has degree at most 2, i.e., $G[D]$ is a union of paths, isolated vertices, and cycles. Each isolated vertex has at least 2 private neighbors in S^{\prime}. Each endpoint of a path in $G[D]$ has one private neighbor in S^{\prime}. Thus we can find disjoint paths from S^{\prime} to S^{\prime} that cover all isolated vertices and paths in $G[D]$ and all are disjoint from S. Hence if the number c of cycles in $G[D]$ is less than $d-2$, then we have a set of disjoint paths from $V(G)-D$ to $V(G)-D$ that cover D (and this set can be extended to a hamiltonian cycle in G). Since each cycle has at least 3 vertices and $|D|=d+1$, if $c \geq d-2$, then $(d+1) / 3 \geq d-2$, which
is possible only when $d<4$, i.e. $d=3$. Moreover, then $G[D]=C_{3} \cup K_{1}$ and $S=N$ is a single vertex. But then $G=K_{n, 3}^{\prime}$.
Case 2: There exists a vertex $v^{*} \in D$ with $d\left(v^{*}\right)=d+1$. By Lemma 15 (b), $N=N\left(v^{*}\right)-D$, and so G has at most one open or half-open vertex. Furthermore,

> if G has an open or half-open vertex, then it is v^{*}, and by Lemma 15 , there are no other vertices of degree $d+1$.

Case 2.1: $s=d$. If v^{*} is not closed, then it has a private neighbor $x \in S^{\prime}$, and the neighborhood of each other vertex of D is exactly S. In this case, there exists a path from x to S that covers D. If v^{*} is closed (i.e., $N=S$), then $G[D]$ has maximum degree 1 . Therefore $G[D]$ is a matching with at least one edge (coming from v^{*}) plus some isolated vertices. If this matching has at least 2 edges, then the number of components in $G[D]$ is less than s, contradicting Lemma 16. If $G[D]$ has exactly one edge, then $G \subseteq H_{n, d}^{\prime}$.
Case 2.2: $s=d-1$. If v^{*} is open, then $d_{G[D]}\left(v^{*}\right)=0$ and by 16, each other vertex in D has exactly one neighbor in D. In particular, d is even. Therefore $G\left[D-v^{*}\right]$ has $d / 2$ components. When $d \geq 3$ and d is even, $d / 2 \leq s-1$ and we can find a path from S to S that covers $D-v^{*}$, and extend this path using two neighbors of v^{*} in S^{\prime} to a path from $V(G)-D$ to $V(G)-D$ covering D. Suppose $d=2, D=\left\{v^{*}, x, y\right\}$ and $S=\{z\}$. Then z is a cut vertex separating $\{x, y\}$ from the rest of G, and hence $G \subseteq K_{n, 2}^{\prime}$.
If v^{*} is half-open, then by (16), each other vertex in D is closed and hence has exactly one neighbor in D. Let $x \in S^{\prime}$ be the private neighbor of v^{*}. Then $G[D]$ is 1-regular and therefore has exactly $(d+1) / 2$ components, in particular, d is odd. If $d \geq 2$ and is odd, then $(d+1) / 2 \leq d-1=s$, and so we can find a path from x to S that covers D.

Finally, if v^{*} is closed, then by 16 , every vertex of $G[D]$ is closed and has degree 1 or 2 , and v^{*} has degree 2 in $G[D]$. Then $G[D]$ has at most $\lfloor d / 2\rfloor$ components, which is less than s when $d \geq 3$. If $d=2$, then $s=1$ and the unique vertex z in S is a cut vertex separating D from the rest of G. This means $G \subseteq K_{n, 3}^{\prime}$.
Case 2.3: $s=d-2$. Since $s \geq 1, d \geq 3$. If v^{*} is open, then $d_{G[D]}\left(v^{*}\right)=1$ and by 16], each other vertex in D is closed and has exactly two neighbors in D. But this is not possible, since the degree sum of the vertices in $G[D]$ must be even. If v^{*} is half-open with a neighbor $x \in S^{\prime}$, then $G[D]$ is 2-regular. Thus $G[D]$ is a union of cycles and has at most $\lfloor(d+1) / 3\rfloor$ components. When $d \geq 4$, this is less than s, contradicting Lemma 16. If $d=3$, then $s=1$ and the unique vertex z in S is a cut vertex separating D from the rest of G. This means $G \subseteq K_{n, 4}^{\prime}$.
If v^{*} is closed, then $d_{G[D]}\left(v^{*}\right)=3$ and $\delta(G[D]) \geq 2$. So, for any vertices x, y in $G[D]$,

$$
d_{G[D]}(x)+d_{G[D]}(y) \geq 4 \geq(d+1)-(d-2-1)=|V(G[D])|-(s-1)
$$

By Lemma 17, if $s \geq 2$, then we can partition $G[D]$ into $s-1$ paths P_{1}, \ldots, P_{s-1}. This would contradict Lemma 16. So suppose $s=1$ and $d=3$. Then as in the previous paragraph, $G \subseteq K_{n, 4}^{\prime}$.

Next we will show that we cannot have $2 \leq s \leq d-3$.

Lemma 21. $s=1$.
Proof. Suppose $s=d-k$ where $3 \leq k \leq d-2$.
Case 1: $G[D]$ has an open vertex v. By Lemma 18, every other vertex in D is closed. Let $G^{\prime}=G[D]-v$. Then $\delta\left(G^{\prime}\right) \geq k-1$ and $\left|V\left(G^{\prime}\right)\right|=d$. In particular, for any $x, y \in D-v$,

$$
d_{G^{\prime}}(x)+d_{G^{\prime}}(y) \geq 2 k-2 \geq k+1=d-(d-k-1)=\left|V\left(G^{\prime}\right)\right|-(s-1) .
$$

By Lemma 17, we can find a path from S to S in G containing all of $V\left(G^{\prime}\right)$. Because v is open, this path can be extended to a path from $V(G)-D$ to $V(G)-D$ including v, and then extended to a hamiltonian cycle of G.

Case 2: D has no open vertices and $4 \leq k \leq d-2$. Then $\delta(G[D]) \geq k-1$ and again for any $x, y \in D, d_{G[D]}(x)+d_{G[D]}(y) \geq 2 k-2$. For $k \geq 4,2 k-2 \geq k+2=(d+1)-(d-k-1)=|D|-(s-1)$. Since $k \leq d-2$, by Lemma $17, G[D]$ can be partitioned into $s-1$ paths, contradicting Lemma 16 .

Case 3: D has no open vertices and $s=d-3 \geq 2$. If there is at most one half-open vertex, then for any nonadjacent vertices $x, y \in D, d_{G[D]}(x)+d_{G[D]}(y) \geq 2+3=5 \geq(d+1)-(d-3-1)$, and we are done as in Case 2.

So we may assume G has at least 2 half-open vertices. Let D^{\prime} be the set of half-open vertices in D. If $D^{\prime} \neq D$, let $v^{*} \in D-D^{\prime}$. Define a subset D^{-}as follows: If $\left|D^{\prime}\right| \geq 3$, then let $D^{-}=D^{\prime}$, otherwise, let $D^{-}=D^{\prime}+v^{*}$. Let G^{\prime} be the graph obtained from $G[D]$ by adding a new vertex w adjacent to all vertices in D^{-}. Then $\left|V\left(G^{\prime}\right)\right|=d+2$ and $\delta\left(G^{\prime}\right) \geq 3$. In particular, for any $x, y \in V\left(G^{\prime}\right), d_{G^{\prime}}(x)+d_{G^{\prime}}(y) \geq 6 \geq(d+2)-(d-3-1)=\left|V\left(G^{\prime}\right)\right|-(s-1)$. By Lemma 17, $V\left(G^{\prime}\right)$ can be partitioned into $s-1$ disjoint paths P_{1}, \ldots, P_{s-1}. We may assume that $w \in P_{1}$. If w is an endpoint of P_{1}, then D can also be partitioned into $s-1$ disjoint paths $P_{1}-w, P_{2}, \ldots, P_{s-1}$ in $G[D]$, a contradiction to Lemma 16 .

Otherwise, let $P_{1}=x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{k}$ where $x_{i}=w$. Since every vertex in $\left(D^{-}\right)-v^{*}$ is half-open and $N_{G^{\prime}}(w)=D^{-}$, we may assume that x_{i-1} is half-open and thus has a neighbor $y \in S^{\prime}$. Let $S=\left\{z_{1}, \ldots, z_{d-3}\right\}$. Then

$$
y x_{i-1} x_{i-2} \ldots x_{1} z_{1} x_{i+1} \ldots x_{k} z_{2} P_{2} z_{3} \ldots z_{d-4} P_{d-4} z_{d-3}
$$

is a path in G with endpoints in $V(G)-D$ that covers D.

Now we may finish the proof of Theorem 7. By Lemmas 19. 21, $s=1$, say, $S=\left\{z_{1}\right\}$. Furthermore, by Lemma 20 ,

$$
\begin{equation*}
d \geq 3+s=4 \tag{17}
\end{equation*}
$$

Case 1: D has an open vertex v. Then by Lemma 18, every other vertex of D is closed. Since $s=1$, each $u \in D-v$ has degree $d-1$ in $G[D]$. If v has no neighbors in D, then $G[D]-v$ is a clique of order d, and $G \subseteq K_{n, d}^{\prime}$. Otherwise, since $d \geq 4$, by Dirac's Theorem, $G[D]-v$ has a hamiltonian cycle, say C. Using C and an edge from v to C, we obtain a hamiltonian path P in $G[D]$ starting with v. Let $v^{\prime} \in S^{\prime}$ be a neighbor of v. Then $v^{\prime} P z_{1}$ is a path from S^{\prime} to S that covers D, a contradiction.

Case 2: D has a half-open vertex but no open vertices. It is enough to prove that

$$
\begin{equation*}
G[D] \text { has a hamiltonian path } P \text { starting with a half-open vertex } v, \tag{18}
\end{equation*}
$$

since such a P can be extended to a hamiltonian cycle in G through z_{1} and the private neighbor of v. If $d \geq 5$, then for any $x, y \in D$,

$$
d_{G[D]}(x)+d_{G[D]}(y) \geq d-2+d-2=2 d-4 \geq d+1=|V(G[D])| .
$$

Hence by Ore's Theorem, $G[D]$ has a hamiltonian cycle, and hence (18) holds.
If $d<5$ then by (17), $d=4$. So $G[D]$ has 5 vertices and minimum degree at least 2 . By Lemma 17 , we can find a hamiltonian path P of $G[D]$, say $v_{1} v_{2} v_{3} v_{4} v_{5}$. If at least one of v_{1}, v_{5} is half-open or $v_{1} v_{5} \in E(G)$, then (18) holds. Otherwise, each of v_{1}, v_{5} has 3 neighbors in D, which means $N\left(v_{1}\right) \cap D=N\left(v_{5}\right) \cap D=\left\{v_{2}, v_{3}, v_{4}\right\}$. But then $G[D]$ has hamiltonian cycle $v_{1} v_{2} v_{5} v_{4} v_{3} v_{1}$, and again (18) holds.

Case 3: All vertices in D are closed. Then $G \subseteq K_{n, d+1}^{\prime}$, a contradiction. This proves the theorem.

7 A comment and a question

- It was shown in Section 4 that the right order of magnitude of $n_{0}(d, t)$ in Theorem 4 when $d=O(t)$ is $d t$. We can also show this when $d=O\left(t^{3 / 2}\right)$. It could be that $d t$ is the right order of magnitude of $n_{0}(d, t)$ for all d and t.
- Is there a graph F and positive integers d, n with $n<n_{0}(d, t)$ and $d \leq\lfloor(n-1) / 2\rfloor$ such that for some n-vertex nonhamiltonian graph G with minimum degree at least d,

$$
\left.N(G, F)>\max \left\{N\left(H_{n, d}\right), F\right), N\left(K_{n, d}^{\prime}, F\right), N\left(H_{n,\lfloor(n-1) / 2\rfloor}, F\right)\right\} ?
$$

References

[1] N. Alon and C. Shikhelman, Many T copies in H-free graphs, J. of Combin. Theory Ser. B. 121 (2016), 146-172.
[2] B. Bollobás, E. Győri, Pentagons vs. triangles, Discrete Math. 308 (2008) 4332-4336.
[3] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69-81.
[4] P. Erdős, Remarks on a paper of Pósa, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 227-229.
[5] P. Erdős, On the number of complete subgraphs contained in certain graphs, Magy. Tud. Akad. Mat. Kut. Intéz. Kőzl. 7 (1962) 459-474.
[6] Z. Füredi, A. Kostochka, and R. Luo, A stability version for a theorem of Erdős on nonhamiltonian graphs, to appear in Discrete Math.
Also see: arXiv:1608.05741, posted on August 19, 2016, 4 pp.
[7] Z. Füredi and L. Özkahya, On 3-uniform hypergraphs without a cycle of a given length, Discrete Applied Mathematics 216 (2017), 582-588.
[8] A. Grzesik, On the maximum number of five-cycles in a triangle-free graph, J. Combin. Theory Ser. B 102 (2012) 1061-1066.
[9] H. Hatami, J. Hladký, D. Král', S. Norine, and A. Razborov, On the number of pentagons in triangle-free graphs, J. Combin. Theory Ser. A. 120 (2013), 722-732.
[10] B. Li and B. Ning, Spectral analougues of Erdős' and Moon-Moser's theorems on Hamilton cycles, Linear Multilinear Algebra, 64 (2016), no.11, 1152-1169.
[11] O. Ore, Arc coverings of graphs, Acta Math. Acad. Sci. Hung. 10 (1959), 337-356.
[12] L. Pósa, A theorem concerning Hamilton lines, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 225-226.
[13] L. Pósa, On the circuits of finite graphs, Magyar. Tud. Akad. Mat. Kutató Int. Kőzl. 8 (1963/1964), 355-361.

[^0]: *This paper started at SQUARES meeting of the American Institute of Mathematics (April 2016).
 ${ }^{\dagger}$ Alfréd Rényi Institute of Mathematics, Hungary E-mail: furedi.zoltan@renyi.mta.hu. Research was supported in part by grant (no. K116769) from the National Research, Development and Innovation Office NKFIH, by the Simons Foundation Collaboration Grant \#317487, and by the European Research Council Advanced Investigators Grant 267195.
 ${ }^{\ddagger}$ University of Illinois at Urbana-Champaign, Urbana, IL 61801 and Sobolev Institute of Mathematics, Novosibirsk 630090 , Russia. E-mail: kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS1600592 and grants 15-01-05867 and 16-01-00499 of the Russian Foundation for Basic Research.
 ${ }^{\S}$ University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. E-mail: ruthluo2@illinois.edu.

