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Abstract

Let n, d be integers with 1 ≤ d ≤
⌊
n−1
2

⌋
, and set h(n, d) :=

(
n−d
2

)
+ d2. Erdős proved that

when n ≥ 6d, each nonhamiltonian graph G on n vertices with minimum degree δ(G) ≥ d has at

most h(n, d) edges. He also provides a sharpness example Hn,d for all such pairs n, d. Previously,

we showed a stability version of this result: for n large enough, every nonhamiltonian graph G

on n vertices with δ(G) ≥ d and more than h(n, d+ 1) edges is a subgraph of Hn,d.

In this paper, we show that not only does the graph Hn,d maximize the number of edges

among nonhamiltonian graphs with n vertices and minimum degree at least d, but in fact it

maximizes the number of copies of any fixed graph F when n is sufficiently large in comparison

with d and |F |. We also show a stronger stability theorem, that is, we classify all nonhamiltonian

n-graphs with δ(G) ≥ d and more than h(n, d+2) edges. We show this by proving a more general

theorem: we describe all such graphs with more than
(
n−(d+2)

k

)
+ (d+ 2)

(
d+2
k−1

)
copies of Kk for

any k. Mathematics Subject Classification: 05C35, 05C38.

Keywords: Subgraph density, hamiltonian cycles, extremal graph theory.

1 Introduction

Let V (G) denote the vertex set of a graph G, E(G) denote the edge set of G, and e(G) = |E(G)|.
Also, if v ∈ V (G), then N(v) is the neighborhood of v and d(v) = |N(v)|. If v ∈ V (G) and

D ⊂ V (G) then for shortness we will write D+ v to denote D ∪ {v}. For k, t ∈ N, (k)t denotes the

falling factorial k(k − 1) . . . (k − t+ 1) = k!
(k−t)! .

The first Turán-type result for nonhamiltonian graphs was due to Ore [11]:

Theorem 1 (Ore [11]). If G is a nonhamiltonian graph on n vertices, then e(G) ≤
(
n−1
2

)
+ 1.

This bound is achieved only for the n-vertex graph obtained from the complete graph Kn−1 by

adding a vertex of degree 1. Erdős [4] refined the bound in terms of the minimum degree of the

graph:
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Theorem 2 (Erdős [4]). Let n, d be integers with 1 ≤ d ≤
⌊
n−1
2

⌋
, and set h(n, d) :=

(
n−d
2

)
+ d2. If

G is a nonhamiltonian graph on n vertices with minimum degree δ(G) ≥ d, then

e(G) ≤ max

{
h(n, d), h(n,

⌊
n− 1

2

⌋
)

}
=: e(n, d).

This bound is sharp for all 1 ≤ d ≤
⌊
n−1
2

⌋
.

To show the sharpness of the bound, for n, d ∈ N with d ≤
⌊
n−1
2

⌋
, consider the graph Hn,d obtained

from a copy of Kn−d, say with vertex set A, by adding d vertices of degree d each of which is

adjacent to the same d vertices in A. An example of H11,3 is on the left of Fig 1.

Figure 1: Graphs H11,3 (left) and K ′11,3 (right).

By construction, Hn,d has minimum degree d, is nonhamiltonian, and e(Hn,d) =
(
n−d
2

)
+ d2 =

h(n, d). Elementary calculation shows that h(n, d) > h(n,
⌊
n−1
2

⌋
) in the range 1 ≤ d ≤

⌊
n−1
2

⌋
if

and only if d < (n + 1)/6 and n is odd or d < (n + 4)/6 and n is even. Hence there exists a

d0 := d0(n) such that

e(n, 1) > e(n, 2) > · · · > e(n, d0) = e(n, d0 + 1) = · · · = e(n,

⌊
n− 1

2

⌋
),

where d0(n) :=
⌈
n+1
6

⌉
if n is odd, and d0(n) :=

⌈
n+4
6

⌉
if n is even. Therefore Hn,d is an extremal

example of Theorem 2 when d < d0 and Hn,b(n−1)/2c when d ≥ d0.
In [10] and independently in [6] a stability theorem for nonhamiltonian graphs with prescribed

minimum degree was proved. Let K ′n,d denote the edge-disjoint union of Kn−d and Kd+1 sharing a

single vertex. An example of K ′11,3 is on the right of Fig 1.

Theorem 3 ([10, 6]). Let n ≥ 3 and d ≤
⌊
n−1
2

⌋
. Suppose that G is an n-vertex nonhamiltonian

graph with minimum degree δ(G) ≥ d such that

e(G) > e(n, d+ 1) = max

{
h(n, d+ 1), h(n,

⌊
n− 1

2

⌋
)

}
. (1)

Then G is a subgraph of either Hn,d or K ′n,d.

One of the main results of this paper shows that when n is large enough with respect to d and t,

Hn,d not only has the most edges among n-vertex nonhamiltonian graphs with minimum degree at

least d, but also has the most copies of any t-vertex graph. This is an instance of a generalization of

the Turán problem called subgraph density problem: for n ∈ N and graphs T and H, let ex(n, T,H)

denote the maximum possible number of (unlabeled) copies of T in an n-vertex H-free graph. When

T = K2, we have the usual extremal number ex(n, T,H) = ex(n,H).
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Some notable results on the function ex(n, T,H) for various combinations of T and H were obtained

in [5, 2, 1, 8, 9, 7]. In particular, Erdős [5] determined ex(n,Ks,Kt), Bollobás and Győri [2] found

the order of magnitude of ex(n,C3, C5), Alon and Shikhelman [1] presented a series of bounds on

ex(n, T,H) for different classes of T and H.

In this paper, we study the maximum number of copies of T in nonhamiltonian n-vertex graphs,

i.e. ex(n, T, Cn). For two graphs G and T , let N(G,T ) denote the number of labeled copies of

T that are subgraphs of G, i.e., the number of injections φ : V (T ) → V (G) such that for each

xy ∈ E(T ), φ(x)φ(y) ∈ E(G). Since for every T and H, |Aut(T )| ex(n, T,H) is the maximum of

N(G,T ) over the n-vertex graphs G not containing H, some of our results are in the language of

labeled copies of T in G. For k ∈ N, let Nk(G) denote the number of unlabeled copies of Kk’s in

G. Since |Aut(Kk)| = k!, we have Nk(G) = N(G,Kk)/k!.

2 Results

As an extension of Theorem 2, we show that for each fixed graph F and any d, if n is large enough

with respect to |V (F )| and d, then among all n-vertex nonhamiltonian graphs with minimum degree

at least d, Hn,d contains the maximum number of copies of F .

Theorem 4. For every graph F with t := |V (F )| ≥ 3, any d ∈ N, and any n ≥ n0(d, t) :=

4dt + 3d2 + 5t, if G is an n-vertex nonhamiltonian graph with minimum degree δ(G) ≥ d, then

N(G,H) ≤ N(Hn,d, F ).

On the other hand, if F is a star K1,t−1 and n ≤ dt− d, then Hn,d does not maximize N(G,F ). At

the end of Section 4 we show that in this case, N(Hn,b(n−1)/2c, F ) > N(Hn,d, F ). So, the bound on

n0(d, t) in Theorem 4 has the right order of magnitude when d = O(t).

An immediate corollary of Theorem 4 is the following generalization of Theorem 1

Corollary 5. For every graph F with t := |V (F )| ≥ 3 and any n ≥ n0(t) := 9t + 3, if G is an

n-vertex nonhamiltonian graph, then N(G,H) ≤ N(Hn,1, F ).

We consider the case that F is a clique in more detail. For n, k ∈ N, define on the interval

[1, b(n− 1)/2c] the function

hk(n, x) :=

(
n− x
k

)
+ x

(
x

k − 1

)
. (2)

We use the convention that for a ∈ R, b ∈ N,
(
a
b

)
is the polynomial 1

b!a× (a− 1)× . . .× (a− b+ 1)

if a ≥ b− 1 and 0 otherwise.

By considering the second derivative, one can check that for any fixed k and n, as a function of x,

hk(n, x) is convex on [1, b(n− 1)/2c], hence it attains its maximum at one of the endpoints, x = 1

or x = b(n − 1)/2c. When k = 2, h2(n, x) = h(n, x). We prove the following generalization of

Theorem 2.

Theorem 6. Let n, d, k be integers with 1 ≤ d ≤
⌊
n−1
2

⌋
and k ≥ 2. If G is a nonhamiltonian graph
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on n vertices with minimum degree δ(G) ≥ d, then the number Nk(G) of k-cliques in G satisfies

Nk(G) ≤ max

{
hk(n, d), hk(n,

⌊
n− 1

2

⌋
)

}

Again, graphs Hn,d and Hn,b(n−1)/2c are sharpness examples for the theorem.

Finally, we present a stability version of Theorem 6. To state the result, we first define the family

of extremal graphs.

Fix d ≤ b(n − 1)/2c. In addition to graphs Hn,d and K ′n,d defined above, define H ′n,d: V (H ′n,d) =

A ∪ B, where A induces a complete graph on n − d − 1 vertices, B is a set of d + 1 vertices that

induce exactly one edge, and there exists a set of vertices {a1, . . . , ad} ⊆ A such that for all b ∈ B,

N(b) − B = {a1, . . . , ad}. Note that contracting the edge in H ′n,d[B] yields Hn−1,d. These graphs

are illustrated in Fig. 2

d d d d d + 1

Figure 2: Graphs Hn,d (left), K′n,d (center), and H ′n,d (right), where shaded background indicates a complete graph.

We also have two more extremal graphs for the cases d = 2 or d = 3. Define the nonhamiltonian

n-vertex graph G′n,2 with minimum degree 2 as follows: V (G′n,2) = A∪B where A induces a clique

or order n− 3, B = {b1, b2, b3} is an independent set of order 3, and there exists {a1, a2, a3, x} ⊆ A
such that N(bi) = {ai, x} for i ∈ {1, 2, 3} (see the graph on the left in Fig. 3).

The nonhamiltonian n-vertex graph Fn,3 with minimum degree 3 has vertex set A ∪ B, where A

induces a clique of order n− 4, B induces a perfect matching on 4 vertices, and each of the vertices

in B is adjacent to the same two vertices in A (see the graph on the right in Fig. 3).

Figure 3: Graphs G′n,2 (left) and Fn,3 (right).

Our stability result is the following:

Theorem 7. Let n ≥ 3 and 1 ≤ d ≤
⌊
n−1
2

⌋
. Suppose that G is an n-vertex nonhamiltonian graph

4



with minimum degree δ(G) ≥ d such that there exists k ≥ 2 for which

Nk(G) > max

{
hk(n, d+ 2), hk(n,

⌊
n− 1

2

⌋
)

}
. (3)

Let Hn,d := {Hn,d, Hn,d+1,K
′
n,d,K

′
n,d+1, H

′
n,d}.

(i) If d = 2, then G is a subgraph of G′n,2 or of a graph in Hn,2;

(ii) if d = 3, then G is a subgraph of Fn,3 or of a graph in Hn,3;

(iii) if d = 1 or 4 ≤ d ≤
⌊
n−1
2

⌋
, then G is a subgraph of a graph in Hn,d.

The result is sharp because Hn,d+2 has hk(n, d + 2) copies of Kk, minimum degree d + 2 > d, is

nonhamiltonian and is not contained in any graph in Hn,d ∪ {G′n,2, Fn,3}.
The outline for the rest of the paper is as follows: in Section 3 we present some structural results

for graphs that are edge-maximal nonhamiltonian to be used in the proofs of the main theorems,

in Section 4 we prove Theorem 4, in Section 5 we prove Theorem 6 and give a cliques version of

Theorem 3, and in Section 6 we prove Theorem 7.

3 Structural results for saturated graphs

We will use a classical theorem of Pósa (usually stated as its contrapositive).

Theorem 8 (Pósa [12]). Let n ≥ 3. If G is a nonhamiltonian n-vertex graph, then there exists

1 ≤ k ≤
⌊
n−1
2

⌋
such that G has a set of k vertices with degree at most k.

Call a graph G saturated if G is nonhamiltonian but for each uv /∈ E(G), G+uv has a hamiltonian

cycle. Ore’s proof [11] of Dirac’s Theorem [3] yields that

d(u) + d(v) ≤ n− 1 (4)

for every n-vertex saturated graph G and for each uv /∈ E(G).

We will also need two structural results for saturated graphs which are easy extensions of Lemmas

6 and 7 in [6].

Lemma 9. Let G be a saturated n-vertex graph with Nk(G) > hk(n,
⌊
n−1
2

⌋
) for any k ≥ 2. Then

for some 1 ≤ r ≤
⌊
n−1
2

⌋
, V (G) contains a subset D of r vertices of degree at most r such that

G−D is a complete graph.

Proof. Since G is nonhamiltonian, by Theorem 8, there exists some 1 ≤ r ≤
⌊
n−1
2

⌋
such that G has

r vertices with degree at most r. Pick the maximum such r, and let D be the set of the vertices

with degree at most r. Since hk(G) > h(n,
⌊
n−1
2

⌋
), r <

⌊
n−1
2

⌋
. So, by the maximality of r, |D| = r.

Suppose there exist x, y ∈ V (G) − D such that xy /∈ E(G). Among all such pairs, choose x

and y with the maximum d(x). Since y /∈ D, d(y) > r. Let D′ := V (G) − N(x) − {x} and

r′ := |D′| = n− 1− d(x). By (4),

d(z) ≤ n− 1− d(x) = r′ for all z ∈ D′. (5)

5



SoD′ is a set of r′ vertices of degree at most r′. Since y ∈ D′, r′ ≥ d(y) > r. Thus by the maximality

of r, we get r′ = n − 1 − d(x) >
⌊
n−1
2

⌋
. Equivalently, d(x) < dn−12 e. For all z ∈ D′ + {x}, either

z ∈ D where d(z) ≤ r ≤
⌊
n−1
2

⌋
, or z ∈ V (G)−D, and so d(z) ≤ d(x) ≤

⌊
n−1
2

⌋
.

Now we count the number of k-cliques in G: Among V (G)−D′, there are at most
(
n−r′
k

)
k-cliques.

Also, each vertex in D′ can be in at most
(
r′

k−1
)
k-cliques. Therefore Nk(G) ≤

(
n−r′
k

)
+ r′

(
r′

k−1
)
≤

hk(n,
⌊
n−1
2

⌋
), a contradiction. 2

Also, repeating the proof of Lemma 7 in [6] gives the following lemma.

Lemma 10 (Lemma 7 in [6]). Under the conditions of Lemma 9, if r = δ(G), then G = Hn,δ(G)

or G = K ′n,δ(G).

4 Maximizing the number of copies of a given graph and a proof

of Theorem 4

In order to prove Theorem 4, we first show that for any fixed graph F and any d, of the two

extremal graphs of Lemma 10, if n is large then Hn,d has at least as many copies of F as K ′n,d.

Lemma 11. For any d, t, n ∈ N with n ≥ 2dt + d + t and any graph F with t = |V (F )| we have

N(K ′n,d, F ) ≤ N(Hn,d, F ).

Proof. Fix F and t = |V (F )|. Let K ′n,d = A ∪ B where A and B are cliques of order n − d and

d + 1 respectively and A ∩ B = {v∗}, the cut vertex of K ′n,d. Also, let D denote the independent

set of order d in Hn,d. We may assume d ≥ 2, because Hn,1 = K ′n,1. If x is an isolated vertex of

F then for any n-vertex graph G we have N(G,F ) = (n − t + 1)N(G,F − x). So it is enough to

prove the case δ(F ) ≥ 1, and we may also assume t ≥ 3.

Because both K ′n,d[A] and Hn,d−D are cliques of order n− d, the number of embeddings of F into

K ′n,d[A] is the same as the number of embeddings of F into Hn,d − D. So it remains to compare

only the number of embeddings in Φ := {ϕ : V (F ) → V (K ′n,d) such that ϕ(F ) intersects B − v∗}
to the number of embeddings in Ψ := {ψ : V (F )→ V (Hn,d) such that ψ(F ) intersects D}.
Let C ∪ C be a partition of the vertex set V (F ), s := |C|. Define the following classes of Φ and Ψ

— Φ(C) := {ϕ : V (F ) → V (K ′n,d) such that ϕ(C) intersects B − v∗, ϕ(C) ⊆ B, and

ϕ(C) ⊆ V −B},
— Ψ(C) := {ψ : V (F ) → V (Hn,d) such that ψ(C) intersects D, ψ(C) ⊆ (D ∪ N(D)), and

ψ(C) ⊆ V − (D ∪N(D))}.
By these definitions, if C 6= C ′ then Φ(C)∩Φ(C ′) = ∅, and Ψ(C)∩Ψ(C ′) = ∅. Also

⋃
∅6=C⊆V (F ) Φ(C) =

Φ. We claim that for every C 6= ∅,
|Φ(C)| ≤ |Ψ(C)|. (6)

Summing up the number of embeddings over all choices for C will prove the lemma. If Φ(C) = ∅,
then (6) obviously holds. So from now on, we consider the cases when Φ(C) is not empty, implying

1 ≤ s ≤ d+ 1.

Case 1: There is an F -edge joining C and C. So there is a vertex v ∈ C with NF (v) ∩ C 6= ∅.
Then for every mapping ϕ ∈ Φ(C), the vertex v must be mapped to v∗ in K ′n,d, ϕ(v) = v∗. So this
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vertex v is uniquely determined by C. Also, ϕ(C) ∩ (B − v∗) 6= ∅ implies s ≥ 2. The rest of C can

be mapped arbitrarily to B − v∗ and C can be mapped arbitrarily to A − v∗. We obtained that

|Φ(C)| = (d)s−1(n− d− 1)t−s.

We make a lower bound for |Ψ(C)| as follows. We define a ψ ∈ Ψ(C) by the following procedure. Let

ψ(v) = x ∈ N(D) (there are d possibilities), then map some vertex of C−v to a vertex y ∈ D (there

are (s−1)d possibilities). Since N+y forms a clique of order d+1 we may embed the rest of C into

N−v in (d−1)s−2 ways and finish embedding of F intoHn,d by arbitrarily placing the vertices of C to

V−(D∪N(D)). We obtained that |Ψ(C)| ≥ d2(s−1)(d−1)s−2(n−2d)t−s = d(s−1)(d)s−1(n−2d)t−s.

Since s ≥ 2 we have that

|Ψ(C)|
|Φ(C)| ≥

d(s− 1)(d)s−1(n− 2d)t−s
(d)s−1(n− d− 1)t−s

≥ d(2− 1)

(
n− 2d+ 1− t+ s

n− d− t+ s

)t−s
= d

(
1− d− 1

n− d− t+ s

)t−s
≥ d

(
1− (d− 1)(t− s)

n− d− t+ s

)
≥ d

(
1− (d− 1)t

n− d− t

)
> 1 when n > dt+ d+ t.

Case 2: C and C are not connected in F . We may assume s ≥ 2 since C is a union of components

with δ(F ) ≥ 1. In K ′n,d there are at exactly (d+ 1)s(n− d− 1)t−s ways to embed F into B so that

only C is mapped into B and C goes to A− v∗, i.e., |Φ(C)| = (d+ 1)s(n− d− 1)t−s.

We make a lower bound for |Ψ(C)| as follows. We define a ψ ∈ Ψ(C) by the following procedure.

Select any vertex v ∈ C and map it to some vertex in D (there are sd possibilities), then map

C − v into N(D) (there are (d)s−1 possibilities) and finish embedding of F into Hn,d by arbitrarily

placing the vertices of C to V − (D ∪N(D)). We obtained that |Ψ(C)| ≥ ds(d)s−1(n− 2d)t−s. We

have

|Ψ(C)|
|Φ(C)| ≥

ds(d)s−1(n− 2d)t−s
(d+ 1)s(n− d− 1)t−s

≥ ds

d+ 1

(
1− (d− 1)t

n− d− t

)
≥ 2d

d+ 1

(
1− (d− 1)t

n− d− t

)
because s ≥ 2

> 1 when n > 2dt+ d+ t.

2

We are now ready to prove Theorem 4.

Theorem 4. For every graph F with t := |V (F )| ≥ 3, any d ∈ N, and any n ≥ n0(d, t) :=

4dt + 3d2 + 5t, if G is an n-vertex nonhamiltonian graph with minimum degree δ(G) ≥ d, then

N(G,H) ≤ N(Hn,d, F ).

Proof. Let d ≥ 1. Fix a graph F with |V (F )| ≥ 3 (if |V (F )| = 2, then either F = K2 or F = K2).

The case where G has isolated vertices can be handled by induction on the number of isolated

7



vertices, hence we may assume each vertex has degree at least 1. Set

n0 = 4dt+ 3d2 + 5t. (7)

Fix a nonhamiltonian graph G with |V (G)| = n ≥ n0 and δ(G) ≥ d such that N(G,F ) >

N(Hn,d, F ) ≥ (n− d)t. We may assume that G is saturated, as the number of copies of F can only

increase when we add edges to G.

Because n ≥ 4dt+ t by (7),

(n− d)t
(n)t

≥
(
n− d− t
n− t

)t
=

(
1− d

n− t

)t
≥ 1− dt

n− t ≥ 1− 1

4
=

3

4
.

So, (n− d)t ≥ 3
4(n)t.

After mapping edge xy of F to an edge of G (in two labeled ways), we obtain the loose upper

bound,

2e(G)(n− 2)t−2 ≥ N(G,F ) ≥ (n− d)t ≥
3

4
(n)t,

therefore

e(G) ≥ 3

4

(
n

2

)
> h2(n, b(n− 1)/2c). (8)

By Pósa’s theorem (Theorem 8), there exists some d ≤ r ≤ b(n − 1)/2c such that G contains

a set R or r vertices with degree at most r. Furthermore by (8), r < d0. So by integrality,

r ≤ d0 − 1 ≤ (n+ 3)/6. If r = d, then by Lemma 10, either G = Hn,d or G = K ′n,d. By Lemma 11

and (7), G = Hn,d, a contradiction. So we have r ≥ d+ 1.

Let I denote the family of all nonempty independent sets in F . For I ∈ I, let i = i(I) := |I| and

j = j(I) := |NF (I)|. Since F has no isolated vertices, j(I) ≥ 1 and so i ≤ t − 1 for each I ∈ I.

Let Φ(I) denote the set of embeddings ϕ : V (F )→ V (G) such that φ(I) ⊆ R and I is a maximum

independent subset of φ−1(R ∩ ϕ(F )). Note that ϕ(I) is not necessarily independent in G. We

show that

|Φ(I)| ≤ (r)ir(n− r)t−i−1. (9)

Indeed, there are (r)i ways to choose φ(I) ⊆ R. After that, since each vertex in R has at most

r neighbors in G, there are at most rj ways to embed NF (I) into G. By the maximality of I, all

vertices of F − I −NF (I) should be mapped to V (G) − R. There are at most (n − r)t−i−j to do

it. Hence |Φ(I)| ≤ (r)ir
j(n− r)t−i−j . Since 2r + t ≤ 2(d0 − 1) + t < n, this implies (9).

Since each ϕ : V (F ) → V (G) with ϕ(V (F )) ∩ R 6= ∅ belongs to Φ(I) for some nonempty I ∈ I,

(9) implies

N(G,F ) ≤ (n− r)t +
∑
∅6=I∈I

|Φ(I)| ≤ (n− r)t +
t−1∑
i=1

(
t

i

)
(r)ir(n− r)t−i−1. (10)

8



Hence

N(G,F )

N(Hn,d, F )
≤ (n− r)t +

∑t−1
i=1

(
t
i

)
(r)ir(n− r)t−i−1

(n− d)t

≤ (n− r)t
(n− d)t

+
1

(n− d)t
× r

n− r − t+ 2

t−1∑
i=1

(
t

i

)
(r)i(n− r)t−i

=
(n− r)t
(n− d)t

+
(n)t − (n− r)t − (r)t

(n− d)t
× r

n− r − t+ 2

≤ (n− r)t
(n− d)t

× n− t+ 2− 2r

n− t+ 2− r +
(n)t

(n− d)t
× r

n− t+ 2− r := f(r).

Given fixed n, d, t, we claim that the real function f(r) is convex for 0 < r < (n− t+ 2)/2.

Indeed, the first term g(r) := (n−r)t
(n−d)t ×

n−t+2−2r
n−t+2−r is a product of t linear terms in each of which r

has a negative coefficient (note that the n− t+ 2− r term cancels out with a factor of n− r− t+ 2

in (n − r)t). Applying product rule, the first derivative g′ is a sum of t products, each with t − 1

linear terms. For r < (n − t + 2)/2, each of these products is negative, thus g′(r) < 0. Finally,

applying product rule again, g′′ is the sum of t(t− 1) products. For r < (n− t+ 2)/2 each of the

products is positive, thus g′′(r) > 0.

Similarly, the second factor of the second term (as a real function of r, of the form r/(c − r)) is

convex for r < n− t+ 2.

We conclude that in the interval [d + 1, (n + 3)/6] the function f(r) takes its maximum either at

one of the endpoints r = d+ 1 or r = (n+ 3)/6. We claim that f(r) < 1 at both end points.

In case of r = d + 1 the first factor of the first term equals (n − d − t)/(n − d). To get an upper

bound for the first factor of the second term one can use the inequality
∏

(1 + xi) < 1 + 2
∑
xi

which holds for any number of non-negative xi’s if 0 <
∑
xi ≤ 1. Because dt/(n − d − t + 1) ≤ 1

by (7), we obtain that

f(d+ 1) <
n− d− t
n− d × n− t− 2d

n− t− d+ 1
+

(
1 +

2dt

n− d− t+ 1

)
× d+ 1

n− t− d+ 1

=

(
1− t

n− d

)
×
(

1− d+ 1

n− t− d+ 1

)
+

(
d+ 1

n− t− d+ 1

)
+

(
2dt(d+ 1)

(n− t− d+ 1)2

)
= 1− t

n− d +
t

n− d ×
d+ 1

n− t− d+ 1
+

t

n− d ×
2d(d+ 1)

n− t− d+ 1
× n− d
n− t− d+ 1

= 1− t

n− d ×
(

1− d+ 1

n− t− d+ 1
− 2d(d+ 1)

n− t− d+ 1
×
(

1 +
t− 1

n− t− d+ 1

))
< 1− t

n− d × (1− 1

4t
− 2

3
(1 +

1

4d
))

≤ 1− t

n− d × (1− 1/12− 2/3× 5/4)

< 1.

Here we used that n ≥ 3d2 + 2d+ t and n ≥ 4dt+ 5t+ d by (7), t ≥ 3, and d ≥ 1.
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To bound f(r) for other values of r, let us use 1 + x ≤ ex (true for all x). We get

f(r) < exp

{
− (r − d)t

n− d− t+ 1

}
+

r

n− r − t+ 2
× exp

{
dt

n− d− t+ 1

}
.

When r = (n + 3)/6, t ≥ 3, and n ≥ 24d by (7), the first term is at most e−18/46 = 0.676....

Moreover, for n ≥ 9t (7) (therefore n ≥ 27) we get that r
n−r−t+2 is maximized when t is maximized,

i.e., when t = n/9. The whole term is at most (3n+ 9)/(13n+ 27)× e1/4 ≤ 5/21× e1/4 = 0.305...,

so in this range, f((n+ 3)/6) < 1.

By the convexity of f(r), we have N(G,F ) < N(Hn,d, F ). 2

When F is a star, then it is easy to determine maxN(G,F ) for all n.

Claim 12. Suppose F = K1,t−1 with t := |V (F )| ≥ 3, and t ≤ n and d are integers with 1 ≤ d ≤
b(n− 1)/2c. If G is an n-vertex nonhamiltonian graph with minimum degree δ(G) ≥ d, then

N(G,F ) ≤ max
{
Hn,d, Hn,b(n−1)/2c

}
, (11)

and equality holds if and only if G ∈
{
Hn,d, Hn,b(n−1)/2c

}
.

Proof. The number of copies of stars in a graph G depends only on the degree sequence of the

graph: if a vertex v of a graph G has degree d(v), then there are (d(v))t−1 labeled copies of F in

G where v is the center vertex. We have

N(G,F ) =
∑

v∈V (G)

(
d(v)

t− 1

)
. (12)

Since G is nonhamiltonian, Pósa’s theorem yields an r ≤ b(n− 1)/2c, and an r-set R ⊂ V (G) such

that dG(v) ≤ r for all v ∈ R. Take the minimum such r, then there exists a vertex v ∈ R with

deg(v) = r. We may also suppose that G is edge-maximal nonhamiltonian, so Ore’s condition (4)

holds. It implies that deg(w) ≤ n − r − 1 for all w /∈ N(v). Altogether we obtain that G has r

vertices of degree at most r, at least n− 2r vertices (those in V (G)−R−N(v)) of degree at most

(n− r − 1). This implies that the right hand side of (12) is at most

r × (r)t−1 + (n− 2r)× (n− r − 1)t−1 + r × (n− 1)t−1 = N(Hn,r, F ).

(Here equality holds only if G = Hn,r). Note that r ∈ [d, b12(n − 1)c]. Since for given n and t the

function N(Hn,r, F ) is strictly convex in r, it takes its maximum at one of the endpoints of the

interval. 2

Remark 13. As it was mentioned in Section 2, O(dt) is the right order for n0(d, t) when d = O(t).

To see this, fix d ∈ N and let F be the star on t ≥ 3 vertices. If d < b(n − 1)/2c, t ≤ n and

n ≤ dt − d, then Hn,b(n−1)/2c contains more copies of F than Hn,d does, the maximum in (11) is

reached for r = b(n − 1)/2c. We present the calculation below only for 2d + 7 ≤ n ≤ dt − d, the

case 2d + 3 ≤ n ≤ 2d + 6 can be checked by hand by plugging n into the first line of the formula

below. We can proceed as follows.
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N(Hn,b(n−1)/2c, F )−N(Hn,d, F ) =
(
b(n− 1)/2c(n− 1)t−1 + d(n+ 1)/2e(b(n− 1)/2c)t−1

)
−
(
d(n− 1)t−1 + (n− 2d)(n− d− 1)t−1 + d(d)t−1

)
=

(
b(n− 1)/2c − d

)
(n− 1)t−1 − (n− 2d)(n− d− 1)t−1

+d(n+ 1)/2e(b(n− 1)/2c)t−1 − d(d)t−1

>
(
b(n− 1)/2c − d

)
(n− 1)t−1 −

(
(n− 2d)(1− d/n)t−1

)
(n− 1)t−1

> (n− 1)t−1

(
b(n− 1)/2c − d− (n− 2d)e−(dt−d)/n

)
≥ (n− 1)t−1 (b(n− 1)/2c − d− (n− 2d)/e)

≥ 0.

5 Theorem 6 and a stability version of it

In general, it is difficult to calculate the exact value of N(Hn,d, F ) for a fixed graph F . However,

when F = Kk, we have N(Hn,d,Kk) = hk(n, d)k!. Recall Theorem 6:

Let n, d, k be integers with 1 ≤ d ≤
⌊
n−1
2

⌋
and k ≥ 2. If G is a nonhamiltonian graph on n vertices

with minimum degree δ(G) ≥ d, then

Nk(G) ≤ max

{
hk(n, d), hk(n,

⌊
n− 1

2

⌋
)

}
.

Proof of Theorem 6. By Theorem 8, because G is nonhamiltonian, there exists an r ≥ d such that

G has r vertices of degree at most r. Denote this set of vertices by D. Then Nk(G−D) ≤
(
n−r
k

)
,

and every vertex in D is contained in at most
(
r

k−1
)

copies of Kk. Hence Nk(G) ≤ hk(n, r). The

theorem follows from the convexity of hk(n, x). 2

Our older stability theorem (Theorem 3) also translates into the the language of cliques, giving a

stability theorem for Theorem 6:

Theorem 14. Let n ≥ 3, and d ≤
⌊
n−1
2

⌋
. Suppose that G is an n-vertex nonhamiltonian graph

with minimum degree δ(G) ≥ d and there exists a k ≥ 2 such that

Nk(G) > max

{
hk(n, d+ 1), hk(n,

⌊
n− 1

2

⌋
)

}
. (13)

Then G is a subgraph of either Hn,d or K ′n,d.

Proof. Take an edge-maximum counterexample G (so we may assume G is saturated). By Lemma

9, G has a set D of r ≤ b(n − 1)/2c vertices such that G −D is a complete graph. If r ≥ d + 1,

then Nk(G) ≤ max
{
hk(n, d+ 1), hk(n,

⌊
n−1
2

⌋
)
}

. Thus r = d, and we may apply Lemma 10. 2
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6 Discussion and proof of Theorem 7

One can try to refine Theorem 3 in the following direction: What happens when we consider n-

vertex nonhamiltonian graphs with minimum degree at least d and less than e(n, d+ 1) but more

than e(n, d+ 2) edges?

Note that for d < d0(n)− 2,

e(n, d)− e(n, d+ 2) = 2n− 6d− 7,

which is greater than n. Theorem 7 answers the question above in a more general form—in terms

of s-cliques instead of edges. In other words, we classify all n-vertex nonhamiltonian graphs with

more than max
{
hs(n, d+ 2), hs(n,

⌊
n−1
2

⌋
)
}

copies of Ks.

As in Lemma 14, such G can be a subgraph of Hn,d or K ′n,d. Also, G can be a subgraph of Hn,d+1

or K ′n,d+1. Recall the graphs Hn,d,K
′
n,d, H

′
n,d, G

′
n,2, and Fn,3 defined in the first two sections of this

paper and the statement of Theorem 3:

d d d d d + 1

Figure 4: Graphs Hn,d,K
′
n,d, H

′
n,d, G

′
n,2, and Fn,3.

Theorem 7. Let n ≥ 3 and 1 ≤ d ≤
⌊
n−1
2

⌋
. Suppose that G is an n-vertex nonhamiltonian graph

with minimum degree δ(G) ≥ d such that exists a k ≥ 2 for which

Nk(G) > max

{
hk(n, d+ 2), hk(n,

⌊
n− 1

2

⌋
)

}
.

Let Hn,d := {Hn,d, Hn,d+1,K
′
n,d,K

′
n,d+1, H

′
n,d}.

(i) If d = 2, then G is a subgraph of G′n,2 or of a graph in Hn,2;

(ii) if d = 3, then G is a subgraph of Fn,3 or of a graph in Hn,3;

(iii) if d = 1 or 4 ≤ d ≤
⌊
n−1
2

⌋
, then G is a subgraph of a graph in Hn,d.

Proof. Suppose G is a counterexample to Theorem 7 with the most edges. Then G is saturated. In

particular, degree condition (4) holds for G. So by Lemma 9, there exists an d ≤ r ≤ b(n − 1)/2c
such that V (G) contains a subset D of r vertices of degree at most r and G − D is a complete

graph.

If r ≥ d+2, then because hk(n, x) is convex, Nk(G) ≤ hk(n, r) ≤ max
{
hk(n, d+ 2), hk(n,

⌊
n−1
2

⌋
)
}

.

Therefore either r = d or r = d + 1. In the case that r = d (and so r = δ(G)), Lemma 10 implies

that G ⊆ Hn,d. So we may assume that r = d+ 1.

If δ(G) ≥ d + 1, then we simply apply Theorem 3 with d + 1 in place of d and get G ⊆ Hn,d+1 or

12



G ⊆ K ′n,d+1. So, from now on we may assume

δ(G) = d. (14)

Now (14) implies that our theorem holds for d = 1, since each graph with minimum degree exactly

1 is a subgraph of Hn,1. So, below 2 ≤ d ≤
⌊
n−1
2

⌋
.

Let N := N(D)−D ⊆ V (G)−D. The next claim will be used many times throughout the proof.

Lemma 15. (a) If there exists a vertex v ∈ D such that d(v) = d+ 1, then N(v)−D = N .

(b) If there exists a vertex u ∈ N such that u has at least 2 neighbors in D, then u is adjacent to

all vertices in D.

Proof. If v ∈ D, d(v) = d+ 1 and some u ∈ N is not adjacent to v, then d(v) + d(u) ≥ d+ 1 + (n−
d− 2) + 1 = n. A contradiction to (4) proves (a).

Similarly, if u ∈ N has at least 2 neighbors in D but is not adjacent to some v ∈ D, then

d(v) + d(u) ≥ d+ (n− d− 2) + 2 = n, again contradicting (4). 2

Define S := {u ∈ V (G) − D : u ∈ N(v) for all v ∈ D}, s := s, and S′ := V (G) − D − S. By

Lemma 15 (b), each vertex in S′ has at most one neighbor in D. So, for each v ∈ D, call the

neighbors of v in S′ the private neighbors of v.

We claim that

D is not independent. (15)

Indeed, assume D is independent. If there exists a vertex v ∈ D with d(v) = d + 1, then by

Lemma 15 (b), N(v) − D = N . So, because D is independent, G ⊆ Hn,d+1. Assume now that

every vertex v ∈ D has degree d, and let D = {v1, . . . , vd+1}.
If s ≥ d, then because each vi ∈ D has degree d, s = d and N = S. Then G ⊆ Hn,d+1. If s ≤ d− 2,

then each vertex vi ∈ D has at least two private neighbors in S′; call these private neighbors xvi and

yvi . The path xv1v1yv1xv2v2yv2 . . . xvd+1
vd+1yvd+1

contains all vertices in D and can be extended to

a hamiltonian cycle of G, a contradiction.

Finally, suppose s = d− 1. Then every vertex vi ∈ D has exactly one private neighbor. Therefore

G = G′n,d where G′n,d is composed of a clique A of order n − d − 1 and an independent set

D = {v1, . . . , vd+1}, and there exists a set S ⊂ A of size d−1 and distinct vertices z1, . . . , zd+1 such

that for 1 ≤ i ≤ d+ 1, N(vi) = S ∪ zi. Graph G′n,d is illustrated in Fig. 6.

For d = 2, we conclude that G ⊆ G′n,2, as claimed, and for d ≥ 3, we get a contradiction since G′n,d
is hamiltonian. This proves (15).

Call a vertex v ∈ D open if it has at least two private neighbors, half-open if it has exactly one

private neighbor, and closed if it has no private neighbors.

We say that paths P1, . . . , Pq partition D, if these paths are vertex-disjoint and V (P1)∪. . .∪V (Pq) =

D. The idea of the proof is as follows: because G−D is a complete graph, each path with endpoints

in G−D that covers all vertices of D can be extended to a hamiltonian cycle of G. So such a path

does not exist, which implies that too few paths cannot partition D:
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d− 1 d + 1

Figure 5: G′n,d.

Lemma 16. If s ≥ 2 then the minimum number of paths in G[D] partitioning D is at least s.

Proof. Suppose D can be partitioned into ` ≤ s− 1 paths P1, . . . , P` in G[D]. Let S = {z1, . . . , zs}.
Then P = z1P1z2 . . . z`P`z`+1 is a path with endpoints in V (G)−D that coversD. Because V (G)−D
forms a clique, we can find a z1, z`+1 - path P ′ in G−D that covers V (G)−D−{z2, . . . , z`}. Then

P ∪ P ′ is a hamiltonian cycle of G, a contradiction. 2

Sometimes, to get a contradiction with Lemma 16 we will use our information on vertex degrees in

G[D]:

Lemma 17. Let H be a graph on r vertices such that for every nonedge xy of H, d(x)+d(y) ≥ r−t
for some t. Then V (H) can be partitioned into a set of at most t paths. In other words, there exist

t disjoint paths P1, . . . , Pt with V (H) =
⋃t
i=1 V (Pi).

Proof. Construct the graph H ′ by adding a clique T of size t to H so that every vertex of T is

adjacent to each vertex in V (H). For each nonedge x, y ∈ H ′,

dH′(x) + dH′(y) ≥ (r − t) + t+ t = r + t = |V (H ′)|.

By Ore’s theorem, H ′ has a hamiltonian cycle C ′. Then C ′ − T is a set of at most t paths in H

that cover all vertices of H. 2

The next simple fact will be quite useful.

Lemma 18. If G[D] contains an open vertex, then all other vertices are closed.

Proof. Suppose G[D] has an open vertex v and another open or half-open vertex u. Let v′, v′′ be

some private neighbors of v in S′ and u′ be a neighbor of u in S′. By the maximality of G, graph

G+vu′ has a hamiltonian cycle. In other words, G has a hamiltonian path v1v2 . . . vn, where v1 = v

and vn = u′. Let V ′ = {vi : vvi+1 ∈ E(G)}. Since G has no hamiltonian cycle, V ′ ∩N(u′) = ∅.
Since d(v) + d(u′) = n − 1, we have V (G) = V ′ ∪ N(u′) + u′. Suppose that v′ = vi and v′′ = vj .

Then vi−1, vj−1 ∈ V ′, and vi−1, vj−1 /∈ N(u′). But among the neighbors of vi and vj , only v is not

adjacent to u′, a contradiction. 2

Now we show that S is non-empty and not too large.
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Lemma 19. s ≥ 1.

Proof. Suppose S = ∅. If D has an open vertex v, then by Lemma 18, all other vertices are closed.

In this case, v is the only vertex of D with neighbors outside of D, and hence G ⊆ K ′n,d, in which

v is the cut vertex. Also if D has at most one half-open vertex v, then similarly G ⊆ K ′n,d.
So suppose that D contains no open vertices but has two half-open vertices u and v with private

neighbors zu and zv respectively. Then δ(G[D]) ≥ d− 1. By Pósa’s Theorem, if d ≥ 4, then G[D]

has a hamiltonian v, u-path. This path together with any hamiltonian zu, zv-path in the complete

graph G−D and the edges uzu and vzv forms a hamiltonian cycle in G, a contradiction.

If d = 3, then by Dirac’s Theorem, G[D] has a hamiltonian cycle, i.e. a 4-cycle, say C. If we can

choose our half-open v and u consecutive on C, then C−uv is a hamiltonian v, u-path in G[D], and

we finish as in the previous paragraph. Otherwise, we may assume that C = vxuy, where x and y

are closed. In this case, dG[D](x) = dG[D](y) = 3, thus xy ∈ E(G). So we again have a hamiltonian

v, u-path, namely vxyu, in G[D]. Finally, if d = 2, then |D| = 3, and G[D] is either a 3-vertex

path whose endpoints are half-open or a 3-cycle. In both cases, G[D] again has a hamiltonian path

whose ends are half-open. 2

Lemma 20. s ≤ d− 3.

Proof. Since by (14), δ(G) = d, we have s ≤ d. Suppose s ∈ {d− 2, d− 1, d}.
Case 1: All vertices of D have degree d.

Case 1.1: s = d. Then G ⊆ Hn,d+1.

Case 1.2: s = d − 1. In this case, each vertex in graph G[D] has degree 0 or 1. By (15), G[D]

induces a non-empty matching, possibly with some isolated vertices. Let m denote the number of

edges in G[D].

If m ≥ 3, then the number of components in G[D] is less than s, contradicting Lemma 16. Suppose

now m = 2, and the edges in the matching are x1y1 and x2y2. Then d ≥ 3. If d = 3, then

D = {x1, x2, y1, y2} and G = Fn,3 (see Fig 3 (right)). If d ≥ 4, then G[D] has an isolated vertex,

say x3. This x3 has a private neighbor w ∈ S′. Then |S + w| = d which is more than the number

of components of G[D] and we can construct a path from w to S visiting all components of G[D].

Finally, suppose G[D] has exactly one edge, say x1y1. Recall that d ≥ 2. Graph G[D] has d − 1

isolated vertices, say x2, . . . , xd. Each of xi for 2 ≤ i ≤ d has a private neighbor ui in S′. Let

S = {z1, . . . , zd−1}. If d = 2, then S = {z1}, N(D) = {z1, u2} and hence G ⊂ H ′n,2. So in this case

the theorem holds for G. If d ≥ 3, then G contains a path udxdzd−1xd−1zd−2xd−2 . . . z2x1y1z1x2u2
from ud to u2 that covers D.

Case 1.3: s = d− 2. Since s ≥ 1, d ≥ 3. Every vertex in G[D] has degree at most 2, i.e., G[D] is a

union of paths, isolated vertices, and cycles. Each isolated vertex has at least 2 private neighbors

in S′. Each endpoint of a path in G[D] has one private neighbor in S′. Thus we can find disjoint

paths from S′ to S′ that cover all isolated vertices and paths in G[D] and all are disjoint from S.

Hence if the number c of cycles in G[D] is less than d− 2, then we have a set of disjoint paths from

V (G)−D to V (G)−D that cover D (and this set can be extended to a hamiltonian cycle in G).

Since each cycle has at least 3 vertices and |D| = d+ 1, if c ≥ d− 2, then (d+ 1)/3 ≥ d− 2, which
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is possible only when d < 4, i.e. d = 3. Moreover, then G[D] = C3 ∪ K1 and S = N is a single

vertex. But then G = K ′n,3.

Case 2: There exists a vertex v∗ ∈ D with d(v∗) = d+ 1. By Lemma 15 (b), N = N(v∗)−D, and

so G has at most one open or half-open vertex. Furthermore,

if G has an open or half-open vertex, then it is v∗, and by Lemma 15, there are no

other vertices of degree d+ 1.
(16)

Case 2.1: s = d. If v∗ is not closed, then it has a private neighbor x ∈ S′, and the neighborhood

of each other vertex of D is exactly S. In this case, there exists a path from x to S that covers

D. If v∗ is closed (i.e., N = S), then G[D] has maximum degree 1. Therefore G[D] is a matching

with at least one edge (coming from v∗) plus some isolated vertices. If this matching has at least

2 edges, then the number of components in G[D] is less than s, contradicting Lemma 16. If G[D]

has exactly one edge, then G ⊆ H ′n,d.
Case 2.2: s = d − 1. If v∗ is open, then dG[D](v

∗) = 0 and by (16), each other vertex in D has

exactly one neighbor in D. In particular, d is even. Therefore G[D − v∗] has d/2 components.

When d ≥ 3 and d is even, d/2 ≤ s− 1 and we can find a path from S to S that covers D− v∗, and

extend this path using two neighbors of v∗ in S′ to a path from V (G) −D to V (G) −D covering

D. Suppose d = 2, D = {v∗, x, y} and S = {z}. Then z is a cut vertex separating {x, y} from the

rest of G, and hence G ⊆ K ′n,2.
If v∗ is half-open, then by (16), each other vertex in D is closed and hence has exactly one neighbor

in D. Let x ∈ S′ be the private neighbor of v∗. Then G[D] is 1-regular and therefore has exactly

(d+ 1)/2 components, in particular, d is odd. If d ≥ 2 and is odd, then (d+ 1)/2 ≤ d− 1 = s, and

so we can find a path from x to S that covers D.

Finally, if v∗ is closed, then by (16), every vertex of G[D] is closed and has degree 1 or 2, and v∗

has degree 2 in G[D]. Then G[D] has at most bd/2c components, which is less than s when d ≥ 3.

If d = 2, then s = 1 and the unique vertex z in S is a cut vertex separating D from the rest of G.

This means G ⊆ K ′n,3.
Case 2.3: s = d− 2. Since s ≥ 1, d ≥ 3. If v∗ is open, then dG[D](v

∗) = 1 and by (16), each other

vertex in D is closed and has exactly two neighbors in D. But this is not possible, since the degree

sum of the vertices in G[D] must be even. If v∗ is half-open with a neighbor x ∈ S′, then G[D] is

2-regular. Thus G[D] is a union of cycles and has at most b(d + 1)/3c components. When d ≥ 4,

this is less than s, contradicting Lemma 16. If d = 3, then s = 1 and the unique vertex z in S is a

cut vertex separating D from the rest of G. This means G ⊆ K ′n,4.
If v∗ is closed, then dG[D](v

∗) = 3 and δ(G[D]) ≥ 2. So, for any vertices x, y in G[D],

dG[D](x) + dG[D](y) ≥ 4 ≥ (d+ 1)− (d− 2− 1) = |V (G[D])| − (s− 1).

By Lemma 17, if s ≥ 2, then we can partition G[D] into s − 1 paths P1, ..., Ps−1. This would

contradict Lemma 16. So suppose s = 1 and d = 3. Then as in the previous paragraph, G ⊆ K ′n,4.
2

Next we will show that we cannot have 2 ≤ s ≤ d− 3.
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Lemma 21. s = 1.

Proof. Suppose s = d− k where 3 ≤ k ≤ d− 2.

Case 1: G[D] has an open vertex v. By Lemma 18, every other vertex in D is closed. Let

G′ = G[D]− v. Then δ(G′) ≥ k − 1 and |V (G′)| = d. In particular, for any x, y ∈ D − v,

dG′(x) + dG′(y) ≥ 2k − 2 ≥ k + 1 = d− (d− k − 1) = |V (G′)| − (s− 1).

By Lemma 17, we can find a path from S to S in G containing all of V (G′). Because v is open,

this path can be extended to a path from V (G)−D to V (G)−D including v, and then extended

to a hamiltonian cycle of G.

Case 2: D has no open vertices and 4 ≤ k ≤ d − 2. Then δ(G[D]) ≥ k − 1 and again for any

x, y ∈ D, dG[D](x)+dG[D](y) ≥ 2k−2. For k ≥ 4, 2k−2 ≥ k+2 = (d+1)−(d−k−1) = |D|−(s−1).

Since k ≤ d− 2, by Lemma 17, G[D] can be partitioned into s− 1 paths, contradicting Lemma 16.

Case 3: D has no open vertices and s = d− 3 ≥ 2. If there is at most one half-open vertex, then

for any nonadjacent vertices x, y ∈ D, dG[D](x) + dG[D](y) ≥ 2 + 3 = 5 ≥ (d+ 1)− (d− 3− 1), and

we are done as in Case 2.

So we may assume G has at least 2 half-open vertices. Let D′ be the set of half-open vertices in

D. If D′ 6= D, let v∗ ∈ D − D′. Define a subset D− as follows: If |D′| ≥ 3, then let D− = D′,

otherwise, let D− = D′ + v∗. Let G′ be the graph obtained from G[D] by adding a new vertex

w adjacent to all vertices in D−. Then |V (G′)| = d + 2 and δ(G′) ≥ 3. In particular, for any

x, y ∈ V (G′), dG′(x) + dG′(y) ≥ 6 ≥ (d+ 2)− (d− 3− 1) = |V (G′)| − (s− 1). By Lemma 17, V (G′)

can be partitioned into s − 1 disjoint paths P1, . . . , Ps−1. We may assume that w ∈ P1. If w is

an endpoint of P1, then D can also be partitioned into s− 1 disjoint paths P1 −w,P2, . . . , Ps−1 in

G[D], a contradiction to Lemma 16.

Otherwise, let P1 = x1, . . . , xi−1, xi, xi+1, . . . , xk where xi = w. Since every vertex in (D−)− v∗ is

half-open and NG′(w) = D−, we may assume that xi−1 is half-open and thus has a neighbor y ∈ S′.
Let S = {z1, . . . , zd−3}. Then

yxi−1xi−2 . . . x1z1xi+1 . . . xkz2P2z3 . . . zd−4Pd−4zd−3

is a path in G with endpoints in V (G)−D that covers D. 2

Now we may finish the proof of Theorem 7. By Lemmas 19–21, s = 1, say, S = {z1}. Furthermore,

by Lemma 20,

d ≥ 3 + s = 4. (17)

Case 1: D has an open vertex v. Then by Lemma 18, every other vertex of D is closed. Since

s = 1, each u ∈ D − v has degree d − 1 in G[D]. If v has no neighbors in D, then G[D] − v is

a clique of order d, and G ⊆ K ′n,d. Otherwise, since d ≥ 4, by Dirac’s Theorem, G[D] − v has a

hamiltonian cycle, say C. Using C and an edge from v to C, we obtain a hamiltonian path P in

G[D] starting with v. Let v′ ∈ S′ be a neighbor of v. Then v′Pz1 is a path from S′ to S that covers

D, a contradiction.
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Case 2: D has a half-open vertex but no open vertices. It is enough to prove that

G[D] has a hamiltonian path P starting with a half-open vertex v, (18)

since such a P can be extended to a hamiltonian cycle in G through z1 and the private neighbor

of v. If d ≥ 5, then for any x, y ∈ D,

dG[D](x) + dG[D](y) ≥ d− 2 + d− 2 = 2d− 4 ≥ d+ 1 = |V (G[D])|.

Hence by Ore’s Theorem, G[D] has a hamiltonian cycle, and hence (18) holds.

If d < 5 then by (17), d = 4. So G[D] has 5 vertices and minimum degree at least 2. By Lemma 17,

we can find a hamiltonian path P of G[D], say v1v2v3v4v5. If at least one of v1, v5 is half-open

or v1v5 ∈ E(G), then (18) holds. Otherwise, each of v1, v5 has 3 neighbors in D, which means

N(v1) ∩ D = N(v5) ∩ D = {v2, v3, v4}. But then G[D] has hamiltonian cycle v1v2v5v4v3v1, and

again (18) holds.

Case 3: All vertices in D are closed. Then G ⊆ K ′n,d+1, a contradiction. This proves the theorem.

2

7 A comment and a question

• It was shown in Section 4 that the right order of magnitude of n0(d, t) in Theorem 4 when

d = O(t) is dt. We can also show this when d = O(t3/2). It could be that dt is the right order

of magnitude of n0(d, t) for all d and t.

• Is there a graph F and positive integers d, n with n < n0(d, t) and d ≤ b(n− 1)/2c such that

for some n-vertex nonhamiltonian graph G with minimum degree at least d,

N(G,F ) > max{N(Hn,d), F ), N(K ′n,d, F ), N(Hn,b(n−1)/2c, F )}?
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tonian graphs, to appear in Discrete Math.

Also see: arXiv:1608.05741, posted on August 19, 2016, 4 pp.

18
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