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A TANGLEGRAM KURATOWSKI THEOREM

ÉVA CZABARKA, LÁSZLÓ A. SZÉKELY AND STEPHAN WAGNER

Abstract. A tanglegram consists of two rooted binary plane trees with the same number
of leaves and a perfect matching between the two leaf sets. Tanglegrams are drawn with
the leaves on two parallel lines, the trees on either side of the strip created by these lines,
and the perfect matching inside the strip. If this can be done without any edges crossing,
a tanglegram is called planar. We show that every non-planar tanglegram contains one of
two non-planar 4-leaf tanglegrams as induced subtanglegram, which parallels Kuratowski’s
Theorem.

1. introduction

Kuratowski’s Theorem [8], a cornerstone of graph theory, asserts that a graph is non-
planar if and only if it contains a subdivision of K3,3 or K5. This is not the only character-
ization of planarity: Wagner’s Theorem [13] asserts that a graph is non-planar if and only
if K3,3 or K5 is a minor of the graph. Tanglegrams are a special kind of graph, consisting
of two binary trees of the same size and a perfect matching joining the leaves, with restric-
tions on how they can be drawn. Tanglegrams are well studied objects in phylogenetics and
computer science. Planarity of tanglegrams is directly characterized by Kuratowski’s The-
orem in terms of subgraphs, if the tanglegram is augmented by a certain edge (Lemma 1).
In this paper we provide a characterization of planarity of tanglegrams not in terms of its
subgraphs, but in terms of other tanglegrams (Theorem 4). As tanglegrams are not widely
known objects, we immediately turn to the technical definitions.

2. Tanglegrams

A plane binary tree has a root vertex assumed to be a common ancestor of all other
vertices, and each vertex either has two children (left and right) or no children. A vertex
with no children is a leaf, and a vertex with two children is an internal vertex. Note that
this definition allows a single-vertex tree that is considered as both root and leaf to be a
rooted binary tree. A plane binary tree is easy to draw on one side of a line, without edge
crossings, such that only the leaves of the tree are on the line.

A tanglegram layout (L,R, σ) consists of a left plane binary tree L with root r drawn in
the halfplane x ≤ 0, having its leaves on the x = 0 line, a right plane binary tree R with
root ρ, drawn in the halfplane x ≥ 1, having its leaves on the x = 1 line, each with n leaves,
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Figure 1. Results of a switch and a mirror operation.

No. 1 No. 2 No. 3 No. 4 No. 5

No. 6 No. 7 No. 8 No. 9 No. 10

No. 11 No. 12 No. 13

Figure 2. The 13 tanglegrams of size 4 from [7].

and a perfect matching σ between their leaves drawn in straight line segments. We treat
tanglegram layouts combinatorially, and understand them as ordered triplets (L,R, σ). A
switch on the tanglegram layout (L,R, σ) is the following operation: select an internal
vertex v of one of the two trees L and R. Vertex v in L has an up-subtree Lu and a
down-subtree Ld, with leaf sets L(Lu) and L(Ld) (or vertex v in R has an up-subtree Ru

and a down-subtree Rd, with leaf sets L(Ru) and L(Rd)). In the first case interchange Lu

and Ld such that on the line x = 0 the order of two leaves changes precisely when one is in
L(Lu) and the other is in L(Ld). In the second case interchange Ru and Rd such that on
the line x = 1 the order of two leaves changes precisely when one is in L(Ru) and the other
is in L(Rd). The edges of the matching move with the leaves that they connect during the
switch. This is also illustrated in Figure 1.

Two layouts represent the same tanglegram if a sequence of switches moves one layout
into the other. For an internal vertex v, one may also take the mirror image of the subtree
rooted at v. This is called the mirror operation at vertex v, which is illustrated in Figure 1.
Matching edges still connect the corresponding leaves. As the mirror operation can be
obtained by doing a sequence of switch operations from v down towards the leaves, mirror
operations do not change the tanglegram. Tanglegrams partition the set of tanglegram
layouts, or equivalently a tanglegram can be seen as an equivalence class of tanglegram



A TANGLEGRAM KURATOWSKI THEOREM 3

layouts. Note that interchanging L and R is not allowed and may result in a different
tanglegram.

The size of a tanglegram is the number of leaves in L (or R) in any of its layouts. Billey,
Konvalinka, and Matsen [1] considered the enumeration problem for tanglegrams: they
obtained an explicit formula for the number tn of tanglegrams with n leaves on each side.
The counting sequence starts

1, 1, 2, 13, 114, 1509, 25595, 535753, 13305590, 382728552, . . . .

Figure 2 illustrates the fourth term in this sequence. The asymptotic formula

tn ∼ n! ·
e1/84n−1

πn3

was derived in [1] as well, and a number of questions on the shape of random tanglegrams
were asked. Those were answered in [7] by means of a strong structure theorem.

3. Tanglegram crossing number and planarity of tanglegrams

The crossing number of a tanglegram layout is the number of crossing pairs of matching
edges. The crossing number of a tanglegram layout does not depend on details of the
drawing, such as the exact positions of leaves on the vertical lines, just on the rankings of
the matched leaves in the linear orders of leaves on the lines x = 0 and x = 1. This fact
justifies the combinatorial treatment of tanglegram layouts for studying crossings.

It is desirable to draw a tanglegram with the least possible number of crossings, which
is known as the Tanglegram Layout Problem [14]. This problem is NP-hard [4]. The
(tanglegram) crossing number crt(T ) of a tanglegram T is defined as the minimum number
of crossings among its layouts.

Tanglegrams play a major role in phylogenetics, especially in the theory of cospeciation.
The first binary tree is the phylogenetic tree of hosts, while the second binary tree is the
phylogenetic tree of their parasites, e.g. gopher and louse [5]. The matching connects the
host with its parasite. The tanglegram crossing number has been related to the number
of times parasites switched hosts [5], or, working with gene trees instead of phylogenetic
trees, to the number of horizontal gene transfers ([2], pp. 204–206).

A tanglegram is planar if it has zero tanglegram crossing number; in other words, if
it has a layout without crossing matching edges. Otherwise it is called non-planar. In
an earlier paper [3] we showed that the tanglegram crossing number of a randomly and
uniformly selected tanglegram of size n is Θ(n2) with high probability, i.e. as large as it can
be within a constant multiplicative factor. As one would therefore expect, the number of
planar tanglegrams of size n grows much more slowly than the total number of tanglegrams.
The counting sequence pn starts

1, 1, 2, 11, 76, 649, 6173, 63429, 688898, 7808246, . . . ,

and an asymptotic formula of the form

pn ∼ A · n−3 · Bn,

where A and B are constants, holds [10].
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Recall [12] that a drawing of a graph G in the plane places the vertices of G on distinct
points in the plane and then, for every edge uv in G, draws a continuous simple curve
in the plane connecting the two points corresponding to u and v, in such a way that no
curve has a vertex point as an internal point. The crossing number cr(G) of a graph G is
the minimum number of intersection points among the interiors of the curves representing
edges, over all possible drawings of the graph, where no three edges may have a common
interior point.

Note that the (graph) crossing number cr(T ) of a tanglegram T is less or equal to the
(tanglegram) crossing number crt(T ) of T , since the tanglegram layout is more restrictive
than the graph drawing. The following lemma is essentially taken from [3]:

Lemma 1. Assume that a tanglegram T is represented by the layout (L,R, σ), and let the
roots of L and R be r and ρ. Let T ∗ denote the graph in which the underlying graph of T
(consisting of the two binary trees and the matching edges) is augmented by the edge rρ.
Then the following facts are equivalent:

(1) crt(T ) ≥ 1,
(2) cr(T ∗) ≥ 1,
(3) T ∗ contains a subdivision of K3,3.

Proof. (1)⇒(2). This is equivalent with cr(T ∗) = 0 ⇒ crt(T ) = 0. If cr(T ∗) = 0 then T ∗

can be drawn in the plane with straight lines. This means both the left and right trees
are drawn with straight lines, and we can draw a curve in the plane that goes through
each matching edge once and no other edges of T ∗ (the latter can be easily proven e.g. by
induction on the number of leaves). Using the order of the leaves on this curve, one can
easily obtain the desired planar layout of T .
(2)⇒(3) follows from Kuratowski’s Theorem, as T ∗ cannot contain a subdivision of K5.
This is because none of its vertices has degree greater than 3.
(3)⇒(1) is proved by the contrapositive: if T was to admit a planar tanglegram layout,
then we could add the additional edge between r and ρ, creating a planar drawing of the
graph T ∗. �

Note that a subdivision of a K3,3 in the tanglegram T ∗ may be such that the six vertices
of K3,3 are all in L or all in R.

Now consider the tanglegrams T1 and T2 below, No. 6 and 13 in Figure 2, each augmented
with the extra edge connecting the roots. Figure 3 shows a layout with one crossing for
the tanglegrams T1 and T2, and a subdivision of K3,3 in the graphs T ∗

1
and T ∗

2
, showing

crt(T1) = crt(T2) = 1 in view of Lemma 1.
As it turns out, these two are the only non-planar tanglegrams of size 4 (cf. Corollary 5).

All others that have crossings in Figure 2, can in fact be drawn without crossings. For
example, Figure 4 shows a crossing-free drawing of tanglegram No. 2.

In the following, we will show that the two non-planar tanglegrams of size 4 are in fact
sufficient to characterize non-planarity of tanglegrams in the same way that K5 and K3,3

characterize non-planarity of graphs: every non-planar tanglegram has to contain at least
one of the two.



A TANGLEGRAM KURATOWSKI THEOREM 5

1

2′

3′

2

3

1′1′

3
2′1

3′
2

Figure 3. Finding copies of K3,3 in tanglegrams No. 6 and No. 13 after
adding edges between the roots [3].

Figure 4. A drawing of tanglegram No.2 without crossings.

4. Induced subtanglegrams

In a rooted plane binary tree B with root r, a choice L of a set of leaves induces another
rooted binary tree by taking the smallest subtree containing these leaves and designating
as new root (which we will denote by rL) the vertex of the subtree closest to the old root,
and suppressing all vertices of degree 2 other than the root, see Figure 5. The study of
induced binary subtrees of (rooted or unrooted) leaf-labeled binary trees is topical in the
phylogenetic literature [11]. It is immediate that for any v ∈ L the vertex rL lies on the
unique path between r and v. For brevity, we use the notation rxy instead of r{x,y}.

Given a layout of the tanglegram T with left binary tree L with root r and right binary
tree R with root ρ and a set E of matching edges between the leaf sets of the left and
right binary plane trees, E identifies a subset of leaves on both sides. These leaf sets
induce respectively a left and right induced binary plane tree, which define a layout of a
tanglegram T ′ when we put back the edges of E between the corresponding leaves. We say
that E induces this sublayout of the original layout of tanglegram T , and we call T ′ the
subtanglegram of tanglegram T induced by the matching edge set E. As the sublayout and
switch operators commute, this definition does not depend on the particular layout of T , it
just depends on the tanglegram. We will use rE and ρE for the vertices in T corresponding
to the roots of the left and right subtrees of this induced subtanglegram. There is a natural
partial order by inclusion on the set of induced subtanglegrams of a given tanglegram.
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ℓ1 ℓ2 ℓ3 ℓ4

r

rℓ1ℓ2ℓ3ℓ4

ℓ1 ℓ2 ℓ3 ℓ4

Figure 5. A rooted binary tree with root r, four leaves ℓ1, ℓ2, ℓ3, ℓ4 selected,
the vertex rℓ1ℓ2ℓ3ℓ4 and the tree induced by the selected leaves.

e1

e2

e3

ρe1e2e3
re1e2e3 = r ρ

e1

e2

e3

Figure 6. A tanglegram T with matching edges e1, e2, e3 selected, the ver-
tices re1e2e3 and ρe1,e2,e3, and the subtanglegram induced by the selected
edges.

Sometimes we put scars on the edges of induced subtanglegrams to remember where
the eliminated matching edges were connected to the surviving part. Let e ∈ σ \ E be
a matching edge in a layout of the tanglegram T . When we consider LE and RE , the
smallest subtrees of L and R that contain the leaf set corresponding to E, the unique path
connecting e to r in L either enters LE at a vertex of degree 2 or does not enter LE at
all, and similarly, the unique path connecting e to ρ in R either enters RE at a vertex of
degree 2 or does not enter RE at all. We refer to these degree 2 vertices (when they exist)
as the hosts of e in LE and RE . A single vertex can host several other matching edges not
in E. Hosts in LE (respectively in RE) are in a natural partial order by separation from r
(respectively ρ).

Scars are markings on the edges of the induced subtanglegram, corresponding to the host
vertices and following the natural partial order above, such that every scar marks the names
of all edges hosted. Note that the partial order of the scars and the corresponding marks
do not depend on the layout, they only depend on the tanglegram. Figure 7 illustrates a
scar.

The following lemmata will be used to prove our main result:
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e1

e2

e3

f

e1

e2

e3f

Figure 7. The scar of edge f in the example of Figure 6. Notice that the
right tree does not have a scar for f .

Lemma 2. If F is a planar tanglegram with a distinguished marked non-matching edge,
such that in every planar layout of F , the marked edge does not lie on the boundary of the
infinite face, then F has a set of three edges E that induces the following subtanglegram S,
where the marked edge lies on one of the paths of F corresponding to the bold edges.

S

Figure 8. The subtanglegram S.

Proof. Let the left and right tree of F be L and R with roots r and ρ respectively, and σ
denote the set of matching edges. We denote the marked edge by m and assume without
loss of generality that m is an edge of R (the argument is the same otherwise with the roles
of L and R exchanged). Consider the unique path P in R that starts from ρ and whose
last edge is m. Let m∗ be the edge of P closest to ρ that does not lie on the boundary of
any planar layout of F (potentially m∗ = m).

r
re1e2 ρ∗

ρ

e3

e2

e1
r

re2e3

ρ∗

ρ

e3

e2

e1

Figure 9. The possible subtanglegrams of F induced by e1, e2, e3. The edge
containing m∗ is bold.

Consider a planar layout of F where one endpoint of m∗ (which we will denote by ρ∗) lies
on the boundary of the infinite face; by the definition of m∗ such a layout exists. Without
loss of generality it is the lower of the two r-ρ paths on the boundary. Let E∗ be the set
of matching edges on the leaves of the subtree of R rooted at ρ∗. By our assumptions
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ρ 6= ρ∗, |E∗| ≥ 2, E∗ 6= σ, and all edges of E∗ lie below all edges of M \ E∗ in the layout.
Let e1 ∈ E∗ and e3 ∈ σ \ E∗ be the matching edges of F that are on the boundary of the
infinite face of the layout and let e2 ∈ E∗ be the edge that lies above all other edges of E∗

in the layout; so we have ρ = ρe1e3 , r = re1e3 and ρ∗ = ρe1e2 (See Figure 9). We must have
r ∈ {re1e2 , re2e3}. If r = re2e3, then re1e2 lies on the unique r-e1 path in L, and performing
a mirror operation on re1e2 and ρ∗ results in a planar layout of F where m∗ lies on the
boundary of the infinite face, which is a contradiction. Therefore we must have r = re1e2 ,
and re2e3 lies on the unique r-e3 path in L.

r
ρ∗

ρ

f

e3

e2

e1

ρfe2
r

ρ∗

ρ

f

e3

e2

e1

ρfe2

when r = rfe1

r
ρ∗

ρ

f

e3

e2

e1

ρfe2

when r = rfe2

Figure 10. The possible subtanglegrams of F induced by e1, e2, e3, f . The
edge containing m is bold.

If m lies on the unique ρ∗-e2 path in R (including the case that m = m∗), then the
subtanglegram induced by e1, e2, e3 satisfies the conclusion of our lemma and we are done.
Otherwise let f be any matching edge such that m lies on the unique ρ∗-f path in R. By
our assumptions, f /∈ {e1, e2}, f lies between e1 and e2 in our planar layout and ρfe2 lies
on the unique ρ∗-e2 path in R (Figure 10). We have r ∈ {re1f , re2f}. If r = re1f , then the
subtanglegram of F induced by e1, e3, f satisfies the conclusion of our lemma. If r = re2f ,
then the subtanglegram induced by e1, e2, f satisfies the conclusion. Either way, we are
done. �

Lemma 3. Let F be a tanglegram with two sets of matching edges, E1, E2, such that
E1 ∩E2 = {f} and E1 ∪ E2 contains all matching edges of F . For i ∈ {1, 2}, let Fi be the
subtanglegram induced by Ei, and assume that the scars of the edges of E1 in F2 as well
as the scars of the edges of E2 in F1 are on a unique root-to-root path containing f but
no other matching edge. If F1 and F2 each have planar layouts in which the two matching
edges on the boundary of the infinite face are f and e1 and correspondingly f and e2, then
F has a planar layout in which the matching edges on the boundary of the infinite face are
e1 and e2.

Proof. Let the left and right roots of F be r and ρ respectively, and let P be the unique
r-ρ path in F containing f but no other matching edges, and let r1, ρ1 and r2, ρ2 be the
left and right roots of F1 and F2 respectively. From the assumptions on f we get that
r1, r2, ρ2, ρ2 lie on P .
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The conditions on F1 and F2 imply that F1 has a planar layout such that the r1-ρ1 path
P1 containing f lies on a straight line, all other edges of F1 lie above this line and e1 is on
the boundary of the infinite face; also, F2 has a planar layout such that the r2-ρ2 path P2

containing f lies on a straight line, all other edges of F2 lie below this line and e2 is on
the boundary of the infinite face. Since the order of vertices on P is independent of the
drawings, P1 and P2 can be obtained from subpaths of P by suppressing some vertices, so
these two layouts can be merged into the required planar layout of F ; see Figure 11 for an
illustration of this lemma. �

e1

f

e2

E2

E1

Figure 11. Illustration of Lemma 3.

5. Crossing-critical tanglegrams

Another key concept in this paper is that of a crossing-critical tanglegram. A tanglegram
is crossing-critical if it is non-planar, but every proper induced subtanglegram of it is planar.
For example, tanglegrams No. 6 and No. 13 are crossing-critical. Clearly any non-planar
tanglegram contains a crossing-critical induced subtanglegram.

Theorem 4. The only crossing-critical tanglegrams are No. 6 and No. 13. Therefore,
every non-planar tanglegram contains No. 6 or No. 13. as an induced subtanglegram.

Corollary 5. The remaining eleven tanglegrams of size 4 in Figure 2 are planar.

Corollary 6. For every non-planar tanglegram T , the augmented graph T ∗ contains a
subdivision of K3,3, where three of the original vertices of the K3,3 are located in L and the
other three in R.

It would be interesting to see if a more general theorem holds for tanglegrams exhibiting
an even higher degree of non-planarity:
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Question 1. For an integer k ≥ 3, is there a characterization of tanglegrams that have k
pairwise crossing matching edges in every layout, in terms of a finite list of tanglegrams
that they must have as induced subtanglegrams, analogous to Theorem 4?

Proof of Theorem 4. Assume that T is a crossing-critical tanglegram, with left subtree L
rooted at r and right subtree R rooted at ρ. Let Lu, Ld be the rooted subtrees of L rooted
at the neighbors ru and rd of r and Ru, Rd be the rooted subtrees of R rooted at the
neighbors ρu and ρd of ρ. Since the leaves of both Lu and Ld are matched to the leaves of
at least one of Ru and Rd, and vice versa, we may assume without loss of generality that
there are matching edges between Lu and Ru, and between Ld and Rd. (If this is not the
case, we can achieve this situation using switch operations.)

Denote the non-empty set of matching edges between Lu and Ru by Eu, and between Ld

and Rd by Ed, and let Em be the (potentially empty) set of matching edges not in Eu∪Ed.
Let Tu and Td be the subtanglegrams of T induced by the matching edges Eu and Ed,

respectively. Since T is crossing-critical, both Tu and Td are planar tanglegrams.
If Em = ∅ (part (a) in Figure 12) then T has a planar layout (just put the planar layouts

of Tu and Td above each other, and connect the vertex r to the left roots of Tu and Td, and
ρ to the right roots of Tu and Td), which is a contradiction. Therefore Em 6= ∅.

If Em contains a matching edge g between Lu and Rd and a matching edge f between Ld

and Ru (part (b) in Figure 12), then let e ∈ Eu and h ∈ Ed. The subtanglegram induced
by the edges e, f, g, h in T is No. 13, and we are done. So we are left to consider the case
when only one of the pairs Lu, Rd and Ld, Ru has matching edges between them, in this
case without loss of generality (using the mirror image operation at r and ρ, if needed) Em

is the non-empty set of matching edges between Lu and Rd (part (c) in Figure 12).

r ρ

Lu

Ld

Ru

RdL R

(a)

r ρ

Lu

Ld

Ru

Rd

e

h

g

fL R

(b)

r ρ

Lu

Ld

Ru

RdL R

(c)

Figure 12. Case analysis on the qualitative distribution of matching edges
between subtrees of L and R. Dashed lines mark the existence of matching
edges between the subtrees.

We will consider two cases:
Case (A): min(|Eu|, |Ed|) ≥ 2. We are going to show that this does not happen in a

crossing-critical tanglegram T .
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Let e ∈ Ed and consider the subtanglegram T ′ induced by all matching edges except e with
left tree L′ and right tree R′. T ′ is planar, contains Tu as a subtanglegram, and contains
the vertices ρu and ρd. As the unique path from the root to a matching edge in R′ passes
through ρu for every matching edge in Eu and passes through ρd for every matching edge
in Ed ∪Em, in any planar layout of T ′ the edges of Eu appear contiguously, and the edges
of Em appear on only one side of them. Consequently, any planar layout of T ′ gives a
planar sublayout of Tu where all scars from Em lie on the same root-to-root path bordering
the infinite face; denote the matching edge which this path travels through by fu. Similar
logic gives that Td has a planar layout in which all scars lie on the same root-to-root path
bordering the infinite face, denote the matching edge which this path travels through by
fd. Let T ′′ be the tanglegram induced by Em ∪ {fu, fd}. Consider a planar layout of T ′′

(as T is crossing-critical, such a layout exists), without loss of generality (up to a mirror
operation) fu lies above fd in this layout. Let Pu be the unique shortest path leading
from r to fu and Pd be the unique shortest path leading from ρ to fd, and let g ∈ Em be
arbitrary. Consider the vertical strip between the two vertical lines going though r and ρ
– this is the region where T ′′ is drawn. The r-ρ paths containing fu and fd and no other
matching edge cut this strip into three subregions, and g must lie in the unique subregion
that borders both Pu and Pd. That means g lies between fu and fd in this planar layout
of T ′′, and consequently in any planar layout of T ′′, fu and fd are on the boundary of the
infinite face. Two applications of Lemma 3 (first on T ′′ and Tu using the common edge fu,
then on the resulting tanglegram and Td using the common edge fd) show that T itself has
a planar layout, which is a contradiction.

r ρ
rg,fu

ρg,fd

fu

fd

Pu

Pd

Figure 13. Analysis of a planar drawing of the subtanglegram T ′′. The
white region between the dotted vertical lines is where T ′′ is drawn.

Case (B): min(|Eu|, |Ed|) = 1. We are going to exhibit No. 6 as an induced subtangle-
gram in T .
Assume first that |Ed| = 1, and let e be the single matching edge between Ld and Rd. This
means in particular that Ld consists of a single leaf vertex rd that is matched by the edge
e. Now, by the crossing-criticality of T , the subtanglegram induced by all matching edges
but e, denoted by T̂ , is planar, and a non-matching edge of its right subtree, R̂, has a scar
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marking e (this scar exists, as Rd has leaves matched by Em and therefore ρσ\{e} = ρ). If T̂
has a planar layout in which the marked edge is on the boundary of the infinite face, then
T has a planar layout, contradicting the crossing-criticality of T . Therefore in all planar
layouts of T̂ , the marked edge is not on the boundary of the infinite face. Lemma 2 shows
that T̂ contains the subtanglegram S with the mark m positioned as in Figure 14, and,
using the fact that r is connected to one of the endpoints of e, we find that the subtangle-
gram induced by the edges a, b, c, e is No. 6, so we are done. If |Eu| = 1, the argument is
essentially the same after exchanging the roles of L and R. �

r ρabc

rabc
m

a

b

c

e

Figure 14. Finding subtanglegram No. 6 in T starting from a copy of S
drawn in bold.
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