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POLYNOMIAL RELATIONS BETWEEN MATRICES OF GRAPHS

SAM SPIRO

Abstract. We derive a correspondence between the eigenvalues of the adja-
cency matrix A and the signless Laplacian matrix Q of a graph G when G is
(d1, d2)-biregular by using the relation A2 = (Q − d1I)(Q − d2I). This moti-
vates asking when it is possible to have Xr = f(Y ) for f a polynomial, r > 0,
and X, Y matrices associated to a graph G. It turns out that, essentially, this
can only happen if G is either regular or biregular.

Keywords: Combinatorics; Spectral Graph Theory; Biregular Graphs.

1. Introduction

For G a simple graph, we let A denote the adjacency matrix of G and D the
diagonal matrix of vertex degrees of G. We define the signless Laplacian matrix
Q of G by Q = D + A, the Laplacian matrix L of G by L = D − A, and when
G has no isolated vertices, we define the normalized Laplacian matrix L of G
by D−1/2LD−1/2. For more detailed information about these matrices see, for
example, [2].

A graphG is said to be (d1, d2)-biregular (sometimes called semiregular) if V1∪V2

is a partition of the vertices of G such that no two vertices of Vi are adjacent to
one another (so G is bipartite), and for all v ∈ Vi, dv = di. A graph is said to be
biregular if it is (d1, d2)-biregular for some d1, d2.

When G is biregular it is possible to directly relate the eigenvalues of A and Q
through the following formula of [3].

Theorem 1.1. If G is (d1, d2)-biregular with |Vi|= ni, n1 ≥ n2, and λ1, . . . , λn2

are the n2 largest eigenvalues of A in decreasing order, then

QG(x) = x(x − d1 − d2)(x− d1)
n1−n2

n2
∏

i=2

((x− d1)(x − d2)− λ2
i ),

where QG(x) denotes the characteristic polynomial of Q.

Theorem 1.1 was proved in [3] by using arguments involving the line graph of
G. In this paper we present an independent derivation of this theorem using the
relation

A2 = (Q − d1I)(Q − d2I).

Given this derivation, it is natural to ask what other graphs G satisfy Ar = f(Q)
for some polynomial f and positive integer r. More generally, one can ask what
G satisfy Xr = f(Y ) when X and Y are matrices associated to the graph G. Of
the cases we consider, the only graphs found to have this property are graphs that
are either regular or biregular. We summarize our results in the following theorem,
where we note that the first part of the theorem is clear from the definitions of
Q, L and L.
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Theorem 1.2. Let G be a connected graph, r a positive integer and f a polynomial.

• If G is regular, then Xr = f(Y ) can occur if X, Y are any of A, Q, L or
L. Moreover, all of these matrices can be related to one another by a linear
equation.

• If G is (d1, d2)-biregular, then Xr = f(Y ) can occur if X = A and Y =
Q, L, or L, or when X = L and Y = A. Specifically, we have

(Q − d1I)(Q − d2I) = (L − d1I)(L − d2I) = A2

L = I − 1√
d1d2

A.

Moreover, if X, Y are any other pair from A, Q, L,L then no such relation
exists.

• If G is not regular or biregular, then Xr = f(Y ) can not hold if X, Y are
any distinct matrices of A, Q, L, L, except possibly for the case Ar = f(L).

We establish the following conventions. Whenever Xr = f(Y ) is written it is
assumed that f is a polynomial and r is a positive integer. We assume throughout
this paper that G is a connected graph, though we emphasize this point in the
statement of our theorems. 1 will denote the vector of all 1’s. mi(u, v) will denote
the number of walks of length i between the vertices u and v in the graph G. We
note that (Ai)uv = mi(u, v) (see Theorem 1.1 of [6], for example). For a matrix
M we let Eλ(M) denote the eigenspace of M with corresponding eigenvalue λ.
V (G) and E(G) will denote the set of vertices and the set of edges of the graph G
respectively.

The structure of the paper is as follows. In Section 2 we derive Theorem 1.1
and in Section 3 we apply this theorem to count the number of spanning trees
of biregular graphs. In Sections 4 and 5 we establish necessary conditions for G
to satisfy Xr = f(Y ) with X, Y equal to A, Q, L, and L. Lastly, in Section 6
we briefly explore the more general question of establishing relations of the form
f(X) = g(Y ) where f and g are both polynomials and X and Y are matrices
associated to a graph G.

2. Relating Eigenvalues of A and Q

Proposition 2.1. If G is a (d1, d2)-biregular graph, then

A2 = (Q − d1I)(Q − d2I).

Proof. Let Q′ = (Q−d1I)(Q−d2I). By definition, Q′
uv is equal to the dot product

of the uth row of Q− d1I with the vth column of Q− d2I. From these definitions
we have that

Q′
uv = (du − d1)m1(u, v) + (dv − d2)m1(v, u)+

∑

w 6=u,v

m1(u,w)m1(w, v)

= (du + dv − d1 − d2)m1(u, v)+
∑

w 6=u,v

m1(u,w)m1(w, v).

If u, v ∈ Vi, then m1(u, v) = 0 and we are left with
∑

w 6=u,v m1(u,w)m1(w, v) =

m2(u, v). If, say, u ∈ V1, v ∈ V2, then m1(u,w)m1(w, v) = 0 for all w 6= u, v, and
further, du + dv − d1 − d2 = 0. Thus in this case Q′

uv = 0 = m2(u, v) (since the
graph is bipartite and u, v belong to different partition classes). We conclude that
for all u, v that Q′

uv = m2(u, v) = (A2)uv, completing the proof. �
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We note that through an analogous computation one can show that if G is
biregular, then

A2 = (L− d1I)(L − d2I).

We also note that every result in this section remains valid, except for straightfor-
ward changes of some signs, if one replaces Q with L.

Corollary 2.2. Let G be a (d1, d2)-biregular graph. If q1, . . . , qn are the eigenvalues
of Q, then (q1 − d1)(q1 − d2), . . . , (qn − d1)(qn − d2) are the eigenvalues of A2.

Moreover, if λ is an eigenvalue of A2 and q1, q2 are the solutions to the equation
λ = (x− d1)(x − d2), then Eq1 (Q)⊕ Eq2 (Q) = Eλ(A

2).

Proof. Let V ′ = {v1, . . . , vn} be a basis of eigenvectors of Q with Qvi = qivi, which
exists because Q is symmetric and hence diagonalizable. Then

A2vi = (Q− d1I)(Q− d2I)vi = (qi − d1)(qi − d2)vi,

so vi will be an eigenvector of A2 with the desired eigenvalue. From this it is also
clear that a basis for Eq1 (Q)⊕Eq2 (Q) is also a basis for Eλ(A) when q1, q2 are the
solutions to λ = (x− d1)(x− d2). �

From Corollary 2.2 it is possible to translate from the eigenvalues of Q to the
eigenvalues of A when G is biregular. Namely, because G is bipartite, A’s spectrum
will be symmetric about 0 (see Proposition 3.4.1 of [1]), so knowing the eigenvalues
(with multiplicity) of A2 is equivalent to knowing the eigenvalues (with multiplicity)
of A.

What is less obvious is that the converse of the above statement is true. That
is, given the eigenvalues of A when G is biregular, one can compute the eigenvalues
of Q. Certainly we know that if λ2 is an eigenvalue of A2 then Q must have an
eigenvalue q satisfying (q−d1)(q−d2) = λ2, but if d1 6= d2 then it is not clear which
root of this equation correctly corresponds to the eigenvalue in Q (if d1 = d2 then
G is regular and there is only one root to choose). To figure out the multiplicities
of the eigenvalues of Q we will need the following lemma.

Lemma 2.3. Let G be (d1, d2)-biregular with d1 6= d2 and let v be an eigenvector
of A with eigenvalue λ 6= 0. Then v is not an eigenvector of Q.

Proof. Assume that Qv = µv. Then Dv = (Q − A)v = (µ − λ)v, so v is also
an eigenvalue of D. This implies that µ − λ = di for i = 1 or 2, and hence the
set V ′ = {u : vu 6= 0} lies entirely in the corresponding Vi. But if u ∈ V ′ then
(Av)u = 0, as all of the neighbors of u belong to the other partition class and hence
are given 0 weight in v. Since vu 6= 0 and λvu = (Av)u = 0, we must have λ = 0,
contradicting the assumption that this is not the case. �

Lemma 2.4. For G a (d1, d2)-biregular graph, let λ2 6= 0 be an eigenvalue of
A2 with dimEλ2(A2) = m and let q1, q2 be the two roots of the equation λ2 =
(x− d1)(x − d2). Then dimEq1(Q) = dimEq2(Q) = m/2.

Proof. Note first that since λ2 6= 0 and G is bipartite, m is even and m/2 is an
integer. Moreover, dimEλ(A) = dimE−λ(A) = m/2 and Eλ(A) ⊕ E−λ(A) =
Eλ2(A2). By Corollary 2.2 we have Eq1(Q) ⊕ Eq2 (Q) = Eλ2(A2). If dimEqi(Q) >
m/2, then we must have Eqi(Q)∩Eλ(A) 6= {0} by a dimensionality argument, but
this can’t happen by Lemma 2.3 and from the assumption that λ 6= 0. We conclude
that dimEqi (Q) ≤ m/2, and since dimEq1 (Q) + dimEq2(Q) = m, we must have
dimEq1(Q) = dimEq2(Q) = m/2. �
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Lemma 2.5. If G is a biregular graph with |V1|= n1, |V2|= n2, n1 ≥ n2 and
dimE0(A) = m, then dimEd1

(Q) = n1 − n2 + k, dimEd2
(Q) = k where k =

m−(n1−n2)
2 .

Proof. Let Z1 denote the set of null-vectors of A whose non-zero coordinates lie
entirely in V1, and similarly define Z2. It is not difficult to see that Z1⊕Z2 = E0(A).
Moreover, if v ∈ Zi then

div = Dv = Qv −Av = Qv,

so Zi ⊆ Edi(Q). Since d1, d2 are the unique roots of 0 = (x−d1)(x−d2), it follows
from Corollary 2.2 that

Ed1
(Q)⊕ Ed2

(Q) = E0(A) = Z1 ⊕ Z2,

and this implies that Zi = Edi(Q). Thus it will be sufficient to prove that dimZ1−
dimZ2 = n1 − n2.

Let M be the n1 × n2 sub-matrix of A whose rows are indexed by V1 and whose
columns are indexed by V2. Let r be the rank of this matrix. Then the null-space
of M has dimension n2−r. Moreover if v ∈ Z2, one can construct a vector v′ in the
null space of M by setting v′u = vu. It isn’t difficult to see that the correspondence
between v and v′ is a bijection between vectors of Z2 and null-vectors of M , and
moreover this mapping implies that dimZ2 = n2 − r. The same argument on MT

shows that dimZ1 = n1 − r, and hence that dimZ1 − dimZ2 = n1 − n2, proving
the statement. �

Proof of Theorem 1.1. The characteristic polynomial of Q is the monic polynomial
whose roots are the eigenvalues of Q with corresponding multiplicity. For each
positive eigenvalue λ of A, the two roots of (x−d1)(x−d2)−λ2 will be eigenvalues
of Q by Lemma 2.4. Note that this will account for all of the eigenvalues of Q
except for the eigenvalues d1 and d2. Also note that all of the positive eigenvalues
of A are included in the n2 largest eigenvalues of A because G is bipartite.

If A has n2 − k positive eigenvalues, then it must have n1 − n2 + 2k eigenvalues
equal to 0, meaning Q has d1 as an eigenvalue with multiplicity n1 −n2 + k and d2
with multiplicity k by Lemma 2.5. Thus if λ1, . . . , λn2

are the n2 largest eigenvalues
of A, the eigenvalues of Q agree with the roots of

(x− d1)
n1−n2

(

k
∏

i=1

(x− d1)(x − d2)

)(

n2−k
∏

i=1

((x− d1)(x− d2)− λ2
i )

)

= (x− d1)
n1−n2

n2
∏

i=1

((x− d1)(x− d2)− λ2
i ),

so this must equal QG(x).
We lastly note the following fact stated in [3]: if G is a connected (d1, d2)-

biregular graph, then
√
d1d2 will be the largest eigenvalue of A, and the two roots

of d1d2 = (x− d1)(x − d2) are x = 0 and x = d1 + d2. Thus to get the exact form
as written in Theorem 1.1 we simply pull out the factor (x − d1)(x − d2) − λ2

1 =
x(x− d1 − d2) from the product. �
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3. Spanning Trees

We provide an application of Theorem 1.1, namely that of counting spanning
trees of biregular graphs. Our main tool will be the Matrix-Tree theorem, a proof
of which can be found in [6].

Theorem 3.1 (Matrix-Tree theorem). Let µ1 = 0, µ2, . . . , µn denote the eigenval-
ues of the Laplacian matrix L of G. The number of spanning trees of G is equal
to

µ2 · µ3 · · ·µn

|V (G)| .

If G is bipartite then Q and L will have the same spectrum (see Proposition 1.3.10
of [1]). Thus if we can compute the eigenvalues of A when G is biregular, we can
use our previous results to obtain the eigenvalues of Q, and hence of L, in order to
compute the number of spanning trees of G by the Matrix-Tree theorem.

Theorem 3.2. If G is a (d1, d2)-biregular graph with |Vi|= ni, n1 ≥ n2, and
λ1, . . . , λn2

are the largest eigenvalues of A, then the number of spanning trees of
G will be

(d1 + d2)d
n1−n2

1

∏n2

i=2(d1d2 − λ2
i )

n1 + n2
.

Proof. By the Matrix-Tree theorem, the number of spanning trees of G will be
equal to the product of the n− 1 largest eigenvalues of L divided by n1+n2. Since
G is bipartite, this is equivalent to taking the product of the eigenvalues of Q after

ignoring a 0 eigenvalue and dividing by n1 + n2, and this will simply be QG(x)
(n1+n2)x

evaluated at x = 0. By using this and Theorem 1.1, one arrives at the desired
result. �

Let Cn denote the n-cube, i.e. the graph whose vertices are n-length bit strings
and two strings are adjacent if their hamming distance is 1. Define Cn,k to be the
subgraph of Cn induced by all vertices of Cn that have either k − 1 or k 1’s.

Theorem 3.3. The number of spanning trees of Cn,k when k ≤ n/2 is

(n+ 1)k(
n
k)−(

n
k−1

)∏k−1
i=1 ((k − i)(i+ n− k + 1))(

n
k−i)−(

n
k−i−1

)
(

n
k

)

+
(

n
k−1

) .

Proof. From the definition of Cn,k it is clear that this graph is (k, n − k + 1)-
biregular with |V1|=

(

n
k

)

, |V2|=
(

n
k−1

)

, and we have |V1|≥ |V2| since k ≤ n/2. It

was proven in Theorem 2.12 of [5] that the squares of the |V2| largest eigenvalues
of the adjacency matrix of Cn,k are i(n − 2k + i + 1) for 1 ≤ i ≤ k, each having
multiplicity

(

n
k−i

)

−
(

n
k−i−1

)

. The result follows after applying Theorem 3.2 and
observing that

k(n− k + 1)− i(n− 2k + i+ 1) = (k − i)(i+ n− k + 1).

�

More generally, let Cn(q) be the lattice of subspaces of an n-dimensional vector
space over the finite field Fq. Let Cn,k(q) denote the graph whose vertices are the
elements of Cn(q) of dimensions k and k− 1 with two vertices being adjacent if one
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is a subspace of the other (thus this is the Hasse graph of Cn(q) induced by the
elements of rank k and k − 1). Let

[n]q = 1 + q + · · ·+ qn−1 =
qn − 1

q − 1
,

[

n

k

]

q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Theorem 3.4. The number of spanning trees of Cn,k(q) when k ≤ n/2 is

([k]q + [n− k + 1]q)([k]q)
[nk]q−[

n
k−1

]
q
∏k−1

i=1 ([k]q[n− k + 1]q − γi)
[ n
k−i]q−[

n
k−i−1

]
q

[

n
k

]

q
+
[

n
k−1

]

q

,

where γi = [i]q(q
k−i[n− 2k]q + qn−k−i[i + 1]q).

Proof. Cn,k(q) is ([k]q, [n − k + 1]q)-biregular with |V1|=
[

n
k

]

q
, |V2|=

[

n
k−1

]

q
, and

|V1|≥ |V2|. It was proven in Theorem 2.12 of [5] that the squares of the |V2| largest
eigenvalues of the adjacency matrix of Cn,k(q) are, for 1 ≤ i ≤ k,

rk−1 + rk−2 + · · ·+ rk−i, with

ri = [n− i]q − [i]q = qi[n− 2i]q,

each with multiplicity
[

n
k−i

]

q
−
[

n
k−i−1

]

q
. We wish to put these expressions into a

closed form.
We have

i
∑

s=1

rk−s =

i
∑

s=1

qk−s[n+ 2s− 2k]q =

i
∑

s=1

qk−s([n− 2k]q + qn−2k[2s]q),

so it will be sufficient to find closed forms for the sums
∑i

s=1 q
k−s[n − 2k]q and

qn−k
∑i

s=1 q
−s[2s]q. The first sum can be written as

[n− 2k]q

i
∑

s=1

qk−s = [n− 2k]q

i
∑

s=1

qk−i+s−1 = qk−i[n− 2k]q

i
∑

s=1

qs−1

= qk−i[n− 2k]q[i]q.

For the second sum,

qn−k
i
∑

s=1

q−s[2s]q = qn−k
i
∑

s=1

q−s q
2s − 1

q − 1
=

qn−k

q − 1

i
∑

s=1

qs − q−s

=
qn−k

q − 1

(

q(qi − 1)

q − 1
− q−i(qi − 1)

q − 1

)

=
qn−k−i(qi+1 − 1)(qi − 1)

(q − 1)2

= qn−k−i[i+ 1]q[i]q.

Thus in total the squares of the eigenvalues are of the form

qk−i[n− 2k]q[i]q + qn−k−i[i+ 1]q[i]q = [i]q(q
k−i[n− 2k]q + qn−k−i[i+ 1]q) = γi,

and plugging this into Theorem 3.2 gives the desired result.
�
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4. Relations Involving A, Q, and L

When G is biregular, we proved that there exists a relation of the form Ar = f(Q)
that allows us to translate between eigenvalues of A and eigenvalues of Q, and if
G is d-regular, the relation A = Q− dI gives an analogous result. One might hope
that there exists some notion of “tripartite” graphs for which a similar result holds.
However, it turns out that the only graphs that can satisfy Ar = f(Q) are the
regular and biregular graphs.

The general idea in proving that Xr = f(Y ) implies that the underlying graph
G has a certain property P is as follows. We first show that if X and Y share a
certain eigenvector v, then Gmust have property P . We then use the following three
lemmas to show that if Xr = f(Y ), then X and Y both have v as an eigenvector.

We note that Q, L, and L have nonnegative spectrum (see [2], for example), and
that A’s spectrum is real, so A2 has nonnegative spectrum.

Lemma 4.1. Let X be a diagonalizable matrix with nonnegative spectrum (such
as A2, L, Q, or L). Assume that Xr = f(Y ) for some matrix Y . If v is an
eigenvector of Y , then v is an eigenvector of X.

Proof. If V ′ = {v1, . . . , vn} is a basis of eigenvectors of X with Xvi = µivi, then
Xrvi = µr

i vi for all i, so V ′ will also be a basis of eigenvectors of Xr. It follows
that Eµ(X

r) =
⊕

µr
i=µ Eµi(X) for all eigenvalues µ of Xr. As µi ≥ 0 for all i by

assumption, we must have Eµ(X
r) = Eµ1/r (X) for all eigenvalues of Xr. Thus any

eigenvector of Xr is also an eigenvector of X . But if v is an eigenvector of Y with
eignevalue λ, then Xrv = f(Y )v = f(λ)v. Thus v is an eigenvector of Xr, and
hence of X . �

Lemma 4.2. Let X, Y be diagonalizable matrices such that Xr = f(Y ), and
assume that there exists a µ such that Eµ(X) = Eµr (Xr) with dimEµ(X) = 1. If
v ∈ Eµ(X), then v is an eigenvector of Y .

Proof. Let V ′ = {v1, . . . , vn} be a basis of eigenvectors of Y . This will also be
a basis of eigenvectors of Xr, so there exists a vector vi ∈ V ′ such that vi ∈
Eµr (Xr) = Eµ(X). Since dimEµ(X) = 1, we conclude that vi is a scaler multiple
of v, and hence v is also an eigenvector of Y . �

One can strengthen the previous lemma if both matrices have nonnegative spec-
trum.

Lemma 4.3. Let X, Y be diagonalizable matrices with nonnegative spectrum and
assume that there exists a µ such that dimEµ(X) = 1 with v ∈ Eµ(X). If either
Xr = f(Y ) or Y r = f(X), then v will be an eigenvector of Y .

Proof. The caseXr = f(Y ) follows from Lemma 4.2 after one notes that Eµr (Xr) =
Eµ(X) because the spectrum of X is nonnegative. The case Y r = f(X) follows
from Lemma 4.1 because Y has nonnegative spectrum. �

We recall the Perron-Frobenius theorem.

Theorem 4.4 (Perron-Frobenius). Let M be an irreducible matrix with nonnega-
tive entries. If Λ is the largest eigenvalue of M , then it has multiplicity one and
there exists an eigenvector ṽ with Mṽ = Λṽ such that every entry of ṽ is positive.
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If G is connected (which we always assume to be the case), then Theorem 4.4
applies to A and Q.

It turns out that the key lemmas needed to prove necessary conditions for Ar =
f(Q) are the same lemmas needed to prove necessary conditions for Xr = f(Y )
when X and Y are any two matrices of A, Q, and L, so we shall generalize our
notation to deal with all of these cases at the same time.

To this end, we will say that (N,P ) is a Laplacian pair if N is a nonnegative
irreducible diagonalizable matrix, P is a diagonalizable matrix with nonnegative
spectrum, andN+aP = bD for some a, b ∈ R\{0}. We note that (A,Q), (A,L) and
(Q,L) are all Laplacian pairs, since we have A−Q = −D, A+L = D, Q+L = 2D,
and the other conditions are all clearly satisfied.

Given a Laplacian pair (N,P ), we will let Λ refer to the largest eigenvalue of N
and ṽ will refer to its corresponding positive eigenvector as is guaranteed by the
Perron-Frobenius theorem.

Lemma 4.5. Let (N,P ) be a Laplacian pair. If ṽ is also an eigenvector of P , then
G is regular.

Proof. Assume that P ṽ = µṽ for some µ. Then bDṽ = (aP + N)ṽ = (aµ + Λ)ṽ,
so ṽ is also an eigenvector of D. But the only way for ṽ to be an eigenvector of D
is if each of its non-zero coordinates have the same degree in G, and since every
coordinate of ṽ is non-zero, this implies that G is regular. �

Theorem 4.6. If (N,P ) is a Laplacian pair and P r = f(N), then G is regular.

Proof. If P r = f(N), then ṽ will be an eigenvector of P by Lemma 4.2 (as ṽ ∈
EΛ(N), dimEΛ(N) = 1, and P has nonnegative spectrum by definition of (N,P )
being a Laplacian pair). G being regular then follows from Lemma 4.5. �

Corollary 4.7. If G is connected and Qr = f(A), Lr = f(A), or Lr = f(Q), then
G is regular.

Proof. (A,Q), (A,L), and (Q,L) are all Laplacian pairs, so this immediately follows
from Theorem 4.6. �

Theorem 4.8. If G is connected and Qr = f(L), then G is regular.

Proof. Let ṽ be the positive eigenvector of Q guaranteed by the Perron-Frobenius
theorem. If we have Qr = f(L), then we conclude that ṽ is an eigenvector of L by
Lemma 4.3. But ṽ being an eigenvector of both L and Q implies that G is regular
by Lemma 4.5. �

We now focus on Laplacian pairs with N = A.

Lemma 4.9. If (A,P ) is a Laplacian pair and Ar = f(P ) with either r odd or G
not bipartite, then G is regular.

Proof. Since A has real spectrum it will always be the case that Eµ(A
r) = Eµ1/r (A)

if r is odd, and Eµ(A
r) = Eµ1/r (A) ⊕ E−µ1/r (A) if r is even. If r is odd, then in

particular we have EΛ(A) = EΛr (Ar). If G is not bipartite then −Λ is not an
eigenvalue of A (see Proposition 3.4.1 of [1]), and hence for all r we have EΛ(A) =
EΛ(A) ⊕ E−Λ(A) = EΛr (Ar). As dimEΛ(A) = 1 with ṽ ∈ EΛ(A), we conclude in
either case that ṽ is an eigenvector of P by Lemma 4.2, so G must be regular by
Lemma 4.5. �
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For a bipartite graph G with vertex partition V1∪V2, let 1
′ be defined by 1′

v = 1
if v ∈ V1 and 1′

v = −1 if v ∈ V2.

Lemma 4.10. If G is a bipartite graph with vertex partition V1 ∪ V2 and either 1′

or 1 is an eigenvector of A2, then G is biregular.

Proof.

(A21′)v =
∑

u∈V (G)

(1′
u)m2(u, v) = (1′

v)
∑

u∈V (G)

m2(u, v),

as every vertex that v can reach in two steps belongs to the same partition class as
v. Thus 1′ will be an eigenvector of A2 iff

∑

u∈V (G) m2(u, v) is equal to the same

value for all v, and it is clear that this is also an equivalent condition for 1 being
an eigenvector of A2. We note that

∑

u∈V (G)

m2(u, v) =
∑

uv∈E(G)

du,

as every walk of length two starting from v is characterized by walking along an
edge to some u and then taking one of the du edges connected to u. Thus 1′ or 1
is an eigenvector of A2 iff

∑

uv∈E(G) du is the same value for all v.

Assume that there exists a λ such that λ =
∑

uv∈E du for all v. Let v be a vertex
with minimum degree d, and let v′ be a vertex with maximum degree D. Then

λ =
∑

uv∈E

du ≤ d ·D ≤
∑

uv′∈E

du = λ,

where the first inequality follows from the fact that each of the d terms in the sum
can have value at most D, and the second from the fact that each of the D terms
in the sum have value at least d. Since both sides of the inequality are equal, both
inequalities must in fact be equalities. We conclude that if a vertex in G has degree
d then all of its neighbors have degree D, and conversely if a vertex in G has degree
D then all of its neighbors will have degree d. Since G is assumed to be connected,
it follows that all vertices must have degree d or D. Moreover, all the vertices of
V1 have the same degree, and similarly all the vertices of V2 have the same degree.
Thus G is biregular. �

Theorem 4.11. If G is connected and Ar = f(Q) or Ar = f(L), then G is regular
or biregular.

Proof. Let P stand for either Q or L, and assume that Ar = f(P ). If r is odd or
G is not bipartite, then G must be regular by Lemma 4.9, so we will assume that
G is bipartite and r = 2k for some k. In this case we have (A2)k = f(P ), so by
Lemma 4.1 any eigenvector of P will also be an eigenvector of A2. If P = Q and if
G is bipartite, then it is easy to see that 1′ will be an eigenvector of P , and hence
of A2. If P = L, then 1 is an eigenvector of P and hence of A2. In either case we
conclude that G is biregular by Lemma 4.10. �

5. Relations Involving L
From the definition of L it is immediate that if G is d-regular or (d1, d2)-biregular

then L = I− 1
dA or L = I− 1√

d1d2

A, so when G is regular or biregular it is possible

to have Ar = f(L) and Lr = f(A).
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We note the following (see [2]). If G is connected then E0(L) has dimension 1
and is spanned by D1/21. If G is connected then E0(L) has dimension 1 and is
spanned by 1.

Lemma 5.1. If D1/21 is an eigenvector of A, then G is regular or biregular.

Proof. D1/21 being an eigenvector of A is equivalent to the statement that there
exists a λ such that

∑

uv∈E(G)

√
du = λ

√
dv for all v, or equivalently that for all v

1√
dv

∑

uv∈E(G)

√
du is the same value, λ. Assume that this condition holds and let

v be a vertex of minimal degree d and v′ a vertex of maximum degree D. Then

λ =
1√
d

∑

uv∈E

√

du ≤
√
dD ≤ 1√

D

∑

uv∈E

√

du = λ,

since the first sum has d terms that are at most
√
D and the second has D terms

that are at least
√
d. We conclude that the inequalities are equalities, and hence

that all vertices have degree d or D, and that every neighbor of a vertex with degree
d has degree D and vice versa. If d = D we conclude that G is regular. If d 6= D
we can partition vertices into those with degree d and those with degree D, and
this shows that G is bipartite and hence biregular. �

Theorem 5.2. If G is connected and Lr = f(A), then G is regular or biregular.

Proof. E0(L) = E0(Lr), dimE0(L) = 1 and D1/21 ∈ E0(L). Thus if Lr = f(A),
then D1/21 will be an eigenvector of A by Lemma 4.2, and this implies that G is
either regular or biregular by Lemma 5.1. �

Lemma 5.3. If D1/21 is an eigenvector of Q, then G is regular.

Proof. D1/21 being an eigenvector of A is equivalent to the statement that there
exists a λ such that dv

√
dv +

∑

uv∈E

√
du = λ

√
dv for all v, or equivalently that

dv +
1√
dv

∑

uv∈E

√
du is the same for all v. Assume that this condition holds and

let v be a vertex of minimal degree d and v′ a vertex of maximum degree D. Then

λ = d+
1√
d

∑

uv∈E

√

du ≤ d+
√
dD ≤ D +

√
dD ≤ D +

1√
D

∑

uv∈E

√

du = λ,

since the first sum has d terms that each have value at most
√
D and the second

has D terms that each have value at least
√
d. Thus every inequality must be an

equality, and in particular this implies that d = D, so G is regular. �

Lemma 5.4. If 1 is an eigenvector of L, then G is regular.

Proof. We have that (L1)v = 1− 1√
dv

∑

uv∈E
1√
du

, and that 1 is an eigenvector of

L only if this value is equal to the same value λ for all v. Assume this is true and
let v be a vertex of maximum degree D. We then have that

λ = 1− 1√
D

∑

uv∈E

1√
du

≤ 1− 1√
D

D√
D

= 0,

since the sum is minimized when each of the terms is equal to 1/
√
D. But λ ≥ 0

(because the spectrum of L is nonnegative), so this inequality must be an equality.
This implies that every vertex of maximum degree is adjacent only to vertices of
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maximum degree, and since G is connected, we conclude that G is regular of degree
D. �

Theorem 5.5. If G is connected and Lr = f(Q) or Qr = f(L), then G is regular.

Proof. Either case implies that D1/21 is an eigenvector of Q by Lemma 4.3, and
this implies that G is regular by Lemma 5.3. �

Theorem 5.6. If G is connected and Lr = f(L) or Lr = f(L), then G is regular.

Proof. Either case implies that 1 is an eigenvector of L by Lemma 4.3, and this
implies that G is regular by Lemma 5.4. �

Of relations involving the four matrices A, Q, L, and L, the only remaining case
is Ar = f(L). Unfortunately, we do not have a complete characterization for this
case, though experimental data suggests the following conjecture.

Conjecture 5.7. If G is connected and Ar = f(L) for some polynomial f and
r > 0, then G is regular or biregular.

We present some partial results related to this conjecture.

Proposition 5.8. If Ar = f(L) with r odd, then G is regular or biregular.

Proof. If r is odd then Eµr (Ar) = Eµ(A) for all µ. If A
r = f(L), then D1/21 is an

eigenvector of f(L), and hence of Ar, and hence of A, implying that G is regular
or biregular by Lemma 5.1. �

We note the following conjecture, which again experimental data suggests is true.

Conjecture 5.9. If G is connected and D1/21 is an eigenvector of A2, then G is
regular or biregular.

Proposition 5.10. If Conjecture 5.9 is true, then Conjecture 5.7 is true.

Proof. The case of Conjecture 5.7 when r is odd is proved in Proposition 5.8. If
r is even then we have (A2)k = f(L), so D1/21 will be an eigenvector of A2 by
Lemma 4.1. Conjecture 5.9 being true then implies that G is regular or biregular
as desired. �

6. General Polynomial Relations

A more general question one can ask is about the existence of nontrivial poly-
nomials f and g such that f(X) = g(Y ) for X, Y matrices of a graph G. By
nontrivial we mean that f and g are not of the form f = up+ c, g = vq + c where
p, q are the minimal polynomials of X and Y respectively, c is a constant, and u, v
are arbitrary polynomials. When this occurs we have the following correspondence
between eigenvalues of X and eigenvalues of Y .

Proposition 6.1. Let X and Y be diagonalizable matrices with f(X) = g(Y ) for
polynomials f and g. If λ1, . . . , λn are the eigenvalues of X and µ1, . . . , µn are the
eigenvalues of Y , then {f(λ1), . . . , f(λn)} = {g(µ1), . . . , g(µn)}.

Note that this result holds even if f and g are trivial, but the conclusion isn’t
particularly interesting.
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Proof. Let Z = f(X) = g(Y ) and let V ′ = {v1, . . . , vn} be a basis of eigenvectors
of X with Xvi = λivi. Then Zvi = f(X)vi = f(λi)vi, so Z will have eigenvalues
{f(λ1), . . . , f(λn)}. A symmetric argument shows that Z will have eigenvalues
{g(µ1), . . . , g(µn)}, so these sets must be equal. �

For example, if P4 denotes the path on 4 vertices then one can compute that

A(A2 − 2I) = Q3 − 5Q2 + 6Q− I.

One can also compute that the eigenvalues of A are 1+
√
5

2 , 1−
√
5

2 , −1+
√
5

2 , −1−
√
5

2 ,

and that the eigenvalues of Q are 2 +
√
2, 2 −

√
2, 2, 0. If f(x) = x(x2 − 1) and

g(x) = x3 − 5x2 + 6x− 1, then

f(
1 +

√
5

2
) = f(

1−
√
5

2
) = g(2 +

√
2) = g(2−

√
2)

f(
−1 +

√
5

2
) = f(

−1−
√
5

2
) = g(2) = g(0),

which agrees with Proposition 6.1.
On the other hand, if G denotes the graph which has the following adjacency

matrix, then one can prove that there exists no nontrivial relation f(A) = g(Q).

AG =













0 1 1 1 1
1 0 1 1 1
1 1 0 1 0
1 1 1 0 0
1 1 0 0 0













.

The idea of the proof is as follows. One observes that the minimal polynomial
of A has degree 4, which implies that every power of A can be expressed as a
polynomial of A that has degree at most 3. Thus if a nontrivial polynomial f exists
such that f(A) = g(Q), it can be chosen to be of degree 3 or smaller. The minimal
polynomial of Q is also of degree 4, so we again conclude that if g exists it can be
chosen to have degree at most 3. In total, if f, g exist then one can express them as
a linear combination of matrices from the set {I, A,A2, A3, Q,Q2, Q3}. However,
one can verify that this collection of matrices (thought of as 52-dimensional vectors)
are linearly independent, so there exist no nontrivial polynomials such that f(A) =
g(Q).

There does not seem to be an obvious characterization of graphs that satisfy
f(X) = g(Y ), nor does there seem to be a characterization of what these polyno-
mials f and g look like when this occurs, but we have not investigated this question
very thoroughly. It also does not appear that one can refine Proposition 6.1 in
such a way that, given the eigenvalues of X and the relation f(X) = g(Y ), one
can compute the eigenvalues of Y in general, but there may exist special classes of
relationships like Xr = f(Y ) for which this refinement is possible.

One direction for future study would be to answer questions of the following
type: let P be a property that a graph can have (such as being (d1, d2)-biregular
or being isomorphic to Pn) and two matrices of graphs X and Y . Can one give an
explicit (nontrivial) relation f(X) = g(Y ) for all graphs satisfying P? If so, can one
use this explicit relation to directly relate the eigenvalues of X and Y for graphs
satisfying P? For example, we have the theorem that if G is (d1, d2)-biregular, then
A2 = (Q−d1I)(Q−d2I). An example of another problem of this type is as follows:
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Question 6.2. Are there (non-trivial) functions fn, gn such that fn(A) = gn(Q)
when G = Pn for all n? If so, can one give an explicit (nice) construction of such
functions?

Another direction to explore would be to generalize results like Theorem 4.11,
stating that the only graphs satisfying Ar = f(Q) are those that are regular or
biregular. One could instead ask the following question: given matrices of graphs
X and Y and a family of ordered pairs of polynomials F = {(f, g)}, does there
exist a (nice) property P such that the only graphs satisfying f(X) = g(Y ) for
some (f, g) ∈ F are those satisfying P? For example, we have the following result.

Proposition 6.3. If f(A) = g(L) where f is a polynomial of degree at most 2
with nonnegative coefficients and g is an arbitrary polynomial, then G is regular or
biregular. Moreover, if f can’t be chosen to be f(x) = x2, then G is regular.

Proof. If these polynomials exist, choose them such that f is monic and has no
constant term. Let c denote the constant term of g. If f(x) = x then A1 =
g(L)1 = c1 (since L1 = 0), and this implies that G is c-regular. If f(x) = x2 + ax,
then A21+ aA1 = f(A)1 = g(L)1 = c1. We conclude that adv +

∑

uv∈E(G) du = c

for all v by using the same logic as in Lemma 4.10. If v is a vertex of minimum
degree d and v′ is a vertex of maximum degree D we have (noting that a ≥ 0)

c = ad+
∑

uv∈E(G)

du ≤ ad+ dD ≤ aD + dD ≤ aD +
∑

uv′∈E(G)

du = c,

so we conclude that all inequalities are equalities. If a 6= 0 this implies that d = D,
making G regular. If a = 0 and d 6= D, then one can partition the vertices of G
into those with degree d and those with degree D, making G biregular. �

We note that the assumption that f have nonnegative coefficients can not be
relaxed. Indeed, let G′ be defined by the adjacency matrix

(1) AG′ =













0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0













.

One can check that in this case 3A2 − 3A = −L3 + 9L2 − 20L+ 12I.
We have analogous results for the signless Laplacian.

Proposition 6.4. If f(Q) = g(L) where f is a polynomial of degree at most 2 with
nonnegative coefficients and g is an arbitrary polynomial, then G is regular.

Proof. If these polynomials exist, choose them such that f is monic and has no
constant term and let c denote the constant term of g. To proceed as in Propo-
sition 6.3, we will need to understand how 1 interacts with Q and Q2. It is clear
that (Q1)v = 2dv. For Q

2 we have

Q2 = (A+D)2 = A2 +AD +DA+D2

We know that (A21)v =
∑

uv∈E(G) du, and it isn’t difficult to see that

(AD1)v =
∑

uv∈E(G)

du, (DA1)v = d2v, (D21)v = d2v.
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Thus in total we have (Q21)v = 2d2v + 2
∑

uv∈E(G) du.

If f(x) = x, then Q1 = f(L)1 = c1, and this implies that G is c/2-regular.
If f(x) = x2 + ax then we conclude that Q21 + aQ1 = c1. By comparing the
vth coordinates of both sides, we see that d2v + adv +

∑

uv∈E(G) du = c/2 and this

holds for all v. If v denotes a vertex with minimum degree d and v′ a vertex with
maximum degree D then

c/2 = d2 + ad+
∑

uv∈E(G)

du ≤ d2 + ad+ dD ≤

D2 + aD + dD ≤ D2 + aD +
∑

uv′∈E(G)

du = c/2,

so the inequalities must be equalities and we conclude that d = D, making G
regular. �

Again the condition that f have nonnegative coefficients can not be weakened.
Indeed, if G is a (d1, d2)-biregular graph then (Q− d1I)(Q− d2I) = (L− d1I)(L−
d2I). While biregular graphs are the most obvious counterexample, they are not
the only ones. For example, if we consider G′ as defined in (1), then one can show
that 3Q2 − 21Q = −2L3 + 15L2 − 25L− 24I.

One can also ask whether polynomials f and g exist such that f(X) = g(Y )
when X is a matrix associated to a graph G and Y is not. One such example is
Y = J , the n × n matrix whose entries are all 1. Note that J has rank 1, so the
only non-trivial polynomials of J are of the form cI+dJ with d 6= 0. Thus if f and
g exist such that f(X) = g(J), one can always choose g(J) = J .

Lemma 6.5. If f(A) = J for some polynomial f(x), then G is regular and con-
nected.

Note that all the matrices that we considered earlier had the property that
XG = XG1

⊕ XG2
whenever G was the disjoint union of the graphs G1 and G2.

This meant that the relation f(XG) = g(YG) held iff f(XG′) = g(YG′) held for
any connected component G′ of G. This is not the case when considering J , so we
emphasize here the fact that G must be connected.

Proof. Assume that such an f exists. If vertex i and vertex j belong to differ-
ent components of G, then for all r, Ar

ij = 0, which implies that there exists no

polynomial such that f(A) = J . It follows that G must be connected.
If ṽ is the positive eigenvector of A guaranteed by the Perron-Frobenius theorem,

then

Jṽ = f(A)ṽ = f(Λ)ṽ,

so ṽ is an eigenvector of J , but the only positive eigenvectors of J are scaler multiples
of 1, so ṽ = c1 for some c, which means G must be regular. �

Let mA(x) denote the minimal polynomial of A. If G is a k-regular graph, let
m′

A(x) = mA(x)/(x − k). Note that m′
A(x) =

∏

i(x− λi), where the λi range over
all distinct eigenvalues of A that are not equal to k.

Lemma 6.6. If f(A) = J , then f(x) | m′
A(x).
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Proof. By Lemma 6.5 we can assume that G is k-regular for some k. Let v be an
eigenvector of A with eigenvalue λ 6= k. We have

Jv = f(A)v = f(λ)v,

so v is an eigenvector of J with eigenvalue f(λ). But v 6= c1 by assumption of
λ 6= k, so it must be that v is a null-vector of J and f(λ) = 0. As every distinct
eigenvalue of A not equal to k is a root of f , we conclude that f(x) | m′

A(x). �

Theorem 6.7. A polynomial f(x) exists such that f(A) = J iff G is connected and
regular. Moreover, if f is chosen to have minimum degree, then f(x) = cm′

A(x) for
some c 6= 0.

Proof. Lemma 6.5 gives the forward direction, so assume G is connected and k-
regular. This implies that the null-space of A− kI has dimension 1 and is spanned
by 1. We also have

(A− kI)m′
A(A) = mA(A) = 0.

These two facts imply that every column of m′
A(A) is a scaler multiple of 1. As

m′
A(A) is a symmetric matrix, we must have m′

A(A) = c11T = cJ for some c 6= 0,
so f(x) = 1

cm
′
A(x) gives the desired polynomial.

Finally, assume f(A) = J where f(x) is chosen to have minimum degree. From
the above proof we know that deg(f) can be at most deg(m′

A), but by Lemma 6.6
we must have deg(f) ≥ deg(m′

A). We conclude that deg(f) = deg(m′
A) and that

f(x) = cm′
A(x) for some c 6= 0. �

The above statement implies that if G is a connected, k-regular graph such that
A has r + 1 distinct eigenvalues, then there exists c, d 6= 0 such that cm′

A(x) is
a monic polynomial of degree r, and cm′

A(A) = dJ . The r = 2 case corresponds
to connected strongly regular graphs, which are usually defined combinatorially as
is done so in [4], for example. Given any connected strongly regular graph, one
can derive an equation of the form cm′

A(A) = dJ by having the coefficients of
the polynomial be defined in terms of combinatorial parameters of the graph. It
would be interesting to know if this process could be reversed in general. That is,
can one always interpret the coefficients of the equation cm′

A(A) = dJ in terms of
certain parameters of the underlying graph, and can these parameters be used to
give a combinatorial description of connected regular graphs with precisely r + 1
eigenvalues?
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