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Abstract

Steinberg and Tovey [10] proved that every n-vertex planar triangle-
free graph has an independent set of size at least (n + 1)/3, and de-
scribed an infinite class of tight examples. We show that all n-vertex
planar triangle-free graphs except for this one infinite class have inde-
pendent sets of size at least (n+ 2)/3.

By a well-known theorem of Grötzsch [8], every planar triangle-free graph
is 3-colorable. This clearly implies that such a graph G with n vertices has an
independent set of size at least n/3, i.e., α(G) ≥ n/3 in the usual notation.
This can be slightly improved—using a strengthening of Grötzsch’s theorem,
Steinberg and Tovey [10] proved that the equality is never achieved in this
bound.

Theorem 1 (Steinberg and Tovey [10]). If G is an n-vertex planar triangle-
free graph, then α(G) ≥ (n+ 1)/3.
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They also described an infinite class G of planar triangle-free graphs (see
Definition 3 below) such that α(G) = (|V (G)| + 1)/3 for all G ∈ G. In this
paper, we give a new proof of their result, which also implies that G contains
all the graphs for that the bound is tight (throughout the paper, we only
consider simple graphs without loops or parallel edges).

Theorem 2. If G is a planar triangle-free graph with n vertices and G 6∈ G,
then α(G) ≥ (n + 2)/3.

Let us mention several related results. A better known (and much harder)
relative of our problem concerns independent sets in unconstrained planar
graphs. By Four Color Theorem [1, 2], each n-vertex planar graph has an
independent set of size at least n/4. This bound is tight, and unlike our case,
the (infinitely many) known examples do not seem to exhibit an easily dis-
cernible structure. Indeed, even the algorithmic problem of testing whether
an n-vertex planar graph has an independent set greater than n/4 has no
known polynomial-time solution [9, 7].

The fractional chromatic number χf of a graph G is the minimum value
of a/b over all positive integers a ≥ b for which there exists a coloring that
assigns each vertex of G a subset of {1, . . . , a} of size b such that the sets
assigned to adjacent vertices are disjoint. It is easy to see that χf (G) ≤
χ(G) and α(G) ≥ |V (G)|/χf(G). Hence, the results above indicate that the
fractional chromatic number of n-vertex planar triangle-free graphs might be
bounded by 3 − 3/(n + 1). As Dvořák et al. [6] proved, this is the case for
planar triangle-free graphs of maximum degree at most 4; in general, they
were only able to obtain a weaker upper bound 3− 3/(3n+ 1).

It is natural to ask whether the bound from Theorem 2 can be improved,
at the expense of having further families of exceptional graphs. Algorithmi-
cally, this question was answered by Dvořák and Mnich [3, 4], who proved
that if an n-vertex planar triangle-free graph does not have an independent
set larger than (n+k)/3, then its tree-width is O(

√
k). Using their techique,

a more detailed answer can be given, showing that all such graphs are cre-
ated from graphs of bounded size by a construction similar to the one used
to define the class G below; we will give details in a followup paper. For
small values of k, an exact description of exceptional graphs can be obtained
using the argument of the current paper (we decided not to present them
here, since the number of exceptional classes grows quickly and dealing with
them would obscure the idea).
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Figure 1: Path–diamond replacement.

1 The extremal graphs

The class G is defined via the following construction, see Figure 1. A 5-cycle
C = u1z1z2u2w in a graph G, where u1 and u2 have a common neighbor
x1 6∈ V (C), w is adjacent to another vertex x2 6∈ V (C), and degG(u1) =
degG(u2) = degG(w) = 3 and degG(z1) = degG(z2) = 2, is called a dia-
mond. Let G1 be a graph and let x1v1v2x2 be a path in G1 with degG1

(v1) =
degG1

(v2) = 2. Let G2 be the graph obtained from the disjoint union of
G1 − {v1, v2} and a 5-cycle u1z1z2u2w by adding the edges x1u1, x1u2 and
x2w. We say that G2 is obtained from G1 by a path–diamond replacement.
Conversely, let G′

2
be a graph containing a diamond C = u1z1z2u2w, and let

G′
1
be the graph obtained from G′

2
− V (C) by adding a path x1v1v2x2 with

new vertices v1 and v2. We say that G′
1
is obtained from G′

2
by replacing a

diamond by the path x1v1v2x2. Note that both of these operations preserve
planarity and do not create triangles.

Definition 3. The class G consists of the path P2 on two vertices, the 5-
cycle, and all graphs obtained from the 5-cycle by a repeated application of
the path–diamond replacement.

Let C†
5
denote the graph obtained from the 5-cycle by the path–diamond

replacement (see Figure 4), and let C‡
5
denote the graph obtained from C†

5
by

the path–diamond replacement (see Figure 3). Note that these graphs and
their plane drawings are unique up to isomorphism.

2 Reducible configurations

An n-vertex graph G is tight if G is planar, triangle-free, and α(G) ≤ (n +
1)/3.

We now describe several reducible configurations (see Figure 2), which
allow local transformations in plane triangle-free graphs that preserve tight-
ness; this will lead to a natural inductive proof of Theorem 2. For each

3



v

Conf(1)

u v

w

w′

Conf(2)

u v1

v2

v3

v4

w

Conf(3)

v3

v4

v5

v1

v2

u3

u4u1

u2

Conf(4)

u v1

v2

v3

v4

w

Conf(5)

Figure 2: Reducible configurations.

configuration (with the exception of Conf(5), which is handled separately
in Lemma 4) we specify the corresponding local transformation, resulting
in a reduced graph. We also introduce the notion of interference with the
outer face, which is needed later in the proof that one of these configurations
appears in each plane triangle-free graph.

Let G be a plane triangle-free graph with the outer face bounded by a
cycle K.

• Configuration Conf(1) consists of a vertex v ∈ V (G) of degree at most
2. The reduced graph is obtained by deleting v and all its neighbors.
The configuration interferes with the outer face if v ∈ V (K).

• Configuration Conf(2) consists of a vertex v ∈ V (G) of degree 3 with
neighbors u, w, and w′, such that G contains no path of length 3 be-
tween w and w′. The reduced graph is obtained by deleting u and
v, and by identifying w and w′ to a single vertex and suppressing
the parallel edges. The configuration interferes with the outer face
if {v, w, w′} ∩ V (K) 6= ∅.

• Configuration Conf(3) consists of a 4-face C = v1v2v3v4 in G such that

4



deg(v1) = deg(v3) = 3. The reduced graph is obtained by deleting
V (C) and the neighbors of v1 and v3. The configuration interferes with
the outer face if {v1, v3} ∩ V (K) 6= ∅.

• Configuration Conf(4) consists of a 5-face C = v1v2v3v4v5 in G with
deg(v1) = . . . = deg(v4) = 3, such that, denoting for i = 1, . . . , 4 the
neighbor of vi outside of C by ui, G−V (C) contains no path of length
at most 2 between u1 and u4, and no path of length 1 or 3 between
u2 and u3, and u1u2, u3u4 6∈ E(G). The reduced graph is obtained by
deleting V (C), adding the edge u1u4, and identifying u2 with u3 to
a single vertex and suppressing the parallel edges. The configuration
interferes with the outer face if {v1, . . . , v4, u1, . . . , u4} ∩ V (K) 6= ∅.

• Configuration Conf(5) consists of a 4-face v1v2v3v4 in G such that
deg(v1) = deg(v2) = 3. The configuration interferes with the outer
face if {v1, v2} ∩ V (K) 6= ∅.

Configuration Conf(5) is dealt with using the following observation.

Lemma 4. Let G be a plane triangle-free graph. If G contains the configu-
ration Conf(5), then it also contains the configuration Conf(2).

Proof. Let v1v2v3v4 be a 4-face in G with deg(v1) = deg(v2) = 3. If G
contains no path of length three between v1 and v3, or no path of length
three between v2 and v4, then Conf(2) appears in G. However, both such
paths cannot be present, since G is plane and triangle-free.

Let us now argue that the described reductions preserve tightness.

Lemma 5. Let G be a plane triangle-free graph containing one of the re-
ducible configurations Conf(1), . . . , Conf(4), and let G′ be the corresponding
reduced graph. Then G′ is planar and triangle-free. Moreover, there exists a
positive integer k such that |V (G′)| ≥ |V (G)| − 3k and α(G) ≥ α(G′) + k.

Proof. Let us consider each of the configurations separately; we use the same
labels for the vertices of the configurations as in their definition. Let S denote
the largest independent set in G′.

Conf(1) We delete v and its (at most two) neighbors, and thus |V (G′)| ≥
|V (G)| − 3. Furthermore, S ∪ {v} is an independent set in G, and
thus α(G) ≥ α(G′) + 1.

5



Conf(2) The identification of w with w′ does not create any triangles, since G
contains no path of length 3 between these two vertices. Note that
|V (G′)| = |V (G)| − 3. Let z denote the vertex created by the identifi-
cation of w and w′. If z ∈ S, then (S \{z})∪{w,w′} is an independent
set in G; otherwise, S ∪ {v} is an independent set in G. Consequently,
α(G) ≥ α(G′) + 1.

Conf(3) Note that |V (G′)| ≥ |V (G)| − 6, and S ∪ {v1, v3} is an independent set
in G, implying α(G) ≥ α(G′) + 2.

Conf(4) Suppose G′ contains a triangle. Since the distance in G−V (C) between
u1 and u4 is greater than 2 and G−V (C) contains no path of length 3
between u2 and u3, we conclude that the triangle contains both the edge
u1u4 and the vertex z created by the identification of u2 and u3. By
planarity, it follows that u1u2, u3u4 ∈ E(G). However, this is forbidden
by the assumptions of the configuration.

Note that |V (G′)| ≥ |V (G)| − 6. Since u1u4 ∈ E(G′), by symmetry we
can assume that u1 6∈ S. If z ∈ S, then (S \ {z}) ∪ {v1, u3, u4} is an
independent set in G; otherwise, S ∪ {v1, v3} is an independent set in
G. Hence, α(G) ≥ α(G′) + 2.

Corollary 6. If G is a tight graph containing one of the reducible configura-
tions Conf(1), . . . , Conf(4), then the corresponding reduced graph G′ is also
tight.

Proof. By Lemma 5, G′ is planar and triangle-free. Furthermore, there exists
k > 0 such that |V (G′)| ≥ |V (G)| − 3k and α(G) ≥ α(G′) + k. Since G is
tight, we have α(G) ≤ (|V (G)|+ 1)/3. It follows that

α(G′) ≤ α(G)− k ≤ (|V (G)| − 3k + 1)/3 ≤ (|V (G′)|+ 1)/3.

Therefore, G′ is also tight.

3 Excluding the configurations

In this section, we argue that tight graphs cannot contain the reducible con-
figurations. Let us start with some observations on diamonds.

Lemma 7. Let G be a graph containing a diamond C = u1z1z2u2w, and
let G′ be obtained from G by replacing the diamond C by the path x1v1v2x2.
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Then |V (G)| = |V (G′)| + 3 and α(G) = α(G′) + 1. Moreover, for every
independent set S ′ of G′, there exists an independent set S of G such that
|S| = |S ′|+ 1 and S \ V (C) = S ′ \ {v1, v2}.
Proof. Consider any independent set S ′ of G′; the independent set S in G
of size |S ′| + 1 can be obtained from S ′ ∪ {z2} by replacing v1 by u1 and
replacing v2 by w. Hence, α(G) ≥ α(G′) + 1.

Conversely, consider any maximal independent set S of G; note that if
u1, u2 ∈ S, then S \ {u2} ∪ {z2} is an independent set of the same size, and
if |{u1, u2} ∩ S| ≤ 1, then either z1 or z2 belongs to S by the maximality of
S. Hence, by symmetry we can assume that z2 ∈ S, and an independent set
in G′ of size |S| − 1 can be obtained from S \ {z2} by replacing u1 by v1 and
replacing w by v2. This implies that α(G′) ≥ α(G)− 1.

Combining the inequalities, we conclude that α(G) = α(G′) + 1.

Let us remark that Lemma 7 implies that an n-vertex graph G ∈ G
satisfies α(G) = (n + 1)/3. We say that G is a minimum counterexample
(to Theorem 2) if G is a tight graph not belonging to G with the smallest
number of vertices (our aim is to prove that no such counterexample exists).

Corollary 8. Minimum counterexamples do not contain diamonds.

Proof. Suppose that a minimum counterexample G contains a diamond. Let
G′ be the graph obtained from G by replacing the diamond by a path. Since
G is tight, Lemma 7 implies that G′ is tight, and by the minimality of G, we
conclude that G′ ∈ G. However, G is obtained from G′ by a path–diamond
replacement, and thus G ∈ G, which is a contradiction.

Next, we show a useful fact about maximum independent sets in graphs
from the class G.
Lemma 9. Consider any graph G ∈ G, and let f be a face of a plane drawing
of G such that f is not incident with any vertex of degree at most two. Then
there exists an independent set S ⊆ V (G) such that |S| = (|V (G)|+1)/3 and
S ∩ V (f) = ∅.
Proof. We proceed by the induction on the number of vertices of G; hence,
assume that the claim holds for all graphs with less than |V (G)| vertices.
Since f is not incident with any vertices of degree at most two, G is not P2,
the 5-cycle, or the graph C†

5
.

Suppose that G is the graph C‡
5
. This graph has a unique plane drawing,

with two faces not incident with degree 2 vertices. An independent set of
size 4 disjoint from one such face v1 . . . v5 is depicted in Figure 3; the case of
the other face is symmetric.

7
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Figure 3: A maximum independent set in C‡
5
.

Finally, suppose that G is any other graph in G. Observe that G contains
a diamond C such that f is not incident with any of the edges of the diamond.
Let G′ be the graph obtained from G by replacing the diamond C by a path,
with the natural drawing in the plane preserving the face f . By the induction
hypothesis, G′ contains an independent set S ′ of size (|V (G′)| + 1)/3 =
(|V (G)| + 1)/3 − 1 disjoint from V (f). Lemma 7 implies that G contains
an independent set of size |S ′|+ 1 = (|V (G)|+ 1)/3 disjoint from V (f).

We are now ready to show that minimum counterexamples cannot contain
Conf(1).

Lemma 10. A minimum counterexample has minimum degree at least three.

Proof. Suppose that G is a minimum counterexample containing a vertex v
of degree d ≤ 2, i.e., the configuration Conf(1). Let G′ be the corresponding
reduced graph (obtained from G by removing v and its neighbors), and note
that |V (G′)| = |V (G)| − d − 1. By Lemma 5, we have α(G) ≥ α(G′) + 1,
which by Theorem 1 implies α(G) ≥ (|V (G′)| + 4)/3 = (|V (G)| + 3 − d)/3.
Since G is tight, we conclude that d = 2 and G′ is tight. By the minimality
of G, it follows that G′ ∈ G.

Let z1 and z2 be the neighbors of v in G. Note that there exists a face f
of G′ such that the path z1vz2 of G is drawn within f . Let N denote the set
of vertices in V (f) that are adjacent in G with z1 or z2. Observe that every
maximum independent set of G′ intersects N , as otherwise this independent
set together with {z1, z2} would give an independent set in G of size greater
than (|V (G)|+ 1)/3.

If G′ is a path on two vertices, it follows that N = V (G′), and since G is
triangle-free, we conclude that G is a 5-cycle and G ∈ G. If G′ is a 5-cycle
x1 . . . x5, then by symmetry we can assume that {x1, x2, x3} ⊆ N , and since
G is triangle-free, it follows that say z1 is adjacent to x1 and x3, and z2 is

8
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Figure 4: The graph C†
5
.

adjacent to x2; consequently, G is isomorphic to C†
5
and G ∈ G. In both

cases, we obtain a contradiction.
Next, consider the case G′ is isomorphic to C†

5
; we label its vertices as

in Figure 4. By symmetry, we can assume that f = v1v2v3v4v5. Since
N intersects the maximum independent sets {u1, u3, vi} for i ∈ {3, 4}, and
{u1, v2, v5}, we can also assume that {v2, v3, v4} ⊆ N . Since G is triangle-
free, it follows that say z1 is adjacent to v2 and v4, and z2 is adjacent to v3;
consequently, G is isomorphic to C‡

5
and G ∈ G, which is again a contradic-

tion.
Finally, consider the case that G′ is any other graph in G. Since N

intersects all maximum independent sets of G′, Lemma 9 implies that f
is incident with a vertex of degree two of G′. However, then G′ contains a
diamond C such that the faces incident with C are distinct from f . It follows
that C is also a diamond in G, which contradicts Corollary 8.

Finally, let us exclude all other configurations.

Lemma 11. A minimum counterexample does not contain any of the re-
ducible configurations Conf(1), . . . , Conf(5).

Proof. By Lemmas 4 and 10, it suffices to show that a minimum counterex-
ample G does not contain any of the configurations Conf(2), . . . , Conf(4).
Suppose for a contradiction that G contains one of these configurations, and
let G′ be the corresponding reduced graph. By Corollary 6, G′ is tight, and
by the minimality of G, we conclude that G′ ∈ G. Observe that since G
has minimum degree at least three, each reduction results in a graph with at
least two non-adjacent vertices; consequently, G′ 6= P2.

Let D denote the set of vertices of G′ of degree at most 2. Since G has
minimum degree at least three, all vertices of degree at most two in G′ arise
in the reduction. Observe that either all vertices of D are incident with one
face of G′ (when Conf(3) is being reduced), or there exists a vertex x ∈ V (G′)
such that all vertices ofD that are neither equal nor adjacent to x are incident

9



with one face of G′ and form an independent set (when Conf(2) or Conf(4)
is being reduced; x is the vertex created by the identification of two vertices
of G). The latter condition is false for all graphs in G \{P2}. The only graph
in G \ {P2} satisfying the former condition is the 5-cycle.

However, a straightforward case analysis shows that no triangle-free graph
of minimum degree at least three containing Conf(3) reduces to a 5-cycle.
This is a contradiction.

4 Unavoidability

We finish the proof by showing that every plane triangle-free graph contains
one of the configurations Conf(1), . . . , Conf(5). Our proof is motivated by
a similar argument of [5]. To deal with short separating cycles, we need to
prove a stronger claim.

We say that a vertex in a plane graph G is internal if it is not incident
with the outer face of G. For a cycle C in a plane graph G, let GC denote
the subgraph of G drawn in the closed disk bounded by C. Let C6,c denote
the plane graph consisting of a 6-cycle that forms its outer face and a chord
separating its interior to two 4-faces, and let C6,v denote the plane graph
consisting of a 6-cycle C that forms its outer face and a vertex v adjacent
to every other vertex of C; see Figure 5. A cycle C in a plane graph G is
dangerous if its length is at most 6, C does not bound the outer face of G,
and GC is distinct from C itself, C6,c and C6,v.

Lemma 12. Let G be a plane triangle-free graph with the outer face bounded
by a (≤6)-cycle K, such that G is distinct from K itself, C6,c and C6,v. If G
does not contain any dangerous cycle, then it contains one of the configura-
tions Conf(1), . . . , Conf(5) that does not interfere with the outer face.

Proof. Suppose for a contradiction that every configuration Conf(1), . . . ,
Conf(5) in G interferes with its outer face. In particular, since G does not
contain Conf(1) not interfering with the outer face, all internal vertices of
G have degree at least three (and since K is a cycle, all vertices of K have
degree at least two in G). Furthermore, K is an induced cycle, since G 6= C6,c

is triangle-free and contains no dangerous cycles. We can assume that G
is connected; otherwise, G has a component G0 disjoint from K, and this
component either has a vertex of degree at most two forming Conf(1) not
interfering with the outer face, or a face bounded by a (≤5)-cycle K0; in the
latter case, we can consider G0 drawn with K0 as its outer face instead of G.

We now proceed by a discharging argument. Each vertex v gets initial
charge c0(v) = deg(v)−4, and each face f gets initial charge c0(f) = |f |−4.

10



C6,c

v

C6,v

Figure 5: Exceptional graphs in Lemma 12.

By Euler’s formula, the sum of the initial charges is

∑

v∈V

(deg(v)− 4) +
∑

f∈F

(|f | − 4) = (2|E| − 4|V |) + (2|E| − 4|F |)

= 4(|E| − |V | − |F |) = −8.

Next, we redistribute the charge according to the following rules.

Rule 0: A non-outer face incident with a vertex v ∈ V (K) of degree two sends
1/3 to v.

Rule 1: Each (non-outer) face incident with an internal vertex v of degree three
sends 1/3 to v.

Rule 2: Let f be a non-outer 4-face incident with k ≥ 1 vertices of V (K), and
let v ∈ V (K) be a vertex incident with f . If f is incident with an
internal vertex of degree three, then v sends 1

3k
to f .

Rule 3: Let f be a (non-outer) 5-face sharing an edge uv with a 6-face g, where
u and v are internal vertices of degree 3. Then g sends 1/3 to f .

Rule 4: Let f be a (non-outer) 5-face, let u be an internal vertex of degree three
incident with f , and let v be the neighbor of u not incident with f . If
v ∈ V (K), then v sends 1/3 to f .

Let c denote the final charge obtained from c0 by applying all the rules. Note
that no charge is created or lost, and thus the sum of the final charges is still
−8. The charge of the outer face is unchanged, equal to |K| − 4.

Let us first analyze the charge of a non-outer face f = v1 . . . v|f |. If
|f | ≥ 7, then f only sends charge by Rules 0 and 1 to incident vertices, and
thus c(f) ≥ c0(f)− |f |/3 = 2

3
|f | − 4 > 0.

Suppose that |f | = 6. If f does not send charge by Rule 3, then c(f) ≥
2

3
|f | − 4 = 0. Let us consider the case that f sends charge by Rule 3 say to

the face sharing the edge v2v3; hence, v2 and v3 are internal vertices of degree

11



three. If v1 is an internal vertex, then v2 and its three neighbors form Conf(2)
(G contains no path P of length three between v1 and v3, as P together with
the path v1v2v3 would form a dangerous 5-cycle) that does not interfere with
the outer face. Similarly, we can exclude the case that v4 is internal. Since
v2 and v3 are internal vertices, it follows that v1 and v4 are not vertices of K
of degree two. Hence, f does not send charge to v1 and v4, sends at most 1/3
to each of v2, v3, v5, and v6, and sends at most 2/3 in total by Rule 3 to the
faces incident with edges v2v3 and v5v6. It follows that c(f) ≥ c0(f)− 2 = 0.

Next, suppose that |f | = 5. Since G 6= K, observe that f is incident with
at most three vertices of K of degree two, and if f is incident with at least
one vertex of degree two, then it is incident with at least two vertices of K
of degree at least three. In this case, f sends 1/3 to at most three vertices
by Rules 0 and 1, and c(f) ≥ c0(f) − 1 = 0. Hence, we can assume that f
is incident with no vertices of degree two. Let p be the number of internal
vertices of degree three incident with f whose neighbor not incident with f
is internal, and let q be the number of 6-faces that share with f an edge
joining two internal vertices of degree three. By Rules 1, 3, and 4, we have
c(f) ≥ c0(f)− (p− q)/3 = (3+ q−p)/3, and thus if c(f) < 0, then p ≥ q+4;
i.e., either p = 4 and q = 0, or p = 5 and q ≤ 1.

Hence, we can assume that v1, . . . , v4 are internal vertices of degree three
such that their neighbors u1, . . . , u4 not incident with f are internal, and
that the edge v2v3 is not incident with a 6-face. If G− V (f) contains a path
of length at most 2 between u1 and u4, then let C be the 6-cycle consisting
of this path and the path u1v1v5v4u2. Since C is not dangerous, the disk
bounded by C cannot contain f , and thus v5 is an internal vertex and GC

contains all its neighbors. Since deg(v5) ≥ 3, GC is either C6,c or C6,v, and
in either case, v5 is an internal vertex of degree three and v1v5 is incident
with a 4-face. However, this implies that G contains Conf(5) that does not
interfere with the outer face.

Thus, we can assume that G− V (f) contains no path of length at most
2 between u1 and u4. Similar argument shows that u1u2, u3u4 6∈ E(G) and
(using the fact that v2v3 is not incident with a 6-face) G− V (f) contains no
path of length 1 or 3 between u2 and u3. Therefore, f forms an appearance
of Conf(4) in G, and since u1, . . . , u4 are internal, this configuration does
not interfere with the outer face.

Finally, suppose that |f | = 4. If say v1 is a vertex of K of degree two,
then since K is an induced cycle, it follows that v3 is an internal vertex.
Let C be the cycle in K + v2v3v4 distinct from K and the boundary of f .
Since C is not dangerous and deg(v3) ≥ 3, we conclude that GC is either C6,c

or C6,v. The former is excluded, since G is not isomorphic to C6,v. In the
latter case, G contains configuration Conf(5) not interfering with the outer
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face. This is a contradiction, and thus no vertex of f has degree two, and f
sends no charge by Rule 0. Let p denote the number of internal vertices of
degree three incident with f . If p ≥ 2, then G contains Conf(3) or Conf(5)
not interfering with the outer face. If p = 0, then c(f) = c0(f) = 0. Hence,
suppose that p = 1, and say v1 is an internal vertex of degree three. Since
G does not contain dangerous cycles, no path between v2 and v4 has length
3. Thus, v1 and its neighbors form an appearance of Conf(2), which must
interfere with the outer face. Consequently, at least one of v2 or v4 belongs
to V (K), and c(f) = 0 by Rule 2.

The preceding case analysis shows that the final charge of non-outer faces
is non-negative. Let us now consider an internal vertex v ∈ V (G). If deg(v) ≥
4, then v neither sends nor receives charge and c(v) = c0(v) ≥ 0. If deg(v) =
3, then v receives charge from all incident faces by Rule 1, and c(v) = c0(v)+
1 = 0.

Finally, let v ∈ V (K) be a vertex incident with the outer face. If deg(v) =
2, then v receives 1/3 by Rule 0 and does not send any charge (as we argued
before, non-outer 4-faces are not incident with degree 2 vertices, and thus
Rule 2 does not apply), and c(v) = c0(v) + 1/3 = −5/3. If deg(v) ≥ 3, then
v sends at most 1/6 to each of the 2 incident non-outer faces sharing an edge
with K by Rule 2, at most 1/3 to each of the deg(v)− 3 other incident non-
outer faces by Rule 2, and at most 1/3 for each of deg(v)−2 incident internal
vertices by Rule 4, giving the final charge c(v) ≥ c0(v) − 2

3
(deg(v) − 2) =

(deg(v)− 8)/3 ≥ −5/3.

In summary, all non-outer faces and internal vertices of G have non-
negative final charge and each vertex v incident with the outer face has final
charge at least −5/3. Furthermore, c(v) = −5/3 only if deg(v) = 2, or if
deg(v) = 3, both incident non-outer faces have length 4, and v is adjacent to
an internal vertex of degree three.

It follows that the sum of the final charges is greater or equal to the sum
of the final charges of the outer face and its incident vertices, which is at
least |K| − 4 − 5

3
|K| = −4 − 2

3
|K|. Since the sum of the final charges is

−8, we conclude that |K| = 6 and all vertices incident with K have final
charge −5/3. This is only possible if every vertex v ∈ V (K) has degree 2 or
3, all non-outer faces that share edge with K have length 4, and all internal
vertices with a neighbor in K have degree three (not all vertices of K have
degree 2 since G is connected and G 6= K). Since K is an induced cycle and
G does not contain Conf(5) not interfering with the outer face, we conclude
that each 4-face whose boundary intersects K shares exactly 2 edges with
K, and thus G is isomorphic to C6,v. This is a contradiction.
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Corollary 13. Every plane triangle-free graph contains one of the configu-
rations Conf(1), . . . , Conf(5).

Proof. Let G be a plane triangle-free graph, without loss of generality con-
nected. If G contains a vertex of degree at most 2, then Conf(1) appears in
G. Hence, assume that the minimum degree of G is at least three. Then,
G contains a face bounded by a cycle K of length at most 5. Re-draw G if
necessary so that K bounds the outer face of G. Since the minimum degree
of G is at least three, G is not a cycle, C6,c or C6,v.

Let K1 be a dangerous (≤5)-cycle in G such that GK1
is minimal (we set

K1 = K if no (≤ 5)-cycle in G is dangerous). Let K2 be a dangerous cycle
of G with K2 ⊆ GK1

such that the number of vertices of GK2
is minimum

(we set K2 = K if G contains no dangerous cycle). By Lemma 12, GK2

contains one of the reducible configurations Conf(1), . . . , Conf(5) that does
not interfere with its outer faceK2. Let γ denote this configuration. We claim
that γ is also a reducible configuration in G. Let us discuss the configurations
separately.

Suppose that γ is Conf(2); i.e., GK2
contains a vertex v of degree three

with neighbors u, w, w′ such that there exists no path of length 3 between
w and w′ in GK2

, and since γ does not interfere with the outer face of GK2
,

we have v, w, w′ 6∈ V (K2). Hence, v has degree 3 in G as well. Furthermore,
if there exists a path of length 3 between w and w′ in G, then there exist
adjacent vertices z, z′ ∈ V (K2) such that zz′ 6∈ E(GK2

) and wz, w′z′ ∈ E(G).
Since zz′ is a chord of K2 and G is triangle-free, it follows that |K2| = 6 and z
and z′ are opposite vertices of K2, i.e., K2 = zx1x2z

′y1y2. Since |K1| ≤ 5, the
cycle K1 has no chord, and since z, z′ ∈ V (GK2

) ⊆ V (GK1
), we conclude that

zz′ ∈ E(GK1
). Since the 5-cycle C = vwzz′w′ separates x1, x2 from y1, y2, it

is dangerous and GC ( GK1
; this contradicts the choice of K1. Therefore,

G contains no path of length 3 between w and w′, and thus γ also forms
Conf(2) in G.

Suppose that γ is Conf(4); i.e., GK2
contains a 5-face f = v1 . . . v5 with

v1, . . . , v4 having degree three such that, denoting for i = 1, . . . , 4 the neigh-
bor of vi outside of f by ui, GK2

− V (f) contains no path of length at most
2 between u1 and u4, and no path of length 1 or 3 between u2 and u3, and
u1u2, u3u4 6∈ E(GK2

), and v1, . . . , v4, u1, . . . , u4 6∈ V (K2). Clearly, γ forms
Conf(4) in G as well, unless G−V (f) contains a path u2zz

′u3 of length three.
As in the previous paragraph, this is only possible if K2 = zx1x2z

′y1y2, and
letting C be the 6-cycle u3v3v2u2zz

′, we have GC ⊆ GK1
, and since C sepa-

rates x1, x2 from y1, y2, it is dangerous. Considering the 4-cycles C1 = zx1x2z
′

and C2 = zy1y2z
′, we can by symmetry assume that the closed disk bounded

by C2 contains both C and C1 (and by the minimality in the choice of K1,
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we have C2 = K1). By the minimality in the choice of K1, the cycle C1 is not
dangerous, and thus C1 bounds a face. Therefore, V (GC) ⊆ V (GK2

)\{y1, y2},
which contradicts the minimality in the choice of K2.

Finally, if γ is Conf(1), Conf(3), or Conf(5), then the vertices of γ whose
degree is required to be equal to 2 or 3 are not incident with K2, and thus
their degree in GK2

is the same as their degree in K. Consequently, γ is a
reducible configuration in G as well.

5 Independent sets

Our main result is now an easy consequence.

Proof of Theorem 2. Suppose for a contradiction that the claim is false, and
there exists a tight graph G 6∈ G. Choose such a graph with the minimum
number of vertices, so thatG is a minimum counterexample. By Corollary 13,
G contains one of the configurations Conf(1), . . . , Conf(5), which contradicts
Lemma 11.
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