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Abstract. Let
`

X
h

˘

be the collection of all h-subsets of an n-set X Ě Y . Given a

coloring (partition) of a set S Ď
`

X
h

˘

, we are interested in finding conditions under

which this coloring is extendible to a coloring of
`

X
h

˘

so that the number of times
each element of X appears in each color class (all sets of the same color) is the same
number r. The case S “ ∅, r “ 1 was studied by Sylvester in the 18th century, and
remained open until the 1970s. The case h “ 2, r “ 1 is extensively studied in the
literature and is closely related to completing partial symmetric Latin squares.

For S “
`

Y
h

˘

, we settle the cases h “ 4, |X| ě 4.847323|Y |, and h “ 5, |X| ě
6.285214|Y | completely. Moreover, we make partial progress toward solving the case

where S “
`

X
h

˘

z
`

Y
h

˘

. These results can be seen as extensions of the famous Baranyai’s
theorem, and make progress toward settling a 40-year-old problem posed by Cameron.

1. Introduction

Suppose that we have been entrusted to color (or partition) the collection
`

rns
h

˘

of
all h-subsets of the n-set rns :“ t1, . . . , nu so that the number of times each element of
rns appears in each color class (all sets of the same color) is exactly r. Such a coloring

is called an r-factorization of
`

rns
h

˘

. A solution for the case n “ 6, h “ 3, r “ 1 with 10
colors is given below.

t1, 4, 5u, t2, 3, 6u t1, 2, 4u, t3, 5, 6u t1, 3, 6u, t2, 4, 5u t1, 2, 3u, t4, 5, 6u t1, 2, 5u, t3, 4, 6u
t1, 5, 6u, t2, 3, 4u t1, 3, 5u, t2, 4, 6u t1, 4, 6u, t2, 3, 5u t1, 3, 4u, t2, 5, 6u t1, 2, 6u, t3, 4, 5u

Note that the number of times each element of rns appears in
`

rns
h

˘

is
`

n´1
h´1

˘

. Thus,

for
`

rns
h

˘

to be r-factorable, it is clear that (i) r must divide
`

n´1
h´1

˘

. In addition, a
simple double counting argument shows that (ii) h must divide rn. One may wonder

if conditions (i) and (ii) are also sufficient for
`

rns
h

˘

to be r-factorable. In the 18th
century, Sylvester considered the case r “ 1 of this problem which remained open
until the 1970s when Baranyai solved this 120-year-old problem completely [5]. In fact,

Baranyai proved a far more general result which, in particular, implies that
`

rns
h

˘

is

r-factorable if and only if h|rn and r|
`

n´1
h´1

˘

.
We are interested in a Sudoku-type version of Baranyai’s theorem. A partial r-

factorization of a set S Ď
`

rns
h

˘

is a coloring of S with at most
`

n´1
h´1

˘

{r colors so that
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the number of times each element of rns appears in each color class is at most r. Note
that a color class may be empty.

Problem 1. Under what conditions can a partial r-factorization of S Ď
`

rns
h

˘

be ex-

tended to an r-factorization of
`

rns
h

˘

?

We are given a coloring of a subset S Ď
`

rns
h

˘

, and our task is to complete the col-

oring. In other words, we need to color T :“
`

rns
h

˘

zS so that the coloring of S Y T

provides an r-factorization of
`

rns
h

˘

. Baranyai’s theorem settles the case when S “ ∅.

A partial 4-factorization of
`

r9s
3

˘

is given below (Here we abbreviate a set ta, b, cu to abc).

156, 248, 379, 126, 348, 579, 127, 349, 568, 124, 389, 567
148, 267, 359, 168, 279, 345, 159, 278, 346, 134, 259

128, 347, 569, 178, 249, 356, 169, 247, 358, 123
146, 239, 578, 137, 289, 456, 136, 257

129, 367, 458, 125, 368, 479, 147, 258, 369, 157
189, 246, 357, 158, 237, 469, 138, 245, 679, 139, 268

145, 236, 789, 167, 238, 459, 149, 256, 378, 135, 269, 478

It is not too difficult to extend this to the following 4-factorization.

156, 248, 379, 126, 348, 579, 127, 349, 568, 124, 389, 567
148, 267, 359, 168, 279, 345, 159, 278, 346, 134, 259, 678
128, 347, 569, 178, 249, 356, 169, 247, 358, 123, 467, 589
146, 239, 578, 137, 289, 456, 136, 257, 489, 179, 235, 468
129, 367, 458, 125, 368, 479, 147, 258, 369, 157, 234, 689
189, 246, 357, 158, 237, 469, 138, 245, 679, 139, 268, 457
145, 236, 789, 167, 238, 459, 149, 256, 378, 135, 269, 478

The case h “ 2, r “ 1 of Problem 1 is closely related to completing partial Latin
squares, (see Lindner’s excellent survey [16]). A special case of Problem 1 when r “ 1,

and the partial factorization is a 1-factorization of
`

rms
h

˘

for some m ă n, was studied
by Cruse (for h “ 2) [8], Cameron [7], and Baranyai and Brouwer [6]. Baranyai and

Brouwer conjectured that a 1-factorization of
`

rms
h

˘

can be extended to a 1-factorization

of
`

rns
h

˘

if and only if n ě 2m and h divides m,n. Häggkvist and Hellgren [10] gave a
beautiful proof of this conjecture. For further generalizations of Häggkvist-Hellgren’s
result, we refer the reader to two recent papers by the author and Newman [2, 3]

in which extending r-factorizations of
`

rms
h

˘

to s-factorizations of
`

rns
h

˘

is studied (for
s ě r).

At this point, it should be clear to the reader that the 1-factorization of
`

r6s
3

˘

in the

first example, can not be extended to a 1-factorization of
`

r9s
3

˘

, but it can be extended

to a 1-factorization of
`

r12s
3

˘

.

Like most results in the literature, our primary focus is the case where S “
`

rms
h

˘

(for some m ă n). However, unlike those, here we do not require the given partial
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factorization to be a factorization itself. In this case, Problem 1 was settled by Rodger
and Wantland over 20 years ago for h “ 2 [18], and recently by the author and Rodger
for h “ 3, n ě 3.414214m [4]. In this paper, we settle the cases h “ 4, n ě 4.847323m
and h “ 5, n ě 6.285214m. The major obstacle from h “ 2 to h ě 3 stems from the
natural difficulty of generalizing a graph theoretic result to hypergraphs.

Note that, in order to extend a partial r-factorization of
`

rms
h

˘

to an r-factorization

of
`

rns
h

˘

(for n ě m), it is clearly necessary that r|
`

n´1
h´1

˘

, h|rn. Let χpm,h, rq be the

smallest n such that any partial r-factorization of
`

rms
h

˘

satisfying r|
`

n´1
h´1

˘

, h|rn can

be extended to an r-factorization of
`

rns
h

˘

. Combining the results of this paper with
those of [2, 3, 4], it can be easily shown that 2m ď χpm, 3, rq ď 3.414214m, 2m ď

χpm, 4, rq ď 4.847323m, and 2m ď χpm, 5, rq ď 6.285214m.

Last but not least, we shall consider Problem 1 in the case when S “
`

rns
h

˘

z
`

rms
h

˘

. In
this direction, we solve a variation of the problem when we allow sets of size less than
h, and in our extension of the coloring we also extend the sets of size less than h to
sets of size h.

The paper is self-contained and all the preliminaries are given in Section 2. In section
3, we shall consider Problem 1 in the case when S “

`

rns
h

˘

z
`

rms
h

˘

. The cases h “ 4, 5
are discussed in detail in Sections 4, 5, respectively. We conclude the paper with some
open problems.

2. Notation and Tools

A hypergraph G is a pair pV pGq, EpGqq where V pGq is a finite set called the vertex set,
EpGq is the edge multiset, where every edge is itself a multi-subset of V pGq. This means
that not only can an edge occur multiple times in EpGq, but also each vertex can have
multiple occurrences within an edge. By an edge of the form tum1

1 , um2
2 , . . . , ums

s u,
we mean an edge in which vertex ui occurs mi times for 1 ď i ď r. The total
number of occurrences of a vertex v among all edges of EpGq is called the degree,
degGpvq of v in G. The multiplicity of an edge e in G, written multGpeq, is the
number of repetitions of e in EpGq (note that EpGq is a multiset, so an edge may
appear multiple times). If tum1

1 , um2
2 , . . . , ums

s u is an edge in G, then we abbreviate
multGptu

m1
1 , um2

2 , . . . , ums
s uq to multGpu

m1
1 , um2

2 , . . . , ums
s q. If U1, . . . , Us are multi-subsets

of V pGq, then multGpU1, . . . , Usq means multGp
Ťs

i“1 Uiq, where the union of Uis is the
usual union of multisets. Whenever it is not ambiguous, we drop the subscripts; for
example we write degpvq and multpeq instead of degGpvq and multGpeq, respectively.

For h P N, G is said to be h-uniform if |e| “ h for each e P E, and an h-factor in a
hypergraph G is a spanning h-regular sub-hypergraph. An h-factorization is a partition
of the edge set of G into h-factors. The hypergraphKh

n :“ pV,
`

V
h

˘

q with |V | “ n is called
a complete h-uniform hypergraph. A k-edge-coloring of G is a mapping f : V pGq Ñ rks
and color class i of G, written Gpiq, is the sub-hypergraph of G induced by the edges
of color i.

Let G be a hypergraph, let U be some finite set, and let Ψ : V pGq Ñ U be a
surjective mapping. The map Ψ extends naturally to EpGq. For A P EpGq we define
ΨpAq “ tΨpxq : x P Au. Note that Ψ need not be injective, and A may be a multiset.
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Then we define the hypergraph F by taking V pFq “ U and EpFq “ tΨpAq : A P

EpGqu. We say that F is an amalgamation of G, and that G is a detachment of F .
Associated with Ψ is a (number) function g defined by gpuq “ |Ψ´1puq|; to be more
specific we will say that G is a g-detachment of F . Then G has

ř

uPV pFq gpuq vertices.
Note that Ψ induces a bijection between the edges of F and the edges of G, and that
this bijection preserves the size of an edge. We adopt the convention that it preserves
the color also, so that if we amalgamate or detach an edge-colored hypergraph the
amalgamation or detachment preserves the same coloring on the edges. We make
explicit a straightforward observation: Given G, V pFq and Ψ the amalgamation is
uniquely determined, but given F , V pGq and Ψ the detachment is in general far from
uniquely determined.

There are quite a lot of other papers on amalgamations and some highlights include
[9, 11, 12, 13, 14, 15, 17, 18].

Given an edge-colored hypergraph F , we are interested in finding a detachment G
obtained by splitting each vertex of F into a prescribed number of vertices in G so
that (i) the degree of each vertex in each color class of F is shared evenly among the
subvertices in the same color class in G, and (ii) the multiplicity of each edge in F is
shared evenly among the subvertices in G. The following theorem, which is a special
case of a general result in [1], guarantees the existence of such detachment (Here x « y
means tyu ď x ď rys).

Theorem 2.1. (Bahmanian [1, Theorem 4.1]) Let F be a k-edge-colored hypergraph
and let g : V pFq Ñ N. Then there exists a g-detachment G (possibly with multiple
edges) of F whose edges are all sets, with amalgamation function Ψ : V pGq Ñ V pFq,
g being the number function associated with Ψ, such that

(F1) for each u P V pFq, each v P Ψ´1puq and i P rks,

degGpiqpvq «
degFpiqpuq

gpuq
;

(F2) for distinct u1, . . . , us P V pFq and Ui Ď Ψ´1puiq with |Ui| “ mi ď gpuiq for
i P rss,

multGpU1, . . . , Usq «
multFpu

m1
1 , . . . , ums

s q

Πs
i“1

`

gpuiq

mi

˘ .

Let ĄKh
m be the hypergraph obtained by adding a new vertex u and new edges to Kh

m

so that

multpui,W q “

ˆ

n´m

i

˙

for each i P rhs, and W Ď V pKh
mq with |W | “ h´ i.

In other words, ĄKh
m is an amalgamation of Kh

n , obtained by identifying an arbitrary
set of n´m vertices in Kh

n .
An immediate consequence of Theorem 2.1 is the following.

Corollary 2.2. Let k :“
`

n´1
h´1

˘

{r P N. A partial r-factorization of Kh
m can be extended

to an r-factorization of Kh
n if and only if the new edges of F :“ĄKh

m can be colored so
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that

(1) @i P rks degFpiqpvq “

"

r if v ‰ u,
rpn´mq if v “ u.

Proof. First, suppose that a partial r-factorization of Kh
m can be extended to an r-

factorization of Kh
n . By amalgamating the new n ´ m vertices of Kh

n into a single
vertex u, we clearly obtain F . The k-edge-coloring of Kh

n (in which each color class is
an r-factor) induces a k-edge-coloring in F that satisfies (1).

Conversely, suppose that the edges of F are colored so that (1) is satisfied. Let
g : V pFq Ñ N with gpuq “ n ´ m, and gpvq “ 1 for v ‰ u. By Theorem 2.1, there
exists a g-detachment G of F such that

(a) for each v P Ψ´1puq, and i P rks

degGpiqpvq « degFpiqpuq{gpuq “ rpn´mq{pn´mq “ r.

(b) for U Ď Ψ´1puq,W Ď V pKh
mq with |U | “ i, |W | “ h´ i, for i P rhs.

multGpU,W q «
multFpu

i,W q
`

gpuq
i

˘ “

`

n´m
i

˘

`

n´m
i

˘ “ 1

By (a), each color class is an r-factor, and by (b), G – Kh
n . �

The following observation will be quite useful throughout the paper.

Proposition 2.3. For every n,m, h P N with n ě m ě h,

(2)

ˆ

n

h

˙

“

h
ÿ

i“0

ˆ

m

i

˙ˆ

n´m

h´ i

˙

.

(3) mr

ˆ

n´ 1

h´ 1

˙

´

ˆ

m´ 1

h´ 1

˙

s “

h´1
ÿ

i“1

i

ˆ

m

i

˙ˆ

n´m

h´ i

˙

.

Proof. The proof of (2) is straightforward. Let F be a hypergraph with vertex set
tu, vu such that multpui, vh´iq “

`

m
i

˘`

n´m
h´i

˘

for 0 ď i ď h ´ 1. Note that F is an

amalgamation of the hypergraph G with edge set
`

X
h

˘

z
`

U
h

˘

where |X| “ n, |U | “ m.
Double counting the degree of u proves (3):

h´1
ÿ

i“1

i

ˆ

m

i

˙ˆ

n´m

h´ i

˙

“ degFpuq “
ÿ

uPU

dGpuq “ mr

ˆ

n´ 1

h´ 1

˙

´

ˆ

m´ 1

h´ 1

˙

s.

�

In order to avoid trivial cases, throughout the rest of this paper we assume that
m ą h.
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3. Arbitrary h

If we replace every edge e of a hypergraph G by λ copies of e, then we denote the
new hypergraph by λG. For hypergraphs G1, . . . ,Gt with the same vertex set V , we
define their union, written

Ťt
i“1 Gi, to be the hypergraph with vertex set V and edge

set
Ťt

i“1EpGiq. For a hypergraph G and V Ď V pGq, let G´V be the hypergraph whose
vertex set is V pGqzV and whose edge set is tezV |e P EpGqu.

Let V be an arbitrary subset of vertices in Kh
n with |V | “ m ď n. Then Kh

n ´ V –
Ťh´1

i“0

`

m
i

˘

Kh´i
n´m. A partial r-factorization of H :“ Kh

n ´ V is a coloring of the edges of

Kh
n ´ V with at most

`

n´1
h´1

˘

{r colors so that for each color i, degHpiqpvq ď r for each
vertex of H (Note that H has singleton edges). In the next result, we completely settle
the problem of extending a partial r-factorization of Kh

n ´ V to an r-factorization of
Kh

n . Note that here we are not only extending the coloring, but also the edges of size
less than h to edges of size h. The case h “ 3 was solved in [4].

Theorem 3.1. For V Ď V pKh
nq with |V | “ m, any partial r-factorization of H :“

Kh
n ´ V can be extended to an r-factorization of Kh

n if and only if h|rn, r|
`

n´1
h´1

˘

, and

for all i “ 1, 2, . . . ,
`

n´1
h´1

˘

{r,

(4) dHpiqpvq “ r @v P V pHq,

(5) |EpHpiqq| ď rn

h
.

Proof. To prove the necessity, suppose that a given partial r-factorization of H is
extended to an r-factorization of Kh

n . For Kh
n to be r-factorable, the two divisibility

conditions are clearly necessary. By extending an edge e of size i (i ă h) in H to an
edge of size h in Kh

n , the color of e does not change, and so (4) is necessary. Since
the number of edges in each color class of Kh

n is exactly rn{h, the necessity of (5) is
implied.

To prove the sufficiency, suppose that a partial r-factorization of H is given, h|rn,

r|
`

n´1
h´1

˘

, and that (4), (5) are satisfied. Let k “
`

n´1
h´1

˘

, and let F “ ČKh
n´m. For

0 ď i ď h, an edge of type ui in F is an edge in F containing ui but not containing
ui`1. Note that there are

`

m
i

˘`

n´m
h´i

˘

edges of type ui in F .
There is a clear one-to-one correspondence between the edges of size i in H and the

edges of type uh´i in F for each i P rhs. We color the edges of type ui in F with the
same color as the corresponding edge in H for 0 ď i ď h ´ 1. By Corollary 2.2, if we
can color the remaining edges of F (edges of type uh) so that the following condition
is satisfied, then we are done.

(6) @i P rks degFpiqpvq “

"

r if v ‰ u,
rm if v “ u.

Let multipu
j, .q be the number of edges of type uj in Fpiq, for i P rks, j P rhs. Note

that multipu
h, .q “ multFpiqpu

hq for i P rks. We color the edges of type uh so that for
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i P rks,

multipu
h, .q “

rn

h
´ rpn´mq `

h´1
ÿ

j“1

jmultipu
h´j´1, .q.

Since h|rn, multipu
h, .q is an integer for i P rks. The following shows that multipu

h, .q ě
0 for i P rks.

rn

h

p5q

ě |EpHpiqq| “
h´1
ÿ

j“0

multipu
j, .q

“

h
ÿ

j“1

jmultipu
h´j, .q ´

h´1
ÿ

j“1

jmultipu
h´j´1, .q

p4q
“ rpn´mq ´

h´1
ÿ

j“1

jmultipu
h´j´1, .q.

Now we show that all edges of the type uh will be colored, or equivalently that,
řk

i“1 multipu
h, .q “

`

m
h

˘

.

k
ÿ

i“1

multipu
h, .q “

k
ÿ

i“1

`rn

h
´ rpn´mq `

h´1
ÿ

j“1

jmultipu
h´j´1, .q

˘

“
rkn

h
´ rkpn´mq `

h´1
ÿ

j“1

j
k
ÿ

i“1

multipu
h´j´1, .q

“

ˆ

n

h

˙

´ pn´mq

ˆ

n´ 1

h´ 1

˙

`

h
ÿ

j“2

pj ´ 1q

ˆ

m

h´ j

˙ˆ

n´m

j

˙

p2q,p3q
“

h
ÿ

j“0

ˆ

m

j

˙ˆ

n´m

h´ j

˙

´

h´1
ÿ

j“1

j

ˆ

n´m

j

˙ˆ

m

h´ j

˙

´ pn´mq

ˆ

n´m´ 1

h´ 1

˙

`

h
ÿ

j“2

pj ´ 1q

ˆ

m

h´ j

˙ˆ

n´m

j

˙

“

ˆ

m

h

˙

´ pn´mq

ˆ

n´m´ 1

h´ 1

˙

` h

ˆ

n´m

h

˙

“

ˆ

m

h

˙

.
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To complete the proof, we show that degFpiqpuq “ rm for i P rks. We have

degFpiqpuq “

h
ÿ

j“1

jmultipu
j, .q “ hmultipu

h, .q `
h
ÿ

j“1

ph´ jqmultipu
h´j, .q

“ hmultipu
h, .q ` h

h
ÿ

j“1

multipu
h´j, .q ´

h
ÿ

j“1

jmultipu
h´j, .q

“ h
h
ÿ

j“0

multipu
h´j, .q ´

h
ÿ

j“1

jmultipu
h´j, .q

“ rn´ rpn´mq “ rm.

�

For a hypergraph G and V Ď V pGq, let GzV be the hypergraph whose vertex set is
V pGq and whose edge set is te P EpGq|e Ę V u.

Let V Ď V pKh
nq with |V | “ m ď n, and let H :“ Kh

nzV . An edge e P EpHq is of
type i, if |eX V | “ i (for 0 ď i ď h´ 1). Let P be a partial r-factorization of H. Then
a partial r-factorization Q of H is said to be P -friendly if

(a) the color of each edge of type 0 is the same in P and Q, and
(b) the number of edges of type i and color j is the same in P and Q for each i P rh´1s

and each color j.

We are interested in finding the conditions under which a partial r-factorization of H
can be extended to an r-factorization of Kh

n .

Lemma 3.2. For V Ď V pKh
nq with |V | “ m, if a partial r-factorization of H :“ Kh

nzV
can be extended to an r-factorization of Kh

n , then

(N1) h|rn,
(N2) r|

`

n´1
h´1

˘

,
(N3) dHpiqpvq “ r for each v P V pHqzV , and i P rks,
(N4) |EpHpiqq| ď rn{h for i P rks,

where k :“
`

n´1
h´1

˘

{r.

It remains an open question whether these conditions are sufficient. Here we prove
a weaker result.

Corollary 3.3. Let V Ď V pKh
nq with |V | “ m, and let P be a partial r-factorization of

H :“ Kh
nzV , and assume that (N1)–(N4) are satisfied. Then there exists a P -friendly

partial r-factorization of H that can be extended to an r-factorization of Kh
n .

Proof. By eliminating all the vertices in V , and shrinking the edges containing vertices
in V , we obtain Kh

n ´ V . The rest of the proof follows from Theorem 3.1. �

4. h “ 4

Theorem 4.1. For n ě 4.847323m, any partial r-factorization of K4
m can be extended

to an r-factorization of K4
n if and only if 4|rn and r|

`

n´1
3

˘

.
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Proof. For the necessary conditions, see the previous section. To prove the sufficiency,

we need to show that the edges of F :“ĄK4
m can be colored with k :“

`

n´1
3

˘

{r colors so
that (6) is satisfied.

First we color the edges in F of the form W Y tuu where W Ď V :“ V pK4
mq and

|W | “ 3. We color these edges greedily so that degipxq ď r for each x P V and i P rks.
We claim that this coloring can be done in such a way that all edges of this type are
colored. Suppose by contrary that there is an edge in F of the form tx, y, z, uu with
x, y, z P V that can not be colored. This implies that for each i P rks either degipxq “ r
or degipyq “ r or degipzq “ r. Thus for each i P rks, degipxq ` degipyq ` degipzq ě r.

On the one hand,
řk

i“1

`

degipxq ` degipyq ` degipzq
˘

ě rk “
`

n´1
3

˘

, and on the other

hand,
řk

i“1

`

degipxq ` degipyq ` degipzq
˘

ď 3r
`

m´1
3

˘

` pn ´ mq
`

m´1
2

˘

´ 1s. Thus, we
have

3r

ˆ

m´ 1

3

˙

` pn´mq

ˆ

m´ 1

2

˙

´ 1s ě

ˆ

n´ 1

3

˙

.

which is equivalent to fpn,mq :“ n3´6n2´9m2n`27mn´7n`6m3´9m2´15m`30 ď
0. Now, we show that since n ą 4m and m ě 5, we have fpn,mq ą 0, which is a
contradiction, and therefore, all edges in F of the form W Y tuu where W Ď V and
|W | “ 3 can be colored using the greedy approach described above.

First, note that for m ě 5, both 7m2 ` 3m ´ 7 and 2m2 ´ 3m ´ 5 are positive.
Therefore,

fpn,mq “ n
´

npn´ 6q ´ 9m2
` 27m´ 7

¯

` 3mp2m2
´ 3m´ 5q ` 30

ą n
´

4mp4m´ 6q ´ 9m2
` 27m´ 7

¯

` 3mp2m2
´ 3m´ 5q ` 30

“ np7m2
` 3m´ 7q ` 3mp2m2

´ 3m´ 5q ` 30 ą 0.

Now we greedily color all the edges of the form W Ytu2u where W Ď V and |W | “ 2,
so that degipxq ď r for each x P V and i P rks. We show that this is possible. If by
contrary, some edge tx, y, u2u with x, y P V remains uncolored, then for each i P rks
either degipxq “ r or degipyq “ r, and so degipxq ` degipyq ě r. We have

ˆ

n´ 1

3

˙

“ rk ď

k
ÿ

i“1

`

degipxq ` degipyq
˘

ď 2r

ˆ

m´ 1

3

˙

` pn´mq

ˆ

m´ 1

2

˙

` pm´ 1q

ˆ

n´m

2

˙

´ 1s,

which is equivalent to n3´6mn2`6m2n`12mn´7n´2m3´6m2´4m`18 ď 0. Using
Mathematica (Wolfram Alpha) it can be shown that this inequality does not have any
real solution under the constraints m ě 5, n ě 4.847323m. Therefore, all edges of the
form W Y tu2u where W Ď V and |W | “ 2, can be colored.
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Since for each x P V ,

k
ÿ

i“1

`

r ´ degipxq
˘

“ rk ´ r

ˆ

m´ 1

3

˙

` pn´mq

ˆ

m´ 1

2

˙

` pm´ 1q

ˆ

n´m

2

˙

s

“

ˆ

n´ 1

3

˙

´

ˆ

m´ 1

3

˙

´ pn´mq

ˆ

m´ 1

2

˙

´ pm´ 1q

ˆ

n´m

2

˙

p2q
“

ˆ

n´m

3

˙

,

we can color all the edges of the form tw, u3u where w P V so that for each x P V ,
there are r´ degipxq edges of this type colored i incident with x for each i P rks. Note
that after this coloring,

(7) degipxq “ r for each x P V.

For i P rks, let ai, bi, ci, di be the number of edges colored i of the form W,W Ytuu,W Y

tu2u,W Y tu3u where W Ď V , respectively. We color the edges of the form tu4u so
that there are exactly

ei :“ rn{4´ rm` 3ai ` 2bi ` ci

edges of this type colored i for i P rks. Since 4|rn, and n ą 4m, ei is a positive integer
for i P rks. We claim that all edges of the form tu4u will be colored, or equivalently,
řk

i“1 ei “
`

n´m
4

˘

.

k
ÿ

i“1

ei “

k
ÿ

i“1

p
rn

4
´ rm` 3ai ` 2bi ` ciq “

rkn

4
´ rkm` 3

k
ÿ

i“1

ai ` 2
k
ÿ

i“1

bi `
k
ÿ

i“1

ci

“
n

4

ˆ

n´ 1

3

˙

´m

ˆ

n´ 1

3

˙

` 3

ˆ

m

4

˙

` 2pn´mq

ˆ

m

3

˙

`

ˆ

n´m

2

˙ˆ

m

2

˙

“

ˆ

n

4

˙

´m

ˆ

n´ 1

3

˙

` 3

ˆ

m

4

˙

` 2pn´mq

ˆ

m

3

˙

`

ˆ

n´m

2

˙ˆ

m

2

˙

p2q,p3q
“

ˆ

n´m

4

˙

.

To complete the proof, we show that degipuq “ rpn´mq for i P rks. First note that
for i P rks, rm “

ř

xPV degipxq “ 4ai ` 3bi ` 2ci ` di. Therefore,

degipuq “ bi ` 2ci ` 3di ` 4ei “ 4pai ` bi ` ci ` di ` eiq ´ p4ai ` 3bi ` 2ci ` diq

“ rn´ rm “ rpn´mq.

Combining this with (7) implies that (6) is satisfied, and the proof is complete. �

5. h “ 5

Theorem 5.1. For n ě 6.285214m, any partial r-factorization of K5
m can be extended

to an r-factorization of K5
n if and only if 5|rn and r|

`

n´1
4

˘

.
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Proof. The necessity is obvious. To prove the sufficiency, we need to show that the

edges of F :“ĄK5
m can be colored with k :“

`

n´1
4

˘

{r colors so that (6) is satisfied.
First we color the edges of the form W Y tuu where W Ď V and |W | “ 4. We color

these edges greedily so that degipxq ď r for each x P V and i P rks. We claim that this
coloring can be done in such a way that all edges of this type are colored. Suppose by
contrary that there is an edge of the form tx, y, z, w, uu with x, y, z, w P V that can
not be colored. This implies that for each i P rks either degipxq “ r or degipyq “ r or
degipzq “ r or degipwq “ r. Thus for each i P rks, degipxq`degipyq`degipzq`degipwq ě

r. On the one hand,
řk

i“1

`

degipxq ` degipyq ` degipzq ` degipwq
˘

ě rk “
`

n´1
4

˘

, and

on the other hand,
řk

i“1

`

degipxq ` degipyq ` degipzq ` degipwq
˘

ď 4r
`

m´1
4

˘

` pn ´

mq
`

m´1
3

˘

´ 1s. Thus, we have

4r

ˆ

m´ 1

4

˙

` pn´mq

ˆ

m´ 1

3

˙

´ 1s ě

ˆ

n´ 1

4

˙

.

which is equivalent to g1pn,mq :“ n4´10n3`35n2´16m3n`96m2n´176mn`46n`
12m4 ´ 56m3 ` 36m2 ` 104m` 24 ď 0.

Since n ą 6m and m ě 6, we have

g1pn,mq :“ n
´

n2
pn´ 10q ´ 16m3

` 96m2
` p35n´ 176mq ` 46

¯

` 4m
´

m2
p3m´ 14q ` 9m` 26

¯

` 24

ą 9m2
p3m´ 10q ´ 16m3

` 96m2

“ 11m3
` 6m2

ą 0,

which is a contradiction, and therefore, all edges in F of the form W Y tuu where
W Ď V and |W | “ 4 can be colored.

Now we greedily color all the edges of the form W Ytu2u where W Ď V and |W | “ 3,
so that degipxq ď r for each x P V and i P rks. We show that this is possible. If by
contrary, some edge tx, y, z, u2u with x, y, z P V remains uncolored, then for each i P rks
either degipxq “ r or degipyq “ r or degipzq “ r, and so degipxq`degipyq`degipzq ě r.
We have

ˆ

n´ 1

4

˙

“ rk ď

k
ÿ

i“1

`

degipxq ` degipyq ` degipzq
˘

ď 3r

ˆ

m´ 1

4

˙

` pn´mq

ˆ

m´ 1

3

˙

`

ˆ

m´ 1

2

˙ˆ

n´m

2

˙

´ 1s.

which is equivalent to g2pn,mq :“ n4´10n3´18m2n2`54mn2´n2`24m3n´18m2n´
114mn` 58n´ 9m4 ´ 6m3 ` 45m2 ` 42m` 24 ď 0. We show that since n ą 6m and
m ě 6, we have g2pn,mq ą 0, which is a contradiction, and therefore, all edges in F of
the form W Y tu2u where W Ď V and |W | “ 3 can be colored.
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First, note that for m ě 6 we have 12m3 ´ 9m2 ´ 57m` 29 ą 0. Therefore,

g2pn,mq “ n2
´

npn´ 10q ´ 18m2
` 54m´ 1

¯

` 2n
´

12m3
´ 9m2

´ 57m` 29
¯

´ p9m4
` 6m3

´ 45m2
´ 42m´ 24q

ą 36m2
´

6mp6m´ 10q ´ 18m2
` 54m´ 1

¯

´ p9m4
` 6m3

´ 45m2
´ 42m´ 24q

“ 639m4
´ 150m3

` 18m2
` 42m` 24 ą 0.

Now we greedily color all the edges of the form W Ytu3u where W Ď V and |W | “ 2,
so that degipxq ď r for each x P V and i P rks. We show that this is possible. If by
contrary, some edge tx, y, u2u with x, y P V remains uncolored, then for each i P rks
either degipxq “ r or degipyq “ r, and so degipxq ` degipyq ě r. We have

ˆ

n´ 1

4

˙

ď

k
ÿ

i“1

`

degipxq ` degipyq
˘

ď 2r

ˆ

m´ 1

4

˙

` pn´mq

ˆ

m´ 1

3

˙

`

ˆ

m´ 1

2

˙ˆ

n´m

2

˙

` pm´ 1q

ˆ

n´m

3

˙

´ 1s.

Using Mathematica it can be shown that this inequality does not have any real solution
under the constraints m ě 6, n ě 6.285214m. Therefore, all edges of the form WYtu3u
where W Ď V and |W | “ 2, can be colored.

Since for each x P V ,

k
ÿ

i“1

`

r ´ degipxq
˘

“

ˆ

n´ 1

4

˙

´

ˆ

m´ 1

4

˙

´ pn´mq

ˆ

m´ 1

3

˙

´

ˆ

m´ 1

2

˙ˆ

n´m

2

˙

´ pm´ 1q

ˆ

n´m

3

˙

“

ˆ

n´m

4

˙

,

we can color all the edges of the form tw, u4u where w P V so that for each x P V ,
there are r ´ degipxq edges of this type colored i incident with x for each i P rks.

For i P rks, let ai, bi, ci, di, ei be the number of edges colored i of the form W,W Y

tuu,W Y tu2u,W Y tu3u,W Y tu4u where W Ď V , respectively. We color the edges of
the form tu5u so that there exactly

fi :“ rn{5´ rm` 4ai ` 3bi ` 2ci ` di

edges of this type colored i for i P rks. Since 5|rn, and n ě 6.4m ą 5m, ei is a
positive integer for i P rks. We claim that all edges of the form tu5u will be colored, or

equivalently,
řk

i“1 fi “
`

n´m
5

˘

.
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k
ÿ

i“1

fi “

k
ÿ

i“1

p
rn

5
´ rm` 4ai ` 3bi ` 2ci ` diq

“
rkn

5
´ rkm` 4

k
ÿ

i“1

ai ` 3
k
ÿ

i“1

bi ` 2
k
ÿ

i“1

ci `
k
ÿ

i“1

di

“

ˆ

n

5

˙

´m

ˆ

n´ 1

4

˙

` 4

ˆ

m

5

˙

` 3pn´mq

ˆ

m

4

˙

` 2

ˆ

n´m

2

˙ˆ

m

3

˙

`

ˆ

n´m

3

˙ˆ

m

2

˙

“

ˆ

n´m

5

˙

.

To complete the proof, we show that degipuq “ rpn´mq for i P rks. First note that
for i P rks, rm “

ř

xPV degipxq “ 5ai ` 4bi ` 3ci ` 2di ` ei. Therefore,

degipuq “ bi ` 2ci ` 3di ` 4ei ` 5fi

“ 5pai ` bi ` ci ` di ` ei ` fiq ´ p5ai ` 4bi ` 3ci ` 2di ` eiq

“ rn´ rm “ rpn´mq.

�

6. Concluding Remarks and Open Problems

(1) At this point, it is not clear to use how to extend the results of Sections 4 and
5 without dealing with heavy computation. We believe that for n ě 2hm, any
partial r-factorization of Kh

m can be extended to an r-factorization of Kh
n if and

only if the obvious necessary divisibility conditions are satisfied.
(2) To embed a partial r-factorization of KnzK

h
m into an r-factorization of Kh

n , we
believe that the conditions (N1)–(N4) of Lemma 3.2 are sufficient, but we do
not know how to go beyond Corollary 3.3.

(3) A partial r-factorization S Ď Kh
n is critical if it can be extended to exactly one

r-factorization of Kh
n , but removal of any element of S destroys the uniqueness

of the extension, and |S| is the size of the critical partial r-factorization. It is
desirable to find good bounds for the smallest and largest sizes of critical partial
r-factorizations.

(4) Another interesting problem is finding conditions under which a partial r-

factorization of S Ď
`

rns
h

˘

can be extended to a cyclic r-factorization of
`

rns
h

˘

.
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