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Abstract

A 3-connected graph G is a brick if, for any two vertices u and v,
the graph G−{u, v} has a perfect matching. Deleting an edge e from a
brick G results in a graph with zero, one or two vertices of degree two.
The bicontraction of a vertex of degree two consists of contracting the
two edges incident with it; and the retract of G − e is the graph J

obtained from it by bicontracting all its vertices of degree two. An
edge e is thin if J is also a brick. Carvalho, Lucchesi and Murty [How
to build a brick, Discrete Mathematics 306 (2006), 2383-2410] showed
that every brick, distinct from K4, the triangular prism C6 and the
Petersen graph, has a thin edge. Their theorem yields a generation
procedure for bricks, using which they showed that every simple planar
solid brick is an odd wheel.

A brick G is near-bipartite if it has a pair of edges α and β such that
G−{α, β} is bipartite and matching covered; examples are K4 and C6.
The significance of near-bipartite graphs arises from the theory of ear
decompositions of matching covered graphs.

The object of this paper is to establish a generation procedure
which is specific to the class of near-bipartite bricks. In particular, we
prove that if G is any near-bipartite brick, distinct from K4 and C6,
then G has a thin edge e such that the retract J of G − e is also
near-bipartite.

∗A shorter version has been accepted for publication in the Journal of Graph Theory.
†Partially supported by NSERC grant (RGPIN-2014-04351, J. Cheriyan).
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1 Matching Covered Graphs

For general graph theoretic notation and terminology, we refer the reader to
Bondy and Murty [1]. All graphs considered here are loopless; however, we
allow multiple edges. An edge of a graph is admissible if there is a perfect
matching of the graph that contains it. A connected graph with two or
more vertices is matching covered if each of its edges is admissible. For a
comprehensive treatment of matching theory and its origins, we refer the
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reader to Lovász and Plummer [12], wherein matching covered graphs are
referred to as ‘1-extendable’ graphs.

In this section, we briefly review the relevant terminology, definitions and
results from the theory of matching covered graphs.

1.1 Canonical Partition

Tutte’s Theorem states that a graph G has a perfect matching if and only if
odd(G − S) ≤ |S| for each subset S of G, where odd(G − S) denotes the
number of odd components of G − S. For a graph G that has a perfect
matching, a nonempty subset S of its vertices is a barrier if it satisfies the
equality odd(G− S) = |S|. The following proposition is easily deduced from
Tutte’s Theorem, and yields a characterization of matching covered graphs.

Proposition 1.1 Let G be a graph that has a perfect matching. Let u and v
be distinct vertices of G. Then the graph G− {u, v} has a perfect matching
if and only if there is no barrier of G which contains both u and v.

Corollary 1.2 Let G be a connected graph with a perfect matching. Then
G is matching covered if and only if every barrier of G is stable (that is, an
independent set).

The following fundamental theorem is due to Kotzig (see [12, page 150]).

Theorem 1.3 [The Canonical Partition Theorem] The maximal
barriers of a matching covered graph G partition its vertex set.

For a matching covered graph G, the partition of its vertex set defined
by its maximal barriers is called the canonical partition of V (G). For in-
stance, for a bipartite matching covered graph H [A,B], the canonical parti-
tion of V (H) consists of precisely two parts, namely, its color classes A and B;
this is implied by the following proposition which may be derived from the
well-known Hall’s Theorem. (The neighbourhood of a set of vertices S is
denoted by N(S).)

Proposition 1.4 Let H [A,B] denote a bipartite graph with four or more
vertices, where |A| = |B|. Then the following statements are equivalent:
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(i) H is matching covered,

(ii) |N(S)| ≥ |S|+ 1 for every nonempty proper subset S of A, and

(iii) H − {a, b} has a perfect matching for each pair of vertices a ∈ A and
b ∈ B.

A graph G, with four or more vertices, is bicritical if G − {u, v} has a
perfect matching for every pair of distinct vertices u and v. A barrier is trivial
if it has a single vertex. Proposition 1.1 implies the following characterization
of bicritical graphs.

Proposition 1.5 Let G be a connected graph with a perfect matching. Then
G is bicritical if and only if every barrier of G is trivial.

Thus, for a bicritical graph G, the canonical partition of V (G) consists
of |V (G)| parts, each of which contains a single vertex.

1.2 Bricks and Braces

For a nonempty proper subset X of the vertices of a graph G, we denote by
∂(X) the cut associated with X , that is, the set of all edges of G that have
one end in X and the other end in X := V (G) −X . We refer to X and X
as the shores of ∂(X). A cut is trivial if any of its shores is a singleton. For
a cut ∂(X), we denote the graph obtained by contracting the shore X to a
single vertex x by G/(X → x). In case the label of the contraction vertex x is
irrelevant, we simply write G/X. The two graphs G/X and G/X are called
the ∂(X)-contractions of G.

LetG be a matching covered graph. A cut ∂(X) is a tight cut if |M ∩ ∂(X)| = 1
for every perfect matching M of G. It is easily verified that if ∂(X) is a non-
trivial tight cut ofG, then each ∂(X)-contraction is a matching covered graph
that has strictly fewer vertices than G. If either of the ∂(X)-contractions has
a nontrivial tight cut, then that graph can be further decomposed into even
smaller matching covered graphs. We can repeat this procedure until we
obtain a list of matching covered graphs, each of which is free of nontrivial
tight cuts. This procedure is known as a tight cut decomposition of G.

Let G be a matching covered graph free of nontrivial tight cuts. If G is
bipartite then it is a brace; otherwise it is a brick. Thus, a tight cut decom-
position of G results in a list of bricks and braces. In general, a matching
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covered graph may admit several tight cut decompositions. However, Lovász
[11] proved the following remarkable result, and demonstrated its significance
by using it to compute the dimension of the matching lattice.

Theorem 1.6 [The Unique Decomposition Theorem] Any two tight
cut decompositions of a matching covered graph yield the same list of bricks
and braces (except possibly for multiplicities of edges).

In particular, any two tight cut decompositions of a matching covered
graph G yield the same number of bricks; this number is denoted by b(G).
We remark that G is bipartite if and only if b(G) = 0.

Let G be a matching covered graph. Observe that, if S is a barrier of G,
and K is an odd component of G−S, then ∂(V (K)) is a tight cut of G. Such
a tight cut is called a barrier cut. (For instance, if v is a vertex of degree
two then {v} ∪ N(v) is the shore of a barrier cut.) In particular, if G is
nonbipartite then each nontrivial barrier gives rise to a nontrivial tight cut.

Now suppose that {u, v} is a 2-vertex-cut of G such that G−{u, v} has an
even component, say K. Then each of the sets V (K)∪{u} and V (K)∪{v} is
a shore of a nontrivial tight cut of G. Such a tight cut is called a 2-separation
cut. (We remark that a graph may have a tight cut which is neither a barrier
cut nor a 2-separation cut.)

Since a brick is a nonbipartite matching covered graph which is free of
nontrivial tight cuts, it follows from the above observations that every brick is
3-connected and bicritical. Edmonds, Lovász and Pulleyblank [8] established
the converse.

Theorem 1.7 A graph G is a brick if and only if it is 3-connected and
bicritical.

In particular, a brick is free of nontrivial barriers and of 2-vertex-cuts.
Three cubic bricks, namely K4, C6 and the Petersen graph, play a special
role in the theory of matching covered graphs.

1.3 Removable edges

An edge e of a matching covered graph G is removable if G− e is also match-
ing covered; otherwise it is non-removable. For example, each edge of the
Petersen graph is removable. The following was established by Lovász [11].
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Theorem 1.8 [Removable Edge Theorem] Every brick distinct from
K4 and C6 has a removable edge.

We point out that, if e is a removable edge of a brick G, then G− e may
not be a brick. For instance, G− e may have vertices of degree two.

1.3.1 Near-bricks and b-invariant edges

Recall that b(G) denotes the number of bricks of a matching covered graph G
(in any tight cut decomposition), and it is well-defined due to the Unique
Decomposition Theorem (1.6). A near-brick is a matching covered graph
with b(G) = 1. Clearly, every brick is a near-brick. However, the converse
is not true. When proving theorems concerning bricks, one often needs the
flexibility of dealing with the wider class of near-bricks, whose properties are
akin to those of bricks.

A removable edge e of a matching covered graph G is b-invariant if
b(G− e) = b(G). In particular, if G is a brick then e is b-invariant if and
only if G− e is a near-brick. For instance, the graph St8 shown in Figure 1
has a unique b-invariant edge e.

ef

Figure 1: St8 has a unique b-invariant edge e

It is easily verified that if G is the Petersen graph and e is any edge, then
b(G−e) = 2. Thus each edge of the Petersen graph is removable, but none of
them is b-invariant. Confirming a conjecture of Lovász, the following result
was proved by Carvalho, Lucchesi and Murty [3].

Theorem 1.9 [b-invariant Edge Theorem] Every brick distinct from
K4 and C6 and the Petersen graph has a b-invariant edge.
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1.3.2 Bicontractions, retracts and bi-splittings

Let G be a matching covered graph and let v be a vertex of degree two, with
two distinct neighbours u and w. The bicontraction of v is the operation
of contracting the two edges vu and vw incident with v. Note that X :=
{u, v, w} is the shore of a tight cut of G, and that the graph resulting from
the bicontraction of v is the same as the ∂(X)-contraction G/X , whereas
the other ∂(X)-contraction G/X is isomorphic to C4 (possibly with multiple
edges).

The retract of G is the graph obtained from G by bicontracting all its
degree two vertices. The above observation implies that the retract of a
matching covered graph is also matching covered. Carvalho et al. [5] showed
that the retract of a matching covered graph is unique up to isomorphism.
It is important to note that even if G is simple, the retract of G may have
multiple edges.

The operation of bi-splitting is the converse of the operation of bicontrac-
tion. Let H be a graph and let v be a vertex of H of degree at least two. Let
G be a graph obtained from H by replacing the vertex v by two new vertices
v1 and v2, distributing the edges in H incident with v between v1 and v2 such
that each gets at least one, and then adding a new vertex v0 and joining it
to both v1 and v2. Then we say that G is obtained from H by bi-splitting v
into v1 and v2. It is easily seen that if H is matching covered, then G is also
matching covered, and that H can be recovered from G by bicontracting the
vertex v0 and denoting the contraction vertex by v.

1.3.3 Thin edges

A b-invariant edge e of a brick G is thin if the retract of G− e is a brick. As
the graph G− e can have zero, one or two vertices of degree two, the retract
of G− e is obtained by performing at most two bicontractions, and it has at
least |V (G)| − 4 vertices. For example, the retract of St8 − e (see Figure 1)
is isomorphic to K4 with multiple edges; thus, e is a thin edge. It should be
noted that, in general, a b-invariant edge may not be thin.

The original definition of a thin edge, due to Carvalho et al. [6], was
in terms of barriers; ‘thin’ being a reference to the fact that the barriers
of G− e are sparse. This viewpoint will also be useful to us in latter sections
(where further explanation is provided). Carvalho, Lucchesi and Murty [6]
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used their b-invariant Edge Theorem (1.9) to derive the following stronger
result.

Theorem 1.10 [Thin Edge Theorem] Every brick distinct from K4 and
C6 and the Petersen graph has a thin edge.

The following is an immediate consequence of the above theorem.

Theorem 1.11 [6] Given any brick G, there exists a sequence G1, G2, . . . , Gk

of bricks such that:

(i) G1 is either K4 or C6 or the Petersen graph,

(ii) Gk := G, and

(iii) for 2 ≤ i ≤ k, there exists a thin edge ei of Gi such that Gi−1 is the
retract of Gi − ei.

Carvalho et al. [6] also described four elementary ‘expansion operations’
which may be applied to any brick to obtain a larger brick with at most four
more vertices. Each of these operations consists of bi-splitting at most two
vertices and then adding a suitable edge. Given a brick J , the application of
any of these four operations to J results in a brick G such that G has a thin
edge e with the property that J is the retract of G− e. Thus, any brick may
be generated from one of the three basic bricks (K4 and C6 and the Petersen
graph) by means of these four expansion operations.

1.4 Near-Bipartite Bricks

A nonbipartite matching covered graph G is near-bipartite if it has a pair
R := {α, β} of edges such that the graph H := G − R is bipartite and
matching covered. Such a pair R is called a removable doubleton.

Furthermore, if G happens to be a brick, we say that G is a near-bipartite
brick. For instance, K4 and C6 are the smallest simple near-bipartite bricks,
and each of them has three distinct removable doubletons.

Observe that the edge α joins two vertices in one color class of H , and
that β joins two vertices in the other color class. Consequently, if M is any
perfect matching of G then α ∈ M if and only if β ∈ M . (In particular,
neither α nor β is a removable edge of G.) The following is an immediate
consequence of [4, Theorem 5.1].
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Theorem 1.12 Every near-bipartite graph is a near-brick.

The significance of near-bipartite graphs arises from the theory of ear
decompositions of matching covered graphs; see [2] and [10]; in this context,
near-bipartite graphs constitute the class of nonbipartite matching covered
graphs which are ‘closest’ to being bipartite. Thus, certain problems which
are rather difficult to solve for general nonbipartite graphs are easier to solve
for the special case of near-bipartite graphs; for instance, although there has
been no significant progress in characterizing Pfaffian nonbipartite graphs,
Fischer and Little [9] were able to characterize Pfaffian near-bipartite graphs.

The difficulty in using Theorem 1.11 as an induction tool for studying
near-bipartite bricks, is that even if Gk := G is a near-bipartite brick, there
is no guarantee that all of the intermediate bricks G1, G2, . . .Gk−1 are also
near-bipartite. For instance, the brick shown in Figure 2a is near-bipartite
with a (unique) removable doubleton R := {α, β}. Although the edge e is
thin; the retract of G− e, as shown in Figure 2b, is not near-bipartite since
it has three edge-disjoint triangles.

α

β

e

(a) (b)

Figure 2: (a) A near-bipartite brick G with a thin edge e ; (b) The retract
of G− e is not near-bipartite

In other words, deleting an arbitrary thin edge may not preserve the
property of being near-bipartite. In this sense, the Thin Edge Theorem (1.10)
is inadequate for obtaining inductive proofs of results that pertain only to
the class of near-bipartite bricks.

To fix this problem, we decided to look for a thin edge whose deletion
preserves the property of being near-bipartite. Our main result is as follows.

Theorem 1.13 Every near-bipartite brick G distinct from K4 and C6 has a
thin edge e such that the retract of G− e is also near-bipartite.
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In fact, we prove a stronger theorem. In particular, we find it convenient
to fix a removable doubleton R (of the brick under consideration), and then
look for a thin edge whose deletion preserves this removable doubleton. To
make this precise, we will first define a special type of removable edge which
we call ‘R-compatible’.

1.4.1 R-compatible edges

We use the abbreviation R-graph for a near-bipartite graph G with (fixed)
removable doubleton R, and we shall refer to H := G − R as its underlying
bipartite graph. In the same spirit, an R-brick is a brick with a removable
doubleton R.

A removable edge e of an R-graph G is R-compatible if it is removable
in H as well. Equivalently, an edge e is R-compatible if G − e and H − e
are both matching covered. For instance, the graph St8 (see Figure 3) has
two removable doubletons R := {α, β} and R′ := {α′, β ′}, and its unique
removable edge e is R-compatible as well as R′-compatible.

e

α

βα′

β ′

Figure 3: e is R-compatible as well as R′-compatible

Now, let G denote the R-brick shown in Figure 2a, where R := {α, β}.
The thin edge e is incident with an edge of R at a cubic vertex; consequently,
H−e has a vertex whose degree is only one, and so it is not matching covered.
In particular, e is not R-compatible.

The brick shown in Figure 4 has two distinct removable doubletons R :=
{α, β} and R′ := {α′, β ′}. Its edges e and f are both R′-compatible, but
neither of them is R-compatible.

Observe that, if e is an R-compatible edge of an R-graph G, then R is a
removable doubleton of G−e, whence G−e is also an R-graph; in particular,
G − e is near-bipartite. By Theorem 1.12, G − e is a near-brick; and this
proves the following.

Proposition 1.14 Every R-compatible edge is b-invariant. ✷
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e

f
α

β

α′

β ′

Figure 4: e and f are R′-compatible, but they are not R-compatible

Furthermore, as we will see later, if e is an R-compatible edge of an
R-brick G then the unique brick J of G− e is also an R-brick; in particular,
J is near-bipartite. The following is a special case of a theorem of Carvalho,
Lucchesi and Murty [2].

Theorem 1.15 [R-compatible Edge Theorem] Every R-brick distinct
from K4 and C6 has an R-compatible edge.

In [2], they proved a stronger result. In particular, they showed the
existence of an R-compatible edge in R-graphs with minimum degree at
least three. (They did not use the term ‘R-compatible’.) Using the notion
of R-compatibility, we now define a thin edge whose deletion preserves the
property of being near-bipartite.

1.4.2 R-thin edges

A thin edge e of an R-brick G is R-thin if it is R-compatible. Equivalently,
an edge e is R-thin if it is R-compatible as well as thin, and in this case, the
retract of G− e is also an R-brick.

As noted earlier, the graph St8, shown in Figure 3, has two removable
doubletons R and R′. Its unique removable edge e is R-thin as well as R′-thin;
to see this, note that the retract J of St8−e is isomorphic toK4 with multiple
edges, and each of R and R′ is a removable doubleton of J .

Using the R-compatible Edge Theorem (1.15) of Carvalho et al., we prove
the following stronger result (which immediately implies Theorem 1.13).

Theorem 1.16 [R-thin Edge Theorem] Every R-brick distinct from
K4 and C6 has an R-thin edge.
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Our proof of the above theorem uses tools from the work of Carvalho et
al. [6], and the overall approach is inspired by their proof of the Thin Edge
Theorem (1.10). The following is an immediate consequence of Theorem 1.16.

Theorem 1.17 Given any R-brick G, there exists a sequence G1, G2, . . . , Gk

of R-bricks such that:

(i) G1 is either K4 or C6,

(ii) Gk := G, and

(iii) for 2 ≤ i ≤ k, there exists an R-thin edge ei of Gi such that Gi−1 is the
retract of Gi − ei.

It follows from the above theorem that every near-bipartite brick can be
generated from one of K4 and C6 by means of the expansion operations.
Theorem 1.16 and its proof also appear in the Ph.D. thesis of Kothari [10].

2 Near-Bipartite Graphs

In this section, we examine properties of near-bipartite graphs that are
relevant to our proof of Theorem 1.16. Recall that an R-graph G is a
near-bipartite graph with a fixed removable doubleton R. We adopt the
following notational conventions.

Notation 2.1 For an R-graph G, we shall denote by H [A,B] the underlying
bipartite graph G−R. We let α and β denote the constituent edges of R, and
we adopt the convention that α := a1a2 has both ends in A, whereas β := b1b2
has both ends in B.

As we will see, certain pertinent properties of G are closely related to
those of H . For this reason, we also review well-known facts concerning
bipartite matching covered graphs.

2.1 The exchange property

Recall that an edge of a matching covered graph is removable if its deletion
results in another matching covered graph. The removable edges of a bipar-
tite graph satisfy an ‘exchange property’ and its proof immediately follows
from Proposition 1.4.
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Proposition 2.2 [Exchange Property of Removable Edges] Let H
denote a bipartite matching covered graph, and let e denote a removable edge
of H. If f is a removable edge of H − e, then:

(i) f is removable in H, and

(ii) e is removable in H − f . ✷

We point out that the conclusion of Proposition 2.2 does not hold, in
general, for arbitrary removable edges of nonbipartite graphs. For instance,
as shown in Figure 1, the edge f is removable in the matching covered
graph St8 − e, but it is not removable in St8. However, as we prove next,
the exchange property does hold for R-compatible edges. Recall that an
R-compatible edge of an R-graph G is one which is removable in G as well
as in the underlying bipartite graph H := G− R; see Section 1.4.1.

Proposition 2.3 [Exchange Property of R-compatible Edges] Let
G be an R-graph, and let e denote an R-compatible edge of G. If f is an
R-compatible edge of G− e, then:

(i) f is R-compatible in G, and

(ii) e is R-compatible in G− f .

Proof: Let H := G − R. Since f is R-compatible in G − e, each of the
graphs G − e − f and H − e − f is matching covered. To deduce (i), we
need to show that each of G− f and H − f is matching covered. Since f is
removable in H − e, it follows from Proposition 2.2 that f is removable in H
as well. That is, H − f is matching covered.

Next, we note that the edge e is admissible in H−f . Thus e is admissible
in G− f . As G− e− f is matching covered, we conclude that G− f is also
matching covered. This proves (i). Statement (ii) follows immediately, since
each of G− f − e and H − f − e is matching covered. ✷

2.2 Non-removable edges of bipartite graphs

Let H [A,B] denote a bipartite graph, on four or more vertices, that has a
perfect matching. Using the well-known Hall’s Theorem, it can be shown
that an edge f of H is inadmissible (that is, f is not in any perfect matching
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of H) if and only if there exists a nonempty proper subset S of A such that
|N(S)| = |S| and f has one end in N(S) and its other end is not in S.

Now suppose thatH is matching covered, and let e denote a non-removable
edge of H . Then some edge f of H − e is inadmissible. This fact, coupled
with the above observation, may be used to arrive at the following charac-
terization of non-removable edges in bipartite matching covered graphs; see
Figure 5.

A0 A1

B0 B1

e

Figure 5: Non-removable edge of a bipartite graph

Proposition 2.4 [Characterization of Non-removable Edges] Let
H [A,B] denote a bipartite matching covered graph on four or more vertices.
An edge e of H is non-removable if and only if there exist partitions (A0, A1)
of A and (B0, B1) of B such that |A0| = |B0| and e is the only edge joining
a vertex in B0 to a vertex in A1. ✷

In our work, we will often be interested in finding an R-compatible edge
incident at a specified vertex v of an R-brick G. As a first step, we will upper
bound the number of edges of ∂(v), which are non-removable in the underly-
ing bipartite graph H := G−R. For this purpose, the next lemma of Lovász
and Vempala [13] is especially useful. It is an extension of Proposition 2.4.
See Figure 6.

Lemma 2.5 [The Lovász-Vempala Lemma] Let H [A,B] denote a bi-
partite matching covered graph, and b ∈ B denote a vertex of degree d ≥ 3.
Let ba1, ba2, . . . , bad be the edges of H incident with b. Assume that the edges
ba1, ba2, . . . , bar where 0 < r ≤ d are non-removable. Then there exist parti-
tions (A0, A1, . . . , Ar) of A and (B0, B1, . . . , Br) of B, such that b ∈ B0, and
for i ∈ {1, 2, . . . , r}: (i) |Ai| = |Bi|, (ii) ai ∈ Ai, and (iii) N(Ai) = Bi ∪ {b};
in particular, bai is the only edge between B0 and Ai. ✷
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B0

b

B1 B2 Br

A0 A1

a1

A2

a2

Ar

ar

Figure 6: Non-removable edges incident at a vertex

Observe that, as per the notation in the above lemma, if ba1 and ba2 are
non-removable edges, then the vertices a1 and a2 have no common neighbour
distinct from b. That is, there is no 4-cycle containing edges ba1 and ba2
both. This proves the following corollary of Lovász and Vempala [13].

Corollary 2.6 Let H denote a bipartite matching covered graph, and b de-
note a vertex of degree three or more. If e and f are two edges incident at b
which lie in a 4-cycle Q then at least one of e and f is removable. ✷

We conclude with an easy application of the Lovász-Vempala Lemma in
the context of near-bipartite bricks.

Corollary 2.7 Let G be an R-brick, and let H := G − R. Then for any
vertex b, at most two edges of ∂H(b) are non-removable in H.

Proof: We adopt Notation 2.1; assume without loss of generality that b ∈ B.
If b has only two distinct neighbours in H then the assertion is easily verified.
Now suppose that b has at least three distinct neighbours in H , and let d
denote the degree of b in H .

Suppose instead that there are r ≥ 3 non-removable edges incident with b;
we denote these as ba1, ba2, . . . , bar. Then, by the Lovász-Vempala Lemma
(2.5), there exist partitions (A0, A1, . . . , Ar) of A and (B0, B1, . . . , Br) of B,
such that b ∈ B0, and for i ∈ {1, 2, . . . , r}: (i) |Ai| = |Bi|, (ii) ai ∈ Ai, and
(iii) NH(Ai) = Bi ∪ {b}. See Figure 6.
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Observe that, for i ∈ {1, 2, . . . , r}, every vertex of Ai is isolated in H −
(Bi ∪ {b}); consequently, Bi ∪ {b} is a nontrivial barrier of H . Since G is
free of nontrivial barriers (by Theorem 1.7), adding the edges of R must kill
each of these barriers. In particular, α must have an end in each Ai for
i ∈ {1, 2, . . . , r}. This is not possible, as r ≥ 3; thus we have a contradiction.
This completes the proof of Corollary 2.7. ✷

2.3 Barriers and tight cuts

We begin with a property of removable edges related to tight cuts which is
easily verified; it holds for all matching covered graphs.

Proposition 2.8 Let G be a matching covered graph, and ∂(X) a tight cut
of G, and e an edge of G[X ]. Then e is removable in G/X if and only if e
is removable in G. ✷

Let us revisit the notion of a barrier cut. If S is a barrier of a matching
covered graph G and K is an odd component of G − S then ∂(V (K)) is a
tight cut of G, and is referred to as a barrier cut. In Sections 2.3.1 and 2.3.2,
among other things, we will see that every nontrivial tight cut of a bipartite
or of a near-bipartite graph is a barrier cut.

2.3.1 Bipartite graphs

Suppose thatX is an odd subset of the vertex set of a bipartite graphH [A,B].
Then, clearly one of the two sets A ∩X and B ∩X is larger than the other;
the larger of the two sets, denoted X+, is called the majority part of X ; and
the smaller set, denoted X−, is called the minority part of X .

The following proposition is easily derived, and it provides a convenient
way of visualizing tight cuts in bipartite matching covered graphs. See Fig-
ure 7.

Proposition 2.9 [Tight Cuts in Bipartite Graphs] A cut ∂(X) of a
bipartite matching covered graph H is tight if and only if the following hold:

(i) |X| is odd and |X+| = |X−|+ 1, consequently |X+| = |X−|+ 1, and

(ii) there are no edges between X− and X−. ✷
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X+

X−
X+

X−

Figure 7: Tight cuts in bipartite matching covered graphs

Observe that, in the above proposition, X+ and X+ are both barriers
of H . It follows that every tight cut of a bipartite matching covered graph
is a barrier cut.

Recall that, for a bipartite matching covered graph H [A,B], its maximal
barriers are precisely its color classes A and B. Now let S denote a nontrivial
barrier of H which is not maximal, and adjust notation so that S ⊂ B. It
may be inferred from Proposition 2.9 that H−S has precisely |S|−1 isolated
vertices each of which is a member of A, and it has precisely one nontrivial
odd component K which gives rise to a nontrivial barrier cut of H , namely
∂(V (K)).

Since braces are bipartite matching covered graphs which are free of non-
trivial tight cuts, Proposition 2.9 may be used to obtain the following char-
acterizations of braces.

Proposition 2.10 [Characterizations of Braces] Let H [A,B] denote
a bipartite graph of order six or more, where |A| = |B|. Then the following
statements are equivalent:

(i) H is a brace,

(ii) |N(S)| ≥ |S| + 2 for every nonempty subset S of A such that |S| <
|A| − 1, and

(iii) H −{a1, a2, b1, b2} has a perfect matching for any four distinct vertices
a1, a2 ∈ A and b1, b2 ∈ B. ✷
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2.3.2 Near-Bipartite graphs

Let G denote an R-graph. We adopt Notation 2.1. For an odd subset X of
V (G), we define its majority part X+ and its minority part X− by regarding
it as a subset of V (H).

Observe that, if X is the shore of a tight cut in G then it is the shore of a
tight cut in H as well. This observation, coupled with Proposition 2.9, may
be used to derive the following characterization of tight cuts in near-bipartite
graphs.

Proposition 2.11 [Tight Cuts in Near-bipartite Graphs] A cut ∂(X)
of an R-graph G is tight if and only if the following hold:

(i) X is odd and |X+| = |X−|+ 1, and consequently, |X+| = |X−|+ 1,

(ii) there are no edges between X− and X−; adjust notation so that X− ⊂ A,

(iii) one of α and β has both ends in a majority part; adjust notation so that
α has both ends in X+, and

(iv) β has at least one end in X−.

Consequently, X+ is a nontrivial barrier of G. Moreover, the ∂(X)-contraction
G/X is near-bipartite with removable doubleton R, whereas the ∂(X)-contraction
G/X is bipartite.
Proof: A simple counting argument shows that if all of the statements (i) to
(iv) hold then ∂(X) is indeed a tight cut of G. See Figure 8. Now suppose
that ∂(X) is a tight cut; as noted earlier, ∂(X)−R is a tight cut of H . Thus
(i) and (ii) follow immediately from Proposition 2.9. Adjust notation so that
X− ⊂ A.

As each perfect matching of G which contains α must also contain β, we
infer that at most one of α and β lies in ∂(X). Furthermore, if α has both
ends in X−, and likewise, if β has both ends in X−, then a simple count-
ing argument shows that any perfect matching M of G containing α and β
meets ∂(X) in at least three edges; this is a contradiction.

The above observations imply that at least one of α and β has both ends
in a majority part; this proves (iii). As in the statement, adjust notation
so that α has both ends in X+. Now, if β has both ends in X+ then it is
easily seen that α and β are both inadmissible. This proves (iv). Note that,
either β has both ends in X− as shown in Figure 8a, or it has one end in X−

and the other end in X+ as shown in Figure 8b.
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Figure 8: Tight cuts in near-bipartite graphs

Note that X+ is a nontrivial barrier of G, and that G/X is bipartite. We
let G1 := G/X denote the other ∂(X)-contraction. Observe that H1 := H/X
is bipartite and matching covered. Furthermore, in G1, α has both ends
in one color class of H1, and likewise, β has both ends in the other color
class of H1; this is true for each of the two cases shown in Figure 8. Since
H1 = G1−R, we infer that G1 is near-bipartite with removable doubleton R.
This completes the proof of Proposition 2.11. ✷

Recall that a near-brick is a matching covered graph whose tight cut
decomposition yields exactly one brick. The following is an immediate con-
sequence of Proposition 2.11.

Corollary 2.12 An R-graph G is a near-brick, and its unique brick is also
near-bipartite with removable doubleton R. ✷

In other words, a near-bipartite graph G is a near-brick, and its unique
brick, say J , inherits its removable doubletons. The rank of G, denoted
rank(G), is the order of the unique brick of G. That is, rank(G) := |V (J)|.

Proposition 2.11 shows that every tight cut of a near-bipartite graph is
a barrier cut. Now, let S denote a nontrivial barrier of an R-graph G, and
adjust notation so that S ⊂ B. It may be inferred from Proposition 2.11 that
G− S has precisely |S| − 1 isolated vertices each of which is a member of A,
and it has precisely one nontrivial odd component K which yields a nontrivial
tight cut of G, namely ∂(V (K)). Thus there is a bijective correspondence
between the nontrivial barriers of G and its nontrivial tight cuts.
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2.4 The Three Case Lemma

Recall that a removable edge e of a brick G is b-invariant if G − e is a
near-brick. In this section, we will discuss a lemma of Carvalho, Lucchesi
and Murty [4] that pertains to the structure of such near-bricks, that is, those
which are obtained from a brick by deleting a single edge. This lemma is
used extensively in their works [3, 6, 7], and it will play a vital role in the
proof of Theorem 1.16.

We will restrict ourselves to the case in which G is an R-brick and e
is R-compatible. (By Proposition 1.14, e is b-invariant.) We adopt Nota-
tion 2.1. As the name of the lemma suggests, there will be three cases,
depending on which we say that the ‘index’ of e is zero, one or two. In
particular, the index of e (defined later) will be zero if G− e is a brick.

Now consider the situation in which G−e is not a brick; that is, G−e has
a nontrivial tight cut. By Proposition 2.11, G − e has a nontrivial barrier;
let S be such a barrier which is also maximal, and adjust notation so that
S ⊂ B. We let I denote the set of isolated vertices of (G− e)− S; note that
I ⊂ A. Since G itself is free of nontrivial barriers, we infer that one end of e
lies in I and its other end lies in B − S. This observation, coupled with the
Canonical Partition Theorem (1.3) and the fact that e has only two ends,
implies that G−e has at most two maximal nontrivial barriers; furthermore,
if it is has two such barriers then one is a subset of A and the other is a
subset of B.

The index of e, denoted index(e), is the number of maximal nontrivial
barriers in G − e. It follows from the preceding paragraph that the index
of e is either zero, one or two; and these form the three cases. This is the
gist of the lemma; apart from this, it provides further information in the
index two case which is especially useful to us. We now state the Three Case
Lemma [6], as it is applicable to an R-compatible edge of an R-brick; see
Figures 9 and 10. (The reason for the asymmetry in our notation in Case (2)
is discussed in Section 2.4.2.)

Lemma 2.13 [The Three Case Lemma] Let G be an R-brick, and e an
R-compatible edge. Let H [A,B] := G − R. Then one of the following three
alternatives holds:

(0) G− e is a brick.
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(1) G− e has only one maximal nontrivial barrier, say S. Adjust notation
so that S ⊂ B. Let I denote the set of isolated vertices of (G− e)− S.
Then I ⊂ A, and e has one end in I and other end in B − S.

(2) G − e has two maximal nontrivial barriers, say S1 and S∗

2 . Adjust
notation so that S1 ⊂ B and S∗

2 ⊂ A. Let I1 denote the set of isolated
vertices of (G−e)−S1, and I∗2 the set of isolated vertices of (G−e)−S∗

2 .
Then the following hold:

(i) I1 ⊂ A and I∗2 ⊂ B;

(ii) e has one end in I1 − S∗

2 and other end in I∗2 − S1;

(iii) S2 := S∗

2−I1 is the unique maximal nontrivial barrier of (G− e)/X1,
where X1 := S1∪I1; furthermore, S2 is a barrier of G−e as well,
and I2 := I∗2 −S1 is the set of isolated vertices of (G− e)−S2. ✷

Now, let e denote an R-compatible edge of an R-brick G. By the rank
of e, denoted rank(e), we mean the rank of the R-graph G − e. That is,
rank(e) := rank(G − e). Recall that e is R-thin if the retract of G − e is a
brick. In particular, every R-compatible edge of index zero is R-thin, and
these are the only edges whose rank equals n := |V (G)|.

In what follows, we will further discuss the cases in which the index
of e is either one or two; in each case, we shall relate the rank of e with
the information provided by the Three Case Lemma, and we examine the
conditions under which e is R-thin. These discussions are especially relevant
to Section 3.2.

We adopt Notation 2.1. Let y and z denote the ends of e such that y ∈ A
and z ∈ B. Note that, if y is cubic, then the two neighbours of y in G − e
constitute a barrier of G− e; a similar statement holds for z. It follows that
if both ends of e are cubic then the index of e is two.

2.4.1 Index one

Suppose that the index of e is one. As in case (1) of the Three Case Lemma,
we let S denote the unique maximal nontrivial barrier of G − e, and I the
set of isolated vertices of (G − e) − S. Note that |I| = |S| − 1. We adjust
notation so that S ⊂ B and I ⊂ A; see Figure 9. Observe that y ∈ I and
z ∈ B − S.
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Figure 9: An R-compatible edge of index one

In this case, G − e has a unique nontrivial tight cut ∂(X), where X :=
S ∪ I. Consequently, (G − e)/X is the brick of G − e, and the rank of e is
|V (G)−X|+ 1. Furthermore, e is R-thin if and only if |S| = 2; and in this
case, y is cubic, N(y) = S ∪ {z}, and rank(e) = n− 2.

2.4.2 Index two

Suppose that the index of e is two. As in case (2) of the Three Case Lemma,
we let S1 denote one of the two maximal nontrivial barriers of G− e, and I1
the set of isolated vertices of (G− e)−S1, adjusting notation so that S1 ⊂ B
and I1 ⊂ A. Note that |I1| = |S1| − 1 and that y ∈ I1; see Figure 10.

Now, let S∗

2 denote the unique maximal nontrivial barrier of G−e which is
a subset of A, and I∗2 the set of isolated vertices of (G−e)−S∗

2 . As in the index
one case (see Figure 9), we would like to break V (G) into disjoint subsets in
order to be able to compute the rank of e. However, this is complicated by
the possibility that S∗

2 ∩ I1 may be nonempty. This explains the asymmetry
in our notation in case (2). Fortunately, it turns out that S2 := S∗

2 − I1
is the only maximal nontrivial barrier of (G − e)/X1, where X1 := S1 ∪ I1.
Furthermore, S2 is a barrier of G− e as well, and I2 := I∗2 − S1 is the set of
isolated vertices of (G − e) − S2. Note that |I2| = |S2| − 1 and that z ∈ I2;
see Figure 10. We let X2 := S2 ∪ I2.

In this case, ∂(X1) and ∂(X2) are both tight cuts of G − e; more im-
portantly, ∂(X2) is the unique tight cut of (G − e)/X1. Consequently,
((G−e)/X1)/X2 is the brick of G−e, and the rank of e is |V (G)−X1−X2|+2.

Furthermore, e is R-thin if and only if |S1| = 2 = |S2|; and in this
case, y and z are both cubic, N(y) = S1 ∪ {z} and N(z) = S2 ∪ {y}, and
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Figure 10: An R-compatible edge of index two

rank(e) = n − 4; also, by switching the roles of S1 and S∗

2 , we infer that
|S∗

2 | = 2.

2.4.3 Index and Rank of an R-thin Edge

The following characterization of R-thin edges is immediate from our discus-
sion in the previous two sections.

Proposition 2.14 [Characterization of R-thin Edges in terms of
Barriers] An R-compatible edge e of an R-brick G is R-thin if and only if
every barrier of G− e has at most two vertices. ✷

In summary, if the index of e is zero then e is thin and its rank is n :=
|V (G)|. If the index of e is one then rank(e) ≤ n − 2, and equality holds if
and only if e is thin. Likewise, if the index of e is two then rank(e) ≤ n− 4,
and equality holds if and only if e is thin.

The following proposition gives an equivalent definition of index of an
R-thin edge.

Proposition 2.15 Let G be an R-brick, and e an R-thin edge. Then the
following statements hold:

(i) index(e) = 0 if and only if both ends of e have degree four or more in G;

(ii) index(e) = 1 if and only if exactly one end of e has degree three in G;
and

(iii) index(e) = 2 if and only if both ends of e have degree three in G and
e does not lie in a triangle.
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Proof: We note that index(e) = 0 if and only if G − e is free of nontrivial
barriers, that is, G− e is a brick; and since e is a thin edge, the latter holds
if and only if both ends of e have degree four or more in G. This proves (i).

Let n := |V (G)|. We note that index(e) = 1 if and only if rank(e) = n−2;
and since e is a thin edge, the latter holds if and only if exactly one end of e
has degree three in G.

Now suppose that index(e) = 2, whence rank(e) = n−4, and consequently,
both ends of e have degree three in G. Conversely, if both ends of e have
degree three in G then G−e has two nontrivial barriers which lie in different
color classes of (G − e) − R, and thus index(e) = 2; furthermore, since e is
R-compatible, neither end of e is incident with an edge of R and thus e does
not lie in a triangle. ✷

3 Generating Near-Bipartite Bricks

In this section, our goal is to prove the R-thin Edge Theorem (1.16). In fact,
we will prove a stronger result, as described below.

Let G be an R-brick distinct from K4 and C6. Then, by Theorem 1.15 of
Carvalho et al., G has an R-compatible edge; let e be any such edge. Recall
from Section 2.4 that there are two parameters associated with e: the rank
of e is the order of the unique brick of G−e; and, the index of e is the number
of maximal nontrivial barriers of G − e, which by the Three Case Lemma
(2.13) is either zero, one or two. Using these parameters, we may state our
stronger theorem as follows.

Theorem 3.1 Let G be an R-brick which is distinct from K4 and C6, and let
e denote an R-compatible edge of G. Then one of the following alternatives
hold:

• either e is R-thin,

• or there exists another R-compatible edge f such that:

(i) f has an end each of whose neighbours in G− e lies in a barrier
of G− e, and

(ii) rank(f) + index(f) > rank(e) + index(e).
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Since the rank and index are bounded quantities, the above theorem
immediately implies the R-thin Edge Theorem (1.16). Our proof uses tools
from the work of Carvalho et al. [6], and the overall approach is inspired by
their proof of the Thin Edge Theorem (1.10).

The following proposition shows that condition (ii) in Theorem 3.1 is
implied by a weaker condition involving only the rank function.

Proposition 3.2 Suppose that e and f denote two R-compatible edges of an
R-brick G. If rank(f) > rank(e) then rank(f) + index(f) > rank(e) + index(e).

Proof: Note that, since the rank of an edge is even, rank(f) > rank(e) + 1.
As the index of an edge is either zero, one or two, we only need to examine
the case in which index(e) = 2 and index(f) = 0. However, in this case,
rank(f) = n and rank(e) ≤ n− 4 where n := |V (G)|, and thus the conclusion
holds. ✷

In the statement of Theorem 3.1, if the given R-compatible edge e is thin,
then the assertion is vacuously true. Thus, in its proof, we may assume that
e is not thin. It then follows from Proposition 2.14 that G− e has a barrier
with three or more vertices; let S be such a barrier. In the next section, we
introduce the notion of a candidate edge (relative to e and S) which, as we
will see, is an R-compatible edge that satisfies condition (i) in the statement
of Theorem 3.1, and has rank at least that of e.

3.1 The candidate set F(e, S)

Let G be an R-brick, and let e := yz denote an R-compatible edge which is
not thin. We first set up some notation and conventions which are used in
the rest of this paper.

Notation 3.3 We shall denote by H [A,B] the underlying bipartite graph
G−R. We let R := {α, β}; and we adopt the convention that α := a1a2 has
both ends in A, whereas β := b1b2 has both ends in B. Adjust notation so
that y ∈ A and z ∈ B.

The reader is advised to review Section 2.3.2 before proceeding further.
Let S be a barrier of G − e such that |S| ≥ 3, and I the set of isolated
vertices of (G− e)−S. Adjust notation so that S ⊂ B and I ⊂ A, as shown
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in Figure 11a. Observe that X := S ∪ I is the shore of a tight cut in G− e,
as well as in H − e. By Proposition 2.11, α has both ends in A− I; whereas
β either has both ends in B − S, or it has one end in B − S and another
in S. We denote the bipartite matching covered graph

(H − e)/X → x

by H(e, S). Note that its color classes are the sets I ∪ {x} and S; see
Figure 11b.

w

u

f

A− I

B − S S

I

z

y

(a)

w

u

f

x

S

I

y

(b)

Figure 11: (a) S is a barrier of G − e such that |S| ≥ 3 ; (b) the bipartite
graph H(e, S)

Definition 3.4 [The Candidate Set F(e, S)] We denote by F(e, S) the
set of those removable edges of H(e, S) which are not incident with the con-
traction vertex x, and we refer to it as the candidate set (relative to e and
the barrier S of G − e), and each member of F(e, S) is called a candidate
edge.

We remark that Carvalho et al. [6] used a similar notion. Since their work
concerns general bricks (that is, not just near-bipartite ones), they consider
the graph (G− e)/X → x and its removable edges which are not incident
with the contraction vertex. See Lemma 23 and Theorem 24 in [6].

Now, let f := uw denote a member of the candidate set F(e, S), as
shown in Figure 11b. The end w of f lies in I, and all of the neighbours
of w, in G − e, lie in the barrier S; consequently, f satisfies condition (i),
Theorem 3.1. It should be noted that e and f are adjacent if and only if w is
the same as y. We now show that f is an R-compatible edge and it has rank
at least that of e. The argument pertaining to ranks is the same as that in
[6, Lemma 26].
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Proposition 3.5 [Properties of Candidate Edges] Every member of
F(e, S) is an R-compatible edge of G − e, and of G, and has rank at least
that of e. Conversely, each R-compatible edge of G − e, which is incident
with a vertex of I, is a member of F(e, S).

Proof: Let f be any member of F(e, S), as shown in Figure 11b. We will use
Proposition 2.8 to show that f is R-compatible in G− e.

Observe that H(e, S) is one of the C-contractions of H − e, where C :=
∂(X) − e − R is a tight cut. Since f is removable in H(e, S) and f /∈ C,
Proposition 2.8 implies that f is removable in H − e as well. A similar
argument shows that f is removable in G − e. Thus, f is R-compatible in
G−e; the exchange property (Proposition 2.3) implies that f is R-compatible
in G as well.

Note that since both ends of f are in the bipartite shore X , the brick
of G−e−f is the same as the brick of G−e. In particular, rank(G−e−f) =
rank(G−e). On the other hand, note that if D is any tight cut of G−f then
D − e is a tight cut of G − e − f , whence rank(G − f) ≥ rank(G − e − f).
Thus rank(f) ≥ rank(e). This proves the first statement.

Now suppose that f is an R-compatible edge of G − e which is incident
at some vertex of I. In particular, H − e − f is matching covered; that is,
f is removable in H− e. By Proposition 2.8, f is removable in H(e, S). This
completes the proof of Proposition 3.5. ✷

In summary, we have shown that every candidate edge is R-compatible;
furthermore, it satisfies condition (i), Theorem 3.1; and it has rank at least
that of e.

The following property of candidate sets will be useful in dealing with
those nontrivial barriers of G− e which are not maximal.

Corollary 3.6 Let S∗ be any barrier of G − e. If S ⊂ S∗ then F(e, S) ⊂
F(e, S∗).

Proof: Let f be a member of F(e, S). Then f is incident with some vertex
of I, say w. Note that w also lies in I∗ which denotes the set of isolated
vertices of (G− e)− S∗.

As f is a member ofF(e, S), Proposition 3.5 implies that f isR-compatible
in G − e. Consequently, since f is incident at w ∈ I∗, the last assertion of

27



Proposition 3.5, with S∗ playing the role of S, implies that f is a member of
F(e, S∗). Thus F(e, S) ⊂ F(e, S∗). ✷

Now, we will prove two lemmas; each of which gives an upper bound
on the number of non-removable edges incident at a vertex of the bipartite
graph H(e, S), which is distinct from the contraction vertex x. Both of
them are easy applications of the Lovász-Vempala Lemma (2.5); we will use
arguments similar to those in the proof of Corollary 2.7.

Lemma 3.7 Let u denote a vertex of S which has degree three or more in
H(e, S). Then at most two edges of ∂(u)− β are non-removable in H(e, S).
Furthermore, if precisely two edges of ∂(u)−β are non-removable in H(e, S)
and if vertices u and x are adjacent then the edge ux is non-removable in
H(e, S).

Proof: Assume that there are k ≥ 1 non-removable edges incident with
the vertex u, namely, uw1, uw2, . . . , uwk. Then, by Lemma 2.5, there exist
partitions (A0, A1, . . . , Ak) of I ∪ {x}, and (B0, B1, . . . , Bk) of S, such that
u ∈ B0, and for j ∈ {1, 2, . . . , k}: (i) |Aj| = |Bj |, (ii) wj ∈ Aj and (iii)
N(Aj) = Bj ∪ {u}. See Figure 12.

I ∪ {x}

S

A0

u

A1 A2 Ak

B0 B1

w1

B2

w2

Bk

wk

Figure 12: Illustration for Lemma 3.7

For 1 ≤ j ≤ k, note that Bj ∪ {u} is a barrier of H(e, S). Moreover, if
the set Aj contains neither the contraction vertex x nor the end y of e, then
Bj ∪ {u} is a barrier of G itself, which is not possible as G is a brick. We
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thus arrive at the conclusion that k ≤ 2, which proves the first part of the
assertion.

Now consider the case when k = 2. It follows from the above argument
that one of the vertices y and x lies in the set A1, whereas the other vertex
lies in the set A2. Adjust notation so that y ∈ A1 and x ∈ A2. Observe that
if u and x are adjacent, then ux is the unique edge between B0 and A2, and
it is non-removable in H(e, S) by assumption. This completes the proof of
Lemma 3.7. ✷

Now we turn to the examination of non-removable edges of H(e, S) inci-
dent with vertices in I. The proof is similar to that of Lemma 3.7, except
that the roles of the color classes S and I ∪ {x} are interchanged.

Lemma 3.8 Let w denote a vertex of I which has degree three or more in
H(e, S). Then at most two edges of ∂(w)− e are non-removable in H(e, S).
Furthermore, if precisely two edges of ∂(w)− e are non-removable in H(e, S)
then the following hold:

(i) an end of β lies in S; adjust notation so that b1 ∈ S,

(ii) in H(e, S), the vertices b1 and x are nonadjacent,

(iii) if b1 and w are adjacent then the edge b1w is non-removable in H(e, S),
and

(iv) w is distinct from the end y of e.

Proof: Suppose that there exist k ≥ 1 non-removable edges incident at the
vertex w, namely, wu1, wu2, . . . , wuk. Then, by Lemma 2.5, there exist par-
titions (A0, A1, . . . , Ak) of the color class I ∪{x}, and (B0, B1, . . . , Bk) of the
color class S, such that w ∈ A0, and for j ∈ {1, 2, . . . , k}: (i) |Aj| = |Bj|, (ii)
uj ∈ Bj and (iii) N(Bj) = Aj ∪ {w}. See Figure 13.

For 1 ≤ j ≤ k, note that Aj ∪ {w} is a barrier of H(e, S). Furthermore,
if the contraction vertex x is not in Aj , or if an end of the edge β is not
in Bj , then Aj ∪ {w} is a barrier of G itself, which is absurd since G is a
brick. Clearly, this would be the case for some j ∈ {1, 2, . . . , k} if k ≥ 3. We
conclude that k ≤ 2, thus establishing the first part of the assertion.

Now suppose that k = 2. It follows from the preceding paragraph that
an end of β lies in B1 or in B2. This proves (i). Adjust notation so that
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I ∪ {x}

S

A0

w

A1 A2 Ak

B0 B1

u1

B2

u2

Bk

uk

Figure 13: Illustration for Lemma 3.8

b1 ∈ B1. Furthermore, the contraction vertex x lies in A2. Consequently,
vertices b1 and x are nonadjacent; this verifies (ii). Note that if b1 and w are
adjacent, then the edge b1w is the unique edge between A0 and B1, and it is
non-removable in H(e, S) by assumption. This proves (iii). Finally, consider
the case in which w = y, where y is the end of e in I. Observe that the
neighbourhood of A0− y lies in the set B0 in the graph H(e, S) as well as
in G, whence B0 is a barrier of G. We conclude that |B0| = 1, and that y is
the only vertex of A0. Furthermore, the neighbourhood of A1 lies in B1∪B0,
and thus B1 ∪ B0 is a nontrivial barrier in H(e, S) as well as in G, which is
absurd. We conclude that w is distinct from the end y of e; thus (iv) holds.
This completes the proof of Lemma 3.8. ✷

The above lemma implies that each vertex of I, except possibly the
end y of e, is incident with at least one candidate. Furthermore, if y has
degree three or more in H(e, S) then y is incident with at least two candi-
dates; and likewise, if any other vertex of I, say w, has degree four or more
then w is incident with at least two candidates. We thus have the following
corollary which is used in the next section.

Corollary 3.9 The candidate set F(e, S) has cardinality at least |S| − 2.
(In particular, the set F(e, S) is nonempty.) Furthermore, if F(e, S) is a
matching then each vertex of I is cubic in G and |F(e, S)| = |S| − 2. ✷

As we will see later, by a result of Carvalho et al. (Corollary 3.19), if the
candidate set F(e, S) is not a matching then it has a member whose rank is
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strictly greater than that of e. For this reason, in the proof of Theorem 3.1,
we will mainly have to deal with the case in which the candidate set is a
matching.

3.1.1 When the candidate set is a matching

In this section, we suppose that the candidate set F(e, S) is a matching. We
will make several observations, and these will be useful to us in Section 3.3
where the proof of Theorem 3.1 is presented. For all of the figures in the rest
of this paper, the solid vertices are those which are known to be cubic in the
brick G; the hollow vertices may or may not be cubic.

Since F(e, S) is a matching, Corollary 3.9 implies that every vertex of I
is cubic in G, as shown in Figure 14. Furthermore, each of these vertices,
except for the end y of e, is incident with exactly one candidate edge; in
particular, |F(e, S)| = |I| − 1 = |S| − 2.

Notation 3.10 We let w1, w2, . . . , wk denote the vertices of I − y, where
k := |S| − 2, and for 1 ≤ j ≤ k, denote the edge of F(e, S) incident with wj

by fj and its end in S by uj.

H(e, S) :

S

I

f1 f2 fk· · ·

b1 u0 u1 u2 · · · uk

x y w1 w2 · · · wk

Figure 14: When F(e, S) is a matching

Note that, since F(e, S) is a matching, the vertices u1, u2, . . . , uk are
distinct, as shown in Figure 14. Since every vertex of I is incident with two
non-removable edges of H(e, S), we deduce the following by assertions (i),
(ii) and (iii) of Lemma 3.8, respectively:

(1) an end of β lies in S; adjust notation so that b1 ∈ S,
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(2) in H(e, S), vertices b1 and x are nonadjacent; consequently, in G, all
neighbours of b1, except b2, lie in I, and

(3) b1 is distinct from each of u1, u2, . . . , uk.

Furthermore, since b1 is not incident with any member of F(e, S), Lemma 3.7
implies that it has precisely two neighbours in I; in particular, b1 is cubic
in G.

Notation 3.11 We let u0 denote the vertex of S which is distinct from
b1, u1, u2, . . . , uk. That is, S = {b1, u0, u1, u2, . . . , uk}. (See Figure 14.)

As the vertex u0 is not incident with any candidate, we conclude using
Lemma 3.7 that u0 has at most one neighbour in I. Observe that if u0 has
no neighbours in I then (S − u0) ∪ {z} is a barrier of G (where z is the end
of e which is not in I), which is absurd as G is a brick. Thus, u0 has precisely
one neighbour in I.

We note that if y is the unique neighbour of u0 in the set I, then S − u0

is a barrier of G, which leads us to the same contradiction as before. We
thus conclude that u0 has precisely one neighbour in the set I − y, and that
its remaining neighbours lie in X ; see Figure 15. In particular, in H(e, S),
there are are least two edges between u0 and x.

H(e, S) :

S

I

f1 f2 fk· · ·

b1 u0 u1 u2 · · · uk

x y w1 w2 · · · wk

Figure 15: u0 and u1 are the only vertices adjacent with the contraction
vertex x

Finally, since each vertex uj in the set {u1, u2, . . . , uk} is incident with
exactly one candidate, Lemma 3.7 implies that uj must satisfy one of the
following conditions:
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(i) either uj has some neighbour in the set X and it has precisely two
neighbours in the set I,

(ii) or otherwise, uj has no neighbours in the set X and it has precisely
three neighbours in the set I.

Observe, by counting degrees of the vertices in I, that there are precisely
3k+2 edges with one end in I and the other end in S. Of these 3k+2 edges,
precisely two are incident with b1, and only one is incident with u0. Thus
there are 3k−1 edges with one end in I and the other end in {u1, u2, . . . , uk}.
It follows immediately that exactly one vertex among u1, u2, . . . , uk satisfies
condition (i); every other vertex satisifes condition (ii).

Notation 3.12 We adjust notation so that u1 is the only vertex in {u1, u2, . . . , uk}
which has neighbours in X. (See Figure 15.)

Adopting the notation introduced thus far, the next proposition summa-
rizes our observations in terms of the brick G.

Proposition 3.13 [When the Candidate Set is a Matching] The
following hold:

(i) each vertex of I is cubic,

(ii) b1 is cubic and its neighbours lie in I ∪ {b2},

(iii) u0 has precisely one neighbour in I − y, and all of its remaining neigh-
bours lie in X,

(iv) u1 has precisely two neighbours in I, and all of its remaining neighbours
lie in X,

(v) if |S| ≥ 4, then each vertex of S−{b1, u0, u1} has precisely three neigh-
bours and these neighbours lie in I. ✷

Observe that, if the barrier S has precisely three vertices, then the can-
didate set F(e, S) has only one edge (that is, f1 = u1w1); in this case, all of
the edges of G[X ] are determined by Proposition 3.13, as listed below, and
as shown in Figure 16. (Note that the underlying simple graph of H(e, S) is
a ladder of order six whose cubic vertices are u1 and w1.)
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Remark 3.14 Suppose that |S| = 3. Then the following hold:

(i) the three neighbours of b1 are y, w1 and b2,

(ii) u0 is adjacent with w1, and all of its remaining neighbours lie in X,

(iii) u1 is adjacent with y and with w1, and all of its remaining neighbours
lie in X.

H(e, S) :

S

I

f1

b1 u0 u1

x y w1

Figure 16: When F(e, S) is a matching, and S has only three vertices

We shall now consider the situation in which |S| ≥ 4, that is, k ≥ 2.
Note that, as per our notation, f1 = u1w1 is the only candidate whose end
in S (that is, u1) has a neighbour in X . In this sense, f1 is different from
the remaining candidates f2, f3, . . . , fk. In the following proposition, we first
show that b1 is nonadjacent with the end w1 of f1. Consequently, b1 is
adjacent with at least one of w2, w3, . . . , wk; we shall assume without loss of
generality that b1 is adjacent with w2, as shown in Figure 17. In its proof, we
will apply the Lovász-Vempala Lemma (2.5) to the graph H(e, S), first at w1,
and then at w2; each of these applications is a refinement of the situation in
Lemma 3.8.

Proposition 3.15 Suppose that |S| ≥ 4. Then the following hold:

(i) b1 and w1 are nonadjacent; adjust notation so that b1w2 is an edge of G,

(ii) y is adjacent with each of b1 and u2, and

(iii) u0 and w2 are nonadjacent.
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Proof: First, we apply Lemma 2.5 to the graph H(e, S) at vertex w1. Since
f1 = u1w1 is the only removable edge incident with w1, there exist parti-
tions (A0, A1, A2) of I ∪ {x}, and (B0, B1, B2) of S, such that w1 ∈ A0, and
|Aj| = |Bj | for j ∈ {0, 1, 2}, vertex u1 lies in B0, and the remaining two neigh-
bours of w1 lie in B1 and inB2, respectively. Furthermore, N(B1) = A1∪{w1}
and N(B2) = A2 ∪ {w1}.

Suppose that b1 is a neighbour of w1, and adjust notation so that b1 ∈ B1.
The contraction vertex x lies in A2, since otherwise A2 ∪{w1} is a nontrivial
barrier in G. We will deduce that each of the sets B0, B1 and B2 is a singleton,
and thus the barrier S has precisely three vertices, contrary to the hypothesis.

First of all, note that the neighbourhood of B1−b1 is contained in A1, and
thus if |A1| ≥ 2 then A1 is a nontrivial barrier in G; we conclude that |A1| = 1
and that B1 = {b1}. Observe that the contraction vertex x is only adjacent
with u1, which lies in B0, and with u0. Thus the neighbourhood of B2−u0 is
contained in (A2−x)∪{w1}, whence the latter is a barrier of G; we infer that
A2 = {x}; consequently, the unique vertex of B2 has precisely two neighbours,
namely w1 and x. It follows that B2 = {u0}. Since the vertex w1 is cubic,
the neighbourhood of B0 − u1 is contained in (A0 − w1) ∪ A1, whence the
latter is a barrier of G; we infer that A0 = {w1}, thus B0 = {u1}. It follows
that |S| = 3, contrary to our hypothesis. Thus b1 and w1 are nonadjacent;
this proves (i). As in the statement of the proposition, adjust notation so
that b1 and w2 are adjacent; see Figure 17.

To deduce (ii) and (iii), we apply Lemma 2.5 to the graph H(e, S) at
vertex w2. Similar to the earlier situation, there exist partitions (A0, A1, A2)
of I ∪ {x}, and (B0, B1, B2) of S, such that w2 ∈ A0, and |Aj| = |Bj | for
j ∈ {1, 2, 3}, vertex u2 lies in B0, and the remaining two neighbours of w2

lie in B1 and in B2, respectively. Adjust notation so that b1 lies in B1. Also,
N(B1) = A1 ∪ {w2} and N(B2) = A2 ∪ {w2}. As before, we conclude that x
lies in A2, and that |A1| = |B1| = 1.

Observe that the unique vertex of A1 has all of its neighbours in the
set B0 ∪ B1. We will show that B0 = {u2}; this implies that the unique
vertex of A1 has precisely two neighbours, and so it must be the end y of e;
this immediately implies (ii).

Note that the neighbourhood of A0 − w2 is contained in B0. Thus, if
|A0| ≥ 2 then y lies in A0 (since otherwise B0 is a barrier of G). If |A0| ≥ 3
then B0 is a barrier of G − e with three or more vertices. (Note that the
barrier B0 is contained in the barrier S.) Since no end of β lies in B0, it
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H(e, S) :

S

I

f2 fk· · ·

b1 u0 u1 u2 · · · uk

x y w1 w2 · · · wk

Figure 17: When F(e, S) is a matching, and S has four or more vertices; the
vertices u0 and w2 are nonadjacent

follows from our earlier observations that the candidate set F(e, B0) is not
a matching. However, by Corollary 3.6, F(e, B0) is a subset of F(e, S),
and the latter is a matching; this is absurd. We conclude that A0 has at
most two vertices, that is, either A0 = {w2} or A0 = {y, w2}. Now suppose
that A0 = {y, w2}. The unique vertex of A1 is adjacent with b1, and thus
statement (i) implies that w1 /∈ A1. Assume without loss of generality that
A1 = {w3}. Since w3 is cubic, we conclude that its neighbourhood is precisely
B0∪B1, and thus B0 = {u2, u3}. Observe that Q := w3u2w2b1w3 is a 4-cycle
in H(e, S) containing the vertex w3, and thus by Corollary 2.6, one of the
edges w3u2 and w3b1 is removable in H(e, S); however, this contradicts our
hypothesis since the only removable edges are the members of F(e, S). We
thus conclude that A0 = {w2}. As explained earlier, A1 = {y}, and thus y is
adjacent with each of b1 and u2; this proves (ii).

Now suppose that u0 and w2 are adjacent. Observe that u1 ∈ B2, and
thus all of its neighbours lie in A2, whence |A2| ≥ 3. The neighbourhood of
B2−{u0, u1} is contained in A2−x, whence the latter is a nontrivial barrier
of G, which is a contradiction. We conclude that u0 and w2 are nonadjacent;
this proves (iii), and completes the proof of Proposition 3.15. ✷

3.2 The Equal Rank Lemma

Here, we present an important lemma which is used in the proof of Theo-
rem 3.1. This lemma considers the situation in which G is an R-brick and
e := yz is an R-compatible edge of index two that is not thin, and f is a
candidate relative to a barrier of G− e such that f is also of index two and
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its rank is equal to that of e. The reader is advised to review the Three Case
Lemma (2.13) and Section 2.4.2 before proceeding further.

The Equal Rank Lemma (3.17) relates the barrier structure of G − f
to that of G − e. More specifically, the lemma establishes subset/superset
relationships between eight sets of vertices: the barriers S1 and S2 of G−e (as
in Case 2 of Lemma 2.13) and their corresponding sets of isolated vertices I1
and I2, and likewise, the barriers S3 and S4 of G−f and their corresponding
sets of isolated vertices I3 and I4. Among other things, the lemma shows
that S1 ∪ I1 ∪ S2 ∪ I2 = S3 ∪ I3 ∪ S4 ∪ I4. We now introduce the relevant
notation more precisely.

Since e is of index two, by the Three Case Lemma, G − e has precisely
two maximal nontrivial barriers, and since e is not thin, at least one of these
barriers, say S1, has three or more vertices (see Proposition 2.14). We adopt
Notation 3.3 for the brick G and edge e. Assume without loss of generality
that S1 ⊂ B, and let I1 denote the set of isolated vertices of (G − e) − S1.
We shall denote by S2 the maximal nontrivial barrier of (G − e)/X1 where
X1 := S1∪I1, and by I2 the set of isolated vertices of (G−e)−S2. Note that
the end z of e lies in I2 which is a subset of B, whereas the other end y of e
lies in I1 which is a subset of A. See Figure 18 (top).

By Corollary 3.9, the candidate set F(e, S1) is nonempty, and by Propo-
sition 3.5, each of its members is an R-compatible edge whose rank is at
least that of e. Now, let f := uw be a member of F(e, S1) such that u ∈ S1

and w ∈ I1, and suppose that the index of f is two. The following result of
Carvalho et al. [6, Lemma 32] plays a crucial role in our proof of the Equal
Rank Lemma (3.17).

Lemma 3.16 Assume that index(e) = index(f) = 2. If rank(e) = rank(f)
then S2 is a subset of a barrier of G− f . ✷

We shall let S3 denote the maximal nontrivial barrier of G − f which is
contained in the color class B, and I3 the set of isolated vertices of (G−f)−S3.
Furthermore, let S4 denote the maximal nontrivial barrier of (G−f)/(S3∪I3),
and I4 the set of isolated vertices of (G− f)− S4. Note that the end u of f
lies in I4, and its other end w lies in I3. See Figure 18 (bottom). We are now
ready to state the Equal Rank Lemma using the notation introduced so far.

Lemma 3.17 [The Equal Rank Lemma] Assume that index(e) = index(f) = 2.
If rank(e) = rank(f) then the following statements hold:
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G− e:

A

B

S2

I2

A− (S2 ∪ I1)

B − (S1 ∪ I2)

I1

S1

z

y w

u

f

G− f :

A

B

S4

I4

A− (S4 ∪ I3)

B − (S3 ∪ I4)

I3

S3

u

wy

z

e

Figure 18: The Equal Rank Lemma

(i) e and f are nonadjacent,

(ii) S3 ⊆ S1 − u and I3 ⊆ I1 − y,

(iii) S2 ⊂ S4 and I2 ⊂ I4,

(iv) S1 ∪ I2 = S3 ∪ I4 and S2 ∪ I1 = S4 ∪ I3,

(v) N(u) ⊆ S2 ∪ I1, and

(vi) e is a member of the candidate set F(f, S4).

Proof: We examine the graph G−e−f in order to prove (i) and (ii). Clearly,
S3 is a barrier of G − e − f . Observe that, since f has an end in S1, every
barrier of G−e−f which contains S1 is a barrier of G−e as well. Since S1 is
a maximal barrier of G−e, we infer that S1 is a maximal barrier of G−e−f
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as well. By the Canonical Partition Theorem (1.3), to prove that S3 is a
subset of S1, it suffices to show that S1 ∩ S3 is nonempty. To see this, note
that w ∈ I1 ∩ I3, and thus any neighbour of w in G − e − f lies in S1 ∩ S3.
Furthermore, since u /∈ S3, we conclude that S3 ⊆ S1 − u; this proves part
of (ii). In particular, z /∈ S3. Consequently, y /∈ I3, and thus y and w are
distinct. This proves (i).

Now we prove the remaining part of (ii). Let v ∈ I3, that is, v is isolated
in (G− f)− S3. Consequently, v is isolated in (G− f)− S1. Since f has an
end in S1, we infer that v is isolated in (G − e) − S1, that is, v ∈ I1. Thus
I3 ⊆ I1 − y. This proves (ii).

We will now prove (iii) and (iv). We begin by showing that S2 is a subset
of S4. By Lemma 3.16, S2 is a subset of the unique maximal nontrivial
barrier of G−f which is contained in the color class A, say S∗

4 . By the Three
Case Lemma (2.13), S∗

4 = S4 ∪ I ′ for some (possibly empty) subset I ′ of I3.
That is, S2 is a subset of S4 ∪ I ′. Note that S2 and I1 are disjoint; by (ii),
S2 ∩ I ′ = ∅. Thus, S2 ⊆ S4.

Since the ranks of e and f are equal, it follows that |A − (S2 ∪ I1)| =
|A − (S4 ∪ I3)| and likewise, |B − (S1 ∪ I2)| = |B − (S3 ∪ I4)|. In order to
prove (iv), it suffices to prove the following claim.

Claim 3.17.1 A−(S2∪I1) ⊆ A−(S4∪I3) and B−(S1∪I2) ⊆ B−(S3∪I4).

Proof: Let v1 ∈ A − (S2 ∪ I1). By (ii), v1 /∈ I3. To prove that v1 lies in
A− (S4 ∪ I3), it suffices to show that v1 /∈ S4.

Now, let v2 be any vertex in S2. We have already shown that S2 ⊆ S4,
and thus v2 ∈ S4. Note that, if v1 also belongs to the barrier S4, then
(G − f) − {v1, v2} would not have a perfect matching. In the following
paragraph, we will show that (G− e− f)− {v1, v2} has a perfect matching,
say M ; consequently, v1 /∈ S4.

Let H1 be the graph (G − e − f)/X1 → x1, and let H2 be the graph
(G−e−f)/X2 → x2 where X2 := S2∪I2. Note that H1 and H2 are bipartite
matching covered graphs. Let J := ((G− e − f)/X1 → x1)/X2 → x2. Note
that J is the brick of G−e−f . Let MJ be a perfect matching of J−{x2, v1}.
Let g denote the edge of MJ incident with the contraction vertex x1. Let M1

be a perfect matching of H1 which contains g. Let M2 be a perfect matching
of H2−{v2, x2}. Observe that M := M1+MJ +M2 is the desired matching.
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Now, let v ∈ B − (S1 ∪ I2). By (ii), v /∈ S3. To prove that v lies in
B − (S3 ∪ I4), it suffices to show that v /∈ I4. To see this, note that since J
is a brick, by Theorem 1.7, J − {x1, x2} is connected; thus, v is not isolated
in (G− f)− S4, that is, v /∈ I4. ✷

It follows from (ii) and (iv) that the end y of e lies in S4, and thus S2 is
a proper subset of S4. Also, we infer from (ii) and (iv) that I2 is a subset
of I4. Furthermore, the end u of f lies in I4, whence I2 is a proper subset
of I4. This proves (iii).

It remains to prove (v) and (vi). As noted above, u ∈ I4. Thus, all
neighbors of u in G lie in S4 ∪ {w} ⊆ S4 ∪ I3. It follows from (iv) that
N(u) ⊆ S2 ∪ I1. This proves (v).

Finally, we prove (vi). Recall that H(f, S4) denotes the bipartite match-
ing covered graph (H−f)/X4 → x4 where X4 := S4∪I4, and that F(f, S4) is
the set of those removable edges of H(f, S4) which are not incident with the
contraction vertex x4. Since f is R-compatible in G−e (by Proposition 3.5),
the exchange property (Proposition 2.3) implies that e is R-compatible in
G − f . Now, since the end z of e lies in I4, the last assertion of Proposi-
tion 3.5 implies that e is a member of F(f, S4). This proves (vi), and finishes
the proof of the Equal Rank Lemma. ✷

3.3 Proof of Theorem 3.1

Before we proceed to prove Theorem 3.1, we state two results of Carvalho
et al. [6] which are useful to us. Suppose that G is an R-brick and e is an
R-compatible edge which is not thin. We let S1 denote a maximal nontrivial
barrier of G − e such that |S1| ≥ 3, and let f denote a member of the
candidate set F(e, S1).

Note that, since e is not thin, its rank is at most n−4 where n := |V (G)|.
If the index of f is zero then its rank is n, and in particular, it is greater
than that of e. The following result of Carvalho et al. [6, Lemma 31] shows
that this conclusion holds even if the index of f is one.

Lemma 3.18 Suppose that f is a member of the candidate set F(e, S1). If
the index of f is one then rank(f) > rank(e). ✷
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The following corollary of Lemmas 3.16 and 3.18 was used implicitly by
Carvalho et al. [6] in their proof of the Thin Edge Theorem (1.10). We
provide its proof for the sake of completeness.

Corollary 3.19 Assume that the index of e is two. If the candidate set
F(e, S1) contains two adjacent edges, say f and g, then at least one of them
has rank strictly greater than rank(e).

Proof: We know by Proposition 3.5 that each of f and g has rank at least
rank(e). If either of them has rank strictly greater than that of e then there is
nothing to prove. Now, suppose that rank(f) = rank(g) = rank(e). It follows
from Lemma 3.18 that both f and g are of index two. We intend to arrive
at a contradiction using Lemma 3.16. We let I1 denote the set of isolated
vertices of (G−e)−S1, and S2 denote the unique maximal nontrivial barrier
of (G − e)/(S1 ∪ I1). By Lemma 3.16, S2 is a subset of a barrier of G − f ,
and likewise, S2 is a subset of a barrier of G− g.

Consider two distinct vertices of S2, say v1 and v2. Let M be a perfect
matching of the graph G− {v1, v2}. (Such a perfect matching exists as G is
a brick.) As noted above, S2 is a subset of a barrier of G− f . In particular,
v1 and v2 lie in a barrier of G− f , whence (G− f)− {v1, v2} has no perfect
matching. Thus f lies in M . Likewise, g also lies in M . This is absurd since
f and g are adjacent. We conclude that one of f and g has rank strictly
greater than rank(e). This completes the proof of Corollary 3.19. ✷

We now proceed to prove Theorem 3.1.

Proof of Theorem 3.1: As in the statement of the theorem, let e denote an
R-compatible edge of an R-brick G. If the edge e is thin, then there is
nothing to prove. Now consider the case in which e is not thin. By the Three
Case Lemma (2.13), G− e has either one or two maximal nontrivial barriers,
and by Proposition 2.14, at least one such barrier has three or more vertices.
Our goal is to establish the existence of another R-compatible edge f which
satisfies conditions (i) and (ii) in the statement of Theorem 3.1.

Recall that each candidate edge (relative to e and a barrier of G− e with
three or more vertices) is an R-compatible edge of G which satisfies condition
(i) of Theorem 3.1 and has rank at least rank(e). (See Definition 3.4 and
Proposition 3.5.) Furthermore, if a candidate has rank strictly greater than
rank(e), then by Proposition 3.2, it also satisfies condition (ii) of Theorem 3.1,
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and in this case we are done. Keeping these observations in view, we now
use Lemma 3.18 to get rid of the case in which index of e is one.

Claim 3.20 We may assume that the index of e is two.

Proof: Suppose not. Then the index of e is one, and we let S denote the
unique maximal nontrivial barrier of G−e. As discussed earlier, |S| ≥ 3. Let
f denote a member of the candidate set F(e, S), which is nonempty by Corol-
lary 3.9. If the index of f is zero then its rank is clearly greater than rank(e),
and by Lemma 3.18, this conclusion holds even if the index of f is one. Now
consider the case in which f is of index two. Since rank(f) ≥ rank(e), we
conclude that f satisfies condition (ii), Theorem 3.1. Thus, irrespective of
its index, the edge f satisfies both conditions (i) and (ii), and we are done.
✷

We shall now invoke Corollary 3.19 to dispose of the case in which the
candidate set (relative to some barrier of G− e) is not a matching.

Claim 3.21 We may assume that if S is a nontrivial barrier (not neces-
sarily maximal) of G− e with three or more vertices then the corresponding
candidate set F(e, S) is a matching.

Proof: Suppose that the candidate set F(e, S) is not a matching, and thus it
contains two adjacent edges, say f and g. We let S∗ denote the maximal non-
trivial barrier of G−e such that S ⊆ S∗. By Corollary 3.6, edges f and g are
members of F(e, S∗) as well. Since e is of index two (by Claim 3.20), Corol-
lary 3.19 implies that at least one of f and g, say f , has rank strictly greater
than that of e. Thus f satisfies both conditions (i) and (ii), Theorem 3.1,
and we are done. ✷

Now, since e is of index two (by Claim 3.20), the graph G−e has precisely
two maximal nontrivial barriers. Among these two, we shall denote by S1

the barrier which is bigger (breaking ties arbitrarily if they are of equal
size), and by I1 the set of isolated vertices of (G − e) − S1. Thus |S1| ≥ 3.
Let y and z denote the ends of e. We adopt Notation 3.3. Assume without
loss of generality that S1 is a subset of B, and thus by the Three Case Lemma
(2.13), the end y of e lies in I1.

As the candidate set F(e, S1) is a matching (by Claim 3.21), we invoke
the observations made in Section 3.1.1, with S1 playing the role of S, and
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I1 playing the role of I, and likewise, X1 := S1 ∪ I1 playing the role of X .
In particular, we adopt Notations 3.10, 3.11 and 3.12 and we apply Proposi-
tion 3.13. See Figure 19.

S1

I1

I2

S2

f1 f2 fk· · ·

β
b2 b1 u0 u1 u2 · · · uk

y w1 w2 · · · wk

z

Figure 19: Index of e is two, and S1 is the largest barrier of G− e

We let S2 denote the unique maximal nontrivial barrier of (G − e)/X1,
and I2 the set of isolated vertices of (G− e)−S2. By the Three Case Lemma
(2.13), the end z of e lies in I2, as shown in Figure 19. Note that |S2| ≤ |S1|
by the choice of S1.

Note that, as per statements (iv) and (v) of Proposition 3.13, the edge
f1 = u1w1 is the only member of the candidate set F(e, S1) whose end in the
barrier S1 (that is, vertex u1) has some neighbour which lies in X1. Also, if
|S1| = 3 then f1 is the unique member of F(e, S1). For these reasons, it will
play a special role.

Claim 3.22 We may assume that rank(f1) = rank(e). Consequently, the
following hold:

(i) the index of f1 is two,

(ii) all neighbours of u1 lie in S2 ∪ I1, and

(iii) the vertex u0 has at least one neighbour in the set A− (S2 ∪ I1).

Proof: By Proposition 3.5, f1 is an R-compatible edge which has rank at least
that of e, and it satisfies condition (i), Theorem 3.1. If rank(f1) > rank(e),
then by Proposition 3.2, f1 satisfies condition (ii) as well, and we are done.
We may thus assume that rank(f1) = rank(e). It follows from Lemma 3.18
that the index of f1 is two; that is, (i) holds. Since e and f1 = u1w1 are of
equal rank and of index two each, the Equal Rank Lemma (3.17)(v) implies
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that each neighbour of u1 lies in the set S2 ∪ I1, and this proves (ii). We
shall now use this fact to deduce (iii).

Since H is bipartite and matching covered, Proposition 1.4(ii) implies
that the neighbourhood of the set A−(S2∪I1), in the graphH , has cardinality
at least |A − (S2 ∪ I1)| + 1, and since |A − (S2 ∪ I1)| = |B − (S1 ∪ I2)|, we
conclude that the set A − (S2 ∪ I1) has at least one neighbour which is not
in B − (S1 ∪ I2); it follows from Proposition 3.13 and statement (ii) proved
above that the only such neighbour is the vertex u0 of barrier S1. In other
words, the vertex u0 has at least one neighbour in the set A − (S2 ∪ I1) as
shown in Figure 19; this proves (iii), and completes the proof of Claim 3.22.
✷

We shall now consider two cases depending on the cardinality of S1.

Case 1: |S1| ≥ 4.

We invoke Proposition 3.15, with S1 playing the role of S, and we adjust
notation accordingly. See Figure 20. Observe that Q := u2w2b1yu2 is a
4-cycle of G which contains the edge f2 = u2w2. Since f2 is a candidate,
it is an R-compatible edge whose rank is at least that of e, and it satisfies
condition (i), Theorem 3.1. We will use the 4-cycle Q and the Equal Rank
Lemma to conclude that f2 has rank strictly greater than that of e, and thus
it satisfies condition (ii) as well.

S1

I1

I2

S2

f2 fk· · ·

β
b2 b1 u0 u1 u2 · · · uk

y w1 w2 · · · wk

z

Figure 20: When |S1| ≥ 4

Now, let v denote the neighbour of w2 which is distinct from u2 and b1.
Clearly, v ∈ S1; by Proposition 3.15(iii), v is distinct from u0.

Since each end of f2 is cubic, it is an R-compatible edge of index two.
We first set up some notation concerning the barrier structure of G− f2. We
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denote by S3 the maximal nontrivial barrier of G−f2 which is a subset of B,
and by I3 the set of isolated vertices of (G − f2) − S3. We let S4 denote
the unique maximal nontrivial barrier of (G − f2)/(S3 ∪ I3), and I4 the set
of isolated vertices of (G− f2)− S4. By the Three Case Lemma (2.13), the
end u2 of f2 lies in I4, and its end w2 lies in I3. Also, since w2 ∈ I3, v ∈ S3.

Now, suppose for the sake of contradiction that rank(f2) = rank(e). Then
we may apply the Equal Rank Lemma (3.17) to conclude that S1∪I2 = S3∪I4
and that S2 ∪ I1 = S4 ∪ I3. Furthermore, by Claim 3.22(iii), the vertex u0

has a neighbour in A − (S4 ∪ I3), and thus u0 /∈ I4. We infer that u0 ∈ S3.
We have thus shown that v and u0 are distinct vertices of the barrier S3

of G− f2. Consequently, (G− f2)−{v, u0} has no perfect matching; we will
now use the 4-cycle Q = u2w2b1yu2 to contradict this assertion.

Since G is a brick, G − {v, u0} has a perfect matching, say M . If f2 is
not in M then we have the desired contradiction. Now suppose that f2 ∈ M .
Since v and u0 both lie in the color class B ofH , we conclude that α ∈ M and
that β /∈ M . See Figure 20. Note that each of v and u0 is distinct from b1,
and that the neighbours of b1 are precisely b2, w2 and y. Since β = b1b2 is
not in M , and since f2 = u2w2 lies in M , it must be the case that yb1 lies
in M . Now observe that the symmetric difference of M and Q is a perfect
matching of (G− f2)− {v, u0}, and thus we have the desired contradiction.

We conclude that rank(f2) > rank(e), and thus f2 is the desired R-compatible
edge which satisfies both conditions (i) and (ii), Theorem 3.1.

Case 2: |S1| = 3.

We note that since S1 has precisely three vertices, by Remark 3.14, all of
the edges of G[X1] are determined (where X1 = S1 ∪ I1). See Figure 21.
Furthermore, f1 is the only member of the candidate set F(e, S1), and by
Claim 3.22, its index is two and its rank is equal to rank(e). We will examine
the barrier structure of G − f1 using the Equal Rank Lemma (3.17), and
argue that some edge adjacent with the given edge e = yz (that is, either
incident at y, or incident at z) is R-compatible and that its rank is strictly
greater than rank(e). Observe that, since index(e) = 2, each edge adjacent
with e satisfies condition (i), Theorem 3.1.

We let S3 denote the unique maximal nontrivial barrier of G−f1 which is
a subset of B, and I3 the set of isolated vertices of (G− f1)−S3. We denote
by S4 the unique maximal nontrivial barrier of (G− f1)/(S3 ∪ I3), and by I4
the set of isolated vertices of (G − f1) − S4. See Figure 21. By the Three
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Figure 21: When |S1| = 3

Case Lemma (2.13), the end u1 of f1 lies in I4, and its end w1 lies in I3.
Since each of b1 and u0 is a neighbour of w1 in G − f1, they both lie in the
barrier S3. By Lemma 3.17(ii), with f1 playing the role of f , we conclude
that S3 = {b1, u0} and that I3 = {w1}, as shown in the figure.

Observe that by the choice of S1, the barrier S2 of G− e contains either
two or three vertices. However, irrespective of the cardinality of S2, it follows
from the above and from Lemma 3.17(iv) that S4 = S2 ∪ {y} and that
I4 = I2 ∪ {u1}. In particular, the barrier S4 of G − f1 contains either three
or four vertices. Note that the end z of e lies in I2 which is a subset of I4,
and its end y lies in S4. Furthermore, Lemma 3.17(vi) implies that e is a
member of the candidate set F(f1, S4).

Claim 3.23 We may assume that e is the only member of F(f1, S4) which
is incident with z. Furthermore, we may assume that |S2| = 2.

Proof: Suppose there exists an edge g incident with z such that g is distinct
from e and that g ∈ F(f1, S4). By Proposition 3.5, g is an R-compatible
edge of the brick G. We now apply Corollary 3.19 (with f1 playing the role
of e, and with edges e and g playing the roles of f and g); at least one of
e and g has rank strictly greater than rank(f1). However, by Claim 3.22,
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the ranks of e and f1 are equal; consequently, rank(g) > rank(f1) = rank(e).
By Propostion 3.2, the edge g satisifes condition (ii), Theorem 3.1, and it
satisfies condition (i) because it is adjacent with the edge e, and thus we are
done. So we may assume that e is the only member of F(f1, S4) which is
incident with z. Using this, we shall deduce that the barrier S2 of G− e has
only two vertices.

Suppose to the contrary that |S2| = 3. By Claim 3.21, the candidate set
F(e, S2) is a matching. Consequently, as we did in the case of S1, we may
now invoke the observations made in Section 3.1.1, with S2 playing the role
of S, and I2 playing the role of I, and likewise, X2 := S2∪ I2 playing the role
ofX . In particular, by Remark 3.14, all of the edges of G[X2] are determined.
It is worth noting that S2 is also a maximal barrier of G− e (by the choice
of S1). That is, each of S1 and S2 is a maximal barrier of G− e with exactly
three vertices. Keeping this symmetry in view, we now choose appropriate
notation for those vertices of X2 which are relevant to our argument. See
Figure 22.
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Figure 22: When |S1| = |S2| = 3

We shall let f2 := u2w2 denote the unique member of the candidate set
F(e, S2), where u2 ∈ I2 and w2 ∈ S2. In particular, I2 = {u2,z}. One of the
ends of α = a1a2 lies in the barrier S2; we adjust notation so that a2 ∈ S2.
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Consequently, w2 and a2 are distinct vertices of S2. The vertex a2 is cubic,
and its neighbours are z, u2 and a1. The vertex w2 is adjacent with z and u2,
and all of its remaining neighbours lie in X2.

Observe that Q := zw2u2a2z is a 4-cycle of the bipartite graph H(f1, S4)
which contains the vertex z whose degree is three. Consequently, by Corol-
lary 2.6, at least one of zw2 and za2 is removable in H(f1, S4). However,
since a2 has degree two in H(f1, S4), za2 is non-removable; whence zw2 is
removable. It follows that zw2 is a member of the candidate set F(f1, S4);
this contradicts our first assumption. We conclude that the barrier S2 has
only two vertices, and this completes the proof of Claim 3.23. ✷

By Proposition 2.14, an R-compatible edge of index two is thin if and
only if its rank is n− 4; where n := |V (G)|. Observe that, since |S1| = 3 and
|S2| = 2, the rank of e is n−6, and in this sense, it is very close to being thin;
the same holds for the edge f1. We will establish a symmetry between the
barrier structure of G− e and that of G− f1; see Figure 23. Thereafter, we
will argue that the edge g := yu1 is an R-thin edge of index two; in particular,
it is R-compatible and its rank is n − 4, and thus it satisfies condition (ii),
Theorem 3.1. Since g is adjacent with e, it satisfies condition (i) as well.

Since |S2| = 2, the set I2 contains only the end z of e, and the neighbour-
hood of z is precisely the set S2 ∪ {y} = S4. Also, I4 = I2 ∪ {u1} = {z, u1},
and by Claim 3.23, e = yz is the only member of the candidate set F(f1, S4)
which is incident with z. In other words, z is incident with only one re-
movable edge of the bipartite graph H(f1, S4), namely, the edge e. We now
deduce some consequences of this fact using standard arguments.

First of all, by Lemma 3.8(i), an end of the edge α = a1a2 lies in the
barrier S4. Adjust notation so that a2 ∈ S4. By statement (ii) of the same
lemma, a2 has no neighbours in the setX4 where X4 := S4∪I4. Consequently,
the neighbourhood of a2 is precisely I4∪{a1} = {z, u1, a1}. Clearly, y and a2
are distinct vertices of S4, and we denote by w0 the remaining vertex of S4.
Note that S2 = {w0, a2}.

Next, we observe that if the vertices u1 and w0 are adjacent thenQ := zw0u1a2z
is a 4-cycle of the bipartite graphH(f1, S4) and it contains the vertex z which
has degree three; by Corollary 2.6, one of the two edges zw0 and za2 is re-
movable; however, this contradicts the fact that e = yz is the only removable
edge incident with z. Thus, the vertices u1 and w0 are nonadjacent. It follows
that u1 is cubic, and its neighbourhood is precisely {y, a2, w1}.
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Figure 23: When |S1| = 3 and |S2| = 2

Observe that we have six cubic vertices whose neighbourhoods are fully
determined; these are: the ends y and z of e, the ends u1 and w1 of f1, the
end b1 of β, and the end a2 of α. There is a symmetry between the barrier
structure of G− e and that of G− f1; as is self-evident from Figure 23. We
have not determined the degrees of the two vertices u0 and w0; observe that
if these vertices are not adjacent with each other then u0 has at least two
neighbours in A − (S2 ∪ I1) and likewise, w0 has at least two neighbours in
B−(S1∪I2); whereas if u0w0 is an edge ofG then u0 has at least one neighbour
in A− (S2 ∪ I1) and likewise, w0 has at least one neighbour in B− (S1 ∪ I2).

As mentioned earlier, we now proceed to prove that g = yu1 is an R-thin
edge. We let J := ((G − e)/X1 → x1)/X2 → x2 denote the unique brick
of G−e, where X1 = S1∪I1 and X2 := S2∪I2. Note that J is near-bipartite
with removable doubleton R.

Claim 3.24 The edge g = yu1 is R-thin. (That is, g is an R-compatible
edge of index two and its rank is n− 4.)

Proof: Observe that Q := yu1w1b1y is a 4-cycle in H = G−R which contains
the cubic vertex y. By Corollary 2.6, at least one of the edges g = yu1 and
yb1 is removable in H . Note that yb1 is not removable, whence g is removable
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in H . To conclude that g is R-compatible, it suffices to show that edges α
and β are admissible in G−g. We shall prove something more general, which
is useful in establishing the thinness of g as well.

Observe that, in G − g, the vertex y has neighbour set {z, b1}, and ver-
tex u1 has neighbour set {w1, a2}. We will show that, if v1 and v2 are distinct
vertices of the color class B such that {v1, v2} 6= {z, b1}, then (G−g)−{v1, v2}
has a perfect matching, say M . This has two consequences worth noting.
First of all, if {v1, v2} = {b1, b2} then M + β is a perfect matching of G− g
which contains α and β both, whence g is an R-compatible edge of G. Sec-
ondly, it shows that {z, b1} is a maximal nontrivial barrier of G − g. An
analogous argument establishes that {w1, a2} is also a maximal nontrivial
barrier of G− g, and consequently Proposition 2.14 implies that g is indeed
R-thin.

As mentioned above, suppose that v1 and v2 are distinct vertices of B
such that {v1, v2} 6= {z, b1}. Let N be a perfect matching of G − {v1, v2}.
In what follows, we consider different possibilities, and in each of them, we
exhibit a perfect matching M of (G − g) − {v1, v2}. If g /∈ N then clearly
M := N . Now suppose that g ∈ N . Note that, since v1, v2 ∈ B, the edge α
lies in N and β does not lie in N . If b1 /∈ {v1, v2}, then the edge b1w1 lies
in N , and we let M := (N − g − b1w1) + f1 + yb1.

Now consider the case in which b1 ∈ {v1, v2}, and adjust notation so that
b1 = v1. Thus v2 6= z, whence zw0 ∈ N . Also, w1u0 lies in N . Observe that v2
lies in the set B − (S1 ∪ I2). First, we consider the case when u0w0 is an edge
of G. Observe that the six cycle C := u1yzw0u0w1u1 is N -alternating and it
contains the edge g. In this case, let M denote the symmetric difference of
N and C.

Finally, consider the situation in which u0w0 is not an edge of G. (In this
case, to construct M , we will not use the matching N .) As noted earlier,
since u0 and w0 are nonadjacent, w0 has at least two distinct neighbours in
the set B − (S1 ∪ I2). In particular, w0 has at least one neighbour, say v′,
which lies in B − (S1 ∪ I2) and is distinct from v2. Now, let MJ be a perfect
matching of J − {v′, v2}. Observe that α ∈ MJ and β /∈ MJ . Note that,
in the matching MJ , the contraction vertex x1 is matched with some vertex
in A − (S2 ∪ I1), which is a neighbour of u0 in the graph G. Now, we let
M := MJ + w0v

′ + f1 + e.

In every scenario, M is a perfect matching of (G−g)−{v1, v2}, as desired.
Thus, as discussed earlier, g is R-compatible as well as thin. This proves
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Claim 3.24. ✷

In summary, we have shown that g = yu1 is an R-compatible edge
which satisfies both conditions (i) and (ii), Theorem 3.1. This completes
the proof. ✷
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