Generating Near-Bipartite Bricks *

Nishad Kothari ${ }^{\dagger}$
nishadkothari@gmail.com
Dept. of Combinatorics and Optimization, U. of Waterloo

20 November, 2016

Abstract

A 3-connected graph G is a brick if, for any two vertices u and v, the graph $G-\{u, v\}$ has a perfect matching. Deleting an edge e from a brick G results in a graph with zero, one or two vertices of degree two. The bicontraction of a vertex of degree two consists of contracting the two edges incident with it; and the retract of $G-e$ is the graph J obtained from it by bicontracting all its vertices of degree two. An edge e is thin if J is also a brick. Carvalho, Lucchesi and Murty [How to build a brick, Discrete Mathematics 306 (2006), 2383-2410] showed that every brick, distinct from K_{4}, the triangular prism $\overline{C_{6}}$ and the Petersen graph, has a thin edge. Their theorem yields a generation procedure for bricks, using which they showed that every simple planar solid brick is an odd wheel.

A brick G is near-bipartite if it has a pair of edges α and β such that $G-\{\alpha, \beta\}$ is bipartite and matching covered; examples are K_{4} and $\overline{C_{6}}$. The significance of near-bipartite graphs arises from the theory of ear decompositions of matching covered graphs.

The object of this paper is to establish a generation procedure which is specific to the class of near-bipartite bricks. In particular, we prove that if G is any near-bipartite brick, distinct from K_{4} and $\overline{C_{6}}$, then G has a thin edge e such that the retract J of $G-e$ is also near-bipartite.

[^0]
Contents

1 Matching Covered Graphs 2
1.1 Canonical Partition 3
1.2 Bricks and Braces 4
1.3 Removable edges 5
1.3.1 Near-bricks and b-invariant edges 6
1.3.2 Bicontractions, retracts and bi-splittings 7
1.3.3 Thin edges 7
1.4 Near-Bipartite Bricks 8
1.4.1 $\quad R$-compatible edges 10
1.4.2 R-thin edges 11
2 Near-Bipartite Graphs 12
2.1 The exchange property 12
2.2 Non-removable edges of bipartite graphs 13
2.3 Barriers and tight cuts 16
2.3.1 Bipartite graphs 16
2.3.2 Near-Bipartite graphs 18
2.4 The Three Case Lemma 20
2.4.1 Index one 21
2.4.2 Index two 22
2.4.3 Index and Rank of an R-thin Edge 23
3 Generating Near-Bipartite Bricks 24
3.1 The candidate set $\mathcal{F}(e, S)$ 25
3.1.1 When the candidate set is a matching 31
3.2 The Equal Rank Lemma 36
3.3 Proof of Theorem 3.1 40

1 Matching Covered Graphs

For general graph theoretic notation and terminology, we refer the reader to Bondy and Murty [1]. All graphs considered here are loopless; however, we allow multiple edges. An edge of a graph is admissible if there is a perfect matching of the graph that contains it. A connected graph with two or more vertices is matching covered if each of its edges is admissible. For a comprehensive treatment of matching theory and its origins, we refer the
reader to Lovász and Plummer [12], wherein matching covered graphs are referred to as ' 1 -extendable' graphs.

In this section, we briefly review the relevant terminology, definitions and results from the theory of matching covered graphs.

1.1 Canonical Partition

Tutte's Theorem states that a graph G has a perfect matching if and only if $\operatorname{odd}(G-S) \leq|S|$ for each subset S of G, where $\operatorname{odd}(G-S)$ denotes the number of odd components of $G-S$. For a graph G that has a perfect matching, a nonempty subset S of its vertices is a barrier if it satisfies the equality $\operatorname{odd}(G-S)=|S|$. The following proposition is easily deduced from Tutte's Theorem, and yields a characterization of matching covered graphs.

Proposition 1.1 Let G be a graph that has a perfect matching. Let u and v be distinct vertices of G. Then the graph $G-\{u, v\}$ has a perfect matching if and only if there is no barrier of G which contains both u and v.

Corollary 1.2 Let G be a connected graph with a perfect matching. Then G is matching covered if and only if every barrier of G is stable (that is, an independent set).

The following fundamental theorem is due to Kotzig (see [12, page 150]).
Theorem 1.3 [The Canonical Partition Theorem] The maximal barriers of a matching covered graph G partition its vertex set.

For a matching covered graph G, the partition of its vertex set defined by its maximal barriers is called the canonical partition of $V(G)$. For instance, for a bipartite matching covered graph $H[A, B]$, the canonical partition of $V(H)$ consists of precisely two parts, namely, its color classes A and B; this is implied by the following proposition which may be derived from the well-known Hall's Theorem. (The neighbourhood of a set of vertices S is denoted by $N(S)$.)

Proposition 1.4 Let $H[A, B]$ denote a bipartite graph with four or more vertices, where $|A|=|B|$. Then the following statements are equivalent:
(i) H is matching covered,
(ii) $|N(S)| \geq|S|+1$ for every nonempty proper subset S of A, and
(iii) $H-\{a, b\}$ has a perfect matching for each pair of vertices $a \in A$ and $b \in B$.

A graph G, with four or more vertices, is bicritical if $G-\{u, v\}$ has a perfect matching for every pair of distinct vertices u and v. A barrier is trivial if it has a single vertex. Proposition 1.1)implies the following characterization of bicritical graphs.

Proposition 1.5 Let G be a connected graph with a perfect matching. Then G is bicritical if and only if every barrier of G is trivial.

Thus, for a bicritical graph G, the canonical partition of $V(G)$ consists of $|V(G)|$ parts, each of which contains a single vertex.

1.2 Bricks and Braces

For a nonempty proper subset X of the vertices of a graph G, we denote by $\partial(X)$ the cut associated with X, that is, the set of all edges of G that have one end in X and the other end in $\bar{X}:=V(G)-X$. We refer to X and \bar{X} as the shores of $\partial(X)$. A cut is trivial if any of its shores is a singleton. For a cut $\partial(X)$, we denote the graph obtained by contracting the shore \bar{X} to a single vertex \bar{x} by $G /(\bar{X} \rightarrow \bar{x})$. In case the label of the contraction vertex \bar{x} is irrelevant, we simply write G / \bar{X}. The two graphs G / X and G / \bar{X} are called the $\partial(X)$-contractions of G.

Let G be a matching covered graph. A cut $\partial(X)$ is a tight cut if $|M \cap \partial(X)|=1$ for every perfect matching M of G. It is easily verified that if $\partial(X)$ is a nontrivial tight cut of G, then each $\partial(X)$-contraction is a matching covered graph that has strictly fewer vertices than G. If either of the $\partial(X)$-contractions has a nontrivial tight cut, then that graph can be further decomposed into even smaller matching covered graphs. We can repeat this procedure until we obtain a list of matching covered graphs, each of which is free of nontrivial tight cuts. This procedure is known as a tight cut decomposition of G.

Let G be a matching covered graph free of nontrivial tight cuts. If G is bipartite then it is a brace; otherwise it is a brick. Thus, a tight cut decomposition of G results in a list of bricks and braces. In general, a matching
covered graph may admit several tight cut decompositions. However, Lovász [11] proved the following remarkable result, and demonstrated its significance by using it to compute the dimension of the matching lattice.

Theorem 1.6 [The Unique Decomposition Theorem] Any two tight cut decompositions of a matching covered graph yield the same list of bricks and braces (except possibly for multiplicities of edges).

In particular, any two tight cut decompositions of a matching covered graph G yield the same number of bricks; this number is denoted by $b(G)$. We remark that G is bipartite if and only if $b(G)=0$.

Let G be a matching covered graph. Observe that, if S is a barrier of G, and K is an odd component of $G-S$, then $\partial(V(K))$ is a tight cut of G. Such a tight cut is called a barrier cut. (For instance, if v is a vertex of degree two then $\{v\} \cup N(v)$ is the shore of a barrier cut.) In particular, if G is nonbipartite then each nontrivial barrier gives rise to a nontrivial tight cut.

Now suppose that $\{u, v\}$ is a 2 -vertex-cut of G such that $G-\{u, v\}$ has an even component, say K. Then each of the sets $V(K) \cup\{u\}$ and $V(K) \cup\{v\}$ is a shore of a nontrivial tight cut of G. Such a tight cut is called a 2-separation cut. (We remark that a graph may have a tight cut which is neither a barrier cut nor a 2 -separation cut.)

Since a brick is a nonbipartite matching covered graph which is free of nontrivial tight cuts, it follows from the above observations that every brick is 3-connected and bicritical. Edmonds, Lovász and Pulleyblank [8] established the converse.

Theorem 1.7 A graph G is a brick if and only if it is 3-connected and bicritical.

In particular, a brick is free of nontrivial barriers and of 2-vertex-cuts. Three cubic bricks, namely $K_{4}, \overline{C_{6}}$ and the Petersen graph, play a special role in the theory of matching covered graphs.

1.3 Removable edges

An edge e of a matching covered graph G is removable if $G-e$ is also matching covered; otherwise it is non-removable. For example, each edge of the Petersen graph is removable. The following was established by Lovász [11.

Theorem 1.8 [Removable Edge Theorem] Every brick distinct from K_{4} and $\overline{C_{6}}$ has a removable edge.

We point out that, if e is a removable edge of a brick G, then $G-e$ may not be a brick. For instance, $G-e$ may have vertices of degree two.

1.3.1 Near-bricks and b-invariant edges

Recall that $b(G)$ denotes the number of bricks of a matching covered graph G (in any tight cut decomposition), and it is well-defined due to the Unique Decomposition Theorem (1.6). A near-brick is a matching covered graph with $b(G)=1$. Clearly, every brick is a near-brick. However, the converse is not true. When proving theorems concerning bricks, one often needs the flexibility of dealing with the wider class of near-bricks, whose properties are akin to those of bricks.

A removable edge e of a matching covered graph G is b-invariant if $b(G-e)=b(G)$. In particular, if G is a brick then e is b-invariant if and only if $G-e$ is a near-brick. For instance, the graph $S t_{8}$ shown in Figure 1 has a unique b-invariant edge e.

Figure 1: $S t_{8}$ has a unique b-invariant edge e

It is easily verified that if G is the Petersen graph and e is any edge, then $b(G-e)=2$. Thus each edge of the Petersen graph is removable, but none of them is b-invariant. Confirming a conjecture of Lovász, the following result was proved by Carvalho, Lucchesi and Murty [3].

Theorem 1.9 [b-invariant Edge Theorem] Every brick distinct from K_{4} and $\overline{C_{6}}$ and the Petersen graph has a b-invariant edge.

1.3.2 Bicontractions, retracts and bi-splittings

Let G be a matching covered graph and let v be a vertex of degree two, with two distinct neighbours u and w. The bicontraction of v is the operation of contracting the two edges $v u$ and $v w$ incident with v. Note that $X:=$ $\{u, v, w\}$ is the shore of a tight cut of G, and that the graph resulting from the bicontraction of v is the same as the $\partial(X)$-contraction G / X, whereas the other $\partial(X)$-contraction G / \bar{X} is isomorphic to C_{4} (possibly with multiple edges).

The retract of G is the graph obtained from G by bicontracting all its degree two vertices. The above observation implies that the retract of a matching covered graph is also matching covered. Carvalho et al. [5] showed that the retract of a matching covered graph is unique up to isomorphism. It is important to note that even if G is simple, the retract of G may have multiple edges.

The operation of bi-splitting is the converse of the operation of bicontraction. Let H be a graph and let v be a vertex of H of degree at least two. Let G be a graph obtained from H by replacing the vertex v by two new vertices v_{1} and v_{2}, distributing the edges in H incident with v between v_{1} and v_{2} such that each gets at least one, and then adding a new vertex v_{0} and joining it to both v_{1} and v_{2}. Then we say that G is obtained from H by bi-splitting v into v_{1} and v_{2}. It is easily seen that if H is matching covered, then G is also matching covered, and that H can be recovered from G by bicontracting the vertex v_{0} and denoting the contraction vertex by v.

1.3.3 Thin edges

A b-invariant edge e of a brick G is thin if the retract of $G-e$ is a brick. As the graph $G-e$ can have zero, one or two vertices of degree two, the retract of $G-e$ is obtained by performing at most two bicontractions, and it has at least $|V(G)|-4$ vertices. For example, the retract of $S t_{8}-e$ (see Figure (1) is isomorphic to K_{4} with multiple edges; thus, e is a thin edge. It should be noted that, in general, a b-invariant edge may not be thin.

The original definition of a thin edge, due to Carvalho et al. [6], was in terms of barriers; 'thin' being a reference to the fact that the barriers of $G-e$ are sparse. This viewpoint will also be useful to us in latter sections (where further explanation is provided). Carvalho, Lucchesi and Murty [6]
used their b-invariant Edge Theorem (1.9) to derive the following stronger result.

Theorem 1.10 [Thin Edge Theorem] Every brick distinct from K_{4} and $\overline{C_{6}}$ and the Petersen graph has a thin edge.

The following is an immediate consequence of the above theorem.
Theorem 1.11 [6] Given any brick G, there exists a sequence $G_{1}, G_{2}, \ldots, G_{k}$ of bricks such that:
(i) G_{1} is either K_{4} or $\overline{C_{6}}$ or the Petersen graph,
(ii) $G_{k}:=G$, and
(iii) for $2 \leq i \leq k$, there exists a thin edge e_{i} of G_{i} such that G_{i-1} is the retract of $G_{i}-e_{i}$.

Carvalho et al. [6] also described four elementary 'expansion operations' which may be applied to any brick to obtain a larger brick with at most four more vertices. Each of these operations consists of bi-splitting at most two vertices and then adding a suitable edge. Given a brick J, the application of any of these four operations to J results in a brick G such that G has a thin edge e with the property that J is the retract of $G-e$. Thus, any brick may be generated from one of the three basic bricks $\left(K_{4}\right.$ and $\overline{C_{6}}$ and the Petersen graph) by means of these four expansion operations.

1.4 Near-Bipartite Bricks

A nonbipartite matching covered graph G is near-bipartite if it has a pair $R:=\{\alpha, \beta\}$ of edges such that the graph $H:=G-R$ is bipartite and matching covered. Such a pair R is called a removable doubleton.

Furthermore, if G happens to be a brick, we say that G is a near-bipartite brick. For instance, K_{4} and $\overline{C_{6}}$ are the smallest simple near-bipartite bricks, and each of them has three distinct removable doubletons.

Observe that the edge α joins two vertices in one color class of H, and that β joins two vertices in the other color class. Consequently, if M is any perfect matching of G then $\alpha \in M$ if and only if $\beta \in M$. (In particular, neither α nor β is a removable edge of G.) The following is an immediate consequence of [4, Theorem 5.1].

Theorem 1.12 Every near-bipartite graph is a near-brick.
The significance of near-bipartite graphs arises from the theory of ear decompositions of matching covered graphs; see [2] and [10]; in this context, near-bipartite graphs constitute the class of nonbipartite matching covered graphs which are 'closest' to being bipartite. Thus, certain problems which are rather difficult to solve for general nonbipartite graphs are easier to solve for the special case of near-bipartite graphs; for instance, although there has been no significant progress in characterizing Pfaffian nonbipartite graphs, Fischer and Little [9] were able to characterize Pfaffian near-bipartite graphs.

The difficulty in using Theorem 1.11 as an induction tool for studying near-bipartite bricks, is that even if $G_{k}:=G$ is a near-bipartite brick, there is no guarantee that all of the intermediate bricks $G_{1}, G_{2}, \ldots G_{k-1}$ are also near-bipartite. For instance, the brick shown in Figure 2a is near-bipartite with a (unique) removable doubleton $R:=\{\alpha, \beta\}$. Although the edge e is thin; the retract of $G-e$, as shown in Figure 2 b , is not near-bipartite since it has three edge-disjoint triangles.

(a)

(b)

Figure 2: (a) A near-bipartite brick G with a thin edge e; (b) The retract of $G-e$ is not near-bipartite

In other words, deleting an arbitrary thin edge may not preserve the property of being near-bipartite. In this sense, the Thin Edge Theorem (1.10) is inadequate for obtaining inductive proofs of results that pertain only to the class of near-bipartite bricks.

To fix this problem, we decided to look for a thin edge whose deletion preserves the property of being near-bipartite. Our main result is as follows.

Theorem 1.13 Every near-bipartite brick G distinct from K_{4} and $\overline{C_{6}}$ has a thin edge e such that the retract of $G-e$ is also near-bipartite.

In fact, we prove a stronger theorem. In particular, we find it convenient to fix a removable doubleton R (of the brick under consideration), and then look for a thin edge whose deletion preserves this removable doubleton. To make this precise, we will first define a special type of removable edge which we call ' R-compatible'.

1.4.1 $\quad R$-compatible edges

We use the abbreviation R-graph for a near-bipartite graph G with (fixed) removable doubleton R, and we shall refer to $H:=G-R$ as its underlying bipartite graph. In the same spirit, an R-brick is a brick with a removable doubleton R.

A removable edge e of an R-graph G is R-compatible if it is removable in H as well. Equivalently, an edge e is R-compatible if $G-e$ and $H-e$ are both matching covered. For instance, the graph $S t_{8}$ (see Figure (3) has two removable doubletons $R:=\{\alpha, \beta\}$ and $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$, and its unique removable edge e is R-compatible as well as R^{\prime}-compatible.

Figure 3: e is R-compatible as well as R^{\prime}-compatible
Now, let G denote the R-brick shown in Figure 2a, where $R:=\{\alpha, \beta\}$. The thin edge e is incident with an edge of R at a cubic vertex; consequently, $H-e$ has a vertex whose degree is only one, and so it is not matching covered. In particular, e is not R-compatible.

The brick shown in Figure 4 has two distinct removable doubletons $R:=$ $\{\alpha, \beta\}$ and $R^{\prime}:=\left\{\alpha^{\prime}, \beta^{\prime}\right\}$. Its edges e and f are both R^{\prime}-compatible, but neither of them is R-compatible.

Observe that, if e is an R-compatible edge of an R-graph G, then R is a removable doubleton of $G-e$, whence $G-e$ is also an R-graph; in particular, $G-e$ is near-bipartite. By Theorem 1.12, $G-e$ is a near-brick; and this proves the following.

Proposition 1.14 Every R-compatible edge is b-invariant.

Figure 4: e and f are R^{\prime}-compatible, but they are not R-compatible

Furthermore, as we will see later, if e is an R-compatible edge of an R-brick G then the unique brick J of $G-e$ is also an R-brick; in particular, J is near-bipartite. The following is a special case of a theorem of Carvalho, Lucchesi and Murty [2].

Theorem 1.15 [R-compatible Edge Theorem] Every R-brick distinct from K_{4} and $\overline{C_{6}}$ has an R-compatible edge.

In [2], they proved a stronger result. In particular, they showed the existence of an R-compatible edge in R-graphs with minimum degree at least three. (They did not use the term ' R-compatible'.) Using the notion of R-compatibility, we now define a thin edge whose deletion preserves the property of being near-bipartite.

1.4.2 R-thin edges

A thin edge e of an R-brick G is R-thin if it is R-compatible. Equivalently, an edge e is R-thin if it is R-compatible as well as thin, and in this case, the retract of $G-e$ is also an R-brick.

As noted earlier, the graph $S t_{8}$, shown in Figure 3, has two removable doubletons R and R^{\prime}. Its unique removable edge e is R-thin as well as R^{\prime}-thin; to see this, note that the retract J of $S t_{8}-e$ is isomorphic to K_{4} with multiple edges, and each of R and R^{\prime} is a removable doubleton of J.

Using the R-compatible Edge Theorem (1.15) of Carvalho et al., we prove the following stronger result (which immediately implies Theorem [1.13).

Theorem 1.16 [R-thin Edge Theorem] Every R-brick distinct from K_{4} and $\overline{C_{6}}$ has an R-thin edge.

Our proof of the above theorem uses tools from the work of Carvalho et al. [6], and the overall approach is inspired by their proof of the Thin Edge Theorem (1.10). The following is an immediate consequence of Theorem 1.16.

Theorem 1.17 Given any R-brick G, there exists a sequence $G_{1}, G_{2}, \ldots, G_{k}$ of R-bricks such that:
(i) G_{1} is either K_{4} or $\overline{C_{6}}$,
(ii) $G_{k}:=G$, and
(iii) for $2 \leq i \leq k$, there exists an R-thin edge e_{i} of G_{i} such that G_{i-1} is the retract of $G_{i}-e_{i}$.

It follows from the above theorem that every near-bipartite brick can be generated from one of K_{4} and $\overline{C_{6}}$ by means of the expansion operations. Theorem 1.16 and its proof also appear in the Ph.D. thesis of Kothari [10].

2 Near-Bipartite Graphs

In this section, we examine properties of near-bipartite graphs that are relevant to our proof of Theorem 1.16. Recall that an R-graph G is a near-bipartite graph with a fixed removable doubleton R. We adopt the following notational conventions.

Notation 2.1 For an R-graph G, we shall denote by $H[A, B]$ the underlying bipartite graph $G-R$. We let α and β denote the constituent edges of R, and we adopt the convention that $\alpha:=a_{1} a_{2}$ has both ends in A, whereas $\beta:=b_{1} b_{2}$ has both ends in B.

As we will see, certain pertinent properties of G are closely related to those of H. For this reason, we also review well-known facts concerning bipartite matching covered graphs.

2.1 The exchange property

Recall that an edge of a matching covered graph is removable if its deletion results in another matching covered graph. The removable edges of a bipartite graph satisfy an 'exchange property' and its proof immediately follows from Proposition 1.4 .

Proposition 2.2 [Exchange Property of Removable Edges] Let H denote a bipartite matching covered graph, and let e denote a removable edge of H. If f is a removable edge of $H-e$, then:
(i) f is removable in H, and
(ii) e is removable in $H-f$.

We point out that the conclusion of Proposition 2.2 does not hold, in general, for arbitrary removable edges of nonbipartite graphs. For instance, as shown in Figure 11 the edge f is removable in the matching covered graph $S t_{8}-e$, but it is not removable in $S t_{8}$. However, as we prove next, the exchange property does hold for R-compatible edges. Recall that an R-compatible edge of an R-graph G is one which is removable in G as well as in the underlying bipartite graph $H:=G-R$; see Section 1.4.1,

Proposition 2.3 [Exchange Property of R-compatible Edges] Let G be an R-graph, and let e denote an R-compatible edge of G. If f is an R-compatible edge of $G-e$, then:
(i) f is R-compatible in G, and
(ii) e is R-compatible in $G-f$.

Proof: Let $H:=G-R$. Since f is R-compatible in $G-e$, each of the graphs $G-e-f$ and $H-e-f$ is matching covered. To deduce (i), we need to show that each of $G-f$ and $H-f$ is matching covered. Since f is removable in $H-e$, it follows from Proposition 2.2 that f is removable in H as well. That is, $H-f$ is matching covered.

Next, we note that the edge e is admissible in $H-f$. Thus e is admissible in $G-f$. As $G-e-f$ is matching covered, we conclude that $G-f$ is also matching covered. This proves (i). Statement (ii) follows immediately, since each of $G-f-e$ and $H-f-e$ is matching covered.

2.2 Non-removable edges of bipartite graphs

Let $H[A, B]$ denote a bipartite graph, on four or more vertices, that has a perfect matching. Using the well-known Hall's Theorem, it can be shown that an edge f of H is inadmissible (that is, f is not in any perfect matching
of H) if and only if there exists a nonempty proper subset S of A such that $|N(S)|=|S|$ and f has one end in $N(S)$ and its other end is not in S.

Now suppose that H is matching covered, and let e denote a non-removable edge of H. Then some edge f of $H-e$ is inadmissible. This fact, coupled with the above observation, may be used to arrive at the following characterization of non-removable edges in bipartite matching covered graphs; see Figure 5 .

Figure 5: Non-removable edge of a bipartite graph
Proposition 2.4 [Characterization of Non-Removable Edges] Let $H[A, B]$ denote a bipartite matching covered graph on four or more vertices. An edge e of H is non-removable if and only if there exist partitions $\left(A_{0}, A_{1}\right)$ of A and $\left(B_{0}, B_{1}\right)$ of B such that $\left|A_{0}\right|=\left|B_{0}\right|$ and e is the only edge joining a vertex in B_{0} to a vertex in A_{1}.

In our work, we will often be interested in finding an R-compatible edge incident at a specified vertex v of an R-brick G. As a first step, we will upper bound the number of edges of $\partial(v)$, which are non-removable in the underlying bipartite graph $H:=G-R$. For this purpose, the next lemma of Lovász and Vempala [13] is especially useful. It is an extension of Proposition [2.4. See Figure 6

Lemma 2.5 [The Lovász-Vempala Lemma] Let $H[A, B]$ denote a bipartite matching covered graph, and $b \in B$ denote a vertex of degree $d \geq 3$. Let $b a_{1}, b a_{2}, \ldots, b a_{d}$ be the edges of H incident with b. Assume that the edges $b a_{1}, b a_{2}, \ldots, b a_{r}$ where $0<r \leq d$ are non-removable. Then there exist partitions $\left(A_{0}, A_{1}, \ldots, A_{r}\right)$ of A and $\left(B_{0}, B_{1}, \ldots, B_{r}\right)$ of B, such that $b \in B_{0}$, and for $i \in\{1,2, \ldots, r\}:$ (i) $\left|A_{i}\right|=\left|B_{i}\right|$, (ii) $a_{i} \in A_{i}$, and (iii) $N\left(A_{i}\right)=B_{i} \cup\{b\}$; in particular, $b a_{i}$ is the only edge between B_{0} and A_{i}.

Figure 6: Non-removable edges incident at a vertex

Observe that, as per the notation in the above lemma, if $b a_{1}$ and $b a_{2}$ are non-removable edges, then the vertices a_{1} and a_{2} have no common neighbour distinct from b. That is, there is no 4 -cycle containing edges $b a_{1}$ and $b a_{2}$ both. This proves the following corollary of Lovász and Vempala [13].

Corollary 2.6 Let H denote a bipartite matching covered graph, and b denote a vertex of degree three or more. If e and f are two edges incident at b which lie in a 4-cycle Q then at least one of e and f is removable.

We conclude with an easy application of the Lovász-Vempala Lemma in the context of near-bipartite bricks.

Corollary 2.7 Let G be an R-brick, and let $H:=G-R$. Then for any vertex b, at most two edges of $\partial_{H}(b)$ are non-removable in H.

Proof: We adopt Notation 2.1; assume without loss of generality that $b \in B$. If b has only two distinct neighbours in H then the assertion is easily verified. Now suppose that b has at least three distinct neighbours in H, and let d denote the degree of b in H.

Suppose instead that there are $r \geq 3$ non-removable edges incident with b; we denote these as $b a_{1}, b a_{2}, \ldots, b a_{r}$. Then, by the Lovász-Vempala Lemma (2.5), there exist partitions $\left(A_{0}, A_{1}, \ldots, A_{r}\right)$ of A and $\left(B_{0}, B_{1}, \ldots, B_{r}\right)$ of B, such that $b \in B_{0}$, and for $i \in\{1,2, \ldots, r\}$: (i) $\left|A_{i}\right|=\left|B_{i}\right|$, (ii) $a_{i} \in A_{i}$, and (iii) $N_{H}\left(A_{i}\right)=B_{i} \cup\{b\}$. See Figure 6,

Observe that, for $i \in\{1,2, \ldots, r\}$, every vertex of A_{i} is isolated in $H-$ $\left(B_{i} \cup\{b\}\right)$; consequently, $B_{i} \cup\{b\}$ is a nontrivial barrier of H. Since G is free of nontrivial barriers (by Theorem 1.7), adding the edges of R must kill each of these barriers. In particular, α must have an end in each A_{i} for $i \in\{1,2, \ldots, r\}$. This is not possible, as $r \geq 3$; thus we have a contradiction. This completes the proof of Corollary 2.7.

2.3 Barriers and tight cuts

We begin with a property of removable edges related to tight cuts which is easily verified; it holds for all matching covered graphs.

Proposition 2.8 Let G be a matching covered graph, and $\partial(X)$ a tight cut of G, and e an edge of $G[X]$. Then e is removable in G / \bar{X} if and only if e is removable in G.

Let us revisit the notion of a barrier cut. If S is a barrier of a matching covered graph G and K is an odd component of $G-S$ then $\partial(V(K))$ is a tight cut of G, and is referred to as a barrier cut. In Sections 2.3.1 and 2.3.2, among other things, we will see that every nontrivial tight cut of a bipartite or of a near-bipartite graph is a barrier cut.

2.3.1 Bipartite graphs

Suppose that X is an odd subset of the vertex set of a bipartite graph $H[A, B]$. Then, clearly one of the two sets $A \cap X$ and $B \cap X$ is larger than the other; the larger of the two sets, denoted X_{+}, is called the majority part of X; and the smaller set, denoted X_{-}, is called the minority part of X.

The following proposition is easily derived, and it provides a convenient way of visualizing tight cuts in bipartite matching covered graphs. See Figure 7 .

Proposition 2.9 [Tight Cuts in Bipartite Graphs] A cut $\partial(X)$ of a bipartite matching covered graph H is tight if and only if the following hold:
(i) $|X|$ is odd and $\left|X_{+}\right|=\left|X_{-}\right|+1$, consequently $\left|\bar{X}_{+}\right|=\left|\bar{X}_{-}\right|+1$, and
(ii) there are no edges between X_{-}and \bar{X}_{-}.

Figure 7: Tight cuts in bipartite matching covered graphs

Observe that, in the above proposition, X_{+}and \bar{X}_{+}are both barriers of H. It follows that every tight cut of a bipartite matching covered graph is a barrier cut.

Recall that, for a bipartite matching covered graph $H[A, B]$, its maximal barriers are precisely its color classes A and B. Now let S denote a nontrivial barrier of H which is not maximal, and adjust notation so that $S \subset B$. It may be inferred from Proposition 2.9 that $H-S$ has precisely $|S|-1$ isolated vertices each of which is a member of A, and it has precisely one nontrivial odd component K which gives rise to a nontrivial barrier cut of H, namely $\partial(V(K))$.

Since braces are bipartite matching covered graphs which are free of nontrivial tight cuts, Proposition 2.9 may be used to obtain the following characterizations of braces.

Proposition 2.10 [Characterizations of Braces] Let $H[A, B]$ denote a bipartite graph of order six or more, where $|A|=|B|$. Then the following statements are equivalent:
(i) H is a brace,
(ii) $|N(S)| \geq|S|+2$ for every nonempty subset S of A such that $|S|<$ $|A|-1$, and
(iii) $H-\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ has a perfect matching for any four distinct vertices $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$.

2.3.2 Near-Bipartite graphs

Let G denote an R-graph. We adopt Notation [2.1. For an odd subset X of $V(G)$, we define its majority part X_{+}and its minority part X_{-}by regarding it as a subset of $V(H)$.

Observe that, if X is the shore of a tight cut in G then it is the shore of a tight cut in H as well. This observation, coupled with Proposition 2.9, may be used to derive the following characterization of tight cuts in near-bipartite graphs.

Proposition 2.11 [Tight Cuts in Near-Bipartite Graphs] A cut $\partial(X)$ of an R-graph G is tight if and only if the following hold:
(i) X is odd and $\left|X_{+}\right|=\left|X_{-}\right|+1$, and consequently, $\left|\bar{X}_{+}\right|=\left|\bar{X}_{-}\right|+1$,
(ii) there are no edges between X_{-}and \bar{X}_{-}; adjust notation so that $X_{-} \subset A$,
(iii) one of α and β has both ends in a majority part; adjust notation so that α has both ends in \bar{X}_{+}, and
(iv) β has at least one end in \bar{X}_{-}.

Consequently, X_{+}is a nontrivial barrier of G. Moreover, the $\partial(X)$-contraction G / X is near-bipartite with removable doubleton R, whereas the $\partial(X)$-contraction G / \bar{X} is bipartite.
Proof: A simple counting argument shows that if all of the statements (i) to (iv) hold then $\partial(X)$ is indeed a tight cut of G. See Figure 8, Now suppose that $\partial(X)$ is a tight cut; as noted earlier, $\partial(X)-R$ is a tight cut of H. Thus (i) and (ii) follow immediately from Proposition [2.9. Adjust notation so that $X_{-} \AA_{\text {As }} A$ each perfect matching of G which contains α must also contain β, we infer that at most one of α and β lies in $\partial(X)$. Furthermore, if α has both ends in X_{-}, and likewise, if β has both ends in \bar{X}_{-}, then a simple counting argument shows that any perfect matching M of G containing α and β meets $\partial(X)$ in at least three edges; this is a contradiction.

The above observations imply that at least one of α and β has both ends in a majority part; this proves (iii). As in the statement, adjust notation so that α has both ends in \bar{X}_{+}. Now, if β has both ends in X_{+}then it is easily seen that α and β are both inadmissible. This proves (iv). Note that, either β has both ends in \bar{X}_{-}as shown in Figure 8 a , or it has one end in \bar{X}_{-} and the other end in X_{+}as shown in Figure 8b.

Figure 8: Tight cuts in near-bipartite graphs

Note that X_{+}is a nontrivial barrier of G, and that G / \bar{X} is bipartite. We let $G_{1}:=G / X$ denote the other $\partial(X)$-contraction. Observe that $H_{1}:=H / X$ is bipartite and matching covered. Furthermore, in G_{1}, α has both ends in one color class of H_{1}, and likewise, β has both ends in the other color class of H_{1}; this is true for each of the two cases shown in Figure 8. Since $H_{1}=G_{1}-R$, we infer that G_{1} is near-bipartite with removable doubleton R. This completes the proof of Proposition 2.11.

Recall that a near-brick is a matching covered graph whose tight cut decomposition yields exactly one brick. The following is an immediate consequence of Proposition 2.11.

Corollary 2.12 An R-graph G is a near-brick, and its unique brick is also near-bipartite with removable doubleton R.

In other words, a near-bipartite graph G is a near-brick, and its unique brick, say J, inherits its removable doubletons. The rank of G, denoted $\operatorname{rank}(G)$, is the order of the unique brick of G. That is, $\operatorname{rank}(G):=|V(J)|$.

Proposition 2.11 shows that every tight cut of a near-bipartite graph is a barrier cut. Now, let S denote a nontrivial barrier of an R-graph G, and adjust notation so that $S \subset B$. It may be inferred from Proposition 2.11that $G-S$ has precisely $|S|-1$ isolated vertices each of which is a member of A, and it has precisely one nontrivial odd component K which yields a nontrivial tight cut of G, namely $\partial(V(K))$. Thus there is a bijective correspondence between the nontrivial barriers of G and its nontrivial tight cuts.

2.4 The Three Case Lemma

Recall that a removable edge e of a brick G is b-invariant if $G-e$ is a near-brick. In this section, we will discuss a lemma of Carvalho, Lucchesi and Murty [4] that pertains to the structure of such near-bricks, that is, those which are obtained from a brick by deleting a single edge. This lemma is used extensively in their works [3, 6, 7], and it will play a vital role in the proof of Theorem 1.16.

We will restrict ourselves to the case in which G is an R-brick and e is R-compatible. (By Proposition 1.14, e is b-invariant.) We adopt Notation 2.1. As the name of the lemma suggests, there will be three cases, depending on which we say that the 'index' of e is zero, one or two. In particular, the index of e (defined later) will be zero if $G-e$ is a brick.

Now consider the situation in which $G-e$ is not a brick; that is, $G-e$ has a nontrivial tight cut. By Proposition 2.11, $G-e$ has a nontrivial barrier; let S be such a barrier which is also maximal, and adjust notation so that $S \subset B$. We let I denote the set of isolated vertices of $(G-e)-S$; note that $I \subset A$. Since G itself is free of nontrivial barriers, we infer that one end of e lies in I and its other end lies in $B-S$. This observation, coupled with the Canonical Partition Theorem (1.3) and the fact that e has only two ends, implies that $G-e$ has at most two maximal nontrivial barriers; furthermore, if it is has two such barriers then one is a subset of A and the other is a subset of B.

The index of e, denoted index (e), is the number of maximal nontrivial barriers in $G-e$. It follows from the preceding paragraph that the index of e is either zero, one or two; and these form the three cases. This is the gist of the lemma; apart from this, it provides further information in the index two case which is especially useful to us. We now state the Three Case Lemma [6], as it is applicable to an R-compatible edge of an R-brick; see Figures 9 and 10, (The reason for the asymmetry in our notation in Case (2) is discussed in Section 2.4.2.)

Lemma 2.13 [The Three Case Lemma] Let G be an R-brick, and e an R-compatible edge. Let $H[A, B]:=G-R$. Then one of the following three alternatives holds:
(0) $G-e$ is a brick.
(1) $G-e$ has only one maximal nontrivial barrier, say S. Adjust notation so that $S \subset B$. Let I denote the set of isolated vertices of $(G-e)-S$. Then $I \subset A$, and e has one end in I and other end in $B-S$.
(2) $G-e$ has two maximal nontrivial barriers, say S_{1} and S_{2}^{*}. Adjust notation so that $S_{1} \subset B$ and $S_{2}^{*} \subset A$. Let I_{1} denote the set of isolated vertices of $(G-e)-S_{1}$, and I_{2}^{*} the set of isolated vertices of $(G-e)-S_{2}^{*}$. Then the following hold:
(i) $I_{1} \subset A$ and $I_{2}^{*} \subset B$;
(ii) e has one end in $I_{1}-S_{2}^{*}$ and other end in $I_{2}^{*}-S_{1}$;
(iii) $S_{2}:=S_{2}^{*}-I_{1}$ is the unique maximal nontrivial barrier of $(G-e) / X_{1}$, where $X_{1}:=S_{1} \cup I_{1}$; furthermore, S_{2} is a barrier of $G-e$ as well, and $I_{2}:=I_{2}^{*}-S_{1}$ is the set of isolated vertices of $(G-e)-S_{2}$.

Now, let e denote an R-compatible edge of an R-brick G. By the rank of e, denoted $\operatorname{rank}(e)$, we mean the rank of the R-graph $G-e$. That is, $\operatorname{rank}(e):=\operatorname{rank}(G-e)$. Recall that e is R-thin if the retract of $G-e$ is a brick. In particular, every R-compatible edge of index zero is R-thin, and these are the only edges whose rank equals $n:=|V(G)|$.

In what follows, we will further discuss the cases in which the index of e is either one or two; in each case, we shall relate the rank of e with the information provided by the Three Case Lemma, and we examine the conditions under which e is R-thin. These discussions are especially relevant to Section 3.2.

We adopt Notation 2.1. Let y and z denote the ends of e such that $y \in A$ and $z \in B$. Note that, if y is cubic, then the two neighbours of y in $G-e$ constitute a barrier of $G-e$; a similar statement holds for z. It follows that if both ends of e are cubic then the index of e is two.

2.4.1 Index one

Suppose that the index of e is one. As in case (1) of the Three Case Lemma, we let S denote the unique maximal nontrivial barrier of $G-e$, and I the set of isolated vertices of $(G-e)-S$. Note that $|I|=|S|-1$. We adjust notation so that $S \subset B$ and $I \subset A$; see Figure 9. Observe that $y \in I$ and $z \in B-S$.

Figure 9: An R-compatible edge of index one

In this case, $G-e$ has a unique nontrivial tight cut $\partial(X)$, where $X:=$ $S \cup I$. Consequently, $(G-e) / X$ is the brick of $G-e$, and the rank of e is $|V(G)-X|+1$. Furthermore, e is R-thin if and only if $|S|=2$; and in this case, y is cubic, $N(y)=S \cup\{z\}$, and $\operatorname{rank}(e)=n-2$.

2.4.2 Index two

Suppose that the index of e is two. As in case (2) of the Three Case Lemma, we let S_{1} denote one of the two maximal nontrivial barriers of $G-e$, and I_{1} the set of isolated vertices of $(G-e)-S_{1}$, adjusting notation so that $S_{1} \subset B$ and $I_{1} \subset A$. Note that $\left|I_{1}\right|=\left|S_{1}\right|-1$ and that $y \in I_{1}$; see Figure 10 .

Now, let S_{2}^{*} denote the unique maximal nontrivial barrier of $G-e$ which is a subset of A, and I_{2}^{*} the set of isolated vertices of $(G-e)-S_{2}^{*}$. As in the index one case (see Figure 9), we would like to break $V(G)$ into disjoint subsets in order to be able to compute the rank of e. However, this is complicated by the possibility that $S_{2}^{*} \cap I_{1}$ may be nonempty. This explains the asymmetry in our notation in case (2). Fortunately, it turns out that $S_{2}:=S_{2}^{*}-I_{1}$ is the only maximal nontrivial barrier of $(G-e) / X_{1}$, where $X_{1}:=S_{1} \cup I_{1}$. Furthermore, S_{2} is a barrier of $G-e$ as well, and $I_{2}:=I_{2}^{*}-S_{1}$ is the set of isolated vertices of $(G-e)-S_{2}$. Note that $\left|I_{2}\right|=\left|S_{2}\right|-1$ and that $z \in I_{2}$; see Figure 10. We let $X_{2}:=S_{2} \cup I_{2}$.

In this case, $\partial\left(X_{1}\right)$ and $\partial\left(X_{2}\right)$ are both tight cuts of $G-e$; more importantly, $\partial\left(X_{2}\right)$ is the unique tight cut of $(G-e) / X_{1}$. Consequently, $\left((G-e) / X_{1}\right) / X_{2}$ is the brick of $G-e$, and the rank of e is $\left|V(G)-X_{1}-X_{2}\right|+2$.

Furthermore, e is R-thin if and only if $\left|S_{1}\right|=2=\left|S_{2}\right|$; and in this case, y and z are both cubic, $N(y)=S_{1} \cup\{z\}$ and $N(z)=S_{2} \cup\{y\}$, and

Figure 10: An R-compatible edge of index two
$\operatorname{rank}(e)=n-4$; also, by switching the roles of S_{1} and S_{2}^{*}, we infer that $\left|S_{2}^{*}\right|=2$.

2.4.3 Index and Rank of an R-thin Edge

The following characterization of R-thin edges is immediate from our discussion in the previous two sections.

Proposition 2.14 [Characterization of R-thin Edges in terms of Barriers] An R-compatible edge e of an R-brick G is R-thin if and only if every barrier of $G-e$ has at most two vertices.

In summary, if the index of e is zero then e is thin and its rank is $n:=$ $|V(G)|$. If the index of e is one then $\operatorname{rank}(e) \leq n-2$, and equality holds if and only if e is thin. Likewise, if the index of e is two then $\operatorname{rank}(e) \leq n-4$, and equality holds if and only if e is thin.

The following proposition gives an equivalent definition of index of an R-thin edge.

Proposition 2.15 Let G be an R-brick, and e an R-thin edge. Then the following statements hold:
(i) index $(e)=0$ if and only if both ends of e have degree four or more in G;
(ii) $\operatorname{index}(e)=1$ if and only if exactly one end of e has degree three in G; and
(iii) $\operatorname{index}(e)=2$ if and only if both ends of e have degree three in G and e does not lie in a triangle.

Proof: We note that index $(e)=0$ if and only if $G-e$ is free of nontrivial barriers, that is, $G-e$ is a brick; and since e is a thin edge, the latter holds if and only if both ends of e have degree four or more in G. This proves (i).

Let $n:=|V(G)|$. We note that index $(e)=1$ if and only if $\operatorname{rank}(e)=n-2$; and since e is a thin edge, the latter holds if and only if exactly one end of e has degree three in G.

Now suppose that $\operatorname{index}(e)=2$, whence $\operatorname{rank}(e)=n-4$, and consequently, both ends of e have degree three in G. Conversely, if both ends of e have degree three in G then $G-e$ has two nontrivial barriers which lie in different color classes of $(G-e)-R$, and thus index $(e)=2$; furthermore, since e is R-compatible, neither end of e is incident with an edge of R and thus e does not lie in a triangle.

3 Generating Near-Bipartite Bricks

In this section, our goal is to prove the R-thin Edge Theorem (1.16). In fact, we will prove a stronger result, as described below.

Let G be an R-brick distinct from K_{4} and $\overline{C_{6}}$. Then, by Theorem 1.15 of Carvalho et al., G has an R-compatible edge; let e be any such edge. Recall from Section 2.4 that there are two parameters associated with e : the rank of e is the order of the unique brick of $G-e$; and, the index of e is the number of maximal nontrivial barriers of $G-e$, which by the Three Case Lemma (2.13) is either zero, one or two. Using these parameters, we may state our stronger theorem as follows.

Theorem 3.1 Let G be an R-brick which is distinct from K_{4} and $\overline{C_{6}}$, and let e denote an R-compatible edge of G. Then one of the following alternatives hold:

- either e is R-thin,
- or there exists another R-compatible edge f such that:
(i) f has an end each of whose neighbours in $G-e$ lies in a barrier of $G-e$, and
(ii) $\operatorname{rank}(f)+\operatorname{index}(f)>\operatorname{rank}(e)+\operatorname{index}(e)$.

Since the rank and index are bounded quantities, the above theorem immediately implies the R-thin Edge Theorem (1.16). Our proof uses tools from the work of Carvalho et al. [6], and the overall approach is inspired by their proof of the Thin Edge Theorem (1.10).

The following proposition shows that condition (ii) in Theorem 3.1 is implied by a weaker condition involving only the rank function.

Proposition 3.2 Suppose that e and f denote two R-compatible edges of an R-brick G. If $\operatorname{rank}(f)>\operatorname{rank}(e)$ then $\operatorname{rank}(f)+\operatorname{index}(f)>\operatorname{rank}(e)+\operatorname{index}(e)$.

Proof: Note that, since the rank of an edge is even, $\operatorname{rank}(f)>\operatorname{rank}(e)+1$. As the index of an edge is either zero, one or two, we only need to examine the case in which $\operatorname{index}(e)=2$ and $\operatorname{index}(f)=0$. However, in this case, $\operatorname{rank}(f)=n$ and $\operatorname{rank}(e) \leq n-4$ where $n:=|V(G)|$, and thus the conclusion holds.

In the statement of Theorem 3.1, if the given R-compatible edge e is thin, then the assertion is vacuously true. Thus, in its proof, we may assume that e is not thin. It then follows from Proposition 2.14 that $G-e$ has a barrier with three or more vertices; let S be such a barrier. In the next section, we introduce the notion of a candidate edge (relative to e and S) which, as we will see, is an R-compatible edge that satisfies condition (i) in the statement of Theorem 3.1, and has rank at least that of e.

3.1 The candidate set $\mathcal{F}(e, S)$

Let G be an R-brick, and let $e:=y z$ denote an R-compatible edge which is not thin. We first set up some notation and conventions which are used in the rest of this paper.

Notation 3.3 We shall denote by $H[A, B]$ the underlying bipartite graph $G-R$. We let $R:=\{\alpha, \beta\} ;$ and we adopt the convention that $\alpha:=a_{1} a_{2}$ has both ends in A, whereas $\beta:=b_{1} b_{2}$ has both ends in B. Adjust notation so that $y \in A$ and $z \in B$.

The reader is advised to review Section 2.3.2 before proceeding further. Let S be a barrier of $G-e$ such that $|S| \geq 3$, and I the set of isolated vertices of $(G-e)-S$. Adjust notation so that $S \subset B$ and $I \subset A$, as shown
in Figure 11a. Observe that $X:=S \cup I$ is the shore of a tight cut in $G-e$, as well as in $H-e$. By Proposition 2.11, α has both ends in $A-I$; whereas β either has both ends in $B-S$, or it has one end in $B-S$ and another in S. We denote the bipartite matching covered graph

$$
(H-e) / \bar{X} \rightarrow \bar{x}
$$

by $H(e, S)$. Note that its color classes are the sets $I \cup\{\bar{x}\}$ and S; see Figure 11b.

Figure 11: (a) S is a barrier of $G-e$ such that $|S| \geq 3$; (b) the bipartite graph $H(e, S)$

Definition 3.4 [The Candidate $\operatorname{Set} \mathcal{F}(e, S)$] We denote by $\mathcal{F}(e, S)$ the set of those removable edges of $H(e, S)$ which are not incident with the contraction vertex \bar{x}, and we refer to it as the candidate set (relative to e and the barrier S of $G-e$), and each member of $\mathcal{F}(e, S)$ is called a candidate edge.

We remark that Carvalho et al. [6] used a similar notion. Since their work concerns general bricks (that is, not just near-bipartite ones), they consider the graph $(G-e) / \bar{X} \rightarrow \bar{x}$ and its removable edges which are not incident with the contraction vertex. See Lemma 23 and Theorem 24 in [6].

Now, let $f:=u w$ denote a member of the candidate set $\mathcal{F}(e, S)$, as shown in Figure 11b. The end w of f lies in I, and all of the neighbours of w, in $G-e$, lie in the barrier S; consequently, f satisfies condition (i), Theorem 3.1. It should be noted that e and f are adjacent if and only if w is the same as y. We now show that f is an R-compatible edge and it has rank at least that of e. The argument pertaining to ranks is the same as that in [6, Lemma 26].

Proposition 3.5 [Properties of Candidate Edges] Every member of $\mathcal{F}(e, S)$ is an R-compatible edge of $G-e$, and of G, and has rank at least that of e. Conversely, each R-compatible edge of $G-e$, which is incident with a vertex of I, is a member of $\mathcal{F}(e, S)$.

Proof: Let f be any member of $\mathcal{F}(e, S)$, as shown in Figure 11b. We will use Proposition 2.8 to show that f is R-compatible in $G-e$.

Observe that $H(e, S)$ is one of the C-contractions of $H-e$, where $C:=$ $\partial(X)-e-R$ is a tight cut. Since f is removable in $H(e, S)$ and $f \notin C$, Proposition 2.8 implies that f is removable in $H-e$ as well. A similar argument shows that f is removable in $G-e$. Thus, f is R-compatible in $G-e$; the exchange property (Proposition [2.3) implies that f is R-compatible in G as well.

Note that since both ends of f are in the bipartite shore X, the brick of $G-e-f$ is the same as the brick of $G-e$. In particular, $\operatorname{rank}(G-e-f)=$ $\operatorname{rank}(G-e)$. On the other hand, note that if D is any tight cut of $G-f$ then $D-e$ is a tight cut of $G-e-f$, whence $\operatorname{rank}(G-f) \geq \operatorname{rank}(G-e-f)$. Thus $\operatorname{rank}(f) \geq \operatorname{rank}(e)$. This proves the first statement.

Now suppose that f is an R-compatible edge of $G-e$ which is incident at some vertex of I. In particular, $H-e-f$ is matching covered; that is, f is removable in $H-e$. By Proposition [2.8, f is removable in $H(e, S)$. This completes the proof of Proposition 3.5.

In summary, we have shown that every candidate edge is R-compatible; furthermore, it satisfies condition (i), Theorem 3.1, and it has rank at least that of e.

The following property of candidate sets will be useful in dealing with those nontrivial barriers of $G-e$ which are not maximal.

Corollary 3.6 Let S^{*} be any barrier of $G-e$. If $S \subset S^{*}$ then $\mathcal{F}(e, S) \subset$ $\mathcal{F}\left(e, S^{*}\right)$.

Proof: Let f be a member of $\mathcal{F}(e, S)$. Then f is incident with some vertex of I, say w. Note that w also lies in I^{*} which denotes the set of isolated vertices of $(G-e)-S^{*}$.

As f is a member of $\mathcal{F}(e, S)$, Proposition 3.5implies that f is R-compatible in $G-e$. Consequently, since f is incident at $w \in I^{*}$, the last assertion of

Proposition 3.5, with S^{*} playing the role of S, implies that f is a member of $\mathcal{F}\left(e, S^{*}\right)$. Thus $\mathcal{F}(e, S) \subset \mathcal{F}\left(e, S^{*}\right)$.

Now, we will prove two lemmas; each of which gives an upper bound on the number of non-removable edges incident at a vertex of the bipartite graph $H(e, S)$, which is distinct from the contraction vertex \bar{x}. Both of them are easy applications of the Lovász-Vempala Lemma (2.5); we will use arguments similar to those in the proof of Corollary 2.7.

Lemma 3.7 Let u denote a vertex of S which has degree three or more in $H(e, S)$. Then at most two edges of $\partial(u)-\beta$ are non-removable in $H(e, S)$. Furthermore, if precisely two edges of $\partial(u)-\beta$ are non-removable in $H(e, S)$ and if vertices u and \bar{x} are adjacent then the edge $u \bar{x}$ is non-removable in $H(e, S)$.

Proof: Assume that there are $k \geq 1$ non-removable edges incident with the vertex u, namely, $u w_{1}, u w_{2}, \ldots, u w_{k}$. Then, by Lemma 2.5, there exist partitions $\left(A_{0}, A_{1}, \ldots, A_{k}\right)$ of $I \cup\{\bar{x}\}$, and $\left(B_{0}, B_{1}, \ldots, B_{k}\right)$ of S, such that $u \in B_{0}$, and for $j \in\{1,2, \ldots, k\}$: (i) $\left|A_{j}\right|=\left|B_{j}\right|$, (ii) $w_{j} \in A_{j}$ and (iii) $N\left(A_{j}\right)=B_{j} \cup\{u\}$. See Figure 12,

Figure 12: Illustration for Lemma 3.7
For $1 \leq j \leq k$, note that $B_{j} \cup\{u\}$ is a barrier of $H(e, S)$. Moreover, if the set A_{j} contains neither the contraction vertex \bar{x} nor the end y of e, then $B_{j} \cup\{u\}$ is a barrier of G itself, which is not possible as G is a brick. We
thus arrive at the conclusion that $k \leq 2$, which proves the first part of the assertion.

Now consider the case when $k=2$. It follows from the above argument that one of the vertices y and \bar{x} lies in the set A_{1}, whereas the other vertex lies in the set A_{2}. Adjust notation so that $y \in A_{1}$ and $\bar{x} \in A_{2}$. Observe that if u and \bar{x} are adjacent, then $u \bar{x}$ is the unique edge between B_{0} and A_{2}, and it is non-removable in $H(e, S)$ by assumption. This completes the proof of Lemma 3.7.

Now we turn to the examination of non-removable edges of $H(e, S)$ incident with vertices in I. The proof is similar to that of Lemma 3.7, except that the roles of the color classes S and $I \cup\{\bar{x}\}$ are interchanged.

Lemma 3.8 Let w denote a vertex of I which has degree three or more in $H(e, S)$. Then at most two edges of $\partial(w)-e$ are non-removable in $H(e, S)$. Furthermore, if precisely two edges of $\partial(w)-e$ are non-removable in $H(e, S)$ then the following hold:
(i) an end of β lies in S; adjust notation so that $b_{1} \in S$,
(ii) in $H(e, S)$, the vertices b_{1} and \bar{x} are nonadjacent,
(iii) if b_{1} and w are adjacent then the edge $b_{1} w$ is non-removable in $H(e, S)$, and
(iv) w is distinct from the end y of e.

Proof: Suppose that there exist $k \geq 1$ non-removable edges incident at the vertex w, namely, $w u_{1}, w u_{2}, \ldots, w u_{k}$. Then, by Lemma [2.5, there exist partitions $\left(A_{0}, A_{1}, \ldots, A_{k}\right)$ of the color class $I \cup\{\bar{x}\}$, and $\left(B_{0}, B_{1}, \ldots, B_{k}\right)$ of the color class S, such that $w \in A_{0}$, and for $j \in\{1,2, \ldots, k\}$: (i) $\left|A_{j}\right|=\left|B_{j}\right|$, (ii) $u_{j} \in B_{j}$ and (iii) $N\left(B_{j}\right)=A_{j} \cup\{w\}$. See Figure 13,

For $1 \leq j \leq k$, note that $A_{j} \cup\{w\}$ is a barrier of $H(e, S)$. Furthermore, if the contraction vertex \bar{x} is not in A_{j}, or if an end of the edge β is not in B_{j}, then $A_{j} \cup\{w\}$ is a barrier of G itself, which is absurd since G is a brick. Clearly, this would be the case for some $j \in\{1,2, \ldots, k\}$ if $k \geq 3$. We conclude that $k \leq 2$, thus establishing the first part of the assertion.

Now suppose that $k=2$. It follows from the preceding paragraph that an end of β lies in B_{1} or in B_{2}. This proves (i). Adjust notation so that

Figure 13: Illustration for Lemma 3.8
$b_{1} \in B_{1}$. Furthermore, the contraction vertex \bar{x} lies in A_{2}. Consequently, vertices b_{1} and \bar{x} are nonadjacent; this verifies (ii). Note that if b_{1} and w are adjacent, then the edge $b_{1} w$ is the unique edge between A_{0} and B_{1}, and it is non-removable in $H(e, S)$ by assumption. This proves (iii). Finally, consider the case in which $w=y$, where y is the end of e in I. Observe that the neighbourhood of $A_{0}-y$ lies in the set B_{0} in the graph $H(e, S)$ as well as in G, whence B_{0} is a barrier of G. We conclude that $\left|B_{0}\right|=1$, and that y is the only vertex of A_{0}. Furthermore, the neighbourhood of A_{1} lies in $B_{1} \cup B_{0}$, and thus $B_{1} \cup B_{0}$ is a nontrivial barrier in $H(e, S)$ as well as in G, which is absurd. We conclude that w is distinct from the end y of e; thus (iv) holds. This completes the proof of Lemma 3.8.

The above lemma implies that each vertex of I, except possibly the end y of e, is incident with at least one candidate. Furthermore, if y has degree three or more in $H(e, S)$ then y is incident with at least two candidates; and likewise, if any other vertex of I, say w, has degree four or more then w is incident with at least two candidates. We thus have the following corollary which is used in the next section.

Corollary 3.9 The candidate set $\mathcal{F}(e, S)$ has cardinality at least $|S|-2$. (In particular, the set $\mathcal{F}(e, S)$ is nonempty.) Furthermore, if $\mathcal{F}(e, S)$ is a matching then each vertex of I is cubic in G and $|\mathcal{F}(e, S)|=|S|-2$.

As we will see later, by a result of Carvalho et al. (Corollary 3.19), if the candidate set $\mathcal{F}(e, S)$ is not a matching then it has a member whose rank is
strictly greater than that of e. For this reason, in the proof of Theorem 3.1, we will mainly have to deal with the case in which the candidate set is a matching.

3.1.1 When the candidate set is a matching

In this section, we suppose that the candidate set $\mathcal{F}(e, S)$ is a matching. We will make several observations, and these will be useful to us in Section 3.3 where the proof of Theorem 3.1 is presented. For all of the figures in the rest of this paper, the solid vertices are those which are known to be cubic in the brick G; the hollow vertices may or may not be cubic.

Since $\mathcal{F}(e, S)$ is a matching, Corollary 3.9 implies that every vertex of I is cubic in G, as shown in Figure 14. Furthermore, each of these vertices, except for the end y of e, is incident with exactly one candidate edge; in particular, $|\mathcal{F}(e, S)|=|I|-1=|S|-2$.

Notation 3.10 We let $w_{1}, w_{2}, \ldots, w_{k}$ denote the vertices of $I-y$, where $k:=|S|-2$, and for $1 \leq j \leq k$, denote the edge of $\mathcal{F}(e, S)$ incident with w_{j} by f_{j} and its end in S by u_{j}.

Figure 14: When $\mathcal{F}(e, S)$ is a matching
Note that, since $\mathcal{F}(e, S)$ is a matching, the vertices $u_{1}, u_{2}, \ldots, u_{k}$ are distinct, as shown in Figure 14. Since every vertex of I is incident with two non-removable edges of $H(e, S)$, we deduce the following by assertions (i), (ii) and (iii) of Lemma 3.8, respectively:
(1) an end of β lies in S; adjust notation so that $b_{1} \in S$,
(2) in $H(e, S)$, vertices b_{1} and \bar{x} are nonadjacent; consequently, in G, all neighbours of b_{1}, except b_{2}, lie in I, and
(3) b_{1} is distinct from each of $u_{1}, u_{2}, \ldots, u_{k}$.

Furthermore, since b_{1} is not incident with any member of $\mathcal{F}(e, S)$, Lemma3.7 implies that it has precisely two neighbours in I; in particular, b_{1} is cubic in G.

Notation 3.11 We let u_{0} denote the vertex of S which is distinct from $b_{1}, u_{1}, u_{2}, \ldots, u_{k}$. That is, $S=\left\{b_{1}, u_{0}, u_{1}, u_{2}, \ldots, u_{k}\right\}$. (See Figure 14.)

As the vertex u_{0} is not incident with any candidate, we conclude using Lemma 3.7 that u_{0} has at most one neighbour in I. Observe that if u_{0} has no neighbours in I then $\left(S-u_{0}\right) \cup\{z\}$ is a barrier of G (where z is the end of e which is not in I), which is absurd as G is a brick. Thus, u_{0} has precisely one neighbour in I.

We note that if y is the unique neighbour of u_{0} in the set I, then $S-u_{0}$ is a barrier of G, which leads us to the same contradiction as before. We thus conclude that u_{0} has precisely one neighbour in the set $I-y$, and that its remaining neighbours lie in \bar{X}; see Figure 15. In particular, in $H(e, S)$, there are are least two edges between u_{0} and \bar{x}.

Figure 15: u_{0} and u_{1} are the only vertices adjacent with the contraction vertex \bar{x}

Finally, since each vertex u_{j} in the set $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ is incident with exactly one candidate, Lemma 3.7 implies that u_{j} must satisfy one of the following conditions:
(i) either u_{j} has some neighbour in the set \bar{X} and it has precisely two neighbours in the set I,
(ii) or otherwise, u_{j} has no neighbours in the set \bar{X} and it has precisely three neighbours in the set I.

Observe, by counting degrees of the vertices in I, that there are precisely $3 k+2$ edges with one end in I and the other end in S. Of these $3 k+2$ edges, precisely two are incident with b_{1}, and only one is incident with u_{0}. Thus there are $3 k-1$ edges with one end in I and the other end in $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. It follows immediately that exactly one vertex among $u_{1}, u_{2}, \ldots, u_{k}$ satisfies condition (i); every other vertex satisifes condition (ii).

Notation 3.12 We adjust notation so that u_{1} is the only vertex in $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ which has neighbours in \bar{X}. (See Figure 15.)

Adopting the notation introduced thus far, the next proposition summarizes our observations in terms of the brick G.

Proposition 3.13 [When the Candidate Set is a Matching] The following hold:
(i) each vertex of I is cubic,
(ii) b_{1} is cubic and its neighbours lie in $I \cup\left\{b_{2}\right\}$,
(iii) u_{0} has precisely one neighbour in $I-y$, and all of its remaining neighbours lie in \bar{X},
(iv) u_{1} has precisely two neighbours in I, and all of its remaining neighbours lie in \bar{X},
(v) if $|S| \geq 4$, then each vertex of $S-\left\{b_{1}, u_{0}, u_{1}\right\}$ has precisely three neighbours and these neighbours lie in I.

Observe that, if the barrier S has precisely three vertices, then the candidate set $\mathcal{F}(e, S)$ has only one edge (that is, $f_{1}=u_{1} w_{1}$); in this case, all of the edges of $G[X]$ are determined by Proposition 3.13, as listed below, and as shown in Figure 16. (Note that the underlying simple graph of $H(e, S)$ is a ladder of order six whose cubic vertices are u_{1} and w_{1}.)

Remark 3.14 Suppose that $|S|=3$. Then the following hold:
(i) the three neighbours of b_{1} are y, w_{1} and b_{2},
(ii) u_{0} is adjacent with w_{1}, and all of its remaining neighbours lie in \bar{X},
(iii) u_{1} is adjacent with y and with w_{1}, and all of its remaining neighbours lie in \bar{X}.

Figure 16: When $\mathcal{F}(e, S)$ is a matching, and S has only three vertices

We shall now consider the situation in which $|S| \geq 4$, that is, $k \geq 2$. Note that, as per our notation, $f_{1}=u_{1} w_{1}$ is the only candidate whose end in S (that is, u_{1}) has a neighbour in \bar{X}. In this sense, f_{1} is different from the remaining candidates $f_{2}, f_{3}, \ldots, f_{k}$. In the following proposition, we first show that b_{1} is nonadjacent with the end w_{1} of f_{1}. Consequently, b_{1} is adjacent with at least one of $w_{2}, w_{3}, \ldots, w_{k}$; we shall assume without loss of generality that b_{1} is adjacent with w_{2}, as shown in Figure 17. In its proof, we will apply the Lovász-Vempala Lemma (2.5) to the graph $H(e, S)$, first at w_{1}, and then at w_{2}; each of these applications is a refinement of the situation in Lemma 3.8.

Proposition 3.15 Suppose that $|S| \geq 4$. Then the following hold:
(i) b_{1} and w_{1} are nonadjacent; adjust notation so that $b_{1} w_{2}$ is an edge of G,
(ii) y is adjacent with each of b_{1} and u_{2}, and
(iii) u_{0} and w_{2} are nonadjacent.

Proof: First, we apply Lemma 2.5 to the graph $H(e, S)$ at vertex w_{1}. Since $f_{1}=u_{1} w_{1}$ is the only removable edge incident with w_{1}, there exist partitions $\left(A_{0}, A_{1}, A_{2}\right)$ of $I \cup\{\bar{x}\}$, and $\left(B_{0}, B_{1}, B_{2}\right)$ of S, such that $w_{1} \in A_{0}$, and $\left|A_{j}\right|=\left|B_{j}\right|$ for $j \in\{0,1,2\}$, vertex u_{1} lies in B_{0}, and the remaining two neighbours of w_{1} lie in B_{1} and in B_{2}, respectively. Furthermore, $N\left(B_{1}\right)=A_{1} \cup\left\{w_{1}\right\}$ and $N\left(B_{2}\right)=A_{2} \cup\left\{w_{1}\right\}$.

Suppose that b_{1} is a neighbour of w_{1}, and adjust notation so that $b_{1} \in B_{1}$. The contraction vertex \bar{x} lies in A_{2}, since otherwise $A_{2} \cup\left\{w_{1}\right\}$ is a nontrivial barrier in G. We will deduce that each of the sets B_{0}, B_{1} and B_{2} is a singleton, and thus the barrier S has precisely three vertices, contrary to the hypothesis.

First of all, note that the neighbourhood of $B_{1}-b_{1}$ is contained in A_{1}, and thus if $\left|A_{1}\right| \geq 2$ then A_{1} is a nontrivial barrier in G; we conclude that $\left|A_{1}\right|=1$ and that $B_{1}=\left\{b_{1}\right\}$. Observe that the contraction vertex \bar{x} is only adjacent with u_{1}, which lies in B_{0}, and with u_{0}. Thus the neighbourhood of $B_{2}-u_{0}$ is contained in $\left(A_{2}-\bar{x}\right) \cup\left\{w_{1}\right\}$, whence the latter is a barrier of G; we infer that $A_{2}=\{\bar{x}\}$; consequently, the unique vertex of B_{2} has precisely two neighbours, namely w_{1} and \bar{x}. It follows that $B_{2}=\left\{u_{0}\right\}$. Since the vertex w_{1} is cubic, the neighbourhood of $B_{0}-u_{1}$ is contained in $\left(A_{0}-w_{1}\right) \cup A_{1}$, whence the latter is a barrier of G; we infer that $A_{0}=\left\{w_{1}\right\}$, thus $B_{0}=\left\{u_{1}\right\}$. It follows that $|S|=3$, contrary to our hypothesis. Thus b_{1} and w_{1} are nonadjacent; this proves (i). As in the statement of the proposition, adjust notation so that b_{1} and w_{2} are adjacent; see Figure 17 ,

To deduce (ii) and (iii), we apply Lemma 2.5 to the graph $H(e, S)$ at vertex w_{2}. Similar to the earlier situation, there exist partitions $\left(A_{0}, A_{1}, A_{2}\right)$ of $I \cup\{\bar{x}\}$, and $\left(B_{0}, B_{1}, B_{2}\right)$ of S, such that $w_{2} \in A_{0}$, and $\left|A_{j}\right|=\left|B_{j}\right|$ for $j \in\{1,2,3\}$, vertex u_{2} lies in B_{0}, and the remaining two neighbours of w_{2} lie in B_{1} and in B_{2}, respectively. Adjust notation so that b_{1} lies in B_{1}. Also, $N\left(B_{1}\right)=A_{1} \cup\left\{w_{2}\right\}$ and $N\left(B_{2}\right)=A_{2} \cup\left\{w_{2}\right\}$. As before, we conclude that \bar{x} lies in A_{2}, and that $\left|A_{1}\right|=\left|B_{1}\right|=1$.

Observe that the unique vertex of A_{1} has all of its neighbours in the set $B_{0} \cup B_{1}$. We will show that $B_{0}=\left\{u_{2}\right\}$; this implies that the unique vertex of A_{1} has precisely two neighbours, and so it must be the end y of e; this immediately implies (ii).

Note that the neighbourhood of $A_{0}-w_{2}$ is contained in B_{0}. Thus, if $\left|A_{0}\right| \geq 2$ then y lies in A_{0} (since otherwise B_{0} is a barrier of G). If $\left|A_{0}\right| \geq 3$ then B_{0} is a barrier of $G-e$ with three or more vertices. (Note that the barrier B_{0} is contained in the barrier S.) Since no end of β lies in B_{0}, it

Figure 17: When $\mathcal{F}(e, S)$ is a matching, and S has four or more vertices; the vertices u_{0} and w_{2} are nonadjacent
follows from our earlier observations that the candidate set $\mathcal{F}\left(e, B_{0}\right)$ is not a matching. However, by Corollary 3.6, $\mathcal{F}\left(e, B_{0}\right)$ is a subset of $\mathcal{F}(e, S)$, and the latter is a matching; this is absurd. We conclude that A_{0} has at most two vertices, that is, either $A_{0}=\left\{w_{2}\right\}$ or $A_{0}=\left\{y, w_{2}\right\}$. Now suppose that $A_{0}=\left\{y, w_{2}\right\}$. The unique vertex of A_{1} is adjacent with b_{1}, and thus statement (i) implies that $w_{1} \notin A_{1}$. Assume without loss of generality that $A_{1}=\left\{w_{3}\right\}$. Since w_{3} is cubic, we conclude that its neighbourhood is precisely $B_{0} \cup B_{1}$, and thus $B_{0}=\left\{u_{2}, u_{3}\right\}$. Observe that $Q:=w_{3} u_{2} w_{2} b_{1} w_{3}$ is a 4-cycle in $H(e, S)$ containing the vertex w_{3}, and thus by Corollary [2.6, one of the edges $w_{3} u_{2}$ and $w_{3} b_{1}$ is removable in $H(e, S)$; however, this contradicts our hypothesis since the only removable edges are the members of $\mathcal{F}(e, S)$. We thus conclude that $A_{0}=\left\{w_{2}\right\}$. As explained earlier, $A_{1}=\{y\}$, and thus y is adjacent with each of b_{1} and u_{2}; this proves (ii).

Now suppose that u_{0} and w_{2} are adjacent. Observe that $u_{1} \in B_{2}$, and thus all of its neighbours lie in A_{2}, whence $\left|A_{2}\right| \geq 3$. The neighbourhood of $B_{2}-\left\{u_{0}, u_{1}\right\}$ is contained in $A_{2}-\bar{x}$, whence the latter is a nontrivial barrier of G, which is a contradiction. We conclude that u_{0} and w_{2} are nonadjacent; this proves (iii), and completes the proof of Proposition 3.15.

3.2 The Equal Rank Lemma

Here, we present an important lemma which is used in the proof of Theorem 3.1. This lemma considers the situation in which G is an R-brick and $e:=y z$ is an R-compatible edge of index two that is not thin, and f is a candidate relative to a barrier of $G-e$ such that f is also of index two and
its rank is equal to that of e. The reader is advised to review the Three Case Lemma (2.13) and Section 2.4.2 before proceeding further.

The Equal Rank Lemma (3.17) relates the barrier structure of $G-f$ to that of $G-e$. More specifically, the lemma establishes subset/superset relationships between eight sets of vertices: the barriers S_{1} and S_{2} of $G-e$ (as in Case 2 of Lemma 2.13) and their corresponding sets of isolated vertices I_{1} and I_{2}, and likewise, the barriers S_{3} and S_{4} of $G-f$ and their corresponding sets of isolated vertices I_{3} and I_{4}. Among other things, the lemma shows that $S_{1} \cup I_{1} \cup S_{2} \cup I_{2}=S_{3} \cup I_{3} \cup S_{4} \cup I_{4}$. We now introduce the relevant notation more precisely.

Since e is of index two, by the Three Case Lemma, $G-e$ has precisely two maximal nontrivial barriers, and since e is not thin, at least one of these barriers, say S_{1}, has three or more vertices (see Proposition 2.14). We adopt Notation 3.3 for the brick G and edge e. Assume without loss of generality that $S_{1} \subset B$, and let I_{1} denote the set of isolated vertices of $(G-e)-S_{1}$. We shall denote by S_{2} the maximal nontrivial barrier of $(G-e) / X_{1}$ where $X_{1}:=S_{1} \cup I_{1}$, and by I_{2} the set of isolated vertices of $(G-e)-S_{2}$. Note that the end z of e lies in I_{2} which is a subset of B, whereas the other end y of e lies in I_{1} which is a subset of A. See Figure 18 (top).

By Corollary 3.9, the candidate set $\mathcal{F}\left(e, S_{1}\right)$ is nonempty, and by Proposition 3.5, each of its members is an R-compatible edge whose rank is at least that of e. Now, let $f:=u w$ be a member of $\mathcal{F}\left(e, S_{1}\right)$ such that $u \in S_{1}$ and $w \in I_{1}$, and suppose that the index of f is two. The following result of Carvalho et al. [6, Lemma 32] plays a crucial role in our proof of the Equal Rank Lemma (3.17).

Lemma 3.16 Assume that index $(e)=\operatorname{index}(f)=2$. If $\operatorname{rank}(e)=\operatorname{rank}(f)$ then S_{2} is a subset of a barrier of $G-f$.

We shall let S_{3} denote the maximal nontrivial barrier of $G-f$ which is contained in the color class B, and I_{3} the set of isolated vertices of $(G-f)-S_{3}$. Furthermore, let S_{4} denote the maximal nontrivial barrier of $(G-f) /\left(S_{3} \cup I_{3}\right)$, and I_{4} the set of isolated vertices of $(G-f)-S_{4}$. Note that the end u of f lies in I_{4}, and its other end w lies in I_{3}. See Figure 18 (bottom). We are now ready to state the Equal Rank Lemma using the notation introduced so far.

Lemma 3.17 [The Equal Rank Lemma] Assume that index $(e)=\operatorname{index}(f)=2$. If $\operatorname{rank}(e)=\operatorname{rank}(f)$ then the following statements hold:

Figure 18: The Equal Rank Lemma
(i) e and f are nonadjacent,
(ii) $S_{3} \subseteq S_{1}-u$ and $I_{3} \subseteq I_{1}-y$,
(iii) $S_{2} \subset S_{4}$ and $I_{2} \subset I_{4}$,
(iv) $S_{1} \cup I_{2}=S_{3} \cup I_{4}$ and $S_{2} \cup I_{1}=S_{4} \cup I_{3}$,
(v) $N(u) \subseteq S_{2} \cup I_{1}$, and
(vi) e is a member of the candidate set $\mathcal{F}\left(f, S_{4}\right)$.

Proof: We examine the graph $G-e-f$ in order to prove (i) and (ii). Clearly, S_{3} is a barrier of $G-e-f$. Observe that, since f has an end in S_{1}, every barrier of $G-e-f$ which contains S_{1} is a barrier of $G-e$ as well. Since S_{1} is a maximal barrier of $G-e$, we infer that S_{1} is a maximal barrier of $G-e-f$
as well. By the Canonical Partition Theorem (1.3), to prove that S_{3} is a subset of S_{1}, it suffices to show that $S_{1} \cap S_{3}$ is nonempty. To see this, note that $w \in I_{1} \cap I_{3}$, and thus any neighbour of w in $G-e-f$ lies in $S_{1} \cap S_{3}$. Furthermore, since $u \notin S_{3}$, we conclude that $S_{3} \subseteq S_{1}-u$; this proves part of (ii). In particular, $z \notin S_{3}$. Consequently, $y \notin I_{3}$, and thus y and w are distinct. This proves (i).

Now we prove the remaining part of (ii). Let $v \in I_{3}$, that is, v is isolated in $(G-f)-S_{3}$. Consequently, v is isolated in $(G-f)-S_{1}$. Since f has an end in S_{1}, we infer that v is isolated in $(G-e)-S_{1}$, that is, $v \in I_{1}$. Thus $I_{3} \subseteq I_{1}-y$. This proves (ii).

We will now prove (iii) and (iv). We begin by showing that S_{2} is a subset of S_{4}. By Lemma 3.16, S_{2} is a subset of the unique maximal nontrivial barrier of $G-f$ which is contained in the color class A, say S_{4}^{*}. By the Three Case Lemma (2.13), $S_{4}^{*}=S_{4} \cup I^{\prime}$ for some (possibly empty) subset I^{\prime} of I_{3}. That is, S_{2} is a subset of $S_{4} \cup I^{\prime}$. Note that S_{2} and I_{1} are disjoint; by (ii), $S_{2} \cap I^{\prime}=\emptyset$. Thus, $S_{2} \subseteq S_{4}$.

Since the ranks of e and f are equal, it follows that $\left|A-\left(S_{2} \cup I_{1}\right)\right|=$ $\left|A-\left(S_{4} \cup I_{3}\right)\right|$ and likewise, $\left|B-\left(S_{1} \cup I_{2}\right)\right|=\left|B-\left(S_{3} \cup I_{4}\right)\right|$. In order to prove (iv), it suffices to prove the following claim.

Claim 3.17.1 $A-\left(S_{2} \cup I_{1}\right) \subseteq A-\left(S_{4} \cup I_{3}\right)$ and $B-\left(S_{1} \cup I_{2}\right) \subseteq B-\left(S_{3} \cup I_{4}\right)$.

Proof: Let $v_{1} \in A-\left(S_{2} \cup I_{1}\right)$. By (ii), $v_{1} \notin I_{3}$. To prove that v_{1} lies in $A-\left(S_{4} \cup I_{3}\right)$, it suffices to show that $v_{1} \notin S_{4}$.

Now, let v_{2} be any vertex in S_{2}. We have already shown that $S_{2} \subseteq S_{4}$, and thus $v_{2} \in S_{4}$. Note that, if v_{1} also belongs to the barrier S_{4}, then $(G-f)-\left\{v_{1}, v_{2}\right\}$ would not have a perfect matching. In the following paragraph, we will show that $(G-e-f)-\left\{v_{1}, v_{2}\right\}$ has a perfect matching, say M; consequently, $v_{1} \notin S_{4}$.

Let H_{1} be the graph $(G-e-f) / \overline{X_{1}} \rightarrow \overline{x_{1}}$, and let H_{2} be the graph $(G-e-f) / \overline{X_{2}} \rightarrow \overline{x_{2}}$ where $X_{2}:=S_{2} \cup I_{2}$. Note that H_{1} and H_{2} are bipartite matching covered graphs. Let $J:=\left((G-e-f) / X_{1} \rightarrow x_{1}\right) / X_{2} \rightarrow x_{2}$. Note that J is the brick of $G-e-f$. Let M_{J} be a perfect matching of $J-\left\{x_{2}, v_{1}\right\}$. Let g denote the edge of M_{J} incident with the contraction vertex x_{1}. Let M_{1} be a perfect matching of H_{1} which contains g. Let M_{2} be a perfect matching of $H_{2}-\left\{v_{2}, \overline{x_{2}}\right\}$. Observe that $M:=M_{1}+M_{J}+M_{2}$ is the desired matching.

Now, let $v \in B-\left(S_{1} \cup I_{2}\right)$. By (ii), $v \notin S_{3}$. To prove that v lies in $B-\left(S_{3} \cup I_{4}\right)$, it suffices to show that $v \notin I_{4}$. To see this, note that since J is a brick, by Theorem 1.7, $J-\left\{x_{1}, x_{2}\right\}$ is connected; thus, v is not isolated in $(G-f)-S_{4}$, that is, $v \notin I_{4}$.

It follows from (ii) and (iv) that the end y of e lies in S_{4}, and thus S_{2} is a proper subset of S_{4}. Also, we infer from (ii) and (iv) that I_{2} is a subset of I_{4}. Furthermore, the end u of f lies in I_{4}, whence I_{2} is a proper subset of I_{4}. This proves (iii).

It remains to prove (v) and (vi). As noted above, $u \in I_{4}$. Thus, all neighbors of u in G lie in $S_{4} \cup\{w\} \subseteq S_{4} \cup I_{3}$. It follows from (iv) that $N(u) \subseteq S_{2} \cup I_{1}$. This proves (v).

Finally, we prove (vi). Recall that $H\left(f, S_{4}\right)$ denotes the bipartite matching covered graph $(H-f) / \overline{X_{4}} \rightarrow \overline{x_{4}}$ where $X_{4}:=S_{4} \cup I_{4}$, and that $\mathcal{F}\left(f, S_{4}\right)$ is the set of those removable edges of $H\left(f, S_{4}\right)$ which are not incident with the contraction vertex $\overline{x_{4}}$. Since f is R-compatible in $G-e$ (by Proposition 3.5), the exchange property (Proposition 2.3) implies that e is R-compatible in $G-f$. Now, since the end z of e lies in I_{4}, the last assertion of Proposition 3.5 implies that e is a member of $\mathcal{F}\left(f, S_{4}\right)$. This proves (vi), and finishes the proof of the Equal Rank Lemma.

3.3 Proof of Theorem 3.1

Before we proceed to prove Theorem 3.1, we state two results of Carvalho et al. [6] which are useful to us. Suppose that G is an R-brick and e is an R-compatible edge which is not thin. We let S_{1} denote a maximal nontrivial barrier of $G-e$ such that $\left|S_{1}\right| \geq 3$, and let f denote a member of the candidate set $\mathcal{F}\left(e, S_{1}\right)$.

Note that, since e is not thin, its rank is at most $n-4$ where $n:=|V(G)|$. If the index of f is zero then its rank is n, and in particular, it is greater than that of e. The following result of Carvalho et al. [6, Lemma 31] shows that this conclusion holds even if the index of f is one.

Lemma 3.18 Suppose that f is a member of the candidate set $\mathcal{F}\left(e, S_{1}\right)$. If the index of f is one then $\operatorname{rank}(f)>\operatorname{rank}(e)$.

The following corollary of Lemmas 3.16 and 3.18 was used implicitly by Carvalho et al. [6] in their proof of the Thin Edge Theorem (1.10). We provide its proof for the sake of completeness.

Corollary 3.19 Assume that the index of e is two. If the candidate set $\mathcal{F}\left(e, S_{1}\right)$ contains two adjacent edges, say f and g, then at least one of them has rank strictly greater than rank (e).

Proof: We know by Proposition 3.5 that each of f and g has rank at least $\operatorname{rank}(e)$. If either of them has rank strictly greater than that of e then there is nothing to prove. Now, suppose that $\operatorname{rank}(f)=\operatorname{rank}(g)=\operatorname{rank}(e)$. It follows from Lemma 3.18 that both f and g are of index two. We intend to arrive at a contradiction using Lemma 3.16. We let I_{1} denote the set of isolated vertices of $(G-e)-S_{1}$, and S_{2} denote the unique maximal nontrivial barrier of $(G-e) /\left(S_{1} \cup I_{1}\right)$. By Lemma 3.16, S_{2} is a subset of a barrier of $G-f$, and likewise, S_{2} is a subset of a barrier of $G-g$.

Consider two distinct vertices of S_{2}, say v_{1} and v_{2}. Let M be a perfect matching of the graph $G-\left\{v_{1}, v_{2}\right\}$. (Such a perfect matching exists as G is a brick.) As noted above, S_{2} is a subset of a barrier of $G-f$. In particular, v_{1} and v_{2} lie in a barrier of $G-f$, whence $(G-f)-\left\{v_{1}, v_{2}\right\}$ has no perfect matching. Thus f lies in M. Likewise, g also lies in M. This is absurd since f and g are adjacent. We conclude that one of f and g has rank strictly greater than $\operatorname{rank}(e)$. This completes the proof of Corollary 3.19,

We now proceed to prove Theorem 3.1,
Proof of Theorem 3.1: As in the statement of the theorem, let e denote an R-compatible edge of an R-brick G. If the edge e is thin, then there is nothing to prove. Now consider the case in which e is not thin. By the Three Case Lemma (2.13), $G-e$ has either one or two maximal nontrivial barriers, and by Proposition 2.14, at least one such barrier has three or more vertices. Our goal is to establish the existence of another R-compatible edge f which satisfies conditions (i) and (ii) in the statement of Theorem 3.1.

Recall that each candidate edge (relative to e and a barrier of $G-e$ with three or more vertices) is an R-compatible edge of G which satisfies condition (i) of Theorem 3.1 and has rank at least rank (e). (See Definition 3.4 and Proposition 3.5.) Furthermore, if a candidate has rank strictly greater than $\operatorname{rank}(e)$, then by Proposition 3.2, it also satisfies condition (ii) of Theorem 3.1,
and in this case we are done. Keeping these observations in view, we now use Lemma 3.18 to get rid of the case in which index of e is one.

Claim 3.20 We may assume that the index of e is two.
Proof: Suppose not. Then the index of e is one, and we let S denote the unique maximal nontrivial barrier of $G-e$. As discussed earlier, $|S| \geq 3$. Let f denote a member of the candidate set $\mathcal{F}(e, S)$, which is nonempty by Corollary 3.9. If the index of f is zero then its rank is clearly greater than rank (e), and by Lemma 3.18, this conclusion holds even if the index of f is one. Now consider the case in which f is of index two. Since $\operatorname{rank}(f) \geq \operatorname{rank}(e)$, we conclude that f satisfies condition (ii), Theorem 3.1. Thus, irrespective of its index, the edge f satisfies both conditions (i) and (ii), and we are done.

We shall now invoke Corollary 3.19 to dispose of the case in which the candidate set (relative to some barrier of $G-e$) is not a matching.

Claim 3.21 We may assume that if S is a nontrivial barrier (not necessarily maximal) of $G-e$ with three or more vertices then the corresponding candidate set $\mathcal{F}(e, S)$ is a matching.

Proof: Suppose that the candidate set $\mathcal{F}(e, S)$ is not a matching, and thus it contains two adjacent edges, say f and g. We let S^{*} denote the maximal nontrivial barrier of $G-e$ such that $S \subseteq S^{*}$. By Corollary 3.6, edges f and g are members of $\mathcal{F}\left(e, S^{*}\right)$ as well. Since e is of index two (by Claim 3.20), Corollary 3.19 implies that at least one of f and g, say f, has rank strictly greater than that of e. Thus f satisfies both conditions (i) and (ii), Theorem 3.1, and we are done.

Now, since e is of index two (by Claim (3.20), the graph $G-e$ has precisely two maximal nontrivial barriers. Among these two, we shall denote by S_{1} the barrier which is bigger (breaking ties arbitrarily if they are of equal size), and by I_{1} the set of isolated vertices of $(G-e)-S_{1}$. Thus $\left|S_{1}\right| \geq 3$. Let y and z denote the ends of e. We adopt Notation 3.3. Assume without loss of generality that S_{1} is a subset of B, and thus by the Three Case Lemma (2.13), the end y of e lies in I_{1}.

As the candidate set $\mathcal{F}\left(e, S_{1}\right)$ is a matching (by Claim 3.21), we invoke the observations made in Section 3.1.1, with S_{1} playing the role of S, and
I_{1} playing the role of I, and likewise, $X_{1}:=S_{1} \cup I_{1}$ playing the role of X. In particular, we adopt Notations 3.10, 3.11 and 3.12 and we apply Proposition 3.13. See Figure 19.

Figure 19: Index of e is two, and S_{1} is the largest barrier of $G-e$
We let S_{2} denote the unique maximal nontrivial barrier of $(G-e) / X_{1}$, and I_{2} the set of isolated vertices of $(G-e)-S_{2}$. By the Three Case Lemma (2.13), the end z of e lies in I_{2}, as shown in Figure 19, Note that $\left|S_{2}\right| \leq\left|S_{1}\right|$ by the choice of S_{1}.

Note that, as per statements (iv) and (v) of Proposition 3.13, the edge $f_{1}=u_{1} w_{1}$ is the only member of the candidate set $\mathcal{F}\left(e, S_{1}\right)$ whose end in the barrier S_{1} (that is, vertex u_{1}) has some neighbour which lies in $\overline{X_{1}}$. Also, if $\left|S_{1}\right|=3$ then f_{1} is the unique member of $\mathcal{F}\left(e, S_{1}\right)$. For these reasons, it will play a special role.

Claim 3.22 We may assume that $\operatorname{rank}\left(f_{1}\right)=\operatorname{rank}(e)$. Consequently, the following hold:
(i) the index of f_{1} is two,
(ii) all neighbours of u_{1} lie in $S_{2} \cup I_{1}$, and
(iii) the vertex u_{0} has at least one neighbour in the set $A-\left(S_{2} \cup I_{1}\right)$.

Proof: By Proposition [3.5, f_{1} is an R-compatible edge which has rank at least that of e, and it satisfies condition (i), Theorem 3.1. If $\operatorname{rank}\left(f_{1}\right)>\operatorname{rank}(e)$, then by Proposition 3.2, f_{1} satisfies condition (ii) as well, and we are done. We may thus assume that $\operatorname{rank}\left(f_{1}\right)=\operatorname{rank}(e)$. It follows from Lemma 3.18 that the index of f_{1} is two; that is, (i) holds. Since e and $f_{1}=u_{1} w_{1}$ are of equal rank and of index two each, the Equal Rank Lemma (3.17) (v) implies
that each neighbour of u_{1} lies in the set $S_{2} \cup I_{1}$, and this proves (ii). We shall now use this fact to deduce (iii).

Since H is bipartite and matching covered, Proposition 1.4 (ii) implies that the neighbourhood of the set $A-\left(S_{2} \cup I_{1}\right)$, in the graph H, has cardinality at least $\left|A-\left(S_{2} \cup I_{1}\right)\right|+1$, and since $\left|A-\left(S_{2} \cup I_{1}\right)\right|=\left|B-\left(S_{1} \cup I_{2}\right)\right|$, we conclude that the set $A-\left(S_{2} \cup I_{1}\right)$ has at least one neighbour which is not in $B-\left(S_{1} \cup I_{2}\right)$; it follows from Proposition 3.13 and statement (ii) proved above that the only such neighbour is the vertex u_{0} of barrier S_{1}. In other words, the vertex u_{0} has at least one neighbour in the set $A-\left(S_{2} \cup I_{1}\right)$ as shown in Figure 19, this proves (iii), and completes the proof of Claim 3.22.

We shall now consider two cases depending on the cardinality of S_{1}.
Case 1: $\left|S_{1}\right| \geq 4$.
We invoke Proposition 3.15, with S_{1} playing the role of S, and we adjust notation accordingly. See Figure 20, Observe that $Q:=u_{2} w_{2} b_{1} y u_{2}$ is a 4 -cycle of G which contains the edge $f_{2}=u_{2} w_{2}$. Since f_{2} is a candidate, it is an R-compatible edge whose rank is at least that of e, and it satisfies condition (i), Theorem 3.1. We will use the 4 -cycle Q and the Equal Rank Lemma to conclude that f_{2} has rank strictly greater than that of e, and thus it satisfies condition (ii) as well.

Figure 20: When $\left|S_{1}\right| \geq 4$
Now, let v denote the neighbour of w_{2} which is distinct from u_{2} and b_{1}. Clearly, $v \in S_{1}$; by Proposition 3.15(iii), v is distinct from u_{0}.

Since each end of f_{2} is cubic, it is an R-compatible edge of index two. We first set up some notation concerning the barrier structure of $G-f_{2}$. We
denote by S_{3} the maximal nontrivial barrier of $G-f_{2}$ which is a subset of B, and by I_{3} the set of isolated vertices of $\left(G-f_{2}\right)-S_{3}$. We let S_{4} denote the unique maximal nontrivial barrier of $\left(G-f_{2}\right) /\left(S_{3} \cup I_{3}\right)$, and I_{4} the set of isolated vertices of $\left(G-f_{2}\right)-S_{4}$. By the Three Case Lemma (2.13), the end u_{2} of f_{2} lies in I_{4}, and its end w_{2} lies in I_{3}. Also, since $w_{2} \in I_{3}, v \in S_{3}$.

Now, suppose for the sake of contradiction that $\operatorname{rank}\left(f_{2}\right)=\operatorname{rank}(e)$. Then we may apply the Equal Rank Lemma (3.17) to conclude that $S_{1} \cup I_{2}=S_{3} \cup I_{4}$ and that $S_{2} \cup I_{1}=S_{4} \cup I_{3}$. Furthermore, by Claim 3.22(iii), the vertex u_{0} has a neighbour in $A-\left(S_{4} \cup I_{3}\right)$, and thus $u_{0} \notin I_{4}$. We infer that $u_{0} \in S_{3}$. We have thus shown that v and u_{0} are distinct vertices of the barrier S_{3} of $G-f_{2}$. Consequently, $\left(G-f_{2}\right)-\left\{v, u_{0}\right\}$ has no perfect matching; we will now use the 4 -cycle $Q=u_{2} w_{2} b_{1} y u_{2}$ to contradict this assertion.

Since G is a brick, $G-\left\{v, u_{0}\right\}$ has a perfect matching, say M. If f_{2} is not in M then we have the desired contradiction. Now suppose that $f_{2} \in M$. Since v and u_{0} both lie in the color class B of H, we conclude that $\alpha \in M$ and that $\beta \notin M$. See Figure 20. Note that each of v and u_{0} is distinct from b_{1}, and that the neighbours of b_{1} are precisely b_{2}, w_{2} and y. Since $\beta=b_{1} b_{2}$ is not in M, and since $f_{2}=u_{2} w_{2}$ lies in M, it must be the case that $y b_{1}$ lies in M. Now observe that the symmetric difference of M and Q is a perfect matching of $\left(G-f_{2}\right)-\left\{v, u_{0}\right\}$, and thus we have the desired contradiction.

We conclude that $\operatorname{rank}\left(f_{2}\right)>\operatorname{rank}(e)$, and thus f_{2} is the desired R-compatible edge which satisfies both conditions (i) and (ii), Theorem 3.1,

Case 2: $\left|S_{1}\right|=3$.
We note that since S_{1} has precisely three vertices, by Remark 3.14, all of the edges of $G\left[X_{1}\right]$ are determined (where $X_{1}=S_{1} \cup I_{1}$). See Figure 21, Furthermore, f_{1} is the only member of the candidate set $\mathcal{F}\left(e, S_{1}\right)$, and by Claim 3.22, its index is two and its rank is equal to rank (e). We will examine the barrier structure of $G-f_{1}$ using the Equal Rank Lemma (3.17), and argue that some edge adjacent with the given edge $e=y z$ (that is, either incident at y, or incident at z) is R-compatible and that its rank is strictly greater than $\operatorname{rank}(e)$. Observe that, since index $(e)=2$, each edge adjacent with e satisfies condition (i), Theorem 3.1.

We let S_{3} denote the unique maximal nontrivial barrier of $G-f_{1}$ which is a subset of B, and I_{3} the set of isolated vertices of $\left(G-f_{1}\right)-S_{3}$. We denote by S_{4} the unique maximal nontrivial barrier of $\left(G-f_{1}\right) /\left(S_{3} \cup I_{3}\right)$, and by I_{4} the set of isolated vertices of $\left(G-f_{1}\right)-S_{4}$. See Figure 21, By the Three

Figure 21: When $\left|S_{1}\right|=3$

Case Lemma (2.13), the end u_{1} of f_{1} lies in I_{4}, and its end w_{1} lies in I_{3}. Since each of b_{1} and u_{0} is a neighbour of w_{1} in $G-f_{1}$, they both lie in the barrier S_{3}. By Lemma 3.17(ii), with f_{1} playing the role of f, we conclude that $S_{3}=\left\{b_{1}, u_{0}\right\}$ and that $I_{3}=\left\{w_{1}\right\}$, as shown in the figure.

Observe that by the choice of S_{1}, the barrier S_{2} of $G-e$ contains either two or three vertices. However, irrespective of the cardinality of S_{2}, it follows from the above and from Lemma 3.17(iv) that $S_{4}=S_{2} \cup\{y\}$ and that $I_{4}=I_{2} \cup\left\{u_{1}\right\}$. In particular, the barrier S_{4} of $G-f_{1}$ contains either three or four vertices. Note that the end z of e lies in I_{2} which is a subset of I_{4}, and its end y lies in S_{4}. Furthermore, Lemma 3.17(vi) implies that e is a member of the candidate set $\mathcal{F}\left(f_{1}, S_{4}\right)$.

Claim 3.23 We may assume that e is the only member of $\mathcal{F}\left(f_{1}, S_{4}\right)$ which is incident with z. Furthermore, we may assume that $\left|S_{2}\right|=2$.

Proof: Suppose there exists an edge g incident with z such that g is distinct from e and that $g \in \mathcal{F}\left(f_{1}, S_{4}\right)$. By Proposition 3.5, g is an R-compatible edge of the brick G. We now apply Corollary 3.19 (with f_{1} playing the role of e, and with edges e and g playing the roles of f and g); at least one of e and g has rank strictly greater than $\operatorname{rank}\left(f_{1}\right)$. However, by Claim 3.22,
the ranks of e and f_{1} are equal; consequently, $\operatorname{rank}(g)>\operatorname{rank}\left(f_{1}\right)=\operatorname{rank}(e)$. By Propostion 3.2, the edge g satisifes condition (ii), Theorem 3.1, and it satisfies condition (i) because it is adjacent with the edge e, and thus we are done. So we may assume that e is the only member of $\mathcal{F}\left(f_{1}, S_{4}\right)$ which is incident with z. Using this, we shall deduce that the barrier S_{2} of $G-e$ has only two vertices.

Suppose to the contrary that $\left|S_{2}\right|=3$. By Claim 3.21, the candidate set $\mathcal{F}\left(e, S_{2}\right)$ is a matching. Consequently, as we did in the case of S_{1}, we may now invoke the observations made in Section 3.1.1, with S_{2} playing the role of S, and I_{2} playing the role of I, and likewise, $X_{2}:=S_{2} \cup I_{2}$ playing the role of X. In particular, by Remark 3.14, all of the edges of $G\left[X_{2}\right]$ are determined. It is worth noting that S_{2} is also a maximal barrier of $G-e$ (by the choice of S_{1}). That is, each of S_{1} and S_{2} is a maximal barrier of $G-e$ with exactly three vertices. Keeping this symmetry in view, we now choose appropriate notation for those vertices of X_{2} which are relevant to our argument. See Figure 22.

Figure 22: When $\left|S_{1}\right|=\left|S_{2}\right|=3$
We shall let $f_{2}:=u_{2} w_{2}$ denote the unique member of the candidate set $\mathcal{F}\left(e, S_{2}\right)$, where $u_{2} \in I_{2}$ and $w_{2} \in S_{2}$. In particular, $I_{2}=\left\{u_{2}, z\right\}$. One of the ends of $\alpha=a_{1} a_{2}$ lies in the barrier S_{2}; we adjust notation so that $a_{2} \in S_{2}$.

Consequently, w_{2} and a_{2} are distinct vertices of S_{2}. The vertex a_{2} is cubic, and its neighbours are z, u_{2} and a_{1}. The vertex w_{2} is adjacent with z and u_{2}, and all of its remaining neighbours lie in $\overline{X_{2}}$.

Observe that $Q:=z w_{2} u_{2} a_{2} z$ is a 4-cycle of the bipartite graph $H\left(f_{1}, S_{4}\right)$ which contains the vertex z whose degree is three. Consequently, by Corollary [2.6, at least one of $z w_{2}$ and $z a_{2}$ is removable in $H\left(f_{1}, S_{4}\right)$. However, since a_{2} has degree two in $H\left(f_{1}, S_{4}\right), z a_{2}$ is non-removable; whence $z w_{2}$ is removable. It follows that $z w_{2}$ is a member of the candidate set $\mathcal{F}\left(f_{1}, S_{4}\right)$; this contradicts our first assumption. We conclude that the barrier S_{2} has only two vertices, and this completes the proof of Claim 3.23.

By Proposition [2.14, an R-compatible edge of index two is thin if and only if its rank is $n-4$; where $n:=|V(G)|$. Observe that, since $\left|S_{1}\right|=3$ and $\left|S_{2}\right|=2$, the rank of e is $n-6$, and in this sense, it is very close to being thin; the same holds for the edge f_{1}. We will establish a symmetry between the barrier structure of $G-e$ and that of $G-f_{1}$; see Figure 23. Thereafter, we will argue that the edge $g:=y u_{1}$ is an R-thin edge of index two; in particular, it is R-compatible and its rank is $n-4$, and thus it satisfies condition (ii), Theorem 3.1. Since g is adjacent with e, it satisfies condition (i) as well.

Since $\left|S_{2}\right|=2$, the set I_{2} contains only the end z of e, and the neighbourhood of z is precisely the set $S_{2} \cup\{y\}=S_{4}$. Also, $I_{4}=I_{2} \cup\left\{u_{1}\right\}=\left\{z, u_{1}\right\}$, and by Claim 3.23, $e=y z$ is the only member of the candidate set $\mathcal{F}\left(f_{1}, S_{4}\right)$ which is incident with z. In other words, z is incident with only one removable edge of the bipartite graph $H\left(f_{1}, S_{4}\right)$, namely, the edge e. We now deduce some consequences of this fact using standard arguments.

First of all, by Lemma 3.8(i), an end of the edge $\alpha=a_{1} a_{2}$ lies in the barrier S_{4}. Adjust notation so that $a_{2} \in S_{4}$. By statement (ii) of the same lemma, a_{2} has no neighbours in the set $\overline{X_{4}}$ where $X_{4}:=S_{4} \cup I_{4}$. Consequently, the neighbourhood of a_{2} is precisely $I_{4} \cup\left\{a_{1}\right\}=\left\{z, u_{1}, a_{1}\right\}$. Clearly, y and a_{2} are distinct vertices of S_{4}, and we denote by w_{0} the remaining vertex of S_{4}. Note that $S_{2}=\left\{w_{0}, a_{2}\right\}$.

Next, we observe that if the vertices u_{1} and w_{0} are adjacent then $Q:=z w_{0} u_{1} a_{2} z$ is a 4 -cycle of the bipartite graph $H\left(f_{1}, S_{4}\right)$ and it contains the vertex z which has degree three; by Corollary [2.6, one of the two edges $z w_{0}$ and $z a_{2}$ is removable; however, this contradicts the fact that $e=y z$ is the only removable edge incident with z. Thus, the vertices u_{1} and w_{0} are nonadjacent. It follows that u_{1} is cubic, and its neighbourhood is precisely $\left\{y, a_{2}, w_{1}\right\}$.

Figure 23: When $\left|S_{1}\right|=3$ and $\left|S_{2}\right|=2$

Observe that we have six cubic vertices whose neighbourhoods are fully determined; these are: the ends y and z of e, the ends u_{1} and w_{1} of f_{1}, the end b_{1} of β, and the end a_{2} of α. There is a symmetry between the barrier structure of $G-e$ and that of $G-f_{1}$; as is self-evident from Figure 23. We have not determined the degrees of the two vertices u_{0} and w_{0}; observe that if these vertices are not adjacent with each other then u_{0} has at least two neighbours in $A-\left(S_{2} \cup I_{1}\right)$ and likewise, w_{0} has at least two neighbours in $B-\left(S_{1} \cup I_{2}\right)$; whereas if $u_{0} w_{0}$ is an edge of G then u_{0} has at least one neighbour in $A-\left(S_{2} \cup I_{1}\right)$ and likewise, w_{0} has at least one neighbour in $B-\left(S_{1} \cup I_{2}\right)$.

As mentioned earlier, we now proceed to prove that $g=y u_{1}$ is an R-thin edge. We let $J:=\left((G-e) / X_{1} \rightarrow x_{1}\right) / X_{2} \rightarrow x_{2}$ denote the unique brick of $G-e$, where $X_{1}=S_{1} \cup I_{1}$ and $X_{2}:=S_{2} \cup I_{2}$. Note that J is near-bipartite with removable doubleton R.

Claim 3.24 The edge $g=y u_{1}$ is R-thin. (That is, g is an R-compatible edge of index two and its rank is $n-4$.)

Proof: Observe that $Q:=y u_{1} w_{1} b_{1} y$ is a 4 -cycle in $H=G-R$ which contains the cubic vertex y. By Corollary [2.6, at least one of the edges $g=y u_{1}$ and $y b_{1}$ is removable in H. Note that $y b_{1}$ is not removable, whence g is removable
in H. To conclude that g is R-compatible, it suffices to show that edges α and β are admissible in $G-g$. We shall prove something more general, which is useful in establishing the thinness of g as well.

Observe that, in $G-g$, the vertex y has neighbour set $\left\{z, b_{1}\right\}$, and vertex u_{1} has neighbour set $\left\{w_{1}, a_{2}\right\}$. We will show that, if v_{1} and v_{2} are distinct vertices of the color class B such that $\left\{v_{1}, v_{2}\right\} \neq\left\{z, b_{1}\right\}$, then $(G-g)-\left\{v_{1}, v_{2}\right\}$ has a perfect matching, say M. This has two consequences worth noting. First of all, if $\left\{v_{1}, v_{2}\right\}=\left\{b_{1}, b_{2}\right\}$ then $M+\beta$ is a perfect matching of $G-g$ which contains α and β both, whence g is an R-compatible edge of G. Secondly, it shows that $\left\{z, b_{1}\right\}$ is a maximal nontrivial barrier of $G-g$. An analogous argument establishes that $\left\{w_{1}, a_{2}\right\}$ is also a maximal nontrivial barrier of $G-g$, and consequently Proposition [2.14 implies that g is indeed R-thin.

As mentioned above, suppose that v_{1} and v_{2} are distinct vertices of B such that $\left\{v_{1}, v_{2}\right\} \neq\left\{z, b_{1}\right\}$. Let N be a perfect matching of $G-\left\{v_{1}, v_{2}\right\}$. In what follows, we consider different possibilities, and in each of them, we exhibit a perfect matching M of $(G-g)-\left\{v_{1}, v_{2}\right\}$. If $g \notin N$ then clearly $M:=N$. Now suppose that $g \in N$. Note that, since $v_{1}, v_{2} \in B$, the edge α lies in N and β does not lie in N. If $b_{1} \notin\left\{v_{1}, v_{2}\right\}$, then the edge $b_{1} w_{1}$ lies in N, and we let $M:=\left(N-g-b_{1} w_{1}\right)+f_{1}+y b_{1}$.

Now consider the case in which $b_{1} \in\left\{v_{1}, v_{2}\right\}$, and adjust notation so that $b_{1}=v_{1}$. Thus $v_{2} \neq z$, whence $z w_{0} \in N$. Also, $w_{1} u_{0}$ lies in N. Observe that v_{2} lies in the set $B-\left(S_{1} \cup I_{2}\right)$. First, we consider the case when $u_{0} w_{0}$ is an edge of G. Observe that the six cycle $C:=u_{1} y z w_{0} u_{0} w_{1} u_{1}$ is N-alternating and it contains the edge g. In this case, let M denote the symmetric difference of N and C.

Finally, consider the situation in which $u_{0} w_{0}$ is not an edge of G. (In this case, to construct M, we will not use the matching N.) As noted earlier, since u_{0} and w_{0} are nonadjacent, w_{0} has at least two distinct neighbours in the set $B-\left(S_{1} \cup I_{2}\right)$. In particular, w_{0} has at least one neighbour, say v^{\prime}, which lies in $B-\left(S_{1} \cup I_{2}\right)$ and is distinct from v_{2}. Now, let M_{J} be a perfect matching of $J-\left\{v^{\prime}, v_{2}\right\}$. Observe that $\alpha \in M_{J}$ and $\beta \notin M_{J}$. Note that, in the matching M_{J}, the contraction vertex x_{1} is matched with some vertex in $A-\left(S_{2} \cup I_{1}\right)$, which is a neighbour of u_{0} in the graph G. Now, we let $M:=M_{J}+w_{0} v^{\prime}+f_{1}+e$.

In every scenario, M is a perfect matching of $(G-g)-\left\{v_{1}, v_{2}\right\}$, as desired. Thus, as discussed earlier, g is R-compatible as well as thin. This proves

Claim 3.24 .
In summary, we have shown that $g=y u_{1}$ is an R-compatible edge which satisfies both conditions (i) and (ii), Theorem 3.1. This completes the proof.
Acknowledgments: We are greatly indebted to both Joseph Cheriyan and U. S. R. Murty who have helped us throughout this work by participating in all of our discussions and making valuable suggestions.

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.
[2] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. Ear decompositions of matching covered graphs. Combinatorica, 19:151-174, 1999.
[3] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. On a conjecture of Lovász concerning bricks. II. Bricks of finite characteristic. J. Combin. Theory Ser. B, 85:137-180, 2002.
[4] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. Optimal ear decompositions of matching covered graphs. J. Combin. Theory Ser. B, 85:59-93, 2002.
[5] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. Graphs with independent perfect matchings. J. Graph Theory, 48:19-50, 2005.
[6] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. How to build a brick. Discrete Math., 306:2383-2410, 2006.
[7] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. A generalization of Little's theorem on Pfaffian graphs. J. Combin. Theory Ser. B, 102:1241-1266, 2012.
[8] J. Edmonds, L. Lovász, and William R. Pulleyblank. Brick decomposition and the matching rank of graphs. Combinatorica, 2:247-274, 1982.
[9] Ilse Fischer and C. H. C. Little. A characterisation of Pfaffian near bipartite graphs. J. Combin. Theory Ser. B, 82:175-222, 2001.
[10] Nishad Kothari. Brick Generation and Conformal Subgraphs. PhD thesis, University of Waterloo, 2016.
[11] L. Lovász. Matching structure and the matching lattice. J. Combin. Theory Ser. B, 43:187-222, 1987.
[12] L. Lovász and M. D. Plummer. Matching Theory. Number 29 in Annals of Discrete Mathematics. Elsevier Science, 1986.
[13] L. Lovász and S. Vempala. On removable edges in matching covered graphs. Unpublished Manuscript.

[^0]: *A shorter version has been accepted for publication in the Journal of Graph Theory.
 ${ }^{\dagger}$ Partially supported by NSERC grant (RGPIN-2014-04351, J. Cheriyan).

