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Abstract

The famous Kőnig-Egerváry theorem is equivalent to the statement that the matching
number equals the vertex cover number for every induced subgraph of some graph if and
only if that graph is bipartite. Inspired by this result, we consider the set Gk of all graphs
such that, for every induced subgraph, the maximum number of disjoint paths of order
k equals the minimum order of a set of vertices intersecting all paths of order k. For
k ∈ {3, 4}, we give complete structural descriptions of the graphs in Gk. Furthermore,
for odd k, we give a complete structural description of the graphs in Gk that contain no
cycle of order less than k. For these graph classes, our results yield efficient recognition
algorithms as well as efficient algorithms that determine maximum sets of disjoint paths
of order k and minimum sets of vertices intersecting all paths of order k.

Keywords: Kőnig-Egerváry theorem; matching; vertex cover; k-path vertex cover; bi-
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1 Introduction

The famous Kőnig-Egerváry theorem [4,8] states that the matching number ν(G) of a bipartite
graph G equals its vertex cover number τ(G). Since a graph is bipartite if and only if it contains
no odd cycle C2k+1 as an induced subgraph, and ν(C2k+1) = k < k + 1 = τ(C2k+1), the Kőnig-
Egerváry theorem is equivalent to the statement that ν(H) = τ(H) for every induced subgraph
H of some graph G if and only if G is bipartite. Considering a matching as a packing of paths
of order 2, and a vertex cover as a set of vertices intersecting every path of order 2, it is natural
to ask for generalizations of the Kőnig-Egerváry theorem for longer paths, and to consider the
corresponding graph classes generalizing the bipartite graphs.

In the present paper we study such generalizations.
We consider finite, simple, and undirected graphs as well as finite and undirected multi-

graphs that may contain loops and parallel edges. Let k be a positive integer, and let G be a
graph. A k-path and a k-cycle in G is a not necessarily induced path and cycle of order k in
G, respectively. A set of disjoint k-paths in G is a k-matching in G, and a set of vertices of G
intersecting every k-path in G is a k-vertex cover in G. The k-matching number νk(G) of G is
the maximum cardinality of a k-matching in G, and the k-vertex cover number τk(G) of G is
the minimum cardinality of a k-vertex cover in G.

Clearly,
νk(G) ≤ τk(G).

Let Gk be the set of all graphs G such that νk(H) = τk(H) for every induced subgraph H of G.
As noted above, the Kőnig-Egerváry theorem is equivalent to the statement that G2 is the set
of all bipartite graphs. Since ν1(G) = τ1(G) = n(G) for every graph G of order n(G), the set
G1 contains all graphs.

For k ∈ {3, 4}, we give complete structural descriptions of the graphs in Gk. Furthermore,
for odd k, we give a complete structural description of the graphs in Gk that contain no cycle
of order less than k.

Among the two parameters νk(G) and τk(G), only the latter seems to have received con-
siderable attention in the literature [2, 3, 9]. Note that a set X of vertices of a graph G is a
3-vertex cover if and only if its complement V (G) \X is a so-called dissociation set [1,13], that
is, a set of vertices inducing a subgraph of maximum degree at most 1. Probably motivated by
this connection, the 3-vertex cover number has been studied in detail [6, 7, 10–12]. For every
k at least 3, the hardness of the k-vertex cover number has been shown in [3]. It follows from
known results (cf. [GT12] in [5]) that, for every integer k at least 3, it is NP-complete to decide

for a given graph G whose order n(G) is a multiple of k, whether νk(G) = n(G)
k

, that is, whether
G has a perfect k-matching.

For a positive integer k and a graph G, let Pk be the set of all k-paths of G. The parameters
νk(G) and τk(G) are the optimum values of the following integer linear programs.

νk(G)







max
∑

P∈Pk

xP

s.t.
∑

P∈Pk: u∈V (P )

xP ≤ 1 ∀u ∈ V (G)

xP ∈ {0, 1} ∀P ∈ Pk

τk(G)







min
∑

u∈V (G)

yu

s.t.
∑

u∈V (P )

yu ≥ 1 ∀P ∈ Pk

yu ∈ {0, 1} ∀u ∈ V (G)
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Relaxing “∈ {0, 1}” in both programs to “≥ 0” yields a pair of dual linear programs, whose
optimal values we denote by ν∗

k(G) and τ ∗k (G), respectively. Since νk(G) = ν∗
k(G) = τ ∗k (G) =

τk(G) for a given graph G in Gk, linear programming allows to determine νk(G) and τk(G)
for G in polynomial time. Furthermore, since Gk is closed under taking induced subgraphs,
iteratively considering the removal of individual vertices, one can use linear programming to
determine in polynomial time an induced subgraph G′ of G of minimum order with νk(G) =
νk(G

′) = τk(G
′) = τk(G). Note that a maximum k-matching in G′ covers all vertices of G′,

and is also a maximum k-matching in G, and that a minimum k-vertex cover in G′ is also a
minimum k-vertex cover in G. Now, within G′, one can use linear programming to iteratively
identify in polynomial time k-paths as well as vertices whose removal reduces the k-matching
number as well as k-vertex cover by exactly 1, respectively. Clearly, the identified k-paths form
a maximum k-matching in G, and the identified vertices form a minimum k-vertex cover in G.

We discuss some generic examples of graphs in Gk, namely,

• forests,

• k-subdivisions of multigraphs, and,

• k/2-subdivisions of bipartite multigraphs for even k.

Trivially, every graph of order less than k belongs to Gk, which implies that the local structure
of the graphs in Gk is not simple.

The fact that all forests belong to Gk follows by a inductive argument using the following
lemma. In fact, the lemma yields a simple polynomial time reduction algorithm that determines
a maximum k-matching as well as a minimum k-vertex cover in a given forest. An efficient
algorithm computing a minimum k-vertex cover in a given forest was presented in [3].

Lemma 1 Let k be a positive integer. If the graph G is the union of a tree T and a graph G′

such that T and G′ share exactly one vertex x, the tree T contains a k-path, but the forest T −x
contains no k-path, then νk(G) = νk(G

′ − x) + 1 and τk(G) = τk(G
′ − x) + 1.

Proof: Every k-path in T contains x. Hence, if P is a k-matching in G, then at most one path
in P intersects V (T ). Removing any such path yields a k-matching in G′ − x, which implies
νk(G) ≤ νk(G

′ − x) + 1. Conversely, if P ′ is a k-matching in G′ − x, then adding a k-path
contained in T , yields a k-matching in G, which implies νk(G) ≥ νk(G

′ − x) + 1.
If X is a k-vertex cover in G, then X intersects V (T ), and X \ V (T ) is a k-vertex cover in

G′ − x, which implies τk(G) ≥ τk(G
′ − x) + 1. Conversely, adding x to any k-vertex cover in

G′ − x yields a k-vertex cover in G, which implies τk(G) ≤ τk(G
′ − x) + 1. ✷

The following lemma captures some natural cycle conditions for the graphs in Gk.
For an integer n, let [n] be the set of positive integers at most n.

Lemma 2 Let k and p be positive integers.

(i) Every cycle of order at least k in every graph in Gk has order 0 modulo k.

(ii) A set X of vertices of the cycle Cpk : u1u2 . . . upku1 of order pk is a minimum k-vertex
cover in Cpk if and only if X = {ui+(j−1)k : j ∈ [p]} for some i ∈ [k].

(iii) If G is in G3, C is a cycle in G, and u and v are distinct vertices of C that have neighbors
outside of V (C), then distC(u, v) ≡ 0 mod 3.

(iv) If G is in G4, C is a cycle of length at least 4 in G, and u and v are distinct vertices of
C that have neighbors outside of V (C), then distC(u, v) ≡ 0 mod 2.
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Proof: If the graph G arises by adding some edges to the cycle Cn of order n, where n is at
least k, then νk(G) =

⌊
n
k

⌋
≤

⌈
n
k

⌉
= τk(Cn) ≤ τk(G), which implies (i). The value of p = τk(Cpk)

and the fact that every k-vertex cover in Cpk has to contain at least one of any k consecutive
vertices of Cpk implies (ii).

If G, C, u, and v are as in (iii), u′ is a neighbor of u outside of V (C), v′ is a neighbor
of v outside of V (C), and G′ is the subgraph of G induced by V (C) ∪ {u′, v′}, then ν3(G

′) =
⌊
n(C)+|{u′,v′}|

3

⌋

= n(C)
3

. Since G ∈ G3, we obtain τ3(G
′) = n(C)

3
= τ3(C), which implies that every

minimum 3-vertex cover in G′ is a minimum 3-vertex cover in C, and, hence, as described in
(ii). Since u and v must both belong to every minimum 3-vertex cover in G′, their distance on
C must be a multiple of 3.

Now, if G, C, u, and v are as in (iv), and u′, v′, and G′ are as above, then ν4(G
′) =

⌊
n(C)+|{u′,v′}|

4

⌋

= n(C)
4

. Again every minimum 4-vertex cover in G′ is a minimum 4-vertex cover

in C, and, hence, as described in (ii). Since every minimum 4-vertex cover in G′ contains either
u or both vertices at distance 2 from u within C, and the same holds for v, the distance of u
and v on C must be even. ✷

Lemma 2 (i) and (iii) suggest that subdividing every edge of a multigraph k − 1 times yields a
natural candidate for a graph in Gk. For a positive integer k, let the k-subdivision Subk(H) of
a multigraph H arise by subdividing every edge of H exactly k − 1 times, that is,

• every edge between distinct vertices u and v is replaced by a (k+1)-path between u and
v whose internal vertices have degree 2, and

• every loop incident with some vertex u is replaced by a k-cycle containing u and k − 1
further vertices of degree 2.

Note that the k-subdivision of a forest is a forest. Together with Lemma 1, the following lemma
implies that Subk(H) belongs to Gk for every multigraph H .

Lemma 3 Let k be a positive integer. If the graph G contains an induced subgraph B such that

• B = Subk(H) for some connected multigraph H that contains a cycle, and

• every component K of G − V (H) that contains a vertex from V (B) \ V (H) satisfies
νk(K) = 0,

then νk(G) = νk(G− V (H)) + n(H), and τk(G) = τk(G− V (H)) + n(H).

Proof: Since H is connected and contains a cycle, it contains an edge e incident with some
vertex r such that H − e contains a spanning tree T of H . Rooting T in r, assigning e to r,
and assigning to every other vertex of H , the edge to its parent within T , yields an injective
function f : V (H) → E(H) such that u is incident with f(u) for every vertex u of H .

Let Pf be k-matching of order n(H) in B that contains, for every vertex u of H , the k-path
formed within B by u and the subdivided edge f(u). Recall that the components of G−V (H)
that contain a vertex from V (B) \ V (H) contain no k-paths. Therefore, adding Pf to any k-
matching in G−V (H) yields νk(G) ≥ νk(G−V (H))+n(H). Conversely, if P is a k-matching in
G, then, since every k-path in G that intersects V (B) contains a vertex of H , the set P contains
at most n(H) paths intersecting V (B). Removing all such paths from P yields a k-matching
in G− V (H), which implies νk(G) ≤ νk(G− V (H)) + n(H).

If X is a k-vertex cover in G−V (H), then X ∪V (H) is a k-vertex cover in G, which implies
τk(G) ≤ τk(G−V (H))+n(H). Now, let X be a k-vertex cover in G. Clearly, X ′ = X∩V (B) is
a k-vertex cover in B. If some vertex u of H does not belong to X ′, then X ′ must intersect all
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subdivided edges of H incident with u, in particular, X ′ contains a vertex from the subdivided
edge f(u). Since f is injective, this easily implies that X ′ contains at least n(H) vertices. Since
X \X ′ is a k-vertex cover in G− V (H), we obtain τk(G) ≥ τk(G− V (H)) + n(H). ✷

For even values of k, Lemma 2 (i) and (iv) suggest yet another construction based on subdivi-
sions of bipartite multigraphs. The following lemma captures the essence of this construction.

Lemma 4 If k is a positive even integer, and G = Subk/2(H) for some bipartite connected
multigraph H that contains a cycle, then νk(G) = τk(G).

Proof: In view of the Kőnig-Egerváry theorem, and, since H is bipartite, it suffices to show
that νk(G) ≥ ν(H) and τk(G) ≤ τ(H).

let M be a matching in H . Contracting the edges in M yields a connected multigraph that
contains a cycle, and arguing similarly as in the proof of Lemma 3, we obtain the existence of
an injective function f : M → E(H) \M such that the edges e and f(e) are adjacent for every
edge e in M . Now, for every edge e in M , the (k/2 + 1)-path corresponding to the subdivided
edge e and the (k/2 − 1)-path corresponding to the interior of the subdivided edge f(e) form
a k-path in G. Since M is a matching and f is injective, all these k-paths are disjoint, which
implies ν(H) ≤ νk(G).

If X is a vertex cover in H , then every component of G − X is a (k/2 − 1)-subdivision of
some star. Hence, G−X contains no k-path, which implies τ(H) ≥ τk(G). ✷

2 The graphs in G3 and G4

In this section we characterize the graphs in Gk for k ∈ {3, 4} by describing their blocks and
conditions imposed on their cutvertices. As it turns out, the three generic examples of graphs
in Gk discussed in the introduction are the main building blocks of the considered graphs.

Recall that a cutvertex of a graph G is a vertex x of G for which G−x has more components
than G, and that a block of G is a maximal connected subgraph B of G such that B itself has
no cutvertex. An endblock of G is a block of G that contains at most one cutvertex of G. A
block is trivial if it is either K1 or K2.

Let H3 be the set of all graphs G such that every non-trivial block B of G satisfies the
following condition.

(i) B = Sub3(H) for some multigraph H , and every cutvertex of G that belongs to B is a
vertex of H .

Theorem 5 G3 = H3.

Proof: In order to show that G3 ⊆ H3, it suffices to show that G ∈ H3 for every connected
graph G in G3. If G is a tree, then all blocks of G are trivial, and, hence, G ∈ H3. If G is a cycle,
then Lemma 2(i) implies that n(G) is a multiple of 3, and, hence, G = Sub3(Cn(G)/3) ∈ H3.
Now, we may assume that G is neither a tree nor a cycle. Let B be a non-trivial block of G.
By Lemma 2(i), the order of every cycle in B is a multiple of 3. Suppose that B contains a
path P : u0 . . . uℓ such that u0 and uℓ have degree at least 3 in G, and u1, . . . , uℓ−1 have degree
2 in G. Since B − u1 is connected, the path P is contained in a cycle C such that u0 and uℓ

both have neighbors outside of V (C). By Lemma 2(iii), the length ℓ of P is a multiple of 3, in
particular, no two vertices of B of degree at least 3 in G are adjacent. Let H be the multigraph
that arises by replacing every path or cycle u0u1u2u3 . . . u3p−3u3p−2u3p−1u3p of length 3p such
that u0 and u3p have degree at least 3 in G, and u1, . . . , u3p−1 have degree 2 in G, by the path
or cycle u0u3 . . . u3p−3u3p of length p. Clearly, B = Sub3(H), and every cutvertex of G that
belongs to B is a vertex of H , that is, G ∈ H3. Altogether, we obtain G3 ⊆ H3.
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It follows easily from its definition that H3 is a hereditary class of graphs, that is, it is closed
under taking induced subgraphs. Therefore, in order to show the reverse inclusion H3 ⊆ G3,
it suffices to show that ν3(G) = τ3(G) for every connected graph G in H3, which we do by
induction on the order of G. If G is a tree, then Lemma 1 implies ν3(G) = τ3(G). If G is a
cycle, then the order of G is a multiple of 3, and, hence, ν3(G) = τ3(G). Now, we may assume
that G is neither a tree nor a cycle. Let B be a non-trivial block of G. Let B = Sub3(H) for some
multigraph H such that every cutvertex of G that belongs to B is a vertex of H . By Lemma
3 applied to B, we obtain ν3(G) = ν3(G− V (H)) + n(H) and τ3(G) = τ3(G− V (H)) + n(H).
Since H3 is hereditary, we obtain, by induction, ν3(G− V (H)) = τ3(G− V (H)), which implies
ν3(G) = τ3(G) and completes the proof. ✷

For some positive integer p, let the graph T (p) arise by adding an edge between the two vertices
in a partite set of order 2 of the complete bipartite graph K2,p. Note that T (1) is a triangle,
and that T (2) arises by removing one edge from K4.

Let H4 be the set of all graphs G such that every non-trivial block B of G satisfies the
following condition.

(i) Either B = Sub2(H) for some bipartite multigraph H , and every cutvertex of G that
belongs to B is a vertex of H ,

(ii) or B = K4 is an endblock,

(iii) or B = T (2) is an endblock, and, if B contains a cutvertex x of G, then x has degree 2 in
B,

(iv) or B = T (p) for some positive integer p, at most two cutvertices of G belong to B, every
cutvertex of G that belongs to B has degree p+1 in B, and, if B contains two cutvertices
of G, then there is one cutvertex x of G in B such that every vertex in NG(x) \ V (B) has
degree 1 in G.

See Figure 1 for an illustration of (iv).

✉ ✉

✉
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✉
✓

✒

✏

✑
❅

❅
❅�
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�✂
✂
✂
✂
✂
✂
✂
✂
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❇
❇
❇
❇
❇
❇
❇
❇

✉✉ . . . ❭
❭

❭✜
✜

✜

x

Figure 1: T (p) as a non-endblock of a graph in G4.

Theorem 6 G4 = H4.

Proof: As before, in order to show that G4 ⊆ H4, we show that G ∈ H4 for every connected
graph G ∈ G4. If G is a tree, then clearly G ∈ H4. If G is a cycle, then Lemma 2(i) implies
that n(G) is either 3 or a multiple of 4, and, hence, G ∈ H4. Now, we may assume that G is
neither a tree nor a cycle. Let B be a non-trivial block of G.

The three graphs G1, G2, and G3 in Figure 2 are forbidden subgraphs for the graphs in G4.
In fact, each of these graphs contains a 4-path but has order less than 8, which implies that
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adding edges yields graphs with 4-matching number 1. Conversely, their 4-vertex cover number
is 2, and adding edges can only increase this value.

t t
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t
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tt

G2

tt

t t
t

❅
❅❅�

��

G3

t
t

t

�
��❅

❅❅

Figure 2: Three forbidden subgraphs for the graphs in G4.

First, we assume that B contains two adjacent vertices x and y with exactly p common neighbors
z1, . . . , zp, where p ≥ 2. Let Z = {z1, . . . , zp} and U = {x, y} ∪ Z. If x has a neighbor x′ in B
outside of U , then, since B has no cutvertex, a path in B − x between x′ and U \ {x} together
with a suitable path within B[U ] yields a cycle of order at least 4 whose order is not a multiple
of 4, contradicting Lemma 2(i). Hence, x, and, by symmetry, y do not have neighbors in B
outside of U . A similar argument also implies that z1, . . . , zp do not have neighbors in B outside
of U , which implies that V (B) = U .

If Z is not independent, and p ≥ 3, then B contains a cycle of order 5, contradicting Lemma
2(i). Hence, if Z is not independent, then p = 2, which implies that B is K4. Since G does
not contain G1 as a subgraph, we obtain that B is an endblock, that is, B is as in (ii) in
the definition of H4. Hence, we may assume that Z is independent. If some vertex in Z is a
cutvertex of G, then, since G does not contain G1 or G3 as a subgraph, we obtain that p = 2,
and that B is an endblock, that is, B is as in (iii) in the definition of H4. Hence, we may assume
that no vertex in Z is a cutvertex of G, which implies that at most two cutvertices of G belong
to B, and that every cutvertex of G that belongs to B has degree p + 1 in B. Furthermore, if
B contains two cutvertices of G, then, since G does not contain G2 as a subgraph, there is one
cutvertex x of G in B such that every vertex in NG(x) \ V (B) has degree 1 in G, that is, B is
as in (iv) in the definition of H4.

Next, we assume that B contains a triangle with vertices x, y, and z, but that no two
adjacent vertices in B have more than one common neighbor. Arguing as above, we obtain
V (B) = {x, y, z}, and, since G does not contain G1 or G2 as a subgraph, it follows that B is
as in (iv) in the definition of H4. Hence, we may assume that B contains no triangle.

Suppose that B contains a path P : u0 . . . uℓ such that u0 and uℓ have degree at least 3 in
G, and u1, . . . , uℓ−1 have degree 2 in G. Since B − u1 is connected, the path P is contained
in a cycle C such that u0 and uℓ both have neighbors outside of V (C). By Lemma 2(iv), the
length ℓ of P is even, in particular, no two vertices of B of degree at least 3 in G are adjacent.
Let H be the multigraph that arises by replacing every path or cycle u0u1u2 . . . u2p−2u2p−1u2p

of length 2p such that u0 and u2p have degree at least 3 in G, and u1, . . . , u2p−1 have degree
2 in G, by the path or cycle u0u2 . . . u2p−2u2p of length p. Clearly, B = Sub2(H), and every
cutvertex of G that belongs to B is a vertex of H , that is, B is as in (i) in the definition of H4.
Altogether, it follows that G ∈ H4, which implies G4 ⊆ H4.

Again, it follows easily from its definition that H4 is a hereditary class of graphs. Hence,
in order to show the reverse inclusion H4 ⊆ G4, it suffices to show that ν4(G) = τ4(G) for
every connected graph G in H4, which we do by induction on the sum of the order and the
size of G. As in the proof of Theorem 5, we may assume that G is neither a tree nor a cycle.
If G contains a block B as in (ii) or (iii) in the definition of H4, then it is easy to see that
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ν4(G) = ν4(G− V (B)) + 1 and τ4(G) = τ4(G− V (B)) + 1. If G contains a block B as in (iv)
in the definition of H4, then we consider a graph G′ obtained from G by removing an edge of
B that is incident with every cutvertex in B. This graph G′ is in H4, has less edges than G,
and satisfies ν4(G) = ν4(G

′) and τ4(G) = τ4(G
′). In all these cases, we obtain ν4(G) = τ4(G)

by induction. Hence, we may assume that G contains no such block.
Let B be a non-trivial block of G. Let X be the set of cutvertices of G that belong to B.

For x ∈ X , let Gx be the component of G− (V (B)\{x}) that contains x. We may assume that
B is chosen in such a way that there is a vertex x∗ in X such that Gx is a tree for every vertex
x in X \ {x∗}. If some tree Gx with x in X \ {x∗} contains a 4-path, then Lemma 1 implies
the existence of an induced subgraph G′ of G with ν4(G) = ν4(G

′) + 1 and τ4(G) = τ4(G
′) + 1,

and ν4(G) = τ4(G) follows by induction. Hence, for every vertex x in X \ {x∗}, the tree Gx is a
star. Let X ′ be the set of vertices x in X \ {x∗}, for which Gx is not a star with center vertex
x, that is, Gx contains a 3-path Px starting in x. Let B′ be the union of B and the paths Px

for x in X ′. If B = Sub2(H), where H is as in (i) in the definition of H4, then B′ = Sub2(H
′)

for the multigraph H ′ that arises from H by attaching a vertex of degree 1 to every vertex in
X ′. Clearly, H ′ is bipartite, connected, and contains a cycle.

First, suppose that x∗ belongs to some minimum vertex cover in H ′. By the Kőnig-Egerváry
Theorem, this implies that every maximum matching in H ′ contains an edge incident with x∗.
Let M be a maximum matching in H ′. Similarly as in the proofs of Lemma 3 and Lemma 4,
we obtain the existence of an injective function f : M → E(H ′) \M such that the edges e and
f(e) are adjacent for every edge e in M . Adding the ν(H ′) disjoint 4-paths in B′ corresponding
to M , each formed using a subdivided edge e in M and the interior of the subdivided edge
f(e), to a maximum 4-matching in Gx∗ − x∗ implies ν4(G) ≥ ν4(Gx∗ − x∗) + ν(H ′). Adding
to a minimum 4-vertex cover in Gx∗ − x∗ a minimum vertex cover in H ′ that contains x∗ but
none of the vertices of degree 1 in V (H ′) \ V (H), yields a 4-vertex cover in G, which implies
τ4(G) ≤ τ4(Gx∗ − x∗) + τ(H ′). Now, by induction and the Kőnig-Egerváry Theorem for H ′,
we obtain ν4(G) ≥ ν4(Gx∗ − x∗) + ν(H ′) = τ4(Gx∗ − x∗) + τ(H ′) ≥ τ4(G) ≥ ν4(G), that is,
ν4(G) = τ4(G).

Now, we may assume that x∗ belongs to no minimum vertex cover in H ′, which implies
that every minimum vertex cover in H ′ contains all neighbors of x∗ in H ′. Furthermore, by
the Kőnig-Egerváry Theorem, this implies that some maximum matching M in H ′ contains
no edge incident with x∗. Similarly as in the proof of Lemma 4, we obtain the existence of an
injective function f : {x∗} ∪M → E(H ′) \M such that x∗ and f(x∗) are incident, and e and
f(e) are adjacent for every e ∈ M . Let G′ arise from Gx∗ by attaching a vertex of degree 1 to
x∗, corresponding to the internal vertex of the subdivided version of f(x∗). Arguing similarly
as above, we obtain ν4(G) ≥ ν4(G

′) + ν(H ′) and τ4(G) ≤ τ4(G
′) + τ(H ′), and ν4(G) = τ4(G)

follows by induction and the Kőnig-Egerváry Theorem for H ′, which completes the proof. ✷

3 Graphs without short cycles in Gk for odd k

For general k, an explicit characterization of Gk, similar to the ones that we obtained for G3 and
G4 in the previous section, might not be possible. For instance, every graph of order less than
k without a cutvertex is a block of some graph in Gk, and already in the characterization of G4,
we encountered sporadic blocks that required special attention. Nevertheless, if we consider an
odd k as well as the graphs in Gk that do not contain short cycles, then the sporadic blocks
should disappear.

Let k be a positive odd integer. Let G ′
k be the set of all graphs in Gk that contain no cycle

of order less than k. Note that G ′
3 actually coincides with G3. Let H′

k be the set of all graphs
G such that every non-trivial block B of G satisfies the following condition.
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(i) B = Subk(H) for some multigraph H , and every component K of G−V (H) that contains
a vertex from V (B) \ V (H) is a tree without a k-path.

As before our goal is to show that G ′
k and H′

k coincide. The following lemma deals with some
rather simple graphs in G ′

k for which it is surprisingly difficult to show that they belong to H′
k.

Lemma 7 Let k be a positive odd integer, and let p be a positive integer. If the graph G in Gk

arises from the cycle Cpk : u1u2 . . . upku1 of order pk by attaching, for every i in [pk], a path Pi

of order pi to the vertex ui, where 0 ≤ pi < (k − 1)/2, then G ∈ H′
k.

Proof: It suffices to show that νk(G) = p. Indeed, if νk(G) = p, then νk(G) = τk(G) =
τk(Cpk) = p, and Lemma 2(ii) implies the existence of a minimum k-vertex cover X of G with
X = {ui+(j−1)k : j ∈ [p]} for some i ∈ [k]. It follows that the unique cycle Cpk in G, which
is the only non-trivial block of G, is the k-subdivision of the cycle uiui+kui+2k . . . ui+(p−1)kui of
order p with vertex set X , and that every component of G−X is a tree without a k-path, that
is, G ∈ H′

k. Hence, for a contradiction, we assume that νk(G) > p.
Since removing an endvertex from G can reduce the k-matching number by at most 1, we

may assume, by considering a suitable induced subgraph of G, that νk(G) = p + 1, and that
νk(G − x) = p for every endvertex x of G. For i in [pk], let Pi be the path u1

i . . . u
pi
i , where,

for pi ≥ 1, the vertex u1
i is a neighbor of ui. Note that the order of G is pk + p1 + · · · + ppk,

and that the endvertices of G are the vertices upi
i for those i in [pk] with pi ≥ 1. Let P be a

maximum k-matching in G. A path P in P that is not completely contained in Cpk is called
special. By the choice of G, for every special path P in P, there are two distinct indices i and
j in [pk] with max{pi, pj} ≥ 1 such that P is the path

upi
i . . . u1

i
︸ ︷︷ ︸

Pi

uiui+1 . . . uj−1uj
︸ ︷︷ ︸

⊆Cpk

u1
j . . . u

pj
j

︸ ︷︷ ︸

Pj

, (1)

where we identify indices modulo pk for the subpath uiui+1 . . . uj−1uj of P that is contained
in Cpk. If pi ≥ 1, then P is said to have the left leg Pi, If pj ≥ 1, then P is said to have the
right leg Pj . Since G contains at most νk(Cpk) = p disjoint non-special paths, and every special
path contains at most 2max{p1, . . . , ppk} < k − 1 vertices that do not belong to Cpk, the set
P contains at least two special paths. By the choice of G, for every i in [pk] with pi ≥ 1, the
path Pi is either the left leg or the right leg of some path in P.

Let i in [pk] be such that Pi is the left leg of some path P in P as in (1). By the choice of G,
the graph Gi = G− upi

i satisfies νk(Gi) = p. Similarly as above, this implies the existence of a
minimum k-vertex cover Xi in Gi with Xi = {ur+(s−1)k : s ∈ [p]} for some r ∈ [k]. We will show
that r = i−pi, which implies thatXi is uniquely determined. SinceXi has order p, and intersects
all p paths in P \ {P}, it contains no vertex of P , and, hence, no vertex from uiui+1 . . . uj−1uj.
Since Gi−Xi contains no k-path, this implies that r ∈ {i−pi, i−pi+1, . . . , i−1}. Now, if r is
not i−pi, then r ∈ {i−pi+1, . . . , i−1}, the set Xi contains no vertex from uiui+1 . . . ui+k−pi+1,
and upi−1

i . . . u1
iuiui+1 . . . ui+k−pi+1 is a k-path in Gi − Xi, which is a contradiction. Hence,

r = i − pi as claimed. Symmetrically, if Pi is the right leg of some path in P, then Gi has a
unique minimum k-vertex cover Xi with Xi = {ui+pi+(s−1)k : s ∈ [p]}.

We consider some cases.

Case 1 No path in P has a right leg.

In this case, every special path in P contains at most max{p1, . . . , ppk} < (k−1)/2 vertices that
do not belong to Cpk, which implies that P contains at least three special paths. By symmetry,
we may assume that the indices r, s, and t in [pk] are chosen in such a way that

• r < s < t,

9



• ps ≤ pt,

• Pr, Ps, and Pt are left legs of three special paths in P, and

• no other special path in P intersects the subpath ur . . . us . . . ut of Cpk.

By the choice of G, in this case it follows that every vertex of Cpk belongs to some path in P.
Therefore, the final condition in the choice of r, s, and t implies that

s ≡ (r + k − pr) mod k and t ≡ (s+ k − ps) mod k.

Since Xr contains the vertex ur−pr , this implies that us ∈ Xr, and that Xr contains no vertex
from ut−k+ps+1ut−k+ps+2 . . . ut. See Figure 3 for an illustration.

ss
s

s

us

s ss s s s

s

s

ssss

s

s

ur

u1
r

upr−1
r

ssss
u1
2

ups

s

⑦ ⑦

ps vertices (k − ps − 1) vertices

ut

u1
t

u
pt

t

✄✂ �✁ ✄✂ �✁

Figure 3: The situation in Case 1, where vertices in Xr are indicated by the square boxes, and
the paths in P are shown in bold.

Nevertheless, since ps ≤ pt, the graphGr−Xr contains the path ut−k+ps+1ut−k+ps+2 . . . utu
1
t . . . u

pt
t

of order k − 1− ps + 1 + pt ≥ k, which is a contradiction.

Case 2 Some special path in P has a right leg, and some special path in P has a left leg.

By symmetry, we may assume that the indices s and t in [pk] are such that

• s < t,

• ps ≤ pt,

• Ps is the right leg of a special path in P, and Pt is the left leg of a special path in P, and

• no other special path in P intersects the subpath us . . . ut of Cpk.

We may assume that the non-special paths in P that intersect us . . . ut are chosen in such a
way that their removal from us . . . ut leaves a path of the form us . . . us+s′ for some s′ ≥ 0.
Since νk(Gs) = p, we have s′ ≤ ps − 1. If s′ ≤ ps − 2, then Xs contains no vertex from
ut−k+ps−s′ut−k+ps−s′+1 . . . ut, and Gs−Xs contains the path ut−k+ps−s′ut−k+ps−s′+1 . . . utu

1
t . . . u

pt
t

of order k − ps + s′ + 1 + pt > k, which is a contradiction. See Figure 4 for an illustration.
Hence, we obtain s′ = ps − 1, which implies that ut ∈ Xs.

✉ ✉✉ ✉ ✉ ✉

✉

✉

✉✉
⑦ ⑦

(ps − s′ − 1) vertices (k − ps + s′) vertices

ut

u1
t

u
pt

t

✞
✝

☎
✆

✞
✝

☎
✆✉✉✉✉

✉
✉

us+s′us

u1
s

ups

s − 1

Figure 4: Illustration of the proof that s′ = ps − 1.

If the path P ′ in P whose right leg is Ps also has a left leg, say Pr for some r < s, then Xr

contains xr−pr , and, hence, also us+ps+1 as well as ut+1 but no vertex from ut−k+2ut−k+3 . . . ut.
See Figure 5 for an illustration.
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t tt t t

t

t

tt

ut

u1
t

u
pt

t

ttttt
t

us

u1
s

ups

s

us+ps+1

t

t

t

ur

u1
r

upr−1
r

tt t

Figure 5: Illustration of the proof that P ′ has no left leg.

Now, Gr −Xr contains the path ut−k+2ut−k+3 . . . utu
1
t . . . u

pt
t of order k − 2 + 1 + pt ≥ k, which

is a contradiction. Hence, P ′ has no left leg, and equals us−k+ps+1us−k+ps+2 . . . usu
1
s . . . u

ps
s .

Let r < s be maximum such that some special path P ′′ in P contains ur. By the choice of
G, and, since P ′ has no left leg, we obtain that r ≡ (s− k + ps) mod k.

First, suppose that pr = 0, that is, P ′′ has no right leg. Since P ′′ is special, it has a left leg,
say Pq for some q < r. Here things work as previously; Xq contains uq−pq , and, hence, also ur+1,
us−k+ps+1, us+ps+1, and ut+1 but no vertex from ut−k+2ut−k+3 . . . ut. Now, Gq −Xq contains the
path ut−k+2ut−k+3 . . . utu

1
t . . . u

pt
t of order k − 2 + 1 + pt ≥ k, which is a contradiction. Hence,

pr ≥ 1, that is, the path P ′′ has Pr as its right leg. If pr ≥ pt, then Xt contains ut−pt , and,
hence, also us−pt+ps as well as ur+k−pt but no vertex from urur+1 . . . ur+k−pt−1. See Figure 6 for
an illustration.

rr
r
us

rr rr rr r r
r

r

u1
s

ups

s

⑦ ⑦⑦⑦

k − pt vertices pt − 1 verticespt − ps vertices
k − pt − 1 vertices

ut

u1
t

u
pt

t − 1

r rrrrr rrr
r

r

ur

u1
r

upr

r

✄✂ �✁ ✄✂ �✁ ✄✂ �✁ ✄✂ �✁

Figure 6: Illustration of the proof that pr 6≥ pt.

Now, Gt − Xt contains the path upr
r . . . u1

rurur+1 . . . ur+k−pt−1 of order pr + 1 + k − pt − 1 ≥
k, which is a contradiction. Conversely, if pr < pt, then Xr contains ur+pr , and, hence,
also ut−k+pr but no vertex from ut−k+pr+1ut−k+pr+2 . . . ut. Now, Gr − Xr contains the path
ut−k+pr+1ut−k+pr+2 . . . utu

1
t . . . u

pt
t of order k−pr−1+1+pt ≥ k, which is a contradiction. This

completes the proof. ✷

We proceed to the main result in this section, which actually contains Theorem 5 as a special
case. In view of its simplicity, we kept the separate proof of Theorem 5.

Theorem 8 G ′
k = H′

k for every positive odd integer k.

Proof: As before, in order to show that G ′
k ⊆ H′

k, we show that G ∈ H′
k for every connected

graph G ∈ G ′
k. By Lemma 2(i), the order of every cycle in G is a multiple of k. We may again

assume that G is neither a tree nor a cycle. Let B be a non-trivial block of G.
First, we assume that B is not just a cycle, that is, it contains vertices that are of degree

at least 3 in B. Suppose that B contains a path P : u0 . . . uℓ such that u0 and uℓ have degree
at least 3 in B, and u1, . . . , uℓ−1 have degree 2 in B. Since B − u1 is connected, the path P is
contained in a cycle C such that u0 and uℓ both have neighbors outside of V (C), say u1

0 and
u1
ℓ , respectively. Let P0 be a shortest path in B − u0 between u1

0 and V (C) \ {u0}. Since the
order of every cycle in G is a multiple of k, and, since k is odd, it follows that P0 has length −1
modulo k, which implies that B − V (C) contains a path P ′

0 of order (k − 1)/2 starting in u1
0.

Similarly, B − V (C) contains a path P ′
ℓ of order (k− 1)/2 starting in u1

ℓ . If G
′ is the subgraph

of G induced by V (C) ∪ V (P ′
0) ∪ V (P ′

ℓ), then
n(C)
k

≤ νk(G
′) ≤

⌊
n(C)+n(P ′

0
)+n(P ′

ℓ
)

k

⌋

= n(C)
k

. It

follows that every minimum k-vertex cover X ′ of G′ is also a minimum k-vertex cover of C, and,
hence, as described in Lemma 2(ii). In view of P ′

0, P
′
ℓ , and the subpaths of C not covered by

X ′, it follows that the vertices u0 and uℓ must both belong to X ′. This implies that the length
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ℓ of P is a multiple of k. Let H be the multigraph that arises by replacing every path or cycle
u0u1 . . . upk of length pk such that u0 and upk have degree at least 3 in B, and u1, . . . , upk−1

have degree 2 in B, by the path or cycle u0uk . . . upk of length p. Clearly, B = Subk(H).
Let K be a component of G − V (H) that contains a vertex from V (B) \ V (H). Let uv

be an edge of H such that K intersects the subdivided edge uv. Since B is a block of G, the
component K intersects V (B) \ V (H) exactly in the interior of the subdivided edge uv. Let
P : uw1 . . . wk−1v be the path in G corresponding to the subdivided edge uv. Suppose, for a
contradiction, that K contains a k-path. This implies that we may assume, by symmetry, that
there is some i ∈ [(k − 1)/2], and a path Q : x1 . . . xi in K − V (B) such that xi is adjacent to
wi. Let C be a cycle in B containing P . Similarly as above, we obtain the existence of a path
R of order (k − 1)/2 in B − V (C) such that u is adjacent to an endvertex of R. If G′ is the

subgraph of G induced by V (C)∪V (Q)∪V (R), then νk(G
′) = n(C)

k
. Therefore, every minimum

k-vertex cover of G′ is also a minimum k-vertex cover of C, and, hence, as described in Lemma
2(ii). In view of R and the subpaths of C not covered by X ′, it follows that u must belong to
X ′. But now, x1 . . . xiwi . . . wk−1 is a k-path in G′ −X ′, which is a contradiction. Altogether,
it follows that K contains no k-path, which implies that K is a tree without a k-path. Hence,
B is as in (i) in the definition of H′

k.
Next, we assume that B is a cycle C : u1 . . . upk. For every i in [pk], let pi be the max-

imum length of a path in G − (V (B) \ {ui}) starting in the vertex ui. First, suppose that
max{p1, . . . , ppk} ≥ (k − 1)/2. By symmetry, we may assume that p1 ≥ (k − 1)/2. Let
X = {u1+(j−1)k : j ∈ [p]}. Clearly, B = Subk(H), where H is the cycle u1u1+k . . . u1+(p−1)ku1

with vertex set X .
Let K be a component of G − V (H) that contains a vertex from V (B) \ V (H). If K

contains a k-path, then, by symmetry, we may assume that there is some index i in [pk] such
that 1 ≤ (i − 1) mod k ≤ (k − 1)/2 and, pi is at least (i − 1) mod k. Now, G contains a
subgraph G′ that arises from B by attaching a path of order (k−1)/2 to u1, and a path of order

(i − 1) mod k to ui. As before νk(G
′) = n(B)

k
, and Lemma 2(ii) implies that every minimum

k-vertex cover X ′ of G′ must contain u1, and that G′ − X ′ still contains a k-path using the
path attached to ui, which is a contradiction. Altogether, it follows that K contains no k-path,
which implies that K is a tree without a k-path. Hence, B is as in (i) in the definition of H′

k.
Now, we may assume that max{p1, . . . , ppk} < (k − 1)/2. This implies that, for every i in

[pk], the component Gui
of G− (V (B) \ {ui}) that contains ui, is a tree without a k-path. Let

G′ be the induced subgraph of G that arises from G by removing, for every i in [pk], all of Gui

except for a path of length pi starting in the vertex ui. By Lemma 7, the graph G′ belong to
H′

k, which easily implies that also G belongs to H′
k. Altogether, we obtain G ′

k ⊆ H′
k.

Again, it follows easily from its definition that H′
k is a hereditary class of graphs, and, hence,

in order to show the reverse inclusion H′
k ⊆ G ′

k, it suffices to show that νk(G) = τk(G) for every
connected graph G in H′

k. This now follows very easily by induction on the order using Lemma
1 and Lemma 3, which completes the proof. ✷

4 Conclusion

It is not difficult to extract from our results all minimal forbidden induced subgraphs for the
graph classes G3, G4, and G ′

k for odd k at least 5. Furthermore, our results imply that the graphs
in these classes can be recognized efficiently, and that there are simple combinatorial polynomial
time algorithms that determine maximum k-matchings and minimum k-vertex covers for these
graphs. Apart from extending our characterizations, a natural open problem concerns the
complexity of recognizing the graphs in Gk for general fixed k. We pose the following optimistic
conjecture.

12



Conjecture 9 For every fixed positive integer k, it can be decided in polynomial time whether
a given graph belongs to Gk.

Lemma 2(i) easily implies that every graph in Gk has minimum degree at most k. This implies
that the graphs in Gk are k-degenerate, which might be a useful property for their recognition.

For k ∈ {3, 4}, our results imply that νk(H) = τk(H) for every not necessarily induced
subgraph H of every graph G in Gk. For k = 1, the same trivially holds, and, also for k = 2, the
same holds, since graphs are bipartite if and only if all their not necessarily induced subgraphs
are bipartite. We believe that these observations generalize, and pose the following conjecture.

Conjecture 10 For every positive integer k, the set Gk equals the set of all graphs G such that
νk(H) = τk(H) for every subgraph H of G.

One proof of the Kőnig-Egerváry Theorem, as well as many polyhedral insights concerning
matchings in bipartite graphs, rely on the total unimodularity of the vertex versus edge inci-
dence matrices of bipartite graphs. Unfortunately, for integers k at least 3, the vertex versus
k-path incidence matrices of the graphs in Gk are not totally unimodular. If G = Sub3(H) for
some graph H with a vertex u of degree at least 3 for instance, then considering three suitable
3-paths containing u as central vertex, and three suitable neighbors of u on these paths, implies
that the vertex versus 3-path incidence matrix A of G contains the vertex versus edge incidence
matrix of C3 as a submatrix, that is, A is not totally unimodular.
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