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Centro de Modelamiento Matemático, Universidad de Chile,

Santiago, Chile

mstein@dim.uchile.cl

September 1, 2018

Abstract

We show that any complete k-partite graph G on n vertices, with k ≥ 3,
whose edges are two-coloured, can be covered with two vertex-disjoint
monochromatic paths of distinct colours. We prove this under the neces-
sary assumption that the largest partition class of G contains at most n/2
vertices. This extends known results for complete and complete bipartite
graphs.

Secondly, we show that in the same situation, all but o(n) vertices of
the graph can be covered with two vertex-disjoint monochromatic cycles of
distinct colours, if colourings close to a split colouring are excluded. From
this we derive that the whole graph, if large enough, may be covered with
14 vertex-disjoint monochromatic cycles.
keywords: monochromatic path partition, monochromatic cycle parti-
tion, two-coloured graph
MSC: 05C38, 05C55.

1 Introduction

1.1 State of the art

Gerencsér and Gyárfás [6] observed the vertex set of any complete graph whose
edges are coloured red and blue1 can be partitioned into a red and a blue path.
This is fairly easy: just take a maximal set S of vertices that span two paths
P1, P2, one in each colour, which only meet in one of their endvertices, call this
vertex x. One quickly checks that any vertex v /∈ S can be used to augment S:
we can add the edge xv to the path Pi of the same colour, and then go from v on

∗Supported by Fondecyt Regular no. 1140766.
1Note that a colouring is never meant to be a proper colouring in this paper: any assignment

of colours red any blue to the edges will do.
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reversely through P3−i. It is a long-standing conjecture that this phenomenon
carries over to arbitrarily many colours.

Conjecture 1.1 (Gyárfás [8]). Let G be a complete graph whose edges are
coloured with r colours. Then G can be partitioned into r monochromatic paths.

A stronger conjecture, replacing paths by cycles, had been put forward by
Erdős, Gyárfás and Pyber [5], but was recently disproved by Pokrovskiy [18]
for r ≥ 3. (Here, and throughout the paper, a cycle is allowed to consist of a
single vertex or an edge, or to be totally empty.) In the case r = 2, however,
the stronger result with cycles does hold (even with cycles of distinct colours).
This used to be known as Lehel’s conjecture, and was shown for all n by Bessy
and Thomassé [3], after having been proved for large values of n by  Luczak,
Rödl and Szemerédi [16] and by Allen [1].

Theorem 1.2 (Bessy and Thomassé [3]). Let G be a complete graph whose
edges are coloured red and blue. Then G can be partitioned into a red and a blue
cycle.

Together with Conlon, the second author showed in [4] that Theorem 1.2
literally extends to 2-local colourings: those are colourings with any number of
colours, where each vertex is incident with at most two colours.

For arbitrary r, the best known bound on the number of vertex-disjoint
cycles needed to cover the r-coloured complete graph Kn is 100r log r, if n is
large, this bound is due to Gyárfás, Ruszinkó, Sárközy and Szemerédi [10]. For
r = 3, the same authors show in [12] that there is a partition of all but o(n)
vertices of Kn into 3 or less monochromatic cycles. From this they deduce that
17 cycles partition the whole graph.

If one aims for similar results in complete bipartite graphs, it is reasonable
to assume these are balanced, i.e. the two partition classes have the same size.
As observed by several authors, an obstruction for partitions of two-coloured
balanced complete bipartite graphs into two paths/cycles is a certain type of
colouring, which we will now describe.

For any bipartite graph with partition classes U , V , call a red/blue colouring
of E(G) a split colouring if there are partitions U = A∪B and V = C ∪D such
that all edges in EG(A,C) ∪ EG(B,D) are blue, and all edges in EG(A,D) ∪
EG(B,C) are red. A split colouring is proper if min{|A| − |C|, |B| − |D|} ≥ 2.

It is easy to see that a balanced complete bipartite graph with a proper split
colouring cannot be partitioned into two monochromatic paths (even if the paths
are allowed to have the same colour). That the converse is also true was shown
by Pokrovskiy [18], improving an earlier result of Gyárfás and Lehel [7, 9] (they
allowed one uncovered vertex).

Theorem 1.3 (Pokrovskiy [18]). Let G be a balanced complete bipartite graph
whose edges are coloured red and blue. If the colouring is not a proper split
colouring, then G can be partitioned into a red and a blue path.

It is not difficult to check that the vertices of any balanced complete bipartite
graph with a proper split colouring can be partitioned into three monochromatic
paths, or cycles.

Haxell [13] proved that any r-edge coloured balanced complete bipartite
graph can be partitioned into O((r log r)2) monochromatic cycles, and if r = 3,
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then 1695 monochromatic cycles suffice. In [14] we improve this number to
18. Finally, we mention that Sárkőzy [19] conjectured that any r-edge coloured
graph G can be partitioned into rα(G) monochromatic cycles: though this is
false by Pokrovskiy’s counterexample mentioned above, it is asymptotically true
as shown by Balogh et al. [2].

1.2 Our Contribution

We investigate monochromatic path or cycle partitions into complete multipar-
tite graphs with more than two partition classes. We always assume that none
of the partition classes is empty, e.g., a complete tripartite graph is assumed to
be non bipartite. We call a multipartite graph fair if no partition class contains
more than half of the vertices of the graph. Note that a complete bipartite graph
is fair if and only if it is balanced, and, more generally, a complete multipartite
graph is fair if and only if it admits a Hamilton cycle.

We show an extension of Theorem 1.3 to multipartite graphs with more than
two partition classes under the necessary restriction of fairness. It is interesting
that for these graphs, there is no analogue for the exceptional case of the split
colouring.

Theorem 1.4. Let G be a fair complete k-partite graph, with k ≥ 3, whose
edges are coloured red and blue. Then G can be partitioned into a red and a blue
path.

It seems plausible that Theorem 1.4 can be strengthened such that instead
of two paths one can partition G into a path and a cycle. Indeed, we shall see
this is true if we allow for at most one vertex to be uncovered.

Corollary 1.5. Let G be a fair complete k-partite graph, with k ≥ 3, whose
edges are coloured red and blue. Then all but at most one vertex of G can be
partitioned into a monochromatic path and a monochromatic cycle of distinct
colours.

We prove Theorem 1.4 and Corollary 1.5 in Section 2. The main tool for
this proof is Lemma 2.2, which is shown in Section 3.

It is natural to ask whether Theorems 1.3 and 1.4 extend to cycle partitions
instead of path partitions. Note that we need to exclude the situation that
there is a proper split colouring between a partition class that contains half
the vertices of the graph, and the rest of the graph. Clearly, in that case a
partition into two monochromatic cycles cannot exist (while a partition into
two monochromatic paths is possible, by Theorem 1.4).

We show an approximate result for the cycle partition problem in complete
multipartite graphs, including the bipartite case. For this, we say that a colour-
ing of the edges of a complete multipartite graph G is δ-close to a split colouring
if by deleting at most δ|E(G)| edges we can make G bipartite and the colouring
a split colouring.

Theorem 1.6. For all δ > 0 there is a an n0 such that the following holds for
every fair complete k-partite graph G on n > n0 vertices, with k ≥ 2.
If the edges of G are coloured red and blue, and the colouring is not δ-close to
a split colouring, then there are two disjoint monochromatic cycles of distinct
colours, which together cover all but at most δn vertices of G.
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It is easy to check that no colouring of a complete multipartite graph on
n vertices, with at least three partition classes of size greater than 2

√
δn, can

be δ-close to a split colouring. So, for these graphs we can drop the condition
on the colouring in Theorem 1.6. Also, notice that any complete multipartite
graph on n vertices, with a colouring that is δ-close to a split colouring, contains
three disjoint monochromatic cycles that together cover all but at most 8

√
δn

vertices of the graph.2

We prove Theorem 1.6 in Section 5. The strategy uses the regularity method,
and a well-known technique due to  Luczak for blowing up connected matchings
of the reduced graph to cycles in the original graph. The existence of the
connected matchings in the given circumstances is shown in Lemma 4.2 and
Lemma 4.3 of Section 4.

Theorem 1.6 is probably not the best possible result. It might be possible
to cover all but a constant number of vertices of our multipartite graph. For an
open problem in this direction, and more discussion, see Section 7.

Using tools of Gyárfás, [11] and Haxell [13], we derive from Theorem 1.6
that a small finite number of monochromatic cycles is always sufficient to par-
tition a multipartite graph.

Theorem 1.7. Let G be a sufficiently large fair complete k-partite graph, whose
edges are coloured red and blue. Then G can be partitioned into 14 monochro-
matic cycles. If k = 2, then G can be partitioned into 12 monochromatic cycles.

We prove Theorem 1.7 in Section 6. We believe that probably, the number
of cycles can be dropped further, but the point of our result is rather that a
reasonable finite number of cycles always suffices.

We end the introduction with a useful lemma, which tells us that for all our
results for fair k-partite graphs with k ≥ 3, we may restrict our attention to the
tripartite case.

Lemma 1.8. Every fair k-partite graph G with k ≥ 3 has a spanning induced
subgraph which is fair and tripartite.

Proof. Assume k ≥ 4 and delete all edges between the smallest two partition
classes. If the resulting graph is not fair, then these two classes together contain
more than |V (G)|/2 vertices. But then, also the third and the fourth smallest
class together have more than |V (G)|/2 vertices, a contradiction. Inductively,
the statement follows.

2 Proof of Theorem 1.4

Throughout this section, let G = (V,E) be a fair complete k-partite graph on n
vertices whose edges are coloured red and blue. Let V1, . . . , Vk be the partition
classes of G and let ni = |Vi| for i = 1, . . . , k, with n1 ≥ . . . ≥ nk. Our aim is to
partition G into a red and a blue path. By Lemma 1.8, we may assume k = 3.

2In fact, in the graph induced by the edges of the split colouring, we can delete a balanced

set of at most 2
√
δn vertices so that in the remaining graph H, each vertex has at most√

δn non-neighbours in the other partition class. Then we split H into three monochromatic

balanced bipartite graphs, two in blue, and one in red. It is easy to check that each of these

three graphs has a cycle covering all but at most 2
√
δn of its vertices.
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Lemma 2.1. If n1 = n/2, then G can be partitioned into a red and a blue path
sharing a common endvertex.

Proof. Consider the balanced complete bipartite graph H = (V,EG(V1, V2∪V3))
whose partition classes are V1 and V2∪V3. By Theorem 1.3, H and thus G can be
partitioned into a red and a blue path if the edges of H are not split-coloured.
So, we may assume that the edges of H are coloured with a split colouring,
that is, there are disjoint non-empty sets A,B ⊆ V1 and C,D ⊆ V2 ∪ V3 with
A ∪ B = V1 and C ∪ D = V2 ∪ V3, such that EG(A,C) ∪ EG(B,D) is entirely
coloured blue, and EG(A,D) ∪ EG(B,C) is entirely coloured red.

Since V2, V3 6= ∅ we have that EG(C,D) 6= ∅. Let uv ∈ EG(C,D), say uv
is blue. Let Pu (Pv) be a blue path in H , of maximum even length starting
in u (in v). Let P be the blue path PuuvPv. If |A| ≤ |C|, then |D| ≤ |B|, and
thus A ∪ D ⊆ V (P ). Otherwise, B ∪ C ⊆ V (P ). In both cases H [V \ V (P )]
is a balanced complete bipartite graph with red edges only. Hence, G can be
partitioned into a red and a blue path.

It is straightforward that there is an edge joining an endvertex of the red
path to an endvertex of the blue path.

The following is the main tool for our proof of Theorem 1.4.

Lemma 2.2. Assume that n1 ≤ n2 + n3 − 2, or that n1 = n2 + n3 − 1 and
n3 > 1. Then G can be partitioned into a red and a blue path sharing a common
endvertex.

The proof of Lemma 2.2 is the subject of Section 3.

Lemma 2.3. Assume that n1 = n2 and n3 = 1. Then G can be partitioned into
a red and a blue path sharing a common endvertex.

Proof. Say V3 = {z}. Consider the balanced complete bipartite graph H in-
duced by the vertex set V1 ∪ V2. First, assume that the edges of H are not
properly split-coloured. Then by Theorem 1.3, H can be partitioned into a red
path R and a blue path B. Clearly, as H is balanced, there are an endvertex
r of R and an endvertex b of B which lie in distinct partition classes. We may
assume the edge rb to be blue, the other case is analogous. If the edge rz is red,
we may extend the red path to include z. Together with the edge bz, this gives
the desired partition. Otherwise, if rz is blue, we may extend the blue path to
include z. Together with the edge r′z, where r′ is the second to last vertex on
R, this gives the desired partition.

So we may assume that H is properly split coloured. That is, there are
disjoint non-empty sets A,B ⊆ V1 and C,D ⊆ V2 with A∪B = V1 and C ∪D =
V2, such that EG(A,C) ∪ EG(B,D) is entirely coloured blue, and EG(A,D) ∪
EG(B,C) is entirely coloured red. Now, there are two colour-components, either
A ∪ D and B ∪ C, or A ∪ C and B ∪ D which are connected in G via z. We
treat the case that there are vertices Let a ∈ A, b ∈ B such that the edges az,
bz are red, all other cases can be treated analogously.

Choose a longest balanced red path X starting in a, and a longest balanced
red path Y starting in b (where balanced means the path should have an even
number of vertices). Take a longest blue path Z covering G− (V (X) ∪ V (Y ) ∪
{z}). The latter choice is possible since A ∪ C ⊆ V (X) ∪ V (Y ) or B ∪ D ⊆
V (X)∪ V (Y ). Thus, G can be partitioned into the red path XzY and the blue
path Z.
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We are now ready for the proof of our first main theorem.

Proof of Theorem 1.4. By Lemma 1.8, it suffices to prove our result for k = 3. If
either n1 ≤ n2+n3−2, or n1 = n2+n3−1 and n3 > 1, we may apply Lemma 2.2
and are done, so assume otherwise. Then either n1 = n2 and n3 = 1, in which
case we may apply Lemma 2.3 and are done, or n1 ≥ n2 +n3, which we assume
from now on. Since G is fair, we actually have n1 = n2 + n3, and are thus in
conditions to apply Lemma 2.1 to obtain the desired partition.

We also make use of the following simple lemma we shall need for the proof
of Lemma 2.2 in Section 3. Since the proof is straightforward, we omit it.

Lemma 2.4. Assume that ni ≤ n3−i + n3 − 1 for some i ∈ {1, 2}, and let P be
any Hamilton path in G. Then either P contains an edge uv ∈ EG(V3−i, V3),
or ni = n3−i + n3 − 1 and both endvertices of P are in V3−i ∪ V3.

We end this section with the proof of Corollary 1.5.

Proof of Corollary 1.5. By Lemma 1.8, we may assume G is tripartite, with
partition classes V1, V2, V3. We observe that the lemmas we use to prove Theo-
rem 1.4, Lemmas 2.1, 2.2, and 2.3, yield a partition of G into a red and a blue
path, say R and B, that share their last vertex x. Say among all such partitions,
R is chosen of maximum length. W.l.o.g. assume x ∈ V1.

If any of the two paths R,B is trivial, or has only one edge, we are done. Note
that we may assume all edges between the first two and the last two vertices of
R to be blue, and all edges between the first two and the last two vertices of
B to be red, as otherwise we are done. In particular, by maximality of R, this
implies that the first vertex v1 on B lies in V1.

First assume the first vertex w1 on R does not lie in V1. Then w1x is blue,
and by maximality of R, we know that w1v1 is blue, too. Thus we are done.

So assume w1 ∈ V1. By maximality of R, we know w1 sends a blue edge to
the second last vertex on B. Let v2 be the second vertex on B. Now if v2w1 is
red we find a red cycle and a blue path covering all but one vertex, and if v2w1

is blue we find a blue cycle and a red path covering all but one vertex.

3 Proof of Lemma 2.2

This section is devoted to the proof of Lemma 2.2. For notational reasons it
will be very convenient to now refrain from the assumption that n1 ≥ n2. We
still keep the convention that V3 is the smallest of the three classes, that is,
n3 ≤ min{n1, n2}. We thus have to prove the following statement.

Assume that ni ≥ n3 for i ∈ {1, 2}, and that either ni ≤ n3−i + n3 − 2, or
ni = n3−i +n3− 1 and n3 > 1. Then G can be partitioned into a red and a blue
path sharing a common endvertex.

The assumptions of the lemma imply that min{n1, n2} ≥ 2. Let v1 ∈ V1 and
v2 ∈ V2 be arbitrary, let H = G− {v1, v2}, and let n′

1, n
′

2, n
′

3 be the sizes of the
partition classes of H . If n′

1, n
′

2, n
′

3 satisfy the statement above, we may apply
induction to see that H can be partitioned into a red path R and a blue path
B that share a common endvertex.
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If n′

1, n
′

2, n
′

3 violate the statement above, it must be that min{n′

1, n
′

2} < n′

3.
As n′

1 = n1 − 1 and n′

2 = n2 − 1, we may w.l.o.g. assume that n2 = n3. So,
n1 ≥ n2 = n3.

Let us first discuss the case n1 = n2 = n3. It must be that n1 = 2, for
otherwise n′

3 ≤ n′

1 + n′

2 − 1, n′

1 ≤ n′

2 + n′

3 − 1 and n′

2 > 1, a contradiction to
our assumption that n′

1, n
′

2, n
′

3 violate the statement. Thus n′

3 = n′

1 + n′

2 and
so we may apply Lemma 2.1 to obtain a red path R and a blue path B sharing
a common endvertex that partition H .

Now assume n1 > n2 = n3. Hence, n′

1 ≥ n′

3 > n′

2 ≥ 1. Again we have
n′

1 ≤ n′

2 + n′

3 − 1, n′

3 ≤ n′

1 + n′

2 − 1. Since n′

1, n
′

2, n
′

3 violate the statement,
it must be that n′

2 = 1. As n2 ≥ n3 and n′

2 = n2 − 1, we have n2 = 2 and
n′

3 = n3 = 2. Therefore n1 = 3 and thus n′

1 = 2. So, we can apply Lemma 2.3
to H and obtain a red path R and a blue path B sharing a common endvertex
that partition H .

Summing up, we may inductively assume Lemma 2.2 to hold for H . Hence,
H can be partitioned into a red path R and a blue path B, both possibly trivial,
that share a common endvertex. Let R = (r1, . . . , rs, x) and B = (b1, . . . , bt, x)
where R and B have only x in common.

Throughout the proof we suppose for contradiction that G cannot be parti-
tioned into a red and a blue path that share a common endvertex. In several
cases treated below we make use of the following simple fact. Assume we can
partition G into a red path R′ and a blue path B′ such that one of these paths
has its endvertices in distinct partition classes. Then one of R′, B′ can be
extended such that the paths have exactly one vertex in common, namely an
endvertex of both paths. The same holds if an endvertex of one path is in a
distinct partition class than an endvertex of the other path.

For the remainder of the proof, we assume w.l.o.g. that v1v2 is red. At this
point, we advise the reader to get his coloured pencils ready.

Claim 3.1. Neither R nor B is trivial. (That is R 6= (x) 6= B.)

Proof. We first suppose that the path R is trivial, that is, B covers H . W.l.o.g.
assume b1 /∈ V1. If the edge b1v1 is red, then G can be partitioned into the red
path (v2, v1, b1) and the blue path (b1, . . . , bt, x), a contradiction. Otherwise, G
can be partitioned into the red path (v2, v1) and the blue path (v1, b1, . . . , bt, x),
another contradiction.

Now suppose that B is trivial, that is, R covers H . Again, we may w.l.o.g. as-
sume that r1 /∈ V1. The edge r1v1 is blue, since otherwise the red path
(v2, v1, r1, . . . , rs, x) covers G, a contradiction.

If r1 ∈ V3, then r1v2 ∈ E. In this case, however, G is covered by the red
path (v1, v2, r1, . . . , rs, x), if r1v2 is red. If r1v2 is blue, G can be partitioned
into the red path (r2, . . . , rs, x) and the blue path (v1, r1, v2). As both cases are
contradictory, r1 /∈ V3 and so r1 ∈ V2. By symmetry, x /∈ V3.

First we suppose that x ∈ V1. Then xv2, xr1 ∈ E. Like above, xv2 must
be blue. But then r1x is red, for otherwise G can be partitioned into the red
path (r2, . . . , rs) and the blue path (v1, r1, x, v2), a contradiction (because of the
observation stated before the claim we are presently proving). We may pick i ∈
{2, . . . , s} such that ri ∈ V3. If the edge v1ri is red, G can be partitioned into the
red path (v2, v1, ri, . . . , rs, x, r1, . . . , ri−1), a contradiction. Thus, by symmetry,
both v1ri and v2ri are blue. This means G can be partitioned into the red path
(ri+1, . . . , rs, x, r1, . . . , ri−1) and the blue path (v1, ri, v2), a contradiction.
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So, x ∈ V2. Then v1x ∈ E, and this edge must be blue, as it is inter-
changeable with v1r1. Consider the edge v2r2: it must be blue, else G can
be partitioned into the red path (v1, v2, r2, . . . , rs, x) and the blue path (v1, r1).
Thus, the edge r2x is red, since otherwise G can be partitioned into the red path
(r3, . . . , rs−1, rs) and the blue path (v2, r2, x, v1, r1). But this is a contradiction:
if the red path (r3, . . . , rs) is non-empty, rs /∈ V2 and so v2rs ∈ E.

By Lemma 2.4, we may pick i ∈ {2, . . . , s} such that ri ∈ V3 and ri−1 ∈ V1

or ri+1 ∈ V1. Note that we may apply Lemma 2.4 even if n′

i = n′

3−i + n′

3 −
1, for some i ∈ {1, 2}, since r1 ∈ V2. Let us assume that ri−1 ∈ V1, the
other case is similar. If riv1 is red, then G can be partitioned into the red
path (v2, v1, ri, . . . , rs, x, r2, . . . , ri−1) and the blue path (r1), a contradiction.
Similarly, riv2 cannot be red. So, both riv1 and riv1 are blue. But now G can
be partitioned into the red path (ri+1, . . . , rs, x, r2, . . . , ri−1) and the blue path
(v2, ri, v1, r1), which is contradictory. This completes the proof of Claim 3.1.

Over the next few claims, we deal with the case that x ∈ V3.

Claim 3.2. If x ∈ V3, then r1 /∈ V3.

Proof. Suppose x, r1 ∈ V3. Consider the edges xv1 and xv2. If any of these edges
is red, then the respective path (r1, . . . , rs, x, v1, v2) or (r1, . . . , rs, x, v2, v1) is
red, and together with the blue path (b1, . . . , bt) covers G. Thus xv1 and xv2
are blue.

If either of r1v1, r1v2 is red, we may simply extend R from r1 to v1 and
v2. So these two edges are blue, too. Observe that one of the blue paths
(b1, . . . , bt, x, v1, r1, v2), (b1, . . . , bt, x, v2, r1, v1) has its endpoints in different par-
tition classes. Together with the red path (r2, . . . , rs), this blue path covers G,
a contradiction.

Claim 3.3. Let i ∈ {1, 2}. If x ∈ V3, then not both r1 and rs lie in Vi.

Proof. Because of symmetry, it is enough to prove this claim for i = 1. So for
contradiction suppose that x ∈ V3 and r1, rs ∈ V1.

As above, we see that xv1 and r1v2 are blue. Also, rsv2 is blue, since
otherwise G can be partitioned into the red path (r1, . . . , rs, v2, v1) and the blue
path (v1, x, bt, . . . , b1).

We claim that
b1 ∈ V1. (1)

Suppose b1 /∈ V1. Then xv2 must be blue, since otherwise G can be partitioned
into the red path (r1, . . . , rs, x, v2, v1) and the blue path (b1, . . . , bt). As v1b1 ∈
E, this edge must be red, for otherwise G can be partitioned into the red path
(r1, . . . , rs) and the blue path (v2, x, bt, . . . , b1, v1). Thus, r1b1 is blue, else G
can be partitioned into the red path (rs, . . . , r1, b1, v1, v2) and the blue path
(v2, x, bt, . . . , b2). Hence, G can be partitioned into the red path (r2, . . . , rs) and
the blue path (v1, x, bt, . . . , b1, r1, v2), a contradiction. This proves (1).

Hence, the edge b1v2 exists, and

b1v2 is red, (2)

since otherwise G can be partitioned into the red path (r1, . . . , rs) and the blue
path (v1, x, bt, . . . , b1, v2). If t = 1, xb1 is blue by definition. If t ≥ 2 and xb1
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is red, G can be partitioned into the red path (r1, . . . , rs, x, b1, v2, v1) and the
blue path (b2, . . . , bt) (note that by (1) we know that b2 /∈ V1). Thus,

xb1 is blue. (3)

We now show that
bt ∈ V1. (4)

Indeed, suppose otherwise. Then the edge btr1 exists. If btr1 is blue, then G can
be partitioned into the red path (r2, . . . , rs) and the blue path (v1, x, b1, . . . , bt,
r1, v2). This is contradictory since v1 ∈ V1 and v2 ∈ V2.

So btr1 is red. Since xbt ∈ E, we have bt ∈ V2. Thus, v1bt ∈ E, and
this edge must be blue: otherwise G can be partitioned into the red path
(x, rs, . . . , r1, bt, v1, v2) and the by (3) blue path (x, b1, . . . , bt). Moreover, xv2
must be blue, else G can be partitioned into the red path (r1, . . . , rs, x, v2, v1)
and the blue path (v1, bt, . . . , b1, ). But this means G can be partitioned into
the red path (r1, . . . , rs) and the blue path (v2, x, v1, bt, . . . , b1), a contradiction.
This proves (4).

By (4), the edge btv2 exists. However, this edge cannot be blue, as then G can
be partitioned into the red path (rs, . . . , r1) and the blue path (rs, v2, bt, . . . , b1,
x, v1). So, btv2 is red.

We next show that
xr1 is red. (5)

For contradiction, suppose that xr1 is blue. Then, in particular, s ≥ 2, since
xrs is red. The edge r2v1 must be blue, as otherwise G can be partitioned into
the red path (v2, v1, r2, . . . , rs) and the blue path (v2, r1, x, bt, . . . , b1). Moreover,
btr2 is blue, as follows. Suppose btr2 is red. If t = 1, G can be partitioned into
the red path (v1, v2, bt, r2, . . . , rs, x) and the blue path (r1, x). Otherwise, bt−1

exists and does not belong to V1. Thus, G can be partitioned into the red
path (v1, v2, bt, r2, . . . , rs) and the blue path (r1, x, b1, . . . , bt−1). As both is
contradictory, we see that btr2 is blue. But now the red path (r3, . . . , rs) and
the blue path (rs, v2, r1, x, v1, r2, bt, . . . , b1) partition G, a contradiction. This
proves (5).

We now apply Lemma 2.4 to H , to see that there is an edge uv in R or
B with u ∈ V3 and v ∈ V2. Note that we may apply Lemma 2.4 even if
n′

i = n′

3−i + n′

3 − 1, for some i ∈ {1, 2}, since r1 ∈ V1 by assumption. Since
rs, bt ∈ V1, we know that v /∈ {rs, bt}, and thus u 6= x.

We claim that
u, v ∈ V (B). (6)

Indeed, suppose u, v ∈ V (R). We assume v lies between u and x on R, say u = ri
and v = ri+1, the other case is similar. It must be that riv2 is blue, since other-
wise G can be partitioned into the red path (v1, v2, ri, ri−1, . . . , r1, x, rs, . . . , ri+1)
and the blue path (b1, . . . , bt). Similarly, the edges riv1 and ri+1v1 are blue.

Since ri+1 ∈ V2 and b1 ∈ V1, ri+1b1 ∈ E. If ri+1b1 is red, then G can be
partitioned into the red path (v1, v2, b1, ri+1, . . . , rs, x, r1, . . . , ri) and the blue
path (b2, . . . , bt) (recall that b1v2 is red by (2)). However, if ri+1b1 is blue, then
G can be partitioned into the red path (ri+2, . . . , rs, x, r1, . . . , ri−1) and the blue
path (v2, ri, v1, ri+1, b1, . . . , bt). This proves (6).
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Say v lies between u and x on B, say u = bi and v = bi−1, the other case is
similar. We now show that

r1bi is blue. (7)

Indeed, suppose that the edge r1bi is red. Thus biv1 must be blue: otherwise,
G can be partitioned into the red path (v2, v1, bi, r1, . . . , rs) and the blue path
(bi−1, . . . , b1, x, bt, . . . , bi+1). Similarly, biv2 must be blue. Hence bi−1v1 must
be red, as otherwise G can be partitioned into the red path (r1, . . . , rs) and
the blue path (v2, bi, v1, bi−1, . . . , b1, x, bt, . . . , bi+1). Supposing bi−1r1 is red, G
can be partitioned into the red path (v2, v1, bi−1, r1, . . . , rs) and the blue path
(bi, . . . , bt, x, b1, . . . , bi−2). Thus, the edge bi−1r1 is blue, and so G can be parti-
tioned into the red path (r2, . . . , rs) and the blue path (v1, bi, v2, r1, bi−1, . . . , b1,
x, bt, . . . , bi+1). This proves (7).

Now we see that v1bi−1 must be red: otherwise, G can be partitioned into
the red path (r2, . . . , rs) and the blue path (v2, r1, bi, . . . , bt, x, b1, . . . , bi−1, v1).
Also, the edge r1bi−1 is blue, as otherwise we can cover G with the red path
(v2, v1, bi−1, r1, . . . , rs) and the blue path (bi, . . . , bt, x, b1, . . . , bi−2). Therefore,
biv1 is red, as otherwise G can be partitioned into the red path (r2, . . . , rs)
together with the blue path (v2, r1, bi−1, . . . , b1, x, bt, . . . , bi, v1).

This implies that rsbi−1 is red, else G could be covered by the red path
(r2, . . . , rs−1) and the blue path (v1, x, bt, . . . , bi, r1, v2, rs, bi−1, . . . , b1). But
then we can cover G with the red path (v1, bi−1, rs, . . . , r2) and the blue path
(bi−2, . . . , b1, x, v2, r1, bi, . . . , bt) (here we use (3) and (7)), giving the final con-
tradiction.

Claim 3.4. Let i ∈ {1, 2}. If x ∈ V3, then not both r1 ∈ Vi and rs ∈ V3−i hold.

Proof. For symmetry, we only need to treat the case i = 1. So suppose r1 ∈ V1

and rs ∈ V2. Then
rsv1 is blue, (8)

r2v1 is blue, since otherwise G can be partitioned into the red path (r1, . . . , rs,
v1, v2) and the blue path (b1, . . . , bt, x). Thus,

r1rs is red, (9)

since otherwise G can be partitioned into the red path (r2, . . . , rs−1) and the
blue path (v2, r1, rs, v1, x, bt, . . . , b1).

Let us show that
b1 ∈ V1. (10)

Suppose otherwise. Then r1b1 ∈ E, and this edge must be red: if it was blue,
G could be covered by the red path (r2, . . . , rs) together with the blue path
(rs, v1, x, bt, . . . , b1, r1, v2). Moreover, v1b1 ∈ E, and this edge must be blue,
since otherwise G can be partitioned into the red path (x, rs, . . . , r1, b1, v1, v2)
and the blue path (x, bt, . . . , b2). Also, xv2 is blue, else G can be partitioned
into the red path (r1, . . . , rs, x, v2, v1) and the blue path (b1, . . . , bt). Now, how-
ever, G can be partitioned into the red path (r1, . . . , rs) and the blue path
(v2, x, bt, . . . , b1, v1), a contradiction. This proves (10).

By (10), we know that v2b1 ∈ E, and this edge must be red, as other-
wise G can be partitioned into the red path (r1, . . . , rs) and the blue path
(rs, v1, x, bt, . . . , b1, v2) (recall that rsv1 is blue by (8)). Thus, rsb1 is blue, else
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G can be partitioned into the red path (r1, . . . , rs, b1, v2, v1) and the blue path
(v1, x, bt, . . . , b1).

Let j ∈ {1, 2} such that nj ≥ n2−j . Hence nj ≤ n2−j + n3 − 2, so n3 ≥ 2.
Thus, there is a vertex y ∈ V3 \ {x}. We show that

y ∈ V (B). (11)

Suppose otherwise, say y = ri. Then, riv2 is blue, as else G can be parti-
tioned into the red path (v1, v2, ri, . . . , r2, r1, rs, . . . , ri+1) (recall that r1rs is red
by (9)) and the blue path (b1, . . . , bt, x). Similarly, riv1 is blue. But now G can
be partitioned into the red path (ri−1, . . . , r1, rs, . . . , ri+1) and the blue path
(v2, ri, v1, x, bt, . . . , b1). This proves (11).

So say y = bi. Thus, v2bi is red, otherwise G can be partitioned into the red
path (r1, . . . , rs−1) and the blue path (v2, bi, . . . , bt, x, v1, rs, b1, . . . , bi−1). The
edge r1bi is red, too, else G can be partitioned into the red path (r2, . . . , rs−1)
and the blue path (v2, r1, bi, . . . , bt, x, v1, rs, b1, . . . , bi−1). (For this, note that
rs−1 /∈ V2.) But now G can be partitioned into the red path (v2, bi, r1, . . . , rs−1)
and the blue path (bi+1, . . . , bt, x, v1, rs, b1, . . . , bi−1), a contradiction. This fin-
ishes the proof of the claim.

Putting Claims 3.2, 3.3 and 3.4 together, and noting that if x ∈ V3, then
rs /∈ V3, we obtain the following assertion.

Claim 3.5. x /∈ V3.

We now turn to the case that x /∈ V3. We first show an auxiliary claim.

Claim 3.6. Let i ∈ {1, 2}. If x ∈ Vi then the edges xv3−i, rsvi are blue, and
r1 /∈ V3. Furthermore, if r1 ∈ Vj for some j ∈ {1, 2}, then r1v3−j is blue.

Proof. For symmetry, it is enough to show this claim for i = 1. So, assume
x ∈ V1. Then, the edge xv2 is present in G. If xv2 is red, then the red path
(v1, v2, x, rs, . . . , r1) and the blue path (b1, . . . , bt) together cover G. So we know
that xv2 is blue.

The edge rsv1 is present in G as rs /∈ V1. If this edge is red, G can be
partitioned into the red path (r1, . . . , rs, v1, v2) and the blue path (x, b1, . . . , bt),
a contradiction. Thus, rsv1 is blue.

Similarly, neither of the edges r1v1 and r1v2, if present, can be red. On the
other hand, not both r1v1 and r1v2 can be present and blue, else G can be par-
titioned into the red path (r2, . . . , rs) and the blue path (v1, r1, v2, x, bt, . . . , b1).
Thus, either r1v1 or r1v2 is absent from G, which implies that r1 /∈ V3. This
proves the claim.

Claim 3.7. Let i ∈ {1, 2}. If x ∈ Vi then r1 /∈ V3−i.

Proof. For symmetry, it is enough to show this claim for i = 1. So, for contra-
diction, assume x ∈ V1 and r1 ∈ V2. By Claim 3.6, the edges xv2, rsv1 and r1v1
are blue.

We show first that
b1 /∈ V1. (12)

Suppose otherwise. Then clearly r1b1 is red, since otherwise G can be parti-
tioned into the red path (r2, . . . , rs) and the blue path (v1, r1, b1, . . . , bt, x, v2).
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Thus the edge v2b1 is blue, otherwise G can be partitioned into the red path
(v1, v2, b1, r1, . . . , rs) and the blue path (x, bt, . . . , b2). A symmetric argument
shows that r1x is red. Moreover, rsb1 is red, for otherwise G can be partitioned
into the red path (r2, . . . , rs−1) and the blue path (r1, v1, rs, b1, . . . , bt, x, v2).
Also, the edge btv1 is red, as otherwise G can be partitioned into the red path
(r2, . . . , rs−1) and the blue path (r1, v1, bt, . . . , b1, v2, x). Hence, b1bt is blue, else
G can be partitioned into the red path (v2, v1, bt, b1, r1, . . . , rs, x) and the blue
path (b2, . . . , bt−1).

Let y ∈ V3 \ {x}. First suppose that y = ri for some 1 ≤ i ≤ s. Thus both
v1ri and v2ri are blue: if v1ri is red, say, G can be partitioned into the red path
(v2, v1, ri, . . . , r1, x, rs, . . . , ri−1) and the blue path (b1, . . . , bt), a contradiction.
(Note that b1 ∈ V1 and bt /∈ V1.) But this means G can be partitioned into the
red path (ri+1, . . . , rs, x, r1, . . . , ri−1) and the blue path (v1, ri, v2, b1, . . . , bt).

Thus y = bi for some 1 ≤ i ≤ t. Hence, v1bi is red, as otherwise G can
be partitioned into the red path (r2, . . . , rs) and the blue path (r1, v1, bi, . . . , b1,
v2, x, bt, . . . , bi+1). So, the edge r1bi must be blue, for otherwise G can be parti-
tioned into the red path (v1, bi, r1, . . . , rs) and the blue path (bi+1, . . . , bt, x, v2,
b1, . . . , bi−1). Consequently, G can be partitioned into the red path (r2, . . . , rs)
and the blue path (v1, r1, bi, bi+1, . . . , bt, x, v2, b1, . . . , bi−1). This finishes the
proof of (12).

Next, we show that
b1 /∈ V3. (13)

Suppose otherwise. Then r1b1 ∈ E and this edge must be red, since other-
wise G can be partitioned into the red path (r2, . . . , rs) and the blue path
(v1, r1, b1, . . . , bt, x, v2). In the case that v1b1 is red, G can be partitioned into
the red path (v2, v1, b1, r1, . . . , rs) and the blue path (x, bt, . . . , b1). So v1b1 is
blue, thus G can be partitioned into the red path (r1, . . . , rs) and the blue path
(v2, x, bt, . . . , b1, v1). This finishes the proof of (13).

Putting (12) and (13) together, we see that

b1 ∈ V2.

Then b1v1 must be red, as otherwise G can be partitioned into the red path
(r1, . . . , rs) and the blue path (v2, x, bt, . . . , b1, v1). Hence xb1 is blue, since
otherwise G can be partitioned into the red path (r1, . . . , rs, x, b1, v1, v2) and
the blue path (b2, . . . , bt). Moreover, btv1 is red, otherwise G can be partitioned
into the red path (r1, . . . , rs) and the blue path (v2, x, b1, . . . , bt, v1).

We claim that
rs, bt ∈ V2. (14)

For this, first assume the edge rsbt does exist. If rsbt is red, G can be par-
titioned into the red path (r1, . . . , rs, bt, v1, v2) and the blue path (x, b1, . . . , bt).
If rsbt is blue, however, G can be partitioned into the red path (r1, . . . , rs−1)
and the blue path (v1, rs, bt, . . . , b1, x, v2). This shows that rsbt does not exist.
Since x ∈ V1, we get that rs, bt ∈ Vi for some i ∈ {2, 3}.

Now, if rs, bt ∈ V3, then rsv2 ∈ E. If rsv2 is red, G can be partitioned into
the red path (r1, . . . , rs, v2, v1) and the blue path (x, bt, . . . , b1). But if rsv2 is
blue, G can be partitioned into the red path (r1, . . . , rs−1) and the blue path
(v1, rs, v2, x, bt, . . . , b1). This proves (14).
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Since r1 ∈ V2, we have that r2bt ∈ E. We show that

r2bt is blue. (15)

Suppose otherwise. Then also r1bt−1 is red, as else G can be partitioned into
the red path (v2, v1, bt, r2, . . . , rs, x) and the blue path (b1, . . . , bt−1, r1). Hence,
the edge v2bt−1 is blue, for otherwise G can be partitioned into the red path
(bt, v1, v2, bt−1, r1, . . . , rs, x) and the blue path (b1, . . . , bt−2). So, rsbt−1 is blue,
else G can be partitioned into the red path (v2, v1, bt, r2, . . . , rs, bt−1, r1) and
the blue path (x, b1, . . . , bt−2). Now, however, G can be partitioned into the
red path (bt, r2, . . . , rs−1) and the blue path (r1, v1, rs, bt−1, v2, x, b1, . . . , bt−2).
This proves (15).

Observe that
r2rs is red, (16)

for otherwise G can be partitioned into the red path (rs−1, . . . , r3) and the blue
path (r1, v1, rs, r2, bt, . . . , b1, x, v2).

We now apply Lemma 2.4 to H , to see that there is an edge uv on R or on
B with u ∈ V3 and v ∈ V1. We may apply Lemma 2.4 even if n′

i = n′

3−i +n′

3−1,
for some i ∈ {1, 2}, since r1 ∈ V2.

We claim that
u ∈ V (B). (17)

Suppose otherwise, i.e. assume u = ri for some 2 ≤ i ≤ t. We discuss the
case v = ri+1 only, the other case is similar. Observe that not both v1ri and
v2ri can be blue, for otherwise the red path (ri−1, . . . , r2, rs, . . . , ri+1) and the
blue path (r1, v1, ri, v2, x, bt, . . . , b1) cover G. Say v1ri is red, the other case can
be resolved similarly. If r1x is blue, then we can cover G with the red path
(v2, v1, ri, . . . , r1, rs, rs−1, . . . , ri+1) and the blue path (r1, x, bt, . . . , b1). Hence,
r1x is red, and so G can be partitioned into the red path (v2v1, ri, ri−1, . . . , r1, x, rs, . . . , ri+1)
and the blue path (b1, . . . , bt). This proves (17).

Say u = bi for some 2 ≤ i ≤ t. We assume v = bi−1, as the other case is
similar. If v1bi is blue, v2r2 must be red: otherwise, G can be partitioned into the
red path (r3, . . . , rs) and the blue path (r1, v1, bi, . . . , bt, r2, v2, x, b1, . . . , bi−1).
But then G can be partitioned into the red path (v2, r2, . . . , rs) and the blue
path (r1, v1, bi, . . . , bt, r2, v2, x, b1, . . . , bi−1).

Thus, v1bi must be red. Hence, r1bi is blue, for otherwise we can cover G with
the red path (v2, v1, bi, r1, . . . , rs) and the blue path (bi+1, . . . , bt, b1, . . . , bi−1).
So, the edge r2v2 is blue, as otherwise G can be partitioned into the red
path (v1, v2, r2, . . . , rs) and the blue path (r1, bi, . . . , bt, x, b1, . . . , bi−1). But
then G can be partitioned into the red path (r3, . . . , rs−1) and the blue path
(rs, v1, r1, bi, . . . , bt, r2, v2, x, b1, . . . , bi−1), yielding the final contradiction.

Claim 3.8. Let i ∈ {1, 2}. If x ∈ Vi then r1 /∈ Vi.

Proof. Because of symmetry, we only show the claim for i = 1. So suppose
x ∈ V1 and r1 ∈ V1. By Claim 3.6, the edges rsv1, v2x and r1v2 are blue.

We first show that
b1 /∈ V1. (18)

Suppose otherwise. Then the edge rsb1 is red, for otherwise G can be parti-
tioned into the red path (r2, . . . , rs−1) and the blue path (v1, rs, b1, . . . , bt, x, v2,
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r1). Thus, the edge b1v2 is blue, else G can be partitioned into the red path
(v1, v2, b1, rs, . . . , . . . , r1) and the blue path (b2, . . . , bt, x). Moreover, r2v1 is
blue, since otherwise G can be partitioned into the red path (v1, r2, . . . , rs)
and the blue path (r1, v2, b1, . . . , bt, x). Hence, r2b1 must be red, as other-
wise G can be partitioned into the red path (rs−1, . . . , r3) and the blue path
(rs, v1, r2, b1, . . . , bt, x, v2, r1). Thus, v1b2 must be red, as otherwise G can be
partitioned into the red path (rs−1, . . . , r2, b1) and the blue path (rs, v1, b2, . . . , bt,
x, v2, r1).

Applying Lemma 2.4 to H , we see that there is an edge uv in R or B with
u ∈ V3 and v ∈ V2. Note that we may apply Lemma 2.4 even if n′

i = n′

3−i+n′

3−1,
for some i ∈ {1, 2}, since r1 ∈ V1 by assumption.

First assume u ∈ V (R), i.e. u = ri for some 2 ≤ i ≤ t. Say v = ri−1, the
other case is similar. If riv1 is red, then G can be partitioned into the red path
(v1, ri, . . . , r2, b1, rs, . . . , ri+1) and the blue path (r1, v2, x, bt, . . . , b2). Thus riv1
is blue and, similarly, ri−1v1 is blue. Either ri or ri−1 is adjacent to b2, say rib2 ∈
E (the other case is analogous). If rib2 is red, G can be partitioned into the red
path (v1, b2, ri, . . . , rs, b1, r2, . . . , ri−1) and the blue path (r1, v2, x, bt, . . . , b3).
Otherwise, G can be partitioned into the red path (ri−1, . . . , r2, b1, rs, . . . , ri+1)
and the blue path (r1, v2, x, bt, . . . , b2, ri, v1). However, both is contradictory,
and we may thus assume that u ∈ V (B).

So, u = bi for some 2 ≤ i ≤ t. We discuss the case v = bi−1 only, as
the case v = bi+1 can be treated similarly. Now, the edge biv1 is red, since
otherwise G can be partitioned into the red path (r1, . . . , rs) and the blue path
(v1, bi, bi+1, . . . , bt, x, v2, b1, . . . , bi−1). Similarly, bi−1v1 is red. Clearly r1bi ∈ E,
and this edge must be blue. Otherwise, G can be partitioned into the red path
(v1, bi, r1, . . . , rs) and the blue path (bi−1, . . . , b1, v2, x, bt, . . . , bi+1). Similarly,
r1bi−1 is blue.

It is clear that r2bi ∈ E or r2bi−1 ∈ E, say r2bi ∈ E. If the edge r2bi
is blue, then we can cover G with the red path (r3, . . . , rs) and the blue path
(v1, r2, bi, r1, bi−1, . . . , b1, v2, x, bt, . . . , bi+1). Otherwise, we can partition G into
the red path (v1, bi, r2, . . . , rs) and the blue path (r1, bi−1, . . . , b1, v2, x, bt, . . . , bi+1).
This finishes the proof of (18).

Next, we show that
b1 /∈ V3. (19)

Suppose otherwise. Then v1b1 ∈ E and this edge must be red, otherwise G can
be partitioned into the red path (r1, . . . , rs) and the blue path (v1, b1, . . . , bt,
x, v2).

Now assume rs ∈ V2. In that case, if rsb1 is red, we cover G with the red path
(v2, v1, b1, rs, . . . , r1) and the blue path (b2, . . . , bt, x). If rsb1 is blue, we cover
G with the red path (rs−1, . . . , r1) and the blue path (v1, rs, b1, b2, . . . , bt, x, v2).
Thus rs /∈ V2 and hence rs ∈ V3.

But now, the edge rsv2 cannot be red, because of the red path (r1, . . . , rs, v2,
v1) and the blue path (b1 . . . , bt, x). It also cannot be blue, because of the red
path (r1, . . . , rs−1) and the blue path (b1 . . . , bt, x, v2, rs, v1). This finishes the
proof of (19).

By (18) and (19), we know that b1 ∈ V2. Thus b1v1 ∈ E and this edge must
be red, as otherwise G can be partitioned into the red path (r1, . . . , rs) and the
blue path (v1, b1, . . . , bt, x, v2). So, b1r1 is blue, for otherwise G can be parti-
tioned into the red path (v2, v1, b1, r1, . . . , rs) and the blue path (x, bt, . . . , b1).
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Thus, btv1 is red, since otherwise G can be partitioned into the red path
(r2, . . . , rs) and the blue path (v1, bt, x, v2, r1, b1, . . . , bt−1). This implies that
the edge btr1 is blue, as otherwise G can be partitioned into the red path
(v2, v1, bt, r1, . . . , rs, x) and the blue path (bt−1, . . . , b1). Moreover, r1rs is red,
for otherwise G can be partitioned into the red path (r2, . . . , rs−1) and the blue
path (v1, rs, r1, v2, x, bt, . . . , b1). Also, xb1 is blue, else G can be partitioned into
the red path (v2, v1, b1, x, rs, . . . , r1) and the blue path (bt−1, . . . , b2).

Applying Lemma 2.4 to H , we see that there is an edge uv in R or B with
u ∈ V3 and v ∈ V1. Note that we may apply Lemma 2.4 even if n′

i = n′

3−i+n′

3−1,
for some i ∈ {1, 2}, since we know that b1 ∈ V2.

First assume u ∈ V (R), i.e. u = ri for some 2 ≤ i ≤ t. We may suppose that
v = ri−1, the other case is similar. Then riv1 is blue, for otherwise G can be
partitioned into the red path (v2, v1, ri, . . . , rs, r1, . . . , ri−1) and the blue path
(x, bt, . . . , b1). Similarly, riv2 is blue. But then G can be partitioned into the
red path (ri−1, . . . , r1, rs, . . . , ri+1) and the blue path (v1, ri, v2, x, bt, . . . , b1), a
contradiction.

Therefore, u ∈ V (B). Say u = bi for some 2 ≤ i ≤ t. Say v = bi−1, the
other case is similar. Thus, biv1 is red, for otherwise G can be partitioned into
the red path (r2, . . . , rs) and the blue path (v1, bi, . . . , b1, r1, v2, x, bt, . . . , bi+1).
Hence, the edge r1bi is blue, for otherwise G can be partitioned into the red
path (v2, v1, bi, r1, . . . , rs) and the blue path (bi−1, . . . , b1, x, bt, . . . , bi+1).

If rs ∈ V3, then rsv2 ∈ E. But then rsv2 must be blue, since other-
wise G can be partitioned into the red path (r1, . . . , rs, v2, v1) and the blue
path (x, bt, . . . , b1). This implies that G can be partitioned into the red path
(r1, . . . , rs−1) and the blue path (v1, rs, v2, x, bt, . . . , b1). So, rs /∈ V3, and
hence rs ∈ V2. Thus, the edge rsbi exists and it must be red, for other-
wise G can be partitioned into the red path (r2, . . . , rs−1) and the blue path
(v1, rs, bi, . . . , bt, x, v2, r1, b1, . . . , bi−1), where v1 ∈ V1 and r2 /∈ V1. Hence, G
can be partitioned into the red path (v2, v1, bi, rs, . . . , r1) and the blue path
(bi+1, . . . , bt, x, b1, . . . , bi−1), a contradiction.

Putting Claims 3.5, 3.7 and 3.8 together, we arrive at the final contradiction
and thus complete the proof of Lemma 2.2.

4 Connected matchings

Let G be a graph whose edges are coloured red or blue. A monochromatic
matching of G is called connected if it is contained in a connected component
of the subgraph induced by the edges of the corresponding colour.

The following lemma, Lemma 4.1, says that any fair complete multipartite
graph with at least three partition classes can be covered with two connected
matchings of distinct colours. This is a direct consequence of our Theorem 1.4,
and thus there would be no reason to prove such a statement. But, as our aim is
to apply the regularity method later, in order to pump up our paths/connected
matchings to cycles that cover almost all vertices of the graph, we need a robust
version of Lemma 4.1. (This version is given in Lemma 4.2 below.) It will be
much easier to extend the proof of Lemma 4.1 for a robust version, than the
one of Theorem 1.4. We prefer to give the proof of the exact version first, so
that the idea becomes clear to the reader.
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It will be convenient to formulate the two lemmas only for tripartite graphs.
This is justified by Lemma 1.8.

Lemma 4.1. Let G be a fair complete tripartite graph on an even number of
vertices. If the edges of G are coloured red or blue, then there are two vertex-
disjoint connected matchings of distinct colours that together cover all vertices
of G.

Proof. Say V1 and V2 are the largest two partition classes of G. Let v1 ∈ V1,
v2 ∈ V2 and set G′ = G − {v1, v2}. Note that G′ is fair, and unless |V2| = 1,
we may apply induction to obtain two vertex-disjoint connected matchings of
distinct colours that together cover all vertices of G′.

On the other hand, if |V2| = 1, then |V3| = 1, and thus by fairness, |V1| = 2.
In this case, any two disjoint edges e1, e2 cover all the vertices of G′. Clearly, it
is either possible to choose e1, e2 of distinct colours, or in way that they give a
monochromatic connected matching.

Resuming, in either case there are a red and a blue connected matching
MR, MB that cover all of V (G) except v1, v2. Let VR be the vertex set of the
connected red component of G containing MR, and let VB be the analogue for
blue. Even if one of the matchings is empty, note that we can always assume
that |VR|, |VB| ≥ 1.

Also, VR and VB meet. Indeed, choose any distinct i, j ∈ {1, 2, 3} with
VR ∩ Vi 6= ∅ 6= VB ∩ Vj , say x ∈ VR ∩ Vi and y ∈ VB ∩ Vj . The edge xy is either
red or blue, which means that (VR ∩ VB) ∩ (Vi ∪ Vj) 6= ∅. In particular, we get
VR ∩ VB 6= ∅.

Assume v1v2 is red. Suppose that G cannot be covered with two connected
matchings as desired. Thus,

{v1, v2} ∩ VR = ∅, (20)

since otherwise we could add v1v2 to MR. This means that

all edges in the cut EG(VR, {v1, v2}) are blue. (21)

In particular, all edges in EG(VR ∩VB , {v1, v2}) are blue. Hence, at least one of
v1, v2 is contained in VB, say v1 ∈ VB . Consequently, V (G) \ {v2} ⊆ VR ∪ VB.
Thus, by (21), we have that

V (G) \ (V1 ∪ {v2}) ⊆ VB . (22)

Now, if v2 /∈ VB, then by (20), we have v2 /∈ VR∪VB , and hence VR∩VB ⊆ V2

(since any edge from v2 to VR ∩VB has some colour). By the argument we used
for showing that VR ∩ VB 6= ∅, we know that V1 ∪ V3 is contained either in
VR \ VB or in VB \ VR. By (22), this means we have VB \ VR ⊇ V1 ∪ V3.

In either case, we find that VB covers all but at most one partition class. Let
M ′

B be a largest blue matching in G such that G′′ := G − V (M ′

B) is still fair.
Since VB covers all but at most one partition class, M ′

B is a connected matching.
If all edges in G′′ are red, then G′′ has a red connected perfect matching, and
we are done.

So assume there is some blue edge uv ∈ E(G′′). By the choice of M ′

B, the
graph G′′ − {u, v} is not fair. This means neither of u, v lies in the largest
partition class V ′′

1 of G′′, and, furthermore, |V ′′

1 | = |V (G′′)|/2. Thus all edges
between V ′′

1 and the rest of G′′ are red, and hence, we can cover G′′ with a red
connected matching.
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We now give a robust version of Lemma 4.1. This is the result we need for
applying regularity later.

Lemma 4.2. Let G be a fair tripartite graph on n vertices, with partition classes
V1, V2, V3, such that |Vi| ≥ 3εn, for some ε with 0 < ε < 1/5. Suppose that

d(v) ≥ (1 − ε)(n− |Vi|)

for i = 1, 2, 3 and for each v ∈ Vi. If the edges of G are coloured red and blue,
then there are two vertex-disjoint connected matchings of distinct colours that
together cover all but at most 36εn vertices of G.

Proof. Take a red connected matching MR and a blue connected matching MB,
which together cover as much as possible of V (G), while leaving G′ := G −
V (MR ∪ MB) fair. Let VR, VB be the vertex sets of the respective colour
components, as above we may assume both are non-empty. We assume G′

contains more than 36εn vertices.
We claim that for all i, j ∈ {1, 2, 3} with i 6= j and Vi∩VR 6= ∅ and |Vj∩VB | >

εn, we have
(VR ∩ VB) ∩ (Vi ∪ Vj) 6= ∅. (23)

Indeed, by the degree condition of the lemma, there is an edge from Vi ∩ VR

to Vj ∩ VB, and clearly, one of its endpoints lies in VR ∩ VB . This proves (23).
Observe that (23) also holds if we interchange the roles of VR and VB .

Let
Vε := V (G) \ (VR ∪ VB).

Our next aim is to show that there are ℓ ∈ {1, 2, 3}, X ∈ {R,B} with

(a) VX ⊇ V (G) \ (Vℓ ∪ Vε), and

(b) |Vε ∩ Vi| ≤ εn for i ∈ {1, 2, 3}, i 6= ℓ.

First of all, since all edges are coloured, note that no vertex in Vε may send
an edge to VR ∩ VB . So, by the degree condition of the lemma, we know that
|Vε ∩ Vℓ| ≤ εn for all ℓ with (VR ∩ VB) \ Vℓ 6= ∅. In particular, if Vℓ is such that
|Vε∩Vℓ| > εn, then VR∩VB ⊆ Vℓ. This implies |Vε∩Vi| ≤ εn and |Vε∩Vj | ≤ εn,
where Vi, Vj are the other two partition classes. Moreover, since Vj has at least
3εn vertices, we know that Vj \ Vε has at least εn vertices in either VR \ VB or
in VB \ VR, say in VB \ VR. Then by (23), we have that Vi \ Vε is contained in
VB \ VR. Again by (23) (interchanging the roles of i and j), we see that also
Vj \ Vε is contained in VB \ VR. Thus, either (a) and (b) hold, or

|Vε ∩ Vℓ| ≤ εn for all ℓ ∈ {1, 2, 3}. (24)

We now assume the latter assertion in order to show that (a) and (b) hold also
in this case.

Since |V (G′)| > 36εn, and since G′ is fair, the largest two partition classes
V ′

1 , V ′

2 of G′ each contain at least 9εn vertices. For notational ease, we assume
V ′

i ⊆ Vi for i = 1, 2.
A well-known fact states that any graph H has a subgraph H ′ which has

minimum degree at least half the average degree of H . Applying this fact to
the bipartite graph spanned by V ′

1 and V ′

2 , in the majority colour, say this is

17



red, we obtain sets U1 ⊆ V ′

1 and U2 ⊆ V ′

2 such that the minimum degree from
Ui to U3−i in red is greater than 2εn. In particular, |Ui| > 2εn, for i = 1, 2.

By maximality of MR, and since G′ − {u1, u2} is still fair for any red edge
u1u2 between U1 and U2, we know that all edges between U1 ∪ U2 and VR are
blue. In particular, the edges between U1 ∪ U2 and some fixed x ∈ VR ∩ VB are
blue. Without loss of generality, assume x /∈ V1. Since U1 has size greater than
2εn, every vertex y ∈ VR \ V1 sends a blue edge to some blue neighbour of x in
U1. Thus, by the definition of Vε, we have

V (G) \ (Vε ∪ V1) ⊆ VB ,

which is as desired for (a). Because of (24), also (b) holds. We have thus
shown (a) and (b); let us assume they hold for ℓ = 1 and X = B.

Set V ′

ε := Vε \ V1. Now take a maximal blue matching M ′

B in G − V ′

ε such
that G′′ := G − V (M ′

B) is still fair; by (a) we know that M ′

B is connected in
blue. Assume that |V (G′′)| > 36εn, as otherwise we are done.

By maximality of M ′

B, for any blue edge in E(G′′−V ′

ε ) we have that G′′−e is
not fair. Thus, similar as in the proof of Lemma 4.1, either all edges of G′′ −V ′

ε

are red, or G′′ contains a spanning balanced bipartite graph H such that any
blue edge in H is incident with V ′

ε .
In either case, we can easily find a red connected matching in G′′ covering

almost all of G′′ as follows. Take a maximal red connected matching M ′

R in
G′′ − V ′

ε , or in H − V ′

ε , such that the remainder of the graph is still fair. Note
that we may assume M ′

R 6= ∅ as |V ′

ε | ≤ 2εn by (b). Let xy ∈ M ′

R. The
neighbourhoods of x and y in the uncovered part of G′′−V ′

ε or H−V ′

ε are large
enough to span at least one red edge. Also, all edges between x and G′′ −V ′

ε or
H − V ′

ε are red, a contradiction to the maximality of M ′

R.

We now give an analogue of Lemma 4.2 for bipartite graphs. With the ob-
vious exclusion of the proper split colouring, we can cover all 2-edge-coloured
balanced bipartite graphs that are almost complete bipartite, with two con-
nected matchings of distinct colours.

Lemma 4.3. Let G be a balanced bipartite graph on n vertices, with partition
classes V1, V2. Suppose G has minimum degree at least (1 − ε)n/2, for some ε
with 0 < ε < 1/5.
If the edges of G are coloured red and blue, and this colouring is not a split
colouring, then there are two vertex-disjoint connected matchings of distinct
colours that together cover all but at most 4εn vertices of G.

Proof. Take a red connected matching MR and a blue connected matching MB,
together covering as much as possible of V (G). Let VR, VB be the vertex sets
of the respective colour components. We assume G − V (MR ∪ MB) contains
more than 4εn vertices. As above we see that VR ∩VB 6= ∅, say there is a vertex
x ∈ VR ∩ VB ∩ V2.

Now, if there is an X ∈ {R,B} and i ∈ {1, 2} such that VX covers all
but a set V ′

i of at most 2εn vertices of Vi, we can proceed as in the proof of
Lemma 4.2. That is, we take a maximal matching M ′

X in G− V ′

i in the colour
corresponding to X , and note that M ′

X is connected in this colour. Then all
edges in G− V ′

i − V (M ′

X) must have the other colour, and we can easily cover
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all but at most 4εn vertices of G − V (M ′

X) with a connected matching in this
colour.

So, from now on, let us assume that there there is no choice of X ∈ {R,B}
and i ∈ {1, 2} as above. That is, we assume

|Vi \ VX | > 2εn for all X ∈ {R,B} and i ∈ {1, 2}. (25)

Set Vε := V (G) \ (VR ∪ VB). Since there can be no edges from x to Vε ∩ V1,
we have that

|Vε ∩ V1| ≤ εn. (26)

Moreover,
if VR ∩ VB ∩ V1 6= ∅, then |Vε ∩ V2| ≤ εn. (27)

Since there is no edge between VR \ VB and VB \ VR, there are j ∈ {1, 2}
and Z ∈ {R,B} such that |Vj ∩ (VZ \VY )| ≤ εn, where Y ∈ {R,B} is such that
Y 6= Z. In other words,

|Vj \ (Vε ∪ VY )| ≤ εn.

Together with (25), this implies that |Vε∩Vj | > εn. So by (26), we have that
j = 2, and by (27), we know that VR ∩ VB ∩ V1 = ∅. Hence, V1 \ Vε is covered
by the two disjoint sets V1R := V1 ∩ (VR \ VB) and V1B := V1 ∩ (VB \ VR).

By (25) and (26), we have that |V1R|, |V1B | > εn. Now, as no edge may
exist between V1R and VB \ VR, or between V1B and VR \ VB , we see that
V2 \ Vε = VR ∩ VB. Observe that thus, all edges between V2 \ Vε and V1R are
red, and all edges between V2 \ Vε and V1B are blue.

Also, by definition of Vε, all edges between Vε ∩V2 and V1R are blue, and all
edges between Vε ∩ V2 and V1B are red. Additionally, since there are no edges
between Vε ∩ V1 and V2 \ Vε = VR ∩ VB , either Vε ∩ V1 is empty, or V2 \ Vε

has less than εn vertices. In the first case, we have a split colouring, and in
the latter case, we can easily cover all but at most 2εn vertices of G with two
monochromatic connected matchings of distinct colours.

5 Covering almost everything with three cycles

5.1 Regularity preliminaries

In this subsection we introduce some very well-known concepts; the reader famil-
iar with regularity is invited to skip this. We start giving the standard definition
of regularity. Given ε > 0 and disjoint subsets A,B of the vertex set of a graph
G, we say that the pair (A,B) is ε-regular, and of density d(A,B), if, for every
pair (A′, B′) with A′ ⊆ A, |A′| ≥ ε|A|, B′ ⊆ B, |B′| ≥ ε|B|, we have

|d(A′, B′) − d(A,B)| < ε.

When there is no danger of confusion, we simply say that the pair (A,B) is
ε-regular. It is well-known and easy to see that together with a pair (A,B), its
complement is ε-regular, and of density 1 − d(A,B).

For a graph G, we say a partition V0∪V1∪· · ·∪Vt of its vertex set is ε-regular
if the following hold:

(i) |V1| = |V2| = ... = |Vt| and |V0| ≤ ε|V (G)|, and
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(ii) for each i, 1 ≤ i ≤ t, all but at most εt2 of the pairs (Vi, Vj), 1 ≤ j ≤ t,
are ε-regular.

We state Szemerédi’s regularity lemma [20] in its form with a prepartition.
We say a partition V1∪V2∪· · ·∪Vt refines another partition W1∪W2∪· · ·∪Ws

if for each i there is a j such that Vi ⊆ Wj .

Theorem 5.1 (Regularity lemma with prepartition). For every ε > 0 and
m0, s ∈ N, there is an m1 ∈ N such that the following holds for each graph G on
n ≥ m1 vertices, and with a partition W1, . . . ,Ws of its vertex set. There exists
an ε-regular partition V0 ∪ V1 ∪ · · · ∪ Vt such that

• V1 ∪ V2 ∪ · · · ∪ Vt refines W1 ∪W2 ∪ · · · ∪Ws, and

• m0 ≤ t ≤ m1.

It is usual to define a reduced graph of a graph G, for a given ε-regular
partition, and a threshold density ρ. This is the graph RG = ([t], E(RG)) which
has an edge for each ε-regular pair of density at least ρ. (Note that in spite of
the notation RG, the reduced graph RG depends on G, on ρ, and on the given
partition.)

5.2 Proof of Theorem 1.6

Theorem 5.1 applied with parameters ε ≪ δ, m0 = 1/ε and s = 2 and s = 3,
gives two values for m1 of which we take the larger one. Let G be a fair complete
multipartite graph on n > m1 vertices whose edges are coloured red and blue.
We assume the colouring is not δ-close to a split colouring.

Use Lemma 1.8 to obtain a spanning fair subgraph G′ ⊆ G that is complete
tripartite or complete bipartite (possibly G′ = G). In the case that the smallest
partition class of G′ has less than δn/20 vertices (and thus G′ is tripartite), we
delete this class, and the same number of vertices from the other classes, in a
way that the obtained bipartite graph (which we still call G′) is balanced. By
the proof of Lemma 1.8, we know that |E(G) \ E(G′)| < δn2/10.

Now, Theorem 5.1 applied to the red subgraph of G′ yields a partition of
V (G′) refining the bi- or tripartition which is ε-regular in both colours. Using
the majority colouring of each pair (that is, we use ρ = 1/2, and in case of
a tie we give the edge any colour), we can work with a two-coloured reduced
graph RG′ .

Note that the non-neighbours of a vertex v ∈ V (RG′) correspond to irregular
pairs containing v. So, there are at most

√
εt vertices v in RG′ that have more

than
√
εt non-neighbours in the other partition class(es). We discard these

vertices from the reduced graph RG′ to ensure that each vertex of the remaining
graph R′

G′ has at most
√
εt non-neighbours in the other partition class(es).

Observe that the size of any class Ci of the bi- or tripartition lies between

|Ĉi| − |V0|
|V1|

− √
εt ≥ |Ĉi|

|V1|
− 2

√
εt and

|Ĉi|
|V1|

, (28)

where Ĉi is the class of the bi-/tripartition of G′ corresponding to Ci. So,
since G′ is fair, and since |V0| ≤ εn, we have that |C1| ≤ |C2| + 3

√
εt, or

|C1| ≤ |C2|+ |C3|+2
√
εt, respectively, if C1 is the largest partition class of R′

G′ .
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If necessary, we discard at most 3
√
εt vertices from C1 to make the remaining

graph R′′

G′ fair.
Resuming, we have obtained a bi- or tripartite subgraph R′′

G′ of RG′ on at
least (1 − 4

√
ε)t and at most t vertices. Let the partition classes of R′′

G′ be
denoted C′

1, C′

2, and, if applicable, C′

3. In R′′

G′ , every vertex of C′

i has at most√
εt many non-neighbours outside of C′

i. Since R′′

G′ is fair, t − |C′

i| ≥ t/2, and
so every vertex of C′

i has degree at least

t− |C′

i| −
√
εt ≥ (1 − 2

√
ε)(t− |C′

i|),
where we sum the degree over both colours. We may view R′′

G′ as a reduced
graph for a subgraph G′′ of G′, with |V (G′′)| ≥ (1− 5

√
ε)n (allowing

√
εn ≥ εn

for the exceptional set V0). Note that

|E(G) \ E(G′′)| ≤ δn2/10 + 5
√
εn2 ≤ δn2/5. (29)

Observe that in the case that G′ is bipartite, the colouring in the reduced
graph R′′

G′ might be a split colouring, even if the colouring in G is not a split
colouring. But, in this case, note that if we change the colouring of any edge of
R′′

G′ , we no longer have a split colouring. As all our arguments work the same
whether we take the threshold for the colouring of E(R′′

G′) to be 1/2 or δ/2,
we may assume that we can either change the colouring of R′′

G′ in a justified
way so that the obtained colouring is not a split colouring, or that R′′

G′ has a
split colouring, and each red edge of R′′

G′ corresponds to a pair in G′′ which
has blue density < δ/2, and vice versa for the blue edges. So, deleting at most
δ|E(G′′)|/2 edges from G′′ we can make all pairs monochromatic. Thus, by (29),
this means G is δ-close to a split colouring, a contradiction.

Therefore, we may assume the colouring in R′′

G′ is not a split colouring.
Since by (28), the classes of the bi- or tripartition of R′′

G′ have size at least
δt/20 − 2

√
εn, we may apply Lemma 4.2 or Lemma 4.3 to R′′

G′ to obtain two
connected matchings, one in each colour, which together cover all but at most
72

√
εt vertices. Now we use a crucial and well-known lemma that has appeared

in similar forms before. In its original form it is due to  Luczak [15]. The version
we use here is close to the one given in from Section 4 of [12].

Lemma 5.2. Let R be the reduced two-coloured graph of a two-coloured graph H,
for some γ-regular partition, where each edge of R corresponds to a γ-regular
pair of density at least

√
γ.

If all but at most 72γ|V (R)| vertices of R can be covered with two disjoint
connected monochromatic matchings, one of each colour, then H has two disjoint
monochromatic cycles, one of each colour, which together cover at least (1 −
100

√
γ)|V (H)| vertices of H.

For completeness, let us outline a proof of Lemma 5.2.

Sketch of a proof of Lemma 5.2. We first connect in H the pairs correspond-
ing to matching edges with monochromatic paths, following their connections
in R. We do this simultaneously for both colours. Note that in total, these
paths consume only a constant number of vertices of H . Then we connect the
monochromatic paths using the matching edges, blowing up the edges to long
paths, where regularity ensures we can use all but a small fraction of the corre-
sponding pairs. This gives the desired cycles. The above argumentation is also
explained, rather detailed, in the proof of the main result of [11].
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Applying Lemma 5.2 to the graph R′′

G′ gives the desired two cycles which
cover all but at most 100

√
εn < δn of our graph G. This finishes the proof of

Theorem 1.6.

6 Covering all vertices with 14 cycles

6.1 Preliminaries

Call a balanced bipartite subgraph H of an 2n-vertex graph ε-hamiltonian, if
any balanced bipartite subgraph of H with at least (1 − ε)n vertices in each
partition class is hamiltonian. The next lemma is a straighforward combination
of results of Haxell [13] and Peng, Rödl and Ruciński [17]. A proof of this
lemma is given in our companion paper [14].

Lemma 6.1. [14] For any 1 > γ > 0, there is an n0 ∈ N such that any balanced
bipartite graph G on at least 2n ≥ 2n0 vertices and of edge density at least γ
has an γ/4-hamiltonian subgraph of size at least γ3024/γn/3.

In order to absorb vertices not covered with the cycles given by Theorem 1.6,
we use the following result.

Lemma 6.2 (Gyárfás, Ruszinkó, Sárközy, and Szemerédi [11]). There is an
n0 ∈ N such that for n ≥ n0 and m ≤ n

(8r)8(r+1) and for any colouring of the

edges of Kn,m with r colours, there are 2r vertex-disjoint monochromatic cycles
that cover the m vertices of the smaller side.

6.2 Proof of Theorem 1.7

Let G be a fair complete k-partite graph on n ≥ n0 vertices, whose edges are 2-
coloured. We assume n0 to be large enough, its value may be extracted from the
proof. By Lemma 1.8, we may assume that 2 ≤ k ≤ 3. Let V1, V2, and possibly
V3, be the partition classes of G, where we assume that |V1| ≥ |V2| ≥ |V3|. Set

δ := 2−104 .
For technical reasons, we split the argument into three cases. The explicit

value of δ plays a role only in the last case of the proof.
We first discuss the case when

|V1| ≤ |V2| + |V3| − δn and |V3| ≥ δn. (30)

We pick disjoint subsets U1
1 , U

2
1 ⊆ V1, U1

2 , U
3
2 ⊆ V2, and U2

3 , U
3
3 ⊆ V3 of size

⌊δn/4⌋ each. Due to (30), it holds that G−{U j
i : i, j ∈ {1, 2, 3}} is fair. Indeed,

every graph H with G − {U j
i : i, j ∈ {1, 2, 3}} ⊆ H ⊆ G is fair, a fact that we

will exploit later.
Let G1 := G[U1

1 , U
1
2 ], G2 := [U2

1 , U
2
3 ], and G3 := G[U3

2 , U
3
3 ]. Assuming n0 is

large enough, we apply Lemma 6.1 with γ := 1/2 to Gi, i = 1, 2, 3, considering
only the edges of the respective majority colour. This gives monochromatic
1/8-hamiltonian (and thus balanced) subgraphs Hi = [W i

1 ,W
i
2] of Gi, i = 1, 2, 3

with
|W i

1| ≥ δn/26053. (31)

Now let H := G−⋃3
i=1 V (Hi) and recall that H is fair since G−{U j

i : i, j ∈
{1, 2, 3}} ⊆ H ⊆ G. By (30) and by the choice of the sets U i

j , each partition
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class of H has size at least δn/2. Let δ′ := δ/26148. Assuming n0 is large enough,
we know H is not δ′-close to a split colouring, and Theorem 1.6 gives that all
but at most δ′n vertices of H can be partitioned into two monochromatic cycles.
If the set X ⊆ V (G′) of uncovered vertices has odd cardinality, we cover one of
its vertices with a trivial cycle, and from now on assume |X | is even.

Assume |X ∩V3| ≥ |X ∩V1|, |X ∩V2| (the other cases are similar). Partition
X into equal-sized sets X1, X2 with X ∩ Vi ⊆ Xi for i = 1, 2. Assuming n0 is
sufficiently large, the choice of δ′ and (31) give that

|X1| ≤ δ′n/2 ≤ |W 1
2 |/1624. (32)

So, Lemma 6.2 yields a set C of eight vertex-disjoint monochromatic cycles in
[X1,W

1
2 ] and [X2,W

1
1 ] that together cover X1 ∪ X2. As we may assume that

C does not contain any trivial cycles, V (
⋃ C) ∩ V (H1) is balanced, and each

side has at most |W 1
2 |/1624 vertices, by (32). Since H1 is (1/8)-hamiltonian,

the monochromatic graph H1 − V (
⋃ C) thus has a hamilton cycle. Also, H2

and H3 each admit a hamilton cycle. In total, we covered V (G) using at most
2 + 1 + 8 + 3 = 14 vertex-disjoint monochromatic cycles.

We now discuss the case when k = 2. We use the same method as above.
Observe that now, we only need to find one (1/8)-hamiltonian subgraph of G
(as opposed to the three graphs H1, H2, H3 above). Thus in the last step we
will use only one instead of three hamilton cycles. However, we might need
three cycles to cover G almost entirely, since the colouring of G might be close
to a split-colouring (a covering with 3 cycles does exist by the remark after
Theorem 1.6). Since we may assume that none of these three cycles is trivial,
we may assume the set X of vertices not covered with the three cycles to have
even cardinality. In this way we avoid another cycle. This means we can cover
G with 3 + 8 + 1 = 12 vertex-disjoint monochromatic cycles in total.

To complete the proof of Theorem 1.7, we now consider the case when k = 3,
but (30) is violated. Essentially, we proceed as in the case of k = 2. If n is odd,
we pick a single vertex v from V1 as a cycle. Since G− v is fair, we may simply
assume that n is even.

No matter whether we have |V3| < δn, or we have |V3| ≥ δn and |V1| >
|V2|+ |V3| − δn, we proceed as follows. Delete a set W of |V2|+ |V3| − |V1| < δn
vertices from V3. Consider the bipartite graph G′ spanned by V1 and the remains
of V2 ∪ V3, which we call V ′

2 . Note that G′ is complete bipartite and balanced.
Let U1 ⊆ V1 and U2 ⊆ V2 have size ⌈n/4⌉ each. (Note that clearly |V2| ≥

n/4.) Assuming n0 is large enough, we may apply Lemma 6.1 with γ = 1/2 to
the graph induced by the majority colour to find a (1/8)-hamiltonian subgraph
H = [U ′

1, U
′

2] of G′[U1 ∪ U2], with |U ′

1| = |U ′

2| ≥ n/26052. Assuming n0 is large
enough, the remark after Theorem 1.6 gives three monochromatic vertex-disjoint
cycles that cover all but a set W ′ of at most δn many vertices of G′−V (H). We
may assume that none of these cycles is trivial, and thus |W ′ ∩ V1| = |W ′ ∩ V ′

2 |.
Partition W ∪W ′ into two equal-sized sets W1 and W2 such that for i = 1, 2,

all edges between Wi and U ′

i are present. As

1624|W1| < δn/297 ≤ n/26052 ≤ |U ′

2|,

we may apply Lemma 6.2 to cover each of W1, W2 with four vertex-disjoint
monochromatic cycles, which we again assume to be non-trivial. Since H is
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(1/8)-hamiltonian, the yet unused vertices of H span a hamiltonian cycle. In
total, we covered G with 1+3+8+1 = 13 vertex-disjoint monochromatic cycles.

7 Conclusion

Our Theorem 1.4 and the earlier result of Pokrovskiy together cover all cases
of monochromatic path covers in 2-edge-coloured multipartite graphs. It would
be natural to investigate the same problem for more colours, in the spirit of
Conjecture 1.1. For bipartite graphs whose edges are coloured with r colours,
Pokrovskiy [18] conjectures that there is a partition into 2r− 1 monochromatic
paths, and he shows this number is best possible. For k-partite graphs with
k ≥ 3 a partition into less monochromatic paths, perhaps r paths, might be
possible, in analogy to the case r = 2 we treated here.

For cycle partitions, as said in the introduction, we believe that Theorem 1.6
is not best possible. However, recalling the example given in the introduction,
a split colouring between a partition class of size n/2 and the rest of the graph,
it is not always possible to cover all vertices of any large fair multipartite graph
with two vertex-disjoint monochromatic cycles. This remains true even if the
colouring of this graph is far from a split colouring (the other classes might have
size n/4 each).

Even if a partition class containing half of the vertices of the graph is for-
bidden, such constructions are possible. Indeed, given a properly split-coloured
balanced complete bipartite graph one can add a third partition class consisting
of a single vertex v3 seeing only one colour. Then the obtained graph cannot be
partitioned into two monochromatic cycles. One can even add a fourth partition
class consisting of a single vertex v4 seeing only the other colour, while giving
v3v4 any colour. Still the obtained graph has no partition into two monochro-
matic cycles.

Problem 7.1. For k ≥ 3, under which conditions does a fair complete k-partite
graph with a 2-colouring of the edges admit a partition into two monochromatic
cycles?

One candidate for a sufficient condition in Problem 7.1 could be balanced-
ness, that is, having partition classes of equal size. In any case, we think that
considering balanced multipartite graphs is a reasonable restriction that might
be of its own interest.

The next natural step is to extend Theorems 1.3 and 1.6 to more colours.
We have seen here that three disjoint monochromatic cycles can cover all but
o(n) of the vertices of any large enough multipartite graph, whose edges are
two-coloured (where three cycles are only needed if the colouring is very close
to a split colouring). In [14], together with Richard Lang, we prove that in
large enough 3-edge coloured balanced complete bipartite graphs, five disjoint
monochromatic cycles suffice to cover the graph almost entirely.

In analogy to Pokrovskiy’s conjecture for path covers [18] mentioned above,
it might always be possible to cover almost all vertices of any large enough mul-
tipartite graph, whose edges are r-coloured, with 2r−1 disjoint monochromatic
cycles. Perhaps the number of cycles needed can even be dropped to r in k-
partite graphs with k ≥ 3. Maybe this is even possible in bipartite graphs with
a colouring sufficiently far from a specific problematic colouring.
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[16] T.  Luczak, V. Rödl, and E. Szemerédi, Partitioning two-coloured complete
graphs into two monochromatic cycles, Combin. Probab. Comput. 7 (1998),
423–436.
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