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Abstract. We prove that graphs excluding a fixed immersion have bounded nonrepetitive

chromatic number. More generally, we prove that if H is a fixed planar graph that has a

planar embedding with all the vertices with degree at least 4 on a single face, then graphs

excluding H as a topological minor have bounded nonrepetitive chromatic number. This is

the largest class of graphs known to have bounded nonrepetitive chromatic number.

1 Introduction

A vertex colouring of a graph is nonrepetitive if there is no path for which the first half of

the path is assigned the same sequence of colours as the second half. More precisely, a k-

colouring of a graph G is a function ψ that assigns one of k colours to each vertex of G. A

path (v1, v2, . . . , v2t) of even order in G is repetitively coloured by ψ if ψ(vi) = ψ(vt+i) for

i ∈ {1, . . . , t}. A colouring ψ of G is nonrepetitive if no path of G of even order is repetitively

coloured by ψ. Observe that a nonrepetitive colouring is proper, in the sense that adjacent

vertices are coloured differently. The nonrepetitive chromatic number π(G) is the minimum

integer k such that G admits a nonrepetitive k-colouring. We only consider simple graphs

with no loops or parallel edges.

The seminal result in this area is by Thue [41], who in 1906 proved that every path is nonre-

petitively 3-colourable. Thue expressed his result in terms of strings over an alphabet of three

characters—Alon et al. [3] introduced the generalisation to graphs in 2002. Nonrepetitive

graph colourings have since been widely studied [2–12, 21, 25–33, 35, 37–39]. The principle

result of Alon et al. [3] was that graphs with maximum degree ∆ are nonrepetitively O(∆2)-

colourable. Several subsequent papers improved the constant [16, 26, 30]. The best known

bound is due to Dujmović et al. [16].

Theorem 1 ([16]). Every graph with maximum degree ∆ is nonrepetitively (1 + o(1))∆2-

colourable.

A number of other graph classes are known to have bounded nonrepetitive chromatic number.

In particular, trees are nonrepetitively 4-colourable [8, 33], outerplanar graphs are nonrepet-
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itively 12-colourable [5, 33], and graphs with bounded treewidth have bounded nonrepetitive

chromatic number [5, 33]. (See Section 2 for the definition of treewidth.) The best known

bound is due to Kündgen and Pelsmajer [33].

Theorem 2 ([33]). Every graph with treewidth k is nonrepetitively 4k-colourable.

The primary contribution of this paper is to provide a qualitative generalisations of Theorems 1

and 2 via the notion of graph immersions and excluded topological minors.

A graph G contains a graph H as an immersion if the vertices of H can be mapped to distinct

vertices of G, and the edges of H can be mapped to pairwise edge-disjoint paths in G, such

that each edge vw of H is mapped to a path in G whose endpoints are the images of v and

w. The image in G of each vertex in H is called a branch vertex. Structural and colouring

properties of graphs excluding a fixed immersion have been widely studied [1, 13, 14, 18–

20, 22–24, 34, 36, 40, 42]. We prove that graphs excluding a fixed immersion have bounded

nonrepetitive chromatic number.

Theorem 3. For every graph H with t vertices, every graph that does not contain H as an

immersion is nonrepetitively 4t
4+O(t2)-colourable.

Since a graph with maximum degree ∆ contains no star with ∆ + 1 leaves as an immersion,

Theorem 3 implies that graphs with bounded degree have bounded nonrepetitive chromatic

number (as in Theorem 1).

We strengthen Theorem 3 as follows (although without explicit bounds). A graph G contains

a graph H as a strong immersion if G contains H as an immersion, such that for each edge

vw of H, no internal vertex of the path in G corresponding to vw is a branch vertex.

Theorem 4. For every fixed graph H, there exists a constant k, such that every graph G that

does not contain H as a strong immersion is nonrepetitively k-colourable.

Note that planar graphs with n vertices are nonrepetitively O(log n)-colourable [15], and the

same is true for graphs excluding a fixed graph as a minor or topological minor [17]. It is un-

known whether any of these classes have bounded nonrepetitive chromatic number. Our final

result shows that excluding a special type of topological minor gives bounded nonrepetitive

chromatic number.

Theorem 5. Let H be a fixed planar graph that has a planar embedding with all the vertices

of H with degree at least 4 on a single face. Then there exists a constant k, such that every

graph G that does not contain H as a topological minor is nonrepetitively k-colourable.

Graphs with bounded treewidth exclude fixed walls as topological minors. Since walls are

planar graphs with maximum degree 3, Theorem 5 implies that graphs of bounded treewidth
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have bounded nonrepetitive chromatic number (as in Theorem 2). Similarly, for every graph

H with t vertices, the ‘fat star’ graph (which is the 1-subdivision of the t-leaf star with edge

multiplicity t) contains H as a strong immersion. Since fat stars embed in the plane with

all vertices of degree at least 4 on a single face, Theorem 5 implies that graphs excluding

a fixed graph as a strong immersion have bounded nonrepetitive chromatic number (as in

Theorem 4). In this sense, Theorem 5 generalises all of Theorems 1 to 4.

The results of this paper, in relation to the best known bounds on the nonrepetitive chromatic

number, are summarised in Figure 1.

2 Tree Decompositions

For a graph G and tree T , a tree decomposition or T -decomposition of G consists of a collection

(Tx ⊆ V (G) : x ∈ V (T )) of sets of vertices of G, called bags, indexed by the nodes of T , such

that for each vertex v ∈ V (G) the set {x ∈ V (T ) : v ∈ Tx} induces a connected subtree of

T , and for each edge vw of G there is a node x ∈ V (T ) such that v, w ∈ Tx. The width

of a T -decomposition is the maximum, taken over the nodes x ∈ V (T ), of |Tx| − 1. The

treewidth of a graph G is the minimum width of a tree decomposition of G. The adhesion

of a tree decomposition (Tx : x ∈ V (T )) is max{|Tx ∩ Ty| : xy ∈ E(T )}. The torso of each

node x ∈ V (T ) is the graph obtained from G[Tx] by adding a clique on Tx ∩ Ty for each edge

xy ∈ E(T ) incident to x. Dujmović et al. [17] generalised Theorem 2 as follows:

Lemma 6 ([17]). If a graph G has a tree decomposition with adhesion k such that every torso

is nonrepetitively c-colourable, then G is nonrepetitively c 4k-colourable.

For integers c, d > 0 a graph G has (c, d)-bounded degree if G contains at most c vertices with

degree greater than d.

Lemma 7. Every graph with (c, d)-bounded degree is nonrepetitively c+(1+o(1))d2-colourable.

Proof. Assign a distinct colour to each vertex of degree at least d, and colour the remaining

graph by Theorem 1. For each vertex v of degree at least d, no other vertex is assigned the

same colour as v. Thus v is in no repetitively coloured path. The result then follows from

Theorem 1.

Dvořák [18] proved the following structure theorem for graphs excluding a strong immersion.

Theorem 8 ([18]). For every fixed graph H, there exists a constant k, such that every graph

G that does not contain H as a strong immersion has a tree decomposition such that each

torso is (k, k)-bounded degree.

Lemmas 6 and 7 and Theorem 8 imply Theorem 4.
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Figure 1: Upper bounds on the nonrepetitive chromatic number of various graph classes.

‘Special’ refers to the condition in Theorem 5.

3 Weak Immersions

The proof of Theorem 4 gives no explicit bound on the constant k. In this section we prove an

explicit bound on the nonrepetitive chromatic number of graphs excluding a weak immersion.

Theorem 3 follows from Lemma 6 and the following structure theorem of independent interest.

Theorem 9. For every graph H with t vertices, every graph that does not contain H as a

weak immersion has a tree decomposition with adhesion at most t2 such that every torso has
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(t, t4 + 2t2)-bounded degree.

The starting point for the proof of Theorem 9 is the following structure theorem of Wollan

[42]. For a tree T and graph G, a T -partition of G is a partition (Tx ⊆ V (G) : x ∈ V (T )) of

V (G) indexed by the nodes of T . Each set Tx is called a bag. Note that a bag may be empty.

For each edge xy of a tree T , let T (xy) and T (yx) be the components of T − xy where x is in

T (xy) and y is in T (yx). For each edge xy ∈ E(T ), let G(T, xy) :=
⋃
{Tz : z ∈ V (T (xy))} and

G(T, yx) :=
⋃
{Tz : z ∈ V (T (yx))}. Let E(T, xy) be the set of edges in G between G(T, xy)

and G(T, yx). The adhesion of a T -partition (Tx : x ∈ V (T )) is the maximum, taken over

all edges xy of T , of |E(T, xy)|. For each node x of T , the torso of x (with respect to a

T -partition) is the graph obtained from G by identifying G(T, yx) into a single vertex for

each edge xy incident to x (deleting resulting parallel edges and loops).

Theorem 10 ([42]). For every graph H with t vertices, for every graph G that does not

contain H as a weak immersion, there is a T -partition of G with adhesion at most t2 such

that each torso has (t, t2)-bounded degree.

Proof of Theorem 9. LetG be a graph that does not containH as a weak immersion. Consider

the T -partition (Tx : x ∈ V (T )) of G from Theorem 10.

Let T ′ be obtained from T by orienting each edge towards some root vertex. We now define

a tree decomposition (T ∗x : x ∈ V (T )) of G. Initialise T ∗x := Tx for each node x ∈ V (T ). For

each edge vw of G, if v ∈ Tx and w ∈ Ty and z is the least common ancestor of x and y in

T ′, then add v to T ∗α for each node α on the −→xz path in T ′, and add w to T ∗α for each node

α on the −→yz path in T ′. Thus each vertex v ∈ Tx is in a sequence of bags that correspond to

a directed path from x to some ancestor of x in T ′. By construction, the endpoints of each

edge are in a common bag. Thus (T ∗x : x ∈ V (T )) is a tree decomposition of G.

Consider a vertex v ∈ T ∗x ∩T ∗y for some edge −→xy of T ′. Then v has a neighbour w in G(T, yx),

and vw ∈ E(T, xy). Thus |T ∗x ∩ T ∗y | 6 |E(T, xy)| 6 t2. That is, the tree decomposition

(T ∗x : x ∈ V (T )) has adhesion at most t2.

Let G+
x be the torso of each node x ∈ V (T ) with respect to the tree decomposition (T ∗x : x ∈

V (T )). That is, G+ is obtained from G[T ∗x ] by adding a clique on T ∗x ∩ T ∗y for each edge xy

of T . Our goal is to prove that G+
x has (t, t4 + 2t2)-bounded degree.

Consider a vertex v of G+
x . Then v is in at most one child bag y of x, as otherwise v would

belong to a set of bags that do not correspond to a directed path in T ′. Since (T ∗x : x ∈ V (T ))

has adhesion at most t2, v has at most t2 neighbours in T ∗x ∩ T ∗p , where p is the parent of x

and v has at most t2 neighbours in T ∗x ∩T ∗y . Thus the degree of v in G+
x is at most the degree

of v in G[T ∗x ] plus 2t2. Call this property (?).

First consider the case that v 6∈ Tx. Let z be the node of T for which v ∈ Tz. Since v ∈ T ∗x ,
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by construction, x is an ancestor of z. Let y be the node immediately before x on the −→zx
path in T ′. We now bound the number of neighbours of v in T ∗x . Say w ∈ NG(v) ∩ T ∗x . If

w is in G(T, xy) then let ew be the edge vw. Otherwise, w is in G(T, yx) and thus w has

a neighbour u in G(T, xy) since w ∈ T ∗x ; let ew be the edge wu. Observe that {ew : w ∈
NG(v) ∩ T ∗x} ⊆ E(T, xy), and thus |{ew : w ∈ NG(v) ∩ T ∗x}| 6 t2. Since eu 6= ew for distinct

u,w ∈ NG(v) ∩ T ∗x , we have |NG(v) ∩ T ∗x | 6 t2. By (?), the degree of v in G+
x is at most 3t2.

Now consider the case that v ∈ Tx. Suppose further that v is not one of the at most t vertices

of degree greater than t2 in the torso Q of x with respect to the given T -partition. Suppose

that in Q, v has d1 neighbours in Tx and d2 neighbours not in Tx (the identified vertices).

So d1 + d2 6 t2. Consider a neighbour w of v in G[T ∗x ] with w 6∈ Tx. Then w ∈ G(T, yx)

for some child y of x. For at most d2 children y of x, there is a neighbour of v in G(T, yx).

Furthermore, for each child y of x, v has at most t2 neighbours in G(T, yx) since the T -

partition has adhesion at most t2. Thus v has degree at most d1 + d2t
2 6 t4 in G[T ∗x ]. By (?),

v has degree at most 2t2 + t4 in G+
x .

Since 3t2 6 t4 + 2t2, the torso G+
x has (t, t4 + 2t2)-bounded degree.

4 Excluding a Topological Minor

Theorem 5 is an immediate corollary of Lemma 6 and the following structure theorem of

Dvořák [18] that extends Theorem 8.

Theorem 11 ([18]). Let H be a fixed planar graph that has a planar embedding with all the

vertices of H with degree at least 4 on a single face. Then there exists a constant k, such that

every graph G that does not contain H as a topological minor has a tree decomposition such

that each torso has (k, k)-bounded degree.

While Theorem 11 is not explcitly stated in [18], we now explain that it is in fact a special

case of Theorem 3 in [18]. This result provides a structural description of graphs excluding

a given topological minor in terms of the following definition. For a graph H and surface

Σ, let mf(H,Σ) be the minimum, over all possible embeddings of H in Σ, of the minimum

number of faces such that every vertex of degree at least 4 is incident with one of these faces.

By assumption, for our graph H and for every surface Σ, we have mf(H,Σ) = 1. In this

case, Theorem 3 of Dvořák [18] says that for some integer k = k(H), every graph G that

does not contain H as a topological minor is a clique sum of (k, k)-bounded degree graphs. It

immediately follows that G has the desired tree decomposition. See Corollary 1.4 in [34] for

a closely related structure theorem.

The following natural open problem arises from this research: Do graphs excluding a fixed

planar graph as a topological minor have bounded nonrepetitive chromatic number? And

what is the structure of such graphs?
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