Online Ramsey theory for a triangle on F-free graphs

${ }^{\S}$ Department of Mathematics, Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do, Republic of Korea
${ }^{\|}$Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea
${ }^{4}$ Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea

January 11, 2019

Abstract

Given a class \mathcal{C} of graphs and a fixed graph H, the online Ramsey game for H on \mathcal{C} is a game between two players Builder and Painter as follows: an unbounded set of vertices is given as an initial state, and on each turn Builder introduces a new edge with the constraint that the resulting graph must be in \mathcal{C}, and Painter colors the new edge either red or blue. Builder wins the game if Painter is forced to make a monochromatic copy of H at some point in the game. Otherwise, Painter can avoid creating a monochromatic copy of H forever, and we say Painter wins the game.

We initiate the study of characterizing the graphs F such that for a given graph H, Painter wins the online Ramsey game for H on F-free graphs. We characterize all graphs F such that Painter wins the online Ramsey game for C_{3} on the class of F-free graphs, except when F is one particular graph. We also show that Painter wins the online Ramsey game for C_{3} on the class of K_{4}-minor-free graphs, extending a result by Grytczuk, Hałuszczak, and Kierstead.

1 Introduction

All graphs in this paper are finite. For a host graph G and a target graph H, let $G \rightarrow H$ mean that there exists a monochromatic copy of H for every (not necessarily proper) 2-edgecoloring of G. For a graph parameter ρ, let $R_{\rho}(H)$ denote the minimum $\rho(G)$ where $G \rightarrow H$.

[^0]When ρ counts the number of vertices in a graph, $R_{\rho}(H)$ is the Ramsey number of H and it is often denoted $R(H)$. The well-known Ramsey's Theorem [22] from 1930 states that $R(H)$ is finite for every graph H.

Burr, Erdős, and Lovász [3] introduced the chromatic Ramsey number and the degree Ramsey number, which arises when ρ is the chromatic number and the maximum degree, respectively. Erdős et al. 9] introduced the size Ramsey number, denoted $R_{e}(H)$, which arises when $e(G)$ is the number of edges in a graph G. We redirect the readers to a thorough survey by Conlon, Fox, and Sudakov [6] for more history regarding these parameters.

Another variant of Ramsey theory is online Ramsey theory, introduced by Beck [2] in 1993. Given a class \mathcal{C} of graphs and a fixed graph H, an online Ramsey game for H on \mathcal{C} is a game between two players Builder and Painter with the following rules: an unbounded set of vertices is given as an initial state, and on each turn Builder introduces a new edge with the constraint that the resulting graph must be in \mathcal{C}, and Painter colors the new edge either red or blue. Builder wins if Painter is forced to make a monochromatic copy of H at some point of the game, and we say Builder wins the online Ramsey game for H on \mathcal{C}. Otherwise, Painter can avoid creating a monochromatic copy of H forever, and we say Painter wins the online Ramsey game for H on \mathcal{C}.

If no graph in \mathcal{C} contains H as a subgraph, then Painter wins the online Ramsey game for H on \mathcal{C} since a copy of H cannot be created, let alone a monochromatic one. Therefore it must be that H is a subgraph of at least one graph in \mathcal{C} for a result to be nontrivial. If \mathcal{C} is the class of graphs with bounded maximum degree, then this is the online version of the degree Ramsey number; see [4, 23, 24] for results regarding this topic.

This paper concerns the online version of the size Ramsey number. For a graph H, the online (size) Ramsey number of H, denoted $r(H)$, is the minimum number of rounds required for Builder to win, assuming that both Builder and Painter play optimally. When there are no restrictions on the graphs Builder can create, it is an easy consequence of Ramsey's theorem [22] that Builder always wins the online Ramsey game for every target graph H, so $r(H) \leq R_{e}(H)$. For a fixed graph H, studying the ratio of $r(H)$ and $R_{e}(H)$ was initiated in [2, 10, 14] and has drawn much attention since then [11, 12, 13, 20]. There is also a line of research trying to determine some exact online Ramsey numbers [5, 7, 8, 12, 20, 21]. Additionally, there are some results on the behavior of $r(H)$ in various random settings [1, 15, 16, 17, 19 .

The investigation of online (size) Ramsey theory on specific graph classes was initiated in 2004 by Grytczuk, Hałuszczak, and Kierstead [11]. They studied online Ramsey theory on forests, k-colorable graphs, outerplanar graphs, and planar graphs. In particular, they conjectured that Builder wins the online Ramsey game for H on planar graphs if and only if H is an outerplanar graph. This conjecture was recently disproved by Petříčková [18]; she showed that one direction of the conjecture is true while the other direction is not.

Proposition 1.1 ([18]). For every outerplanar graph H, Builder wins the online Ramsey game for H on planar graphs.

Proposition 1.2 ([18). Builder wins the online Ramsey game for $K_{2,3}$ on planar graphs.

In [11], it is shown that Painter wins the online Ramsey game for C_{3} on outerplanar graphs, and the graphs containing C_{3} as a subgraph are the only known graphs where Painter wins the online Ramsey game on outerplanar graphs. On the other hand, they also demonstrate that Builder wins the online Ramsey game for C_{3} on 2-degenerate planar graphs.

Theorem 1.3 ([11). Painter wins the online Ramsey game for C_{3} on outerplanar graphs.
Proposition 1.4 ([1]). Builder wins the online Ramsey game for C_{3} on 2-degenerate planar graphs.

We extend the class of graphs where Painter wins the online Ramsey game for C_{3} from outerplanar graphs to K_{4}-minor-free graphs. Our proof is a generalization of the proof of Theorem 1.3 in [11.
Theorem 2.4. Painter wins the online Ramsey game for C_{3} on K_{4}-minor-free graphs.
We initiate the study of characterizing the graphs F such that for a given graph H, Painter wins the online Ramsey game for H on F-free graphs. A graph class is F-free if every graph in the class does not contain F as a subgraph. We characterize all graphs F such that Painter wins the online Ramsey game for C_{3} on F-free graphs, except when F is one special graph. We put the constraint that F has no isolated vertices because the game is defined to have infinitely many isolated vertices as the initial state. The following theorem is our main result.

Theorem 3.1, Let X_{1}, \ldots, X_{5} be the graphs in Figure 1, and let F be a graph with no isolated vertices. Given that F is not isomorphic to X_{5}, Painter wins the online Ramsey game for C_{3} on F-free graphs if and only if F is isomorphic to a subgraph of a graph in $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$.

Figure 1: The graphs $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$.
This paper is organized as follows. In Section 2, we prove Theorem 2.4 and in Section 3, we prove Theorem 3.1. Section 3 is further divided into three subsections. Subsection 3.1 and Subsection 3.2 deals with the classes of graphs where Builder and Painter wins, respectively. Subsection 3.3 concludes Section 3 ,

For an edge e, we say that "Painter cannot color e " if there is a monochromatic copy of H whether Painter colors e red or blue; in other words, Builder wins the game no matter what color Painter uses on e. In particular, we say that "Painter cannot color e red (blue)" or "Painter must color e blue (red)", if we already observed that Painter will eventually lose (a monochromatic copy of H will appear) when Painter colors e red (blue).

2 The online Ramsey game for C_{3} on K_{4}-minor-free graphs

Grytczuk, Hałuszczak, and Kierstead [11] proved that Builder wins the online Ramsey game for C_{3} on 2-degenerate planar graphs, but Painter wins the online Ramsey game for C_{3} on outerplanar graphs. We extend the class the graphs on which Painter is known to win the online Ramsey game for C_{3}. Since a graph is outerplanar if and only if it does not contain $K_{2,3}$ and K_{4} as a minor, we focus on $K_{2,3}$-minor-free graphs and K_{4}-minor-free graphs. We show that Painter wins the online Ramsey game for C_{3} on K_{4}-minor-free graphs, but Builder still wins the online Ramsey game for C_{3} on $K_{2,3}$-minor-free graphs.

The following proposition shows that Builder wins the online Ramsey game for C_{3} on $K_{2,3}$-minor-free graphs. Builder will use Strategy 2.1.

Strategy 2.1. Builder draws a copy of $K_{1,5}$. Let u be the vertex of degree 5. By the pigeonhole principle, Painter will color at least three edges with the same color, say $u v_{1}, u v_{2}, u v_{3}$. Builder draws the edges $v_{1} v_{2}, v_{2} v_{3}$, and $v_{3} v_{1}$.

Proposition 2.2. Builder wins the online Ramsey game for C_{3} on $K_{2,3}$-minor-free graphs.
Proof. Builder uses Strategy 2.1. Assume $u v_{1}, u v_{2}, u v_{3}$ are colored red. If Painter colors one of $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$ red, then this creates a red C_{3}. Therefore Painter must color all of $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$ blue, but then this creates a blue C_{3} with vertices v_{1}, v_{2}, and v_{3}.

The graph resulting from Strategy 2.1 has no $K_{2,3}$ as a minor. Thus Builder wins the online Ramsey game for C_{3} on $K_{2,3}$-minor-free graphs.

Now, we will prove that Painter wins the online Ramsey game for C_{3} on K_{4}-minor-free graphs. The key idea of this proof stemmed from the proof of Theorem 1.3 in [11].

Recall that a graph G contains H as a minor if there exists a set \mathcal{S} of pairwise disjoint subsets of $V(G)$ satisfying the following:

- For every vertex u of H, there is an element $S_{u} \in \mathcal{S}$ such that $G\left[S_{u}\right]$ is connected.
- For every edge $u v$ of H, there is an edge between S_{u} and S_{v}.

We call S_{u} the branch set of u in an H-minor of G for every vertex u of H. When the branch set has one vertex, we also call it a branch vertex. For two vertices x, y in G, an x, y-path is a path in G from x to y.

Lemma 2.3. Let xy be an edge of a K_{4}-minor-free graph G, and let P and Q be two x, y paths in $G-x y$. For an integer $k \geq 3$, if $x=v_{1}, \ldots, v_{k}=y$ are the common vertices of P and Q, then these vertices are in the same order on both P and Q.

Proof. The claim is trivial when $k=3$, so we may assume $k>3$. By reordering the indices, let v_{1}, \ldots, v_{k} be the order of these vertices on P.

We claim that for $j>i+1$, if there is a v_{i}, v_{j}-path R in G that is internally disjoint with P, then there is no path from $\left\{v_{i+1}, v_{i+2}, \ldots, v_{j-1}\right\}$ to $V(P) \backslash\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}$ that is
internally disjoint with P. Suppose not. Take an a, b-path P^{\prime} where $a \in\left\{v_{i+1}, v_{i+2}, \ldots, v_{j-1}\right\}$ and $b \in V(P) \backslash\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}$. If P^{\prime} and R share a vertex z, then G has a K_{4}-minor where the branch vertices are z, v_{i}, v_{j}, a. If P^{\prime} and R are vertex disjoint, then G has a K_{4}-minor where the branch vertices are a, b, v_{i}, v_{j}.

Thus, if R is a subpath of Q, then Q can never visit $v_{i+1}, v_{i+2}, \ldots, v_{j-1}$ because otherwise Q will contain a subpath from $\left\{v_{i+1}, v_{i+2}, \ldots, v_{j-1}\right\}$ to x or y. This is a problem since Q is an x, y-path and must go through all of v_{1}, \ldots, v_{k}. Therefore, we conclude that v_{1}, \ldots, v_{k} are in the same order on both P and Q.

Given two vertices u, v on a path P, let $P[u, v]$ denote the subpath of P from u to v. For a 2-edge-colored graph H, let $f(H)$ denote the number of red edges minus the number of blue edges in H modulo 3. A 2-edge-colored graph H is zero, positive, and negative if $f(H)$ is 0,1 , and 2, respectively. Given a 2-edge-colored graph G, a zero cycle C is good if there exist two vertices α, β on $V(C)$ such that an α, β-path on C is zero and there exists an α, β-path in G whose internal vertices are disjoint from $V(C)$.

Theorem 2.4. Painter wins the online Ramsey game for C_{3} on K_{4}-minor-free graphs.
Proof. Assume Builder drew the edge $e=x y$ to the previous graph to obtain the current graph G, which is 2-edge-colored except for e. Since the initial graph has no edges, it suffices to show that if $G-e$ has a 2-edge-coloring such that every zero cycle is good, then this coloring can be extended to G so that every zero cycle is good. Note that if every zero cycle is good, then there cannot be a monochromatic C_{3}, since a monochromatic C_{3} is a zero cycle and cannot have a zero path as a subgraph.

Suppose whenever Painter tries to color e red and blue in G, there arises a zero cycle C^{r} and C^{b}, respectively, that is not good. Let $P^{r}=C^{r}-e$ and $P^{b}=C^{b}-e$. Since C^{r} and C^{b} are zero cycles, P^{r} is negative and P^{b} is positive. Let $x=v_{1}, v_{2}, \ldots, v_{t}=y$ be the common vertices of P^{r} and P^{b}. By Lemma 2.3, they are in the same order on P^{r} and P^{b}. Without loss of generality, let v_{1}, \ldots, v_{t} be the ordering of these vertices on P^{r} and P^{b}. Note that $P^{r}\left[v_{j}, v_{j+1}\right]=P^{b}\left[v_{j}, v_{j+1}\right]$ might happen for some $j \in\{1, \ldots, t-1\}$, but there must exist an i where $P^{r}\left[v_{i}, v_{i+1}\right] \neq P^{b}\left[v_{i}, v_{i+1}\right]$, since P^{r} is negative and P^{b} is positive. Fix such an i, and note that $P^{r}\left[v_{i}, v_{i+1}\right]$ and $P^{b}\left[v_{i}, v_{i+1}\right]$ are internally disjoint.

We claim that both $P^{r}\left[v_{i}, v_{i+1}\right]$ and $P^{b}\left[v_{i}, v_{i+1}\right]$ are not zero. Without loss of generality, assume $P^{r}\left[v_{i}, v_{i+1}\right]$ was zero. Since $P^{b}\left[v_{i}, v_{i+1}\right]$ is a path from v_{i} to v_{i+1} whose internal vertices are disjoint from $V\left(C^{r}\right)$, this implies that C^{r} is a good cycle, which is a contradiction.

Now we claim that $P^{r}\left[v_{i}, v_{i+1}\right]$ and $P^{b}\left[v_{i}, v_{i+1}\right]$ are either both positive or both negative. Without loss of generality assume $P^{r}\left[v_{i}, v_{i+1}\right]$ is positive and $P^{b}\left[v_{i}, v_{i+1}\right]$ is negative. Since the cycle D formed by $P^{r}\left[v_{i}, v_{i+1}\right]$ and $P^{b}\left[v_{i}, v_{i+1}\right]$ is zero even before Builder drew e, we know that D is a good cycle by the induction hypothesis. Therefore, there are two vertices α, β on D where an α, β-path on D is zero and $G-e($ also, $G)$ has an α, β-path whose internal vertices are disjoint from $V(D)$. Note that this latter α, β-path cannot share its internal vertices with P^{r} and P^{b} since this would create a K_{4}-minor. If both α, β are on the same P^{j} for some $j \in\{r, b\}$, then because there are two zero α, β-paths (on C^{j}) and another internally disjoint α, β-path, we can conclude C^{j} is good, which is a contradiction. If α, β
are on different paths of P^{r}, P^{b}, then G contains K_{4} as a minor where the branch vertices are $v_{i}, v_{i+1}, \alpha, \beta$, which is again a contradiction.

Now we know that $P^{r}\left[v_{i}, v_{i+1}\right]$ and $P^{b}\left[v_{i}, v_{i+1}\right]$ are both positive or both negative for every $i \in\{1, \ldots, t-1\}$, which implies that P^{r} and P^{b} are both positive or both negative, which contradicts that P^{r} is negative and P^{b} is positive.

Thus, Painter can color e so that every zero cycle in G is good, and hence there is no monochromatic C_{3} in the coloring Painter produces.

We remark that the proof of Theorem 2.4 works for not only K_{4}-minor-free graphs, but also K_{4}-topological-minor-free graphs.

3 The online Ramsey game for C_{3} on F-free graphs

In this section, we attempt to characterize all graphs F such that Painter wins the online Ramsey game for C_{3} on F-free graphs. We determine the winner of the game in all cases except when F is the graph X_{5}, which is in Figure 1. Recall that we put the constraint that F has no isolated vertices because the game is defined to have infinitely many isolated vertices as the initial state. Here is our main result.

Theorem 3.1. Let X_{1}, \ldots, X_{5} be the graphs in Figure 1. Suppose that F is a graph with no isolated vertices that is not isomorphic to X_{5}. Painter wins the online Ramsey game for C_{3} on F-free graphs if and only if F is isomorphic to a subgraph of a graph in $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$.

3.1 When does Builder win the online Ramsey game for C_{3} on F-free graphs?

In this subsection, we provide three different classes where Builder wins the online Ramsey game for C_{3}. We start by proving Lemma 3.2 , which shows that we only need to consider F to be a subgraph of the graph X, which is in Figure 2. Then we investigate the classes of (1) K_{4}-free graphs, (2) $K_{1,5}$-free graphs, and (3) Y-free graphs where Y is the graph in Figure 5 .

Figure 2: The graph X.

Lemma 3.2. Let X be the graph in Figure 2. If a graph F is not isomorphic to a subgraph of X, then Builder wins the online Ramsey game for C_{3} on F-free graphs.

Figure 3: A strategy for Builder to win the online Ramsey game for C_{3} on K_{4}-free graphs.

Proof. Builder uses Strategy 2.1. Assume $u v_{1}, u v_{2}, u v_{3}$ are colored red. If Painter colors one of $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$ red, then this creates a red C_{3}. Therefore Painter must color all of $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$ blue, but then this creates a blue C_{3} with vertices v_{1}, v_{2}, and v_{3}.

There is no F as a subgraph at every step of the game since the resulting graph is X and F is not isomorphic to any of the subgraphs of X. Hence, Builder wins the online Ramsey game for C_{3} on F-free graphs.

The following Proposition 3.3 is a special case of a result in [11], and a more general theorem is proved in [13]. For the sake of completeness, we include a proof of Proposition 3.3.

Proposition 3.3. Builder wins the online Ramsey game for C_{3} on K_{4}-free graphs.
Proof. We will present a winning strategy for Builder.
Given a forest S, it is known that Builder wins the online Ramsey game for S on the class of all forests by [11]. Thus, we may assume that Builder has forced Painter to create a monochromatic path of length six while drawing a forest. We label the seven vertices on the path by $v_{1}, v_{2}, \ldots, v_{7}$ and suppose that these vertices on the path are in this order. Without loss of generality, assume the edges of the path are colored red. Note that there might be more edges incident with v_{i} for $i \in\{1, \ldots, 7\}$, but since the whole graph is a forest, it is K_{4}-free.

Next, Builder draws $v_{1} v_{5}$ and $v_{3} v_{7}$. We claim that Painter must color both $v_{1} v_{5}$ and $v_{3} v_{7}$ red. Without loss of generality assume that $v_{1} v_{5}$ is colored blue. Now Builder draws both $v_{1} v_{3}$ and $v_{3} v_{5}$. Painter must color $v_{1} v_{3}$ blue, otherwise there is a red C_{3} with three vertices v_{1}, v_{2}, v_{3}. Now Painter cannot color $v_{3} v_{5}$. Therefore, both $v_{1} v_{5}$ and $v_{3} v_{7}$ must be colored red.

Finally, Builder draws three edges $v_{1} v_{3}, v_{3} v_{6}$, and $v_{6} v_{1}$. If Painter colors any of them red, then a red C_{3} is created. Otherwise, Painter colors all of them blue, and this creates a blue C_{3} with three vertices v_{1}, v_{3}, and v_{6}. See Figure 3.

Four vertices of degree at least 3 appear only in the previous paragraph. It is easy to check that K_{4} does not appear as a subgraph in this case, so K_{4} does not appear as a subgraph at every step of the game. Hence, Builder wins the online Ramsey game for C_{3} on K_{4}-free graphs.

The following proposition is implied by a result in [4] (see Proposition 4.2). For completeness, we provide a proof here as well.

Figure 4: A strategy for Builder to win the online Ramsey game for C_{3} on $K_{1,5}$-free graphs.

Proposition 3.4. Builder wins the online Ramsey game for C_{3} on $K_{1,5}$-free graphs.
Proof. We will present a winning strategy for Builder.
Builder draws five pairwise disjoint induced copies of $K_{1,3}$. We claim that Painter must not create a monochromatic copy of $K_{1,3}$. Otherwise, without loss of generality, assume that there is a red $K_{1,3}$. Now, Builder draws K_{4} containing the red $K_{1,3}$ as a subgraph. If Painter colors any of the newly drawn edges red, then a red C_{3} is created. Otherwise, Painter colors all of the newly drawn edges blue, and a blue C_{3} is created.

Therefore, since there is no monochromatic copy of $K_{1,3}$, we may assume that at least three of the five pairwise disjoint induced copies of $K_{1,3}$ contain two red edges and one blue edge; let these copies of $K_{1,3}$ be S_{0}, S_{1}, S_{2} where $V\left(S_{i}\right)=\left\{v_{4 i}, v_{4 i+1}, v_{4 i+2}, v_{4 i+3}\right\}$ and $E\left(S_{i}\right)=\left\{v_{4 i} v_{4 i+1}, v_{4 i} v_{4 i+2}, v_{4 i} v_{4 i+3}\right\}$ for $i \in\{0,1,2\}$ while $v_{0} v_{3}, v_{4} v_{7}$, and $v_{8} v_{11}$ are blue, and all other edges in $E\left(S_{0}\right) \cup E\left(S_{1}\right) \cup E\left(S_{2}\right)$ are red.

Next, Builder draws $v_{3} v_{4}, v_{7} v_{8}$, and $v_{11} v_{0}$. We claim that Painter must color all these edges blue. Suppose without loss of generality that Painter colors $v_{3} v_{4}$ red. Then Builder draws $v_{3} v_{5}, v_{5} v_{6}$, and $v_{6} v_{3}$. If Painter colors any of them red, then a red C_{3} is created. If Painter colors all of them blue, then this creates a blue C_{3} with vertices v_{3}, v_{5}, and v_{6}.

Therefore we may assume that Painter colors $v_{3} v_{4}, v_{7} v_{8}$, and $v_{11} v_{0}$ blue. Finally, Builder draws $v_{3} v_{7}, v_{7} v_{11}$, and $v_{11} v_{3}$. If Painter colors any of them blue, then a blue C_{3} is created. If Painter colors all of them red, then this creates a red C_{3} with vertices v_{3}, v_{7}, and v_{11}. See Figure 4.

It is easy to check that $K_{1,5}$ does not appear as a subgraph at every step of the game. Hence, Builder wins the online Ramsey game for C_{3} on $K_{1,5}$-free graphs.

Lemma 3.5. Let Y be the graph in Figure 5. While playing the online Ramsey game for C_{3} on Y-free graphs, Builder can force Painter to create either a monochromatic copy of C_{3} or a blue edge $x y$ with $\operatorname{deg}(x)=1$ and $\operatorname{deg}(y) \leq 2$.

Figure 5: The graph Y.

Proof. This can be proven by letting Builder draw an edge and extend it to a path of length 4. At any moment, if Painter colors any of these edges blue, then that creates the blue edge we seek. Otherwise, we may assume Painter produced a red path of length 4 . Let P be such a red path with vertices $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5} in this order on P.

Now, Builder draws two edges $x_{2} x_{6}$ and $x_{4} x_{6}$ with a new vertex x_{6}. We claim that Painter must color both $x_{2} x_{6}$ and $x_{4} x_{6}$ with the color blue. Without loss of generality, suppose Painter colors $x_{2} x_{6}$ red. Now, Builder draws $x_{1} x_{3}, x_{3} x_{6}$, and $x_{6} x_{1}$. If Painter colors any of these edges red, then there is a red C_{3}. If Painter colors all of these edges blue, then this creates a blue C_{3}. Therefore, Painter must color $x_{2} x_{6}$ and $x_{4} x_{6}$ blue.

Finally, Builder draws $x_{2} x_{4}$. Whenever Painter colors $x_{2} x_{4}$ red or blue, this creates a monochromatic copy of C_{3}.

It is easy to check that Y does not appear as a subgraph at every step of the game. Hence, Builder can force Painter to create either a monochromatic copy of C_{3} or a blue edge $x y$ with $\operatorname{deg}(x)=1, \operatorname{deg}(y) \leq 2$, while playing the online Ramsey game for C_{3} on Y-free graphs.

Proposition 3.6. Let Y be the graph in Figure 5. Builder wins the online Ramsey game for C_{3} on Y-free graphs.

Proof. We will present a winning strategy for Builder.
Builder draws seven pairwise disjoint edges. By the pigeonhole principle, Painter colors at least four edges with the same color. Without loss of generality, assume $v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}$, and $v_{4} w_{4}$ are red edges.

Next, Builder draws the four edges $v v_{i}$ for $i \in\{1,2,3,4\}$ with a new vertex v. We claim that Painter must color two of them red and the other two blue. Suppose Painter colors $v v_{1}$, $v v_{2}$, and $v v_{3}$ red. Now Builder draws $v_{1} v_{2}, v_{2} v_{3}$, and $v_{3} v_{1}$. If Painter colors any of them red, then a red C_{3} is created. If Painter colors all of these edges blue, then this creates a blue C_{3} with vertices v_{1}, v_{2}, and v_{3}. Therefore, we may assume that $v v_{1}, v v_{2}$ are red and $v v_{3}, v v_{4}$ are blue.

Next, Builder draws $w_{1} w_{2}$. Suppose Painter colors $w_{1} w_{2}$ blue. Now, Builder draws $v w_{1}$ and $v w_{2}$. If Painter colors any of these edges red, then a red C_{3} is created. If Painter colors both $v w_{1}$ and $v w_{2}$ blue, then a blue C_{3} with vertices v, w_{1}, and w_{2} is created. Therefore we may assume that Painter colors $w_{1} w_{2}$ red.

Figure 6: A strategy for Builder to win the online Ramsey game for C_{3} on Y-free graphs.

Now, Builder forces Painter to create a blue edge $x y$ with $\operatorname{deg}(x)=1$ and $\operatorname{deg}(y) \leq 2$, which is possible by Lemma 3.5. Next, Builder draws $x w_{1}$ and $x w_{2}$. We claim that Painter must color these edges blue. Without loss of generality, suppose $x w_{1}$ is colored red. Then Builder draws two more edges $x v_{1}$ and $v_{1} w_{2}$. If Painter colors any of $x w_{2}, x v_{1}$, and $v_{1} w_{2}$ red, then there is a red C_{3}. If Painter colors all of them blue, then this creates a blue C_{3} with vertices x, v_{1}, and w_{2}. Therefore, Painter must color $x w_{1}$ and $x w_{2}$ blue.

Finally, Builder draws $y w_{1}$ and $y w_{2}$. If Painter colors any of them blue, then there is a blue C_{3}. If Painter colors all of them red, then this creates a red C_{3} with vertices y, w_{1} and w_{2}. See Figure 6.

It is easy to check that Y never appears as a subgraph at every step of the game. Hence, Builder wins the online Ramsey game for C_{3} on Y-free graphs.

3.2 When does Painter win the online Ramsey game for C_{3} on F-free graphs?

In this section, we will prove that Painter wins the online Ramsey game for C_{3} on F-free graphs for various F. Recall that by Lemma 3.2, we only need to consider F to be a subgraph of the graph X, which is in Figure 2, For a fixed F, it is sufficient to provide a strategy for Painter so that a monochromatic C_{3} does not appear forever on F-free graphs. We will provide three different winning strategies for Painter for three different F.

Strategy 3.7. Painter colors each new edge red, unless doing so creates a red $K_{1,3}$, a red C_{3}, or a red C_{4}, in which case the new edge is colored blue.

Proposition 3.8. Let X_{1} be the graph in Figure 1. Painter wins the online Ramsey game for C_{3} on X_{1}-free graphs.

Proof. Painter will use Strategy 3.7. We claim that Painter can always color the new edge $e=x y$ with Strategy 3.7. Let G be the new graph when Builder draws e. We will use induction on the number of edges. The base case is trivial.

By the induction hypothesis, we may assume that there is no red $K_{1,3}$, no red C_{3}, no red C_{4}, and no blue C_{3} in $G-e$. The strategy fails when coloring e blue results in a blue C_{3} and coloring e red results in a red $K_{1,3}$, a red C_{4}, or a red C_{3}. Let x, y, z be the vertices of the blue C_{3} when e is colored blue. We will prove that if the strategy fails, then G has X_{1} as a subgraph, which is a contradiction, and thus the strategy does not fail. We will divide the cases according to which red subgraph appears when Painter colors e red.

Case 1 Assume a red C_{3} is created when Painter colors e red, and let w be the third vertex of this red C_{3}. Since Painter colored neither $x z$ nor $z y$ red, coloring each of $x z$ and $y z$ red must have created a red C_{4}, a red C_{3}, or a red $K_{1,3}$ in $G-e$. We will show that a red C_{3} or a red C_{4} cannot be created by coloring either $x z$ or $y z$ red. Without loss of generality, let us consider $x z$.

If coloring $x z$ red resulted in a red C_{4} with vertices x, s, t, z in cyclic order, then $t \neq y$ and $s \neq y$, since in $G-e$, the edge $y z$ is blue and e does not exist. We also know that $t \neq w$, since otherwise $G-e$ has a red $K_{1,3}$ as a subgraph, which is a contradiction to the induction hypothesis. If $s=w$, then it must be that $t=y$ in order for $G-e$ to not have a red $K_{1,3}$, but this contradicts that $t \neq y$. This implies that $s, t \notin\{x, y, z, w\}$, which means G has X_{1} as a subgraph, which is a contradiction.

If coloring $x z$ red resulted in a red C_{3} with vertices x, z, u, then $u \neq w$, since otherwise $G-e$ has a red $K_{1,3}$ as a subgraph, which contradicts the induction hypothesis. This implies that $u \notin\{x, y, z, w\}$. Now, y and z cannot have neighbors outside of $\{u, x, y, z, w\}$ since that would create a copy of X_{1} in G. There is no red edge between u and w because that would create a red C_{3} in $G-e$. Since either a red $y u$ or a red $z w$ would create a red $K_{1,3}$, neither y nor z can have more incident red edges, which means $y z$ could have been colored red, which is a contradiction.

This boils down to the case where both $x z$ and $z y$ were colored blue because coloring either one red would create a red $K_{1,3}$. Since $z w$ cannot be a red edge (creates a red $K_{1,3}$ in $G-e$) and z cannot have two neighbors outside of $\{x, y, w\}$ (creates a copy of X_{1} in G), each of x and y have a neighbor x^{\prime} and y^{\prime}, respectively, such that $x x^{\prime}$ and $y y^{\prime}$ are red. It cannot be that $x^{\prime}=y^{\prime}$, since this creates a red C_{4} with vertices x, w, y, x^{\prime} in $G-e$. If $x^{\prime} \neq y^{\prime}$, then this creates a copy of X_{1} in G. In either case, we obtain a contradiction.

Case 2 Assume a red $K_{1,3}$ is created when Painter colors e red, and without loss of generality let x, y, u, v be the vertices of the red $K_{1,3}$ so that $x y, u x, x v$ are red edges. Now, z and y cannot have neighbors outside of $\{x, y, z, u, v\}$ since that would create a copy of X_{1}. This implies that each of z and y cannot have two red edges incident to it, since that would create a red C_{4}, with vertices z, u, x, v. Also, $u v$ cannot be a red edge since $G-e$ would have
a red C_{3}, with vertices u, v, x. Since $z y$ was not colored with red, coloring $z y$ with red must create a red $K_{1,3}$, a red C_{3}, or a red C_{4} in $G-e$. The only possible case is when coloring $z y$ with red creates a red C_{3}, which implies that either u or v is a vertex of this red C_{3}, which implies the existence of a red $K_{1,3}$ in $G-e$, which is a contradiction.

Case 3 Assume a red C_{4} is created when Painter colors e red, and let $x x^{\prime}, x^{\prime} y^{\prime}, y^{\prime} y$ be the red edges of this red C_{4} other than e. Now, neither x nor y can have a neighbor outside of $\left\{x, y, x^{\prime}, y^{\prime}, z\right\}$ since this would create a copy of X_{1} in G. Also, x^{\prime} and y^{\prime} cannot have a neighbor $v \notin\left\{x, x^{\prime}, y^{\prime}, y\right\}$ where $x^{\prime} v$ and $y^{\prime} v$ is red, respectively, since this would create a red copy of $K_{1,3}$ in $G-e$. Since Painter colored neither $x z$ nor $y z$ red, coloring each of $x z$ and $y z$ red must create a red $K_{1,3}$, a red C_{4}, or a red C_{3}. The only possible case is when there is a red $K_{1,3}$ centered at z when Painter colors $x z$ or $y z$ red. In particular, z must have two neighbors $z^{\prime}, z^{\prime \prime}$ outside of $\left\{x, x^{\prime}, y, y^{\prime}\right\}$ where $z z^{\prime}$ and $z z^{\prime \prime}$ are red edges. Yet, this creates a copy of X_{1}, which is a contradiction.

Therefore, Strategy 3.7 works and thus Painter wins the online Ramsey game for C_{3} on X_{1}-free graphs.

Before starting the proof for the case of X_{2}-free graphs, we define some "good" subgraphs of a graph. We say a subgraph H of G that is isomorphic to either $K_{1,3}$ or C_{4} is good if H is red, and there exists a subgraph I of G where H is a subgraph of I in such a way that I is isomorphic to one of the graphs in Figures 7 and 8 , where the thick edges correspond to the edges of H; moreover, for $i \in\{1, \ldots, 5\}$, we say H is good by property A_{i} (or B_{i}) to mean that the corresponding I is isomorphic to the graph labeled A_{i} (or B_{i}) in Figures 7 and 8 . We also say H is good if H is good because of multiple properties. For example, if H satisfies the property A_{1}, then H is isomorphic to $K_{1,3}$ and the vertex of degree 3 of $G[V(H)]$ has degree at least 5 in G. We say that a red subgraph H of G that is isomorphic to either $K_{1,3}$ or C_{4} is bad if it is not good. Note that if a subgraph H is bad, then all of its edges are red.

The idea is that we want to forbid $K_{1,3}$ and C_{4} in the graph as much as we can, but we allow copies of $K_{1,3}$ and C_{4} if we can guarantee that there is some structure we can utilize.

Figure 7: The five good $K_{1,3}$'s.

Figure 8: The five good C_{4} 's.

Lemma 3.9. Let X_{2} be the graph in Figure 1. Let G be a graph that has a good $K_{1,3}$ with vertices v, v_{1}, v_{2}, v_{3} where v is the vertex of degree 3 . If $v_{1} v_{2}, v_{2} v_{3}$, and $v_{3} v_{1}$ are edges in G, then G contains X_{2} as a subgraph.

Proof. See Figure 9, It is easy to check that G has X_{2} as a subgraph in each case.

Figure 9: Observation for the proof of Lemma 3.9.

Strategy 3.10. Painter colors each new edge red, unless doing so creates a red C_{3}, a bad $K_{1,3}$, or a bad C_{4}, in which case the new edge is colored blue.

Proposition 3.11. Let X_{2} be the graph in Figure 1. Painter wins the online Ramsey game for C_{3} on X_{2}-free graphs.

Proof. Painter will use Strategy 3.10. We claim that Painter can always color the new edge $e=x y$ with Strategy 3.10. Let G be the new graph when Builder draws e. We will use induction on the number of edges. The base case is trivial.

By the induction hypothesis, we may assume that none of a red C_{3}, a bad $K_{1,3}$, or a bad C_{4} exists in $G-e$. The strategy fails when coloring e blue results in a blue C_{3} and coloring e red results in a red C_{3}, a bad $K_{1,3}$, or a bad C_{4}. Let z be the vertex of the blue C_{3} so that $x z$ and $z y$ are blue. Note that every blue edge has at least two red edges incident with it in G while Painter uses Strategy 3.10. We will prove that if the strategy fails, then G has X_{2} as a subgraph, which is a contradiction, and thus the strategy does not fail. We will divide the cases according to which red graph appears when Painter colors e red.

Case 1 Assume a red C_{3} is created when Painter colors e red, and let w be the third vertex of this red C_{3}. Since Painter did not color $x z$ and $y z$ red, coloring any of $x z$ and $y z$ red must have created a red C_{3}, a bad C_{4}, or a bad $K_{1,3}$. By Lemma 3.9 , we may assume that there is no red edge between z and w. Now, we consider three subcases where coloring $x z$ red creates one of a red C_{3}, a bad $K_{1,3}$, or a bad C_{4}.

Subcase 1-1 Assume that coloring $x z$ red creates a red C_{3} with vertices x, z, and u. Since we assumed that there is no red edge between z and w, we know that $u \neq w$. By Lemma 3.9, we may assume that there is no red edge between y and u. Moreover, y and z cannot have neighbors outside of $\{x, y, z, u, w\}$, since G cannot have X_{2} as a subgraph. However, this is a contradiction because Painter must have colored $y z$ red (instead of blue) since this does not create any of a bad $K_{1,3}$, a bad C_{4}, or a red C_{3}. Note that although there can be an edge $u w$ in $G-e$, Painter could not color $u w$ red since this creates a red C_{3} in $G-e$.

Subcase 1-2 Assume that coloring $x z$ red creates a bad C_{4}, say R, with vertices x, u, v, and z in cyclic order. Since there is no red edge between z and w, we know that $v \neq w$.

Suppose $u \neq w$. Note that u, v, and z cannot have neighbors outside of $\{x, y, z, u, v, w\}$ and $E(G)$ has none of $v y, v x, v w$, and $u z$, otherwise G has X_{2} as a subgraph. Therefore, there was no red C_{3} when Painter colored $y z$ red.

If there was a bad C_{4} when Painter colored $y z$ red, then the only possible case is when the bad C_{4} consists of vertices u, v, y, and z since u, v, and z has no neighbor outside of $\{x, y, z, u, v, w\}$. Note that there is a red $K_{1,3}$ with vertices u, v, x, and y. If $\{x, y\}$ has no neighbors outside of $\{x, y, z, u, v\}$, then this red $K_{1,3}$ must be bad, which is a contradiction. Therefore, whenever $x z$ is drawn later than $y z$ or $y z$ is drawn later than $x z$, the later one must be colored red since the corresponding red C_{4} is actually good.

The only remaining reason that Painter colored $y z$ blue is that there are two red edges incident with y so that coloring $y z$ red creates a bad $K_{1,3}$, say S. There are two cases: when there is a red edge between y and u so that $E(S)=\{y z, y u, y w\}$ and when there is no red edge between y and u but there is a red edge $y s$ with a new vertex s so that $E(S)=\{y z, y s, y w\}$.

- When there is a red edge between y and u so that $E(S)=\{y z, y u, y w\}$.
- Suppose Builder drew $x z$ later than $y z$. Then R is good by property B_{5}, which is a contradiction.
- Suppose Builder drew $y z$ later than $x z$. Then S is good by property A_{2}, which is a contradiction.
- When there is no red edge between y and u but there is a red edge $y s$ with a new vertex s so that $E(S)=\{y z, y s, y w\}$.
- Suppose Builder drew $x z$ later than $y z$. Then R is good by property B_{3}, which is a contradiction.
- Suppose Builder drew $y z$ later than $x z$. Then S is good by property A_{2}, which is a contradiction.

Note that for both cases, $x w$ may not be drawn at each step of the game.
Now suppose $u=w$. It is easy to check that v, w, and z cannot have neighbors outside of $\{v, w, x, y, z\}$, since otherwise G has X_{2} as a subgraph. Since a red $K_{1,3}$ with vertices x, y, w, v must be good, $\{x, y\}$ must have at least one neighbor outside of $\{v, w, x, y, z\}$. Note that this is only true for those steps of the game in which the red $K_{1,3}$ has already been drawn.

- Suppose that $y z$ is drawn later than $x z$.
- Coloring $y z$ red cannot create a red C_{3} since z cannot have neighbors outside of $\{v, w, x, y, z\}$.
- Coloring $y z$ red cannot create a bad C_{4} since the only possible red C_{4} is of vertices v, w, y, and z. Since there is a red $K_{1,3},\{x, y\}$ must have at least one neighbor outside of $\{v, w, x, y, z\}$ and this implies that the red C_{4} is good.
- Coloring $y z$ red cannot create a bad $K_{1,3}$ since z cannot have neighbors outside of $\{v, w, x, y, z\}$. Even if there are two red edges $y s$ and $y t$ for vertices s and t (one of s and t may be equal to w, but not to v or x), the red $K_{1,3}$ with vertices s, t, y, and z is good by property A_{2}.
Note that there are no red edges between z and w, between v and y, between v and x, or between x and y.
- Suppose that $x z$ is drawn later than $y z$. Now, there are two cases: when coloring $y z$ red created a bad C_{4} or when coloring $y z$ red created a bad $K_{1,3}$. Note that coloring $y z$ red cannot create a red C_{3}.
- If coloring $y z$ red would have created a bad C_{4}, then the vertices of this C_{4} must be v, w, y, and z, since v, w, and z cannot have neighbors outside of $\{v, w, x, y, z\}$ and $w z$ is not a red edge. Hence, $y w$ must have been drawn before $y z$.
- If coloring $y z$ red would have created a bad $K_{1,3}$, then there must have been two vertices s, t such that $y s$ and $y t$ are red, and these are drawn earlier than $y z$. Whenever $w \in\{s, t\}$ or not, R is good, which is a contradiction.
Note that there are no red edges between v and x or between v and y.

Subcase 1-3 We may assume that coloring $x z$ red creates a bad $K_{1,3}$, say T_{1}. If z is the center of T_{1}, then since there is no red edge between z and w, G has X_{2} as a subgraph, which is a contradiction. Therefore, we may assume that x is a center of T_{1}, and $x z, x u_{1}$, and $x u_{2}$ are the three edges of T_{1} with new vertices u_{1} and u_{2}. By symmetry, we may assume that coloring $y z$ red creates a bad $K_{1,3}, s a y T_{2}$, with the center y. We may also assume that $y z, y v_{1}$, and $y v_{2}$ are the three edges of T_{2} with new vertices v_{1} and v_{2}. Note that w is not necessarily distinct from $u_{1}, u_{2}, v_{1}, v_{2}$.

- If $\left|\left\{u_{1}, u_{2}\right\} \cap\left\{v_{1}, v_{2}\right\}\right|=0$, then it is easy to check that Painter can color one of $x z$ and $y z$ red since T_{1} or T_{2} must be good by property A_{3}, which is a contradiction.
- If $\left|\left\{u_{1}, u_{2}\right\} \cap\left\{v_{1}, v_{2}\right\}\right|=1$, then it is easy to check that Painter can color one of $x z$ and $y z$ red since T_{1} or T_{2} must be good by property A_{4}, which is a contradiction.
- If $\left|\left\{u_{1}, u_{2}\right\} \cap\left\{v_{1}, v_{2}\right\}\right|=2$, then let $w_{1}=u_{1}=v_{1}$ and $w_{2}=u_{2}=v_{2}$. We may assume that $y z$ is drawn later than $x z$, by symmetry. Then right before Builder draws $y z$, each of $\left\{x, y, z, w_{1}, w_{2}\right\}$ cannot have neighbors outside of $\left\{x, y, z, w_{1}, w_{2}\right\}$, since otherwise T_{2} becomes good when Painter colors $y z$ red. However, this is a contradiction since the red C_{4} with vertices x, w_{1}, y, w_{2}, is bad in $G-e$. This is because a red C_{4} in a component of at most five vertices is always bad.

Case 2 Assume a bad $K_{1,3}$, say S, is created when Painter colors e red, and without loss of generality let x, y, u, and v be the vertices of S so that $u x, x v$ are red edges. Now, y cannot have neighbors outside of $\{x, z, u, v\}$ in G since otherwise S is good by property A_{2} when e is colored red in G. If there is a red edge between u and y and between v and y, then this case is covered by Case 1. Therefore, we may assume that there is no red edge between u and y and between v and y in G. Since the blue edge $y z$ must have two incident red edges in G, we may assume that the two red edges are incident with z, say $z s, z t$. We can check that $\{s, t\}=\{u, v\}$, since otherwise S is good by property A_{4} when e is colored red in G. Since $G-e$ has a red C_{4} with vertices x, u, z, v, say R, by the induction hypothesis, R must be good. This implies that the component containing R must have at least six vertices, thus, one of x, y, z, u, and v has a neighbor outside of $\{x, y, z, u, v\}$. However, this implies that S is good when e is colored red, which is a contradiction.

Case 3 Assume a bad C_{4}, say R, is created when Painter colors e red, and let $x u, u v, v y$ be the red edges of R. Now each of $\{x, y, z, u, v\}$ cannot have neighbors outside of $\{x, y, z, u, v\}$, since otherwise R is good in G. This also implies that there is no red $K_{1,3}$ in this component since $K_{1,3}$ in a component of at most five vertices must be bad. Then the blue edge $z x$ has no two red edges incident with it in G, which is a contradiction.

Therefore, Strategy 3.10 works, and thus Painter wins the online Ramsey game for C_{3} on X_{2}-free graphs.

We present a winning strategy for Painter that can be used for the following proposition covering two cases.

Strategy 3.12. When Builder draws an edge e, if a blue C_{3} is made when Painter colors e blue or there is no red edge incident to e, then Painter colors e red. Otherwise, Painter colors e blue.

Proposition 3.13. Let X_{3} and X_{4} be the graphs in Figure 1. Painter wins the online Ramsey game for C_{3} on X_{3}-free graphs and Painter wins the online Ramsey game for C_{3} on X_{4}-free graphs.

Proof. We will prove both statements at the same time. Painter will use Strategy 3.12. We claim that Painter can always color the new edge $e=x y$ with Strategy 3.12, Let G be the new graph when Builder draws e. We will use induction on the number of edges. The base case is trivial.

By the induction hypothesis, we may assume that every blue edge is incident with at least one red edge and that there is no monochromatic C_{3} in $G-e$. The strategy fails when coloring e blue and red results in a blue C_{3} and a red C_{3}, respectively. Let z_{1}, z_{2} be vertices such that $\left\{x, z_{1}, y\right\}$ and $\left\{x, z_{2}, y\right\}$ are vertices of the blue C_{3} and the red C_{3}, respectively. We will prove that if the strategy fails, then G has both X_{3} and X_{4} as subgraphs, which is a contradiction, and thus the strategy does not fail in either game.

Without loss of generality, we may assume that Builder has drawn $x z_{2}$ later than $z_{2} y$. Consider the graph right after Builder drew $x z_{2}$. Note that $x z_{2}$ is incident to a red edge $z_{2} y$. Since Painter uses Strategy 3.12 and Painter colored $x z_{2}$ red, there must be a blue C_{3} when Painter colors $x z_{2}$ blue. Let x, z_{2}, v be the vertices of the blue C_{3}. Note that $x v$ and $z_{2} v$ are drawn earlier than $x z_{2}$. If $v \neq z_{1}$, then G contains both X_{3} and X_{4} as a subgraph, and thus v must be the same as z_{1}.

Now consider the graph right before Builder drew $x z_{2}$. Since Builder has already drawn $x z_{1}$ and Painter colored it blue, $x z_{1}$ must have at least one incident red edge in G. This red edge is incident with either x or z_{1}, but in both cases G contains both X_{3} and X_{4} as a subgraph, which is a contradiction, and thus the strategy works.

Therefore, Strategy 3.12 works, and thus Painter wins the online Ramsey game for C_{3} on both X_{3}-free graphs and X_{4}-free graphs.

3.3 The final touch

In this subsection we prove Theorem 3.1. We need two additional lemmas to prove Theorem 3.1.

Lemma 3.14. If Builder wins the online Ramsey game for H on I-free graphs for a graph I, then Builder wins the online Ramsey game for H on J-free graphs for every graph J that has I as a subgraph.

Proof. Since the set of I-free graphs is a subset of the set of J-free graphs, Builder can use the same strategy used in the case of J-free graphs.

Lemma 3.15. If Painter wins the online Ramsey game for H on I-free graphs for a graph I, then Painter wins the online Ramsey game for H on J-free graphs for every graph J that is a subgraph of I.

Proof. Since the set of J-free graphs is a subset of the set of I-free graphs, Painter can use the same strategy used in the case of I-free graphs.

Finally, we prove Theorem 3.1.

Figure 10: The lines between graphs imply that the lower graph is a subgraph of the higher graph.

Proof of Theorem 3.1. By Lemma 3.2, it is enough to consider when F is a subgraph of X.
By Propositions 3.8, 3.11, and 3.13, along with Lemma 3.15, Painter wins the online Ramsey game for C_{3} on F-free graphs if F is isomorphic to a subgraph of a graph in $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$. By Propositions 3.3, 3.4, and 3.6, along with Lemma 3.14, Builder wins the online Ramsey game for C_{3} on F-free graphs if F contains a graph in $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ as a proper subgraph.

It is easy to check that all graphs without isolated vertices are covered by the above paragraph except for the graph X_{5}. Figure 10 shows subgraphs of X. Moreover, "Builder" and "Painter" written under some graph in Figure 10 means that Builder and Painter, respectively, wins the online Ramsey game for C_{3} on F-free graphs.

We end this section with the only case that is unsolved.

Question 3.16. Let X_{5} be the graph in Figure 1. Who wins the online Ramsey game for C_{3} on X_{5}-free graphs?

Acknowledgments

We thank the anonymous referee for helping us improve the readability of the paper.

References

[1] J. Balogh and J. Butterfield. Online Ramsey games for triangles in random graphs. Discrete Math., 310(24):3653-3657, 2010.
[2] J. Beck. Achievement games and the probabilistic method. In Combinatorics, Paul Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud., pages 51-78. János Bolyai Math. Soc., Budapest, 1993.
[3] S. A. Burr, P. Erdős, and L. Lovasz. On graphs of Ramsey type. Ars Combinatoria, 1(1):167-190, 1976.
[4] J. Butterfield, T. Grauman, W. B. Kinnersley, K. G. Milans, C. Stocker, and D. B. West. On-line Ramsey theory for bounded degree graphs. Electron. J. Combin., 18(1):Paper 136, 17, 2011.
[5] D. Conlon. On-line Ramsey numbers. SIAM J. Discrete Math., 23(4):1954-1963, 2009/10.
[6] D. Conlon, J. Fox, and B. Sudakov. Recent developments in graph Ramsey theory. In Surveys in combinatorics 2015, volume 424 of London Math. Soc. Lecture Note Ser., pages 49-118. Cambridge Univ. Press, Cambridge, 2015.
[7] J. Cyman and T. Dzido. A note on on-line Ramsey numbers for quadrilaterals. Opuscula Math., 34(3):463-468, 2014.
[8] J. Cyman, T. Dzido, J. Lapinskas, and A. Lo. On-line Ramsey numbers of paths and cycles. Electron. J. Combin., 22(1):Paper 1.15, 32, 2015.
[9] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp. The size Ramsey number. Period. Math. Hungar., 9(1-2):145-161, 1978.
[10] E. Friedgut, Y. Kohayakawa, V. Rödl, A. Ruciński, and P. Tetali. Ramsey games against a one-armed bandit. Combin. Probab. Comput., 12(5-6):515-545, 2003. Special issue on Ramsey theory.
[11] J. A. Grytczuk, M. Hałuszczak, and H. A. Kierstead. On-line Ramsey theory. Electron. J. Combin., 11(1):Research Paper 60, 10, 2004. Paper number later changed by the publisher from 60 to 57 .
[12] J. A. Grytczuk, H. A. Kierstead, and P. Prałat. On-line Ramsey numbers for paths and stars. Discrete Math. Theor. Comput. Sci., 10(3):63-74, 2008.
[13] H. A. Kierstead and G. Konjevod. Coloring number and on-line Ramsey theory for graphs and hypergraphs. Combinatorica, 29(1):49-64, 2009.
[14] A. Kurek and A. Ruciński. Two variants of the size Ramsey number. Discuss. Math. Graph Theory, 25(1-2):141-149, 2005.
[15] M. Marciniszyn, D. Mitsche, and M. Stojaković. Online balanced graph avoidance games. European J. Combin., 28(8):2248-2263, 2007.
[16] M. Marciniszyn, R. Spöhel, and A. Steger. Online Ramsey games in random graphs. Combin. Probab. Comput., 18(1-2):271-300, 2009.
[17] M. Marciniszyn, R. Spöhel, and A. Steger. Upper bounds for online Ramsey games in random graphs. Combin. Probab. Comput., 18(1-2):259-270, 2009.
[18] Š. Petřiččková. Online Ramsey theory for planar graphs. Electron. J. Combin., 21(1):Paper 1.64, 14, 2014.
[19] A. Prakash, R. Spöhel, and H. Thomas. Balanced online Ramsey games in random graphs. Electron. J. Combin., 16(1):Research Paper 11, 22, 2009.
[20] P. Prałat. A note on small on-line Ramsey numbers for paths and their generalization. Australas. J. Combin., 40:27-36, 2008.
[21] P. Prałat. A note on off-diagonal small on-line Ramsey numbers for paths. Ars Combin., 107:295-306, 2012.
[22] F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math. Soc., S2-30(1):264.
[23] D. Rolnick. Trees with an on-line degree Ramsey number of four. Electron. J. Combin., 18(1):Paper 173, 21, 2011.
[24] David Rolnick. The on-line degree Ramsey number of cycles. Discrete Math., 313(20):2084-2093, 2013.

[^0]: *Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1A2B4005020).
 ${ }^{\dagger}$ Corresponding author. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07043049), and also by Hankuk University of Foreign Studies Research Fund.
 ${ }^{\ddagger}$ Emails: hojinchoi@kaist.ac.kr, ilkyoo@hufs.ac.kr, jjisu@kaist.ac.kr, sangil@kaist.edu

