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Abstract. DP-coloring (also known as correspondence coloring) is a generalization of list coloring
developed recently by Dvořák and Postle [DP18]. In this paper we introduce and study the fractional
DP-chromatic number χ˚DP pGq. We characterize all connected graphs G such that χ˚DP pGq ď 2: they
are precisely the graphs with no odd cycles and at most one even cycle. By a theorem of Alon, Tuza,
and Voigt [ATV97], the fractional list-chromatic number χ˚` pGq of any graph G equals its fractional
chromatic number χ˚pGq. This equality does not extend to fractional DP-colorings. Moreover, we show
that the difference χ˚DP pGq ´ χ˚pGq can be arbitrarily large, and, furthermore, χ˚DP pGq ě d{p2 ln dq for
every graph G of maximum average degree d ě 4. On the other hand, we show that this asymptotic
lower bound is tight for a large class of graphs that includes all bipartite graphs as well as many graphs
of high girth and high chromatic number.

1. Introduction
All graphs considered here are finite and do not have multiple edges and loops. By a “graph” we mean
an undirected graph; directed graphs are referred to as digraphs.

DP-coloring, also known as correspondence coloring, is a generalization of list coloring introduced
recently by Dvořák and Postle [DP18]. In the setting of DP-coloring, not only does each vertex get its
own list of available colors, but also the identifications between the colors in the lists are allowed to
vary from edge to edge.

Definition 1.1. Let G be a graph. A cover of G is a pair H “ pL,Hq, consisting of a graph H and
a function L : V pGq Ñ PowpV pHqq, satisfying the following requirements:

(C1) the sets tLpuq : u P V pGqu form a partition of V pHq;
(C2) for every u P V pGq, the graph HrLpuqs is complete;
(C3) if EHpLpuq, Lpvqq ‰ ∅, then either u “ v or uv P EpGq;
(C4) if uv P EpGq, then EHpLpuq, Lpvqq is a matching.

A cover H “ pL,Hq of G is k-fold if |Lpuq| “ k for all u P V pGq.

Remark. We emphasize that the matching EHpLpuq, Lpvqq in Definition 1.1(C4) is not required to be
perfect and, in particular, may be empty.

Definition 1.2. Let G be a graph and let H “ pL,Hq be a cover of G. An H -coloring of G is an
independent set in H of size |V pGq|. The DP-chromatic number χDP pGq of G is the smallest k P N
such that G admits an H -coloring for every k-fold cover H of G.

(Anton Bernshteyn) Department of Mathematics, University of Illinois at Urbana–
Champaign, IL, USA and Department of Mathematical Sciences, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA

(Alexandr Kostochka) Department of Mathematics, University of Illinois at Urbana–
Champaign, IL, USA and Sobolev Institute of Mathematics, Novosibirsk, Russia

(Xuding Zhu) Department of Mathematics, Zhejiang Normal University, Jinhua, China
E-mail addresses: abernsht@math.cmu.edu, kostochk@math.uiuc.edu, xudingzhu@gmail.com.
Research of the second author is supported in part by NSF grant DMS-1600592 and grants 18-01-00353 and 19-01-00682

of the Russian Foundation for Basic Research.
Research of the third author is supported in part by CNSF grant 11571319.

1

ar
X

iv
:1

80
1.

07
30

7v
2 

 [
m

at
h.

C
O

] 
 2

 J
un

 2
01

9



H1 H2

Figure 1. Two distinct 2-fold covers of the 4-cycle.

Remark. By definition, if H “ pL,Hq is a cover of a graph G, then tLpuq : u P V pGqu is a partition
of H into |V pGq| cliques. Therefore, an independent set I Ď V pHq is an H -coloring of G if and only
if |I X Lpuq| “ 1 for all u P V pGq.

As an illustration, consider the two 2-fold covers of the 4-cycle C4 shown in Fig. 1. Observe that C4
is H1-colorable but not H2-colorable; in particular, χDP pC4q ě 3. On the other hand, it is easy to see
that χDP pGq ď ∆` 1 for any graph G of maximum degree ∆, so χDP pC4q “ 3. The same argument
shows that χDP pCnq “ 3 for every cycle Cn.

To see that DP-coloring is a generalization of list coloring, suppose that G is a graph and L is a list
assignment for G. Let H be the graph with vertex set

V pHq :“ tpu, cq : u P V pGq and c P Lpuqu,

in which two distinct vertices pu, cq and pv, dq are adjacent if and only if
– either u “ v,
– or else, uv P EpGq and c “ d.

For each u P V pGq, set L1puq :“ tpu, cq : c P Lpuqu. Then H :“ pL1, Hq is a cover of G, and there
is a natural bijective correspondence between the L-colorings and the H -colorings of G. This, in
particular, implies that χDP pGq ě χ`pGq for all G.

In this paper we introduce and study the fractional version of DP-coloring. We start with a brief
review of the classical concepts of fractional coloring and fractional list coloring. For a survey of the
topic, see, e.g., [SU97, Chapter 3].

Let G be a graph. An pη, kq-coloring of G, where η P r0, 1s and k P N`, is a map f : V pGq Ñ Powprksq
with the following properties:

(F1) for every vertex u P V pGq, we have |fpuq| ě ηk;
(F2) for every edge uv P EpGq, we have fpuq X fpvq “ ∅.

For given k P N`, let
ϑpG, kq :“ maxtη P r0, 1s : G admits an pη, kq-coloringu.

(The maximum is attained, as only the values of the form `{k for integer ` are relevant.) The fractional
chromatic number χ˚pGq of G is defined by

χ˚pGq :“ inftϑpG, kq´1 : k P N`u. (1.3)
It is well-known [SU97, §3.1] that the infimum in (1.3) is actually a minimum: For every graph G,
there is some k P N` such that χ˚pGq “ ϑpG, kq´1. In particular, χ˚pGq is always a rational number.

Fractional coloring allows a natural list-version. Let G be a graph and let L be a list assignment
for G. An pη, Lq-coloring of G, where η P r0, 1s, is a map f that associates to each u P V pGq a subset
fpuq Ď Lpuq with the following properties:

(FL1) for every vertex u P V pGq, we have |fpuq| ě η|Lpuq|;
(FL2) for every edge uv P EpGq, we have fpuq X fpvq “ ∅.

We say that L is a k-list assignment if |Lpuq| “ k for all u P V pGq. For given k P N`, let
ϑ`pG, kq :“ maxtη P r0, 1s : G admits an pη, Lq-coloring for every k-list assignment L for Gu.
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The fractional list-chromatic number χ˚` pGq of G is defined by
χ˚` pGq :“ inftϑ`pG, kq´1 : k P N`u.

Somewhat surprisingly, Alon, Tuza, and Voigt [ATV97] showed that χ˚` pGq “ χ˚pGq for all graphs G
and, in fact, for each G, there is k P N` such that

χ˚` pGq “ χ˚pGq “ ϑ`pG, kq
´1 “ ϑpG, kq´1.

(Recall that the list-chromatic number of a graph cannot be bounded above by any function of its
ordinary chromatic number.)

Now we proceed to our main definitions. Given a cover H “ pL,Hq of a graph G, we refer to the
edges of H connecting distinct parts of the partition tLpuq : u P V pGqu as cross-edges. A subset
S Ď V pHq is quasi-independent if it spans no cross-edges.
Definition 1.4. Let H “ pL,Hq be a cover of a graph G and let η P r0, 1s. An pη,H q-coloring of G
is a quasi-independent set S Ď V pHq such that |S X Lpuq| ě η|Lpuq| for all u P V pGq.
Definition 1.5. Let G be a graph. For k P N`, let

ϑDP pG, kq :“ maxtη P r0, 1s : G admits an pη,H q-coloring for every k-fold cover H of Gu.
The fractional DP-chromatic number χ˚DP pGq is defined by

χ˚DP pGq :“ inftϑDP pG, kq´1 : k P N`u. (1.6)
Clearly, for each graph G, we have χ˚pGq ď χ˚DP pGq ď χDP pGq. Our results described below imply

that both inequalities can be strict.
Since χDP pCnq “ 3 for every cycle Cn, a connected graph G satisfies χDP pGq ď 2 if and only if G is

a tree. Our first result is the characterization of graphs G with χ˚DP pGq ď 2:
Theorem 1.7. Let G be a connected graph. Then χ˚DP pGq ď 2 if and only if G contains no odd cycles
and at most one even cycle. Furthermore, if G contains no odd cycles and exactly one even cycle, then

χ˚DP pGq “ 2, even though ϑDP pG, kq
´1 ą 2 for all k P N`

(i.e., the infimum in (1.6) is not attained).
Theorem 1.7 shows that the Alon–Tuza–Voigt theorem does not extend to fractional DP-coloring,

as every connected bipartite graph G with |EpGq| ě |V pGq| ` 1 satisfies χ˚pGq “ χpGq “ 2, while
χ˚DP pGq ą 2. Theorem 1.7 also provides examples of graphs for which the infimum in (1.6) is not
attained. However, the following natural question remains open:
Question 1.8. Do there exist graphs G for which χ˚DP pGq is irrational?

The average degree of a graph G with V pGq ‰ ∅ is the value 2|EpGq|{|V pGq|; the maximum average
degree of G is the largest average degree of a subgraph H of G with V pHq ‰ ∅. It was shown in [Ber16]
that χDP pGq “ Ωpd{ ln dq for graphs G of maximum average degree d. Using a similar argument, we
extend this asymptotic lower bound to the fractional setting:
Theorem 1.9. If G is a graph of maximum average degree d ě 4, then χ˚DP pGq ě d{p2 ln dq.

From Theorem 1.9, it follows that χ˚DP pGq cannot be bounded above by any function of χ˚pGq, since
there exist bipartite graphs of arbitrarily high average degree.

Recall that a graph G is d-degenerate if it has an orientation D such that:
– D is acyclic, i.e., there are no directed cycles in D;
– ∆`pDq ď d, where ∆`pDq denotes the maximum out-degree of D.

Note that every graph of maximum average degree d is d-degenerate, while every d-degenerate graph
has maximum average degree at most 2d. Our next result describes additional conditions on an acyclic
orientation D under which the lower bound given by Theorem 1.9 is asymptotically tight. Throughout,
given a digraph D, we write EpDq for the set of all directed edges of D (so uv P EpDq indicates a
directed edge from u to v).
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Theorem 1.10. Suppose that a graph G has an acyclic orientation D such that
(D1) ∆`pDq ď d; and
(D2) for all uv P EpDq, there is no directed uv-path of even length in D.

Then χ˚DP pGq ď p1` op1qqd{ ln d.

Obviously, every orientation D of a bipartite graph G satisfies condition (D2) of Theorem 1.10.
Hence, we obtain the following:

Corollary 1.11. If G is a d-degenerate bipartite graph, then χ˚DP pGq ď p1` op1qqd{ ln d.

Corollary 1.11 shows that the lower bound given by Theorem 1.9 is sharp, including the value of
the constant factor. For example, if ω : NÑ N is any function such that ωpdq{dÑ8 as dÑ8, then
the complete bipartite graph Kd, ωpdq is d-degenerate, while its average degree is p2 ` op1qqd. Thus,
Theorem 1.9 and Corollary 1.11 combine to give χ˚DP pKd, ωpdqq “ p1` op1qqd{ ln d.

The conclusion of Theorem 1.10 is interesting even for the ordinary fractional chromatic number,
especially since its requirements are satisfied by several known constructions of graphs with high girth
and high chromatic number. One example is the scheme analyzed in [KN99], based on the Blanche
Descartes construction [Des54] of triangle-free graphs with high chromatic number. For completeness,
we sketch it in Section 5. Another related family of graphs of high chromatic number that falls under
the conditions of Theorem 1.10 is described in [Alo+16, Theorem 3.4]. From these constructions, we
deduce the following result:

Corollary 1.12. For all d, g P N`, there exists a graph Gd,g with chromatic number at least d, girth
at least g, and χ˚DP pGd,gq ď p1` op1qqd{ ln d.

The remainder of this paper is organized as follows. First, we prove Theorem 1.9 in Section 2. Then,
in Section 3, we establish Theorem 1.7. Section 4 is dedicated to the proof of Theorem 1.10. Finally,
the proof of Corollary 1.12 is given in Section 5.

2. Proof of Theorem 1.9
What follows is a slight modification of [Ber16, Theorem 1.6]. Let G be a graph of maximum average
degree d ě 4. After passing to a subgraph, we may assume that the average degree of G itself is d.
Set n :“ |V pGq| and m :“ |EpGq| (and thus m “ dn{2). Let η0 :“ 2 ln d{d. Our goal is to show that
ϑDP pG, kq ă η0 for all k P N`. To that end, fix arbitrary k P N` and let η :“ rη0ks{k. It is enough to
prove ϑDP pG, kq ă η.

Let tLpuq : u P V pGqu be a collection of pairwise disjoint k-element sets. Define X :“
Ť

uPV pGq Lpuq

and build a random graph H with vertex set X by making each Lpuq a clique and putting, independently
for each uv P EpGq, a uniformly random perfect matching between Lpuq and Lpvq. Let H :“ pL,Hq
denote the resulting random k-fold cover of G. We shall argue that, with positive probability, G is not
pη,H q-colorable.

Let S Ď X be an arbitrary set with |S XLpuq| “ ηk for all u P V pGq. Consider any edge uv P EpGq.
The H-neighborhood of the set S X Lpuq in Lpvq is a uniformly random pηkq-element subset of Lpvq,
so it is disjoint from S X Lpvq with probability

ˆ

p1´ ηqk
ηk

˙ˆ

k

ηk

˙´1
.

Since the matchings corresponding to different edges of G are drawn independently from each other,
we conclude that

Pr rS is quasi-independent in Hs

“
ź

uv PEpGq

Pr rthere are no cross-edges between S X Lpuq and S X Lpvqs “

ˆ

p1´ ηqk
ηk

˙mˆ k

ηk

˙´m

.
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There are
`

k
ηk

˘n possible choices for S, so we can use the union bound to get

Pr rG is pη,H q-colorables ď
ˆ

p1´ ηqk
ηk

˙mˆ k

ηk

˙´mˆ k

ηk

˙n

“

˜

ˆ

p1´ ηqk
ηk

˙d{2ˆ k

ηk

˙´pd{2´1q
¸n

.

Thus, we only need to show that
ˆ

p1´ ηqk
ηk

˙d{2ˆ k

ηk

˙´pd{2´1q
ă 1.

Notice that
ˆ

p1´ ηqk
ηk

˙ˆ

k

ηk

˙´1
“

ηk´1
ź

i“0

p1´ ηqk ´ i
k ´ i

ď p1´ ηqηk.

Additionally,
ˆ

k

ηk

˙

ď

ˆ

e

η

˙ηk

.

Therefore,
ˆ

p1´ ηqk
ηk

˙d{2ˆ k

ηk

˙´pd{2´1q
ď

˜

ep1´ ηqd{2

η

¸ηk

,

so it is enough to establish
ep1´ ηqd{2 ă η.

Since 1´ η ď expp´ηq, we have

ep1´ ηqd{2 ď e ¨ expp´ηd{2q ď ed´1 ă η,

as long as d ą ee{2 « 3.89, as desired.

3. Proof of Theorem 1.7
Lemma 3.1. If G is a graph such that |EpGq| ě |V pGq| ` 1, then χ˚DP pGq ą 2.

Proof. Set n :“ |V pGq|. Without loss of generality, we may assume that |EpGq| “ n ` 1. Pick a
positive real number η0 ă 1{2 so that for all η P rη0, 1{2q, the following inequality holds:

ˆ

ep1´ ηq
1´ 2η

˙p1´2ηqpn`1q
ă

ˆ

1
η

˙η

.

Such η0 exists since, as η approaches 1{2 from below, we have
ˆ

ep1´ ηq
1´ 2η

˙p1´2ηqpn`1q
Ñ 1, while

ˆ

1
η

˙η

Ñ
?

2.

Our aim is to show that for all k P N`, ϑDP pG, kq ă η0. Fix k P N` and let η :“ rη0ks{k, so it suffices
to show that ϑDP pG, kq ă η. We may assume that η ď 1{2, as ϑDP pG, kq ď 1{2 for every graph G
with at least one edge. We use the same approach and notation as in the proof of Theorem 1.9 (see
Section 2). Thus, H “ pL,Hq is a random k-fold cover of G, where V pHq “ X, and if S Ď X is a set
with |S X Lpuq| “ ηk for all u P V pGq, then

Pr rS is quasi-independent in Hs “

ˆ

p1´ ηqk
ηk

˙n`1ˆ k

ηk

˙´pn`1q
,

so the probability that G is pη,H q-colorable is at most
ˆ

p1´ ηqk
ηk

˙n`1ˆ k

ηk

˙´pn`1qˆ k

ηk

˙n

“

ˆ

p1´ ηqk
ηk

˙n`1ˆ k

ηk

˙´1
.
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If η “ 1{2, then the last expression is equal to
ˆ

k

k{2

˙´1
ă 1,

as desired. Thus, we may assume from now on that η ă 1{2. Then we can write
ˆ

p1´ ηqk
ηk

˙

“

ˆ

p1´ ηqk
p1´ 2ηqk

˙

ď

ˆ

ep1´ ηq
1´ 2η

˙p1´2ηqk
.

Additionally,
ˆ

k

ηk

˙

ě

ˆ

1
η

˙ηk

.

Therefore, the probability that G is pη,H q-colorable is less than 1 as long as
ˆ

ep1´ ηq
1´ 2η

˙p1´2ηqpn`1q
ă

ˆ

1
η

˙η

,

which is true by the choice of η0 and since η0 ď η ă 1{2. �

Lemma 3.2. If G is a cycle of even length, then χ˚DP pGq “ 2, while ϑDP pG, kq´1 ą 2 for all k P N`.

Proof. Let the vertex and the edge sets of G be tv1, . . . , vnu and tv1v2, v2v3, . . . , vnv1u respectively.
Given k P N` and a permutation σ : rks Ñ rks, we define a k-fold cover Hσ “ pLσ, Hσq of G as follows.
First, for each 1 ď i ď k, let Lσpviq :“ tiu ˆ rks. Then, for each 1 ď i ă n, define

EHσpLσpviq, Lσpvi`1qq :“ ttpi, jq, pi` 1, jqu : 1 ď j ď ku.

Finally, let
EHσpLσpv1q, Lσpvnqq :“ ttp1, jq, pn, σpjqqu : 1 ď j ď ku.

It is clear that to determine ϑDP pG, kq it is enough to consider covers of the form Hσ for some σ.
Suppose that ϑDP pG, kq “ 1{2 for some k P N. Consider a permutation σ : rks Ñ rks that consists of a

single cycle. Note that if X Ď rks satisfies σpXq “ X, then X P t∅, rksu. Let S be a p1{2,Hσq-coloring
of G. For each 1 ď i ď k, let Si :“ tj : pi, jq P Su. Since S is quasi-independent, Si X Si`1 “ ∅ for all
1 ď i ă n. But we also have |Si| “ |Si`1| “ k{2, and thus Si`1 “ rkszSi. Since n is even, this yields
Sn “ rkszS1. For every j P S1, we have σpjq R Sn, hence σpjq P S1. In other words, σpS1q “ S1. But
then S1 P t∅, rksu, contradicting the fact that |S1| “ k{2.

It remains to prove that for any η ă 1{2, there is k P N` such that ϑDP pG, kq ě η. Take a large odd
integer k and let σ : rks Ñ rks be a permutation. Write σ as a product of disjoint cycles: σ “ π1 ¨ ¨ ¨πm.
We may rearrange the set rks so that the support of each cycle πi is of the form tm P rks : `i ď m ď riu
for some 1 ď `i ď ri ď k, and

πip`iq “ `i ` 1, πip`i ` 1q “ `i ` 2, . . . , πipriq “ `i.

Then σpiq ď i` 1 for all 1 ď i ď k. Now let
X :“ t1, . . . , pk ´ 1q{2u and Y :“ tpk ` 3q{2, . . . , ku.

Note that |X| “ |Y | “ pk ´ 1q{2, X X Y “ ∅, and σpXq X Y “ ∅. Hence, if we define
S :“ tpi, jq : 1 ď i ď n, j P X if i is odd and j P Y if i is evenu,

then S is a pp1´ 1{kq{2,Hσq-coloring of G, and we are done. �

Proof of Theorem 1.7. Let G be a connected graph and suppose that χ˚DP pGq ď 2. Even the
ordinary fractional chromatic number of any odd cycle exceeds 2 (see [SU97, Proposition 3.1.2]), so
G must be bipartite. Furthermore, by Lemma 3.1, |EpGq| ď |V pGq|, so G contains at most one even
cycle. Conversely, suppose that G contains no odd cycles and at most one even cycle. If G is acyclic,
then χ˚DP pGq “ χDP pGq ď 2. It remains to consider the case when G contains a single even cycle.
On the one hand, Lemma 3.2 shows that ϑDP pG, kq´1 ą 2 for all k P N`. On the other hand, G is
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obtained from an even cycle by repeatedly adding vertices of degree 1, so we can combine the result of
Lemma 3.2 with the following obvious observation to conclude that χ˚DP pGq “ 2:

Observation. If u P V pGq satisfies degGpuq ď χ˚DP pG´ uq ´ 1, then χ˚DP pGq “ χ˚DP pG´ uq. �

4. Proof of Theorem 1.10
4.A. Notation

Here we review some notation that shall be used throughout this section. Let G be a graph. For a
vertex u P V pGq, NGpuq and NGrus are the open and the closed neighborhoods of u respectively, i.e.,

NGpuq :“ tv P V pGq : uv P EpGqu and NGrus :“ NGpuq Y tuu.

For a set U Ď V pGq, let

NGpUq :“
ď

uPU

NGpuq and NGrU s :“
ď

uPU

NGrus “ NGpUq Y U.

Similarly, if D is a digraph and u P V pDq, then we write
N`D puq :“ tv P V pDq : uv P EpDqu; N´D puq :“ tv P V pDq : vu P EpDqu;
N`D rus :“ N`D puq Y tuu; N´D rus :“ N´D puq Y tuu.

We use R`Dpuq to denote the set of all vertices v P V pDq that are reachable from u via a directed path
of positive length (so D is acyclic if and only if u R R`Dpuq for all u P V pDq). Let R´Dpuq denote the set
of all v P V pDq such that u P R`Dpvq. We write

R`Drus :“ R`Dpuq Y tuu and R´Drus :“ R´Dpuq Y tuu.

For a subset U Ď V pDq, let

N`D pUq :“
ď

uPU

N`D puq; R`DpUq :“
ď

uPU

R`Dpuq; etc.

We use expressions |S| and #S for the cardinality of a set S interchangeably (usually, #S suggests
that it is a random variable).

4.B. The random greedy algorithm
Now we can begin the proof. Let G, D, and d be as in the statement of Theorem 1.10. For brevity, we
set V :“ V pGq and omit subscripts G and D in expressions such as NGpuq, R´Drus, deg`Dpuq, etc. We
will often use the acyclicity of D to make inductive definitions or arguments by describing how to deal
with a vertex u provided that all v reachable from u have already been considered.

Fix ε P p0, 1q and define η :“ p1´ εq ln d{d. We will show that χ˚DP pGq ď η´1 if d is large enough
(as a function of ε). Let H “ pL,Hq be a k-fold cover of G. Our aim is to show that if k is sufficiently
large (where the lower bound may depend on the entire graph G), then G has an pη,H q-coloring.

For a set U Ď V , let LpUq :“
Ť

uPU Lpuq and let QIpUq denote the set of all quasi-independent sets
contained in LpUq. Let F be the orientation of the cross-edges of H in which a cross-edge xy is directed
from x to y if and only if the vertices u, v P V such that x P Lpuq and y P Lpvq satisfy uv P EpDq.
Again, we omit subscripts H and F in expressions such as NHrxs, R`F pxq, etc.

Given a set of probabilities ppuq P r0, 1s for u P V , we define random subsets Spuq Ď Lpuq inductively
using the following random greedy construction. Consider u P V and suppose that the sets Spvq for all
v reachable from u have already been defined. Independently for each x P Lpuq, set

ξpxq :“
#

1 with probability ppuq;
0 with probability 1´ ppuq,

(4.1)

Define
L1puq :“ tx P Lpuq : N`pxq X Spvq “ ∅ for all v P N`puqu,

7



and then
Spuq :“ tx P L1puq : ξpxq “ 1u.

Note that for every u P V , the set Spuq only depends on the random choices associated with the
elements of LpR`rusq. For each U Ď V , write SpUq :“

Ť

uPU Spuq and set S :“ SpV q. By construction,
S is always a quasi-independent set. In the remainder of this section we will analyze this construction
in order to argue that, for a suitable choice of probabilities tppuq : u P V u and sufficiently large k,
|Spuq| ě ηk for all u P V (and hence S is an pη,H q-coloring) with high probability.

4.C. A correlation inequality
Recall that a family F of subsets of a set I is increasing if whenever X1 Ě X2 P F , we have X1 P F ;
similarly, F is decreasing if X1 Ď X2 P F implies X1 P F . We shall need the following version of the
FKG inequality, tracing back to the work of Kleitman [Kle66]:

Theorem 4.2 ([AS00, Theorem 6.3.2]). Let I be a finite set and let X be a random subset of I
obtained by selecting each i P I independently with probability qpiq P r0, 1s. If F and G are increasing
families of subsets of I, then

Pr rX P F and X P Gs ě Pr rX P Fs ¨ Pr rX P Gs .
The same conclusion holds if F and G are decreasing.

We use Theorem 4.2 to obtain the following positive correlation result:

Lemma 4.3. Let u P V and set A :“ R`ruszR´rN`russ. Let Q P QIpAq and Y Ď LpN`puqq. Then

Pr ry R S for all y P Y |SpAq “ Qs ě
ź

y PY

Pr ry R S |SpAq “ Qs .

Proof. Since nothing in the statement of the lemma depends on the vertices outside of R`rus, we
may pass to a subgraph and assume that V “ R`rus. Set B :“ R´rN`russ, so B “ V zA. The lemma
is trivially true if Y “ ∅, so we may assume Y ‰ ∅, and hence N`puq ‰ ∅.

The graph GrBs is bipartite. Indeed, consider any v P B. On the one hand, v is reachable from u;
on the other hand, there is a vertex w P N`puq reachable from v. We claim that if P1 and P2 are two
directed uv-paths, then lengthpP1q ” lengthpP2q pmod 2q. Indeed, let P3 be any directed vw-path. If
lengthpP1q ı lengthpP2q pmod 2q, then either P1 ` P3 or P2 ` P3 is a directed uw-path of even length,
which contradicts assumption (D2). Thus, we can 2-color the vertices in B based on the parity of the
directed paths leading from u to them.

Let tU1, U2u be a partition of B into two independent sets such that u P U1. To the random variable
ξ defined in (4.1), we associate a random subset Xξ Ď LpBq as follows:

Xξ :“ tx P LpU1q : ξpxq “ 1u Y tx P LpU2q : ξpxq “ 0u.
The set Xξ is built by independently selecting each element x P LpBq with probability qpxq given by

qpxq :“
#

ppvq if x P Lpvq for v P U1;
1´ ppvq if x P Lpvq for v P U2.

To complete the construction of the set S, given that SpAq “ Q, we only need to know the values ξpxq
for all x P LpBq. Since all of them are determined by the set Xξ, we may, for fixed X Ď LpBq, denote
by SX the value S would take under the assumptions SpAq “ Q and Xξ “ X. For each x P LpBq, let

Fx :“ tX Ď LpBq : x R SXu.
Since the random set Xξ is generated independently from SpAq, we have

PrrXξ P Fxs ¨ PrrSpAq “ Qs “ PrrXξ P Fx ^ SpAq “ Qs “ Prrx R S ^ SpAq “ Qs,

and hence
PrrXξ P Fxs “ Pr rx R S |SpAq “ Qs . (4.4)
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Claim 4.3.1. If x P LpU1q (resp. x P LpU2q), then the family Fx is decreasing (resp. increasing).

Proof. We argue inductively. Let v P B and suppose that the claim has been verified for all x P Lpwq
with w P B reachable from v. Consider any x P Lpvq. We will give the proof for the case v P U1, as the
case v P U2 is analogous. By definition,

x P S ðñ ξpxq “ 1 and y R S for all y P N`pxq. (4.5)
If x P N´pQq, then Fx “ PowpLpBqq (and we are done), while if x R N´pQq, then (4.5) yields

Fx “ tX Ď LpBq : x P Xu X
č

y PN`pxqXLpBq

Fy,

where Fx denotes the complement of Fx. Each y P N`pxqXLpBq belongs to LpU2q, so, by the inductive
assumption, the family Fy are increasing. The intersection of increasing families is again increasing, so
Fx is the complement of an increasing family, hence Fx is decreasing, as desired. %

With Claim 4.3.1 in hand, the conclusion of the lemma follows from equation (4.4) and the fact that
Y Ď LpU2q by applying Theorem 4.2 to the increasing families Fy with y P Y . �

We remark that the proof of Lemma 4.3 is the only place where we use condition (D2).

4.D. Expectation bounds
The next lemma gives a lower bound on the expected sizes of the sets Spuq.

Lemma 4.6. Let α be a positive real number such that
p1` αq2p1´ εq ă 1.

Then there exists a choice of tppuq : u P V u such that for all u P V ,
Er#Spuqs “ p1` αqηk.

Proof. Let β P p0, 1q be such that
1´ λ ě exp p´p1` αqλq for all 0 ă λ ď β. (4.7)

We will frequently use the following form of the inequality of arithmetic and geometric means: Given
nonnegative real numbers λ1, . . . , λm and nonnegative weights w1, . . . , wm satisfying

řm
i“1wi “ 1,

m
ÿ

i“1
wiλi ě

m
ź

i“1
λwii . (4.8)

We define the values ppuq inductively. Let u P V and assume that we have already defined ppvq for
all v reachable from u so that

Er#Spvqs “ p1` αqηk and ppvq ď β for all v P R`puq.

We will show that in that case
Er#L1puqs ě β´1p1` αqηk. (4.9)

After (4.9) is established, we can define

ppuq :“ p1` αqηk
Er#L1puqs ,

which gives
Er#Spuqs “ ppuqEr#L1puqs “ p1` αqηk,

as desired, and, furthermore, ppuq ď β, allowing the induction to continue.
As in the statement of Lemma 4.3, let

A :“ R`ruszR´rN`russ.
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We have
Er#L1puqs “

ÿ

Q PQIpAq
E
“

#L1puq
ˇ

ˇSpAq “ Q
‰

¨ Pr rSpAq “ Qs . (4.10)

Consider any Q P QIpAq. By the linearity of expectation,

E
“

#L1puq
ˇ

ˇSpAq “ Q
‰

“
ÿ

x PLpuq

Pr
“

x P L1puq
ˇ

ˇSpAq “ Q
‰

“
ÿ

x PLpuq

Pr
“

y R S for all y P N`pxq
ˇ

ˇSpAq “ Q
‰

.

From Lemma 4.3 we derive
ÿ

x PLpuq

Pr
“

y R S for all y P N`pxq
ˇ

ˇSpAq “ Q
‰

ě
ÿ

x PLpuq

ź

y PN`pxq

Pr ry R S |SpAq “ Qs ,

which, by (4.8), is at least

k

¨

˝

ź

x PLpuq

ź

y PN`pxq

Pr ry R S |SpAq “ Qs

˛

‚

1{k

.

After changing the order of multiplication, we get
ź

x PLpuq

ź

y PN`pxq

Pr ry R S |SpAq “ Qs ě
ź

v PN`puq

ź

y PLpvq

Pr ry R S |SpAq “ Qs .

Now consider any v P N`puq. Let
Av :“ AYR`pvq.

Since A Ď Av, the set SpAq is determined by SpAvq, and hence
ź

y PLpvq

Pr ry R S |SpAq “ Qs “
ź

y PLpvq

ÿ

R PQIpAvq
Pr ry R S |SpAvq “ Rs ¨ Pr rSpAvq “ R |SpAq “ Qs .

Applying (4.8) again, we see that the last expression is at least
ź

y PLpvq

ź

R PQIpAvq
pPr ry R S |SpAvq “ RsqPrrSpAvq“R |SpAq“Qs

“
ź

R PQIpAvq

¨

˝

ź

y PLpvq

Pr ry R S |SpAvq “ Rs

˛

‚

PrrSpAvq“R |SpAq“Qs

. (4.11)

Note that the set L1pvq is completely determined by SpAvq. This allows us to introduce notation L1Rpvq
for the value of L1pvq under the assumption SpAvq “ R; or, explicitly,

L1Rpvq :“ LpvqzN´pRq.

Since v R Av, for fixed R P QIpAvq and y P Lpvq, we have

Pr ry R S |SpAvq “ Rs “

#

1´ ppvq if y P L1Rpvq;
1 otherwise.

Therefore,
ź

y PLpvq

Pr ry R S |SpAvq “ Rs “ p1´ ppvqq|L1Rpvq|.
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Plugging this into (4.11), we obtain
ź

y PLpvq

Pr ry R S |SpAq “ Qs ě
ź

R PQIpAvq
p1´ ppvqq|L1Rpvq|¨PrrSpAvq“R |SpAq“Qs

“ p1´ ppvqq
ř

R PQIpAvq |L
1
Rpvq|¨PrrSpAvq“R |SpAq“Qs

“ p1´ ppvqqEr#L1pvq |SpAq“Qs.
Since, by our assumption, ppvq ď β, inequality (4.7) yields

p1´ ppvqqEr#L1pvq |SpAq“Qs ě exp
`

´p1` αqppvqE
“

#L1pvq
ˇ

ˇSpAq “ Q
‰˘

“ exp p´p1` αqE r#Spvq |SpAq “ Qsq .

This allows us to lower bound E r#L1puq |SpAq “ Qs as

E
“

#L1puq
ˇ

ˇSpAq “ Q
‰

ě k

¨

˝

ź

v PN`puq

exp p´p1` αqE r#Spvq |SpAq “ Qsq

˛

‚

1{k

“ k exp

¨

˝´
1` α
k

ÿ

v PN`puq

E r#Spvq |SpAq “ Qs

˛

‚.

Returning to (4.10), we conclude

Er#L1puqs ě k
ÿ

Q PQIpAq
exp

¨

˝´
1` α
k

ÿ

v PN`puq

E r#Spvq |SpAq “ Qs

˛

‚¨ Pr rSpAq “ Qs .

Due to the convexity of the exponential function (or by (4.8) again), the last expression is at least

k exp

¨

˝´
1` α
k

ÿ

v PN`puq

E r#Spvqs

˛

‚,

which, since deg`puq ď d and Er#Spvqs “ p1` αqηk for all v P N`puq by assumption, finally becomes

k exp
`

´p1` αq2η deg`puq
˘

ě k exp
`

´p1` αq2ηd
˘

“ kd´p1`αq
2p1´εq.

It remains to notice that, since p1` αq2p1´ εq ă 1, the quantity d´p1`αq2p1´εq is asymptotically larger
than β´1p1` αqη “ Θpln d{dq. This finishes the proof of (4.9). �

4.E. Concentration of measure and completing the proof
Finally, we show that the sizes of the sets Spuq are highly concentrated around their expected values.
The tool that we use is the following classical result, which is a consequence of Azuma’s inequality for
Doob martingales (see [AS00, §7.4]):
Theorem 4.12 ([MR02, p. 79]). Let ζ be a random variable determined by s independent trials such
that changing the outcome of any one trial can affect the value of ζ at most by c. Then

Prr|ζ ´ Eζ| ą ts ď 2 exp
ˆ

´
t2

2c2s

˙

.

Lemma 4.13. There is C ą 0, depending on G but not on k, such that for all α ą 0 and u P V ,
Pr r|#Spuq ´ Er#Spuqs| ą αks ď 2 exp

`

´Cα2k
˘

.

Proof. The value #Spuq is determined by k|V | independent trials, namely by the values ξpxq for
x P V pHq, so, to apply Theorem 4.12, we only need to establish the following:
Claim 4.13.1. Changing the value ξpxq for some x P V pHq can affect #Spuq at most by some amount c
that depends on G but not on k.
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Proof. Suppose that x P Lpvq for some v P V . The value ξpxq can only affect y P R´rxs, so it suffices to
bound |R´rxs XLpuq| from above. Let y “ z1 Ñ ¨ ¨ ¨ Ñ z` “ x be a directed yx-path for some y P Lpuq.
For each 1 ď i ď `, choose vi P V so that zi P Lpviq. Then u “ v1 Ñ ¨ ¨ ¨ Ñ v` “ v is a directed uv-path
in D. Notice that the uv-path v1 Ñ ¨ ¨ ¨ Ñ v` uniquely identifies y “ z1. Indeed, by definition, z` “ x,
so z`´1 must be the unique neighbor of x in Lpv`´1q. Then z`´2 must be the unique neighbor of z`´1
in Lpv`´2q; and so on. Thus, |R´rxs X Lpuq| does not exceed the number of directed uv-paths, which
is independent of k. %

The conclusion of the lemma now follows by applying Theorem 4.12 with s “ k|V |, t “ αk, and the
value of c given by Claim 4.13.1. �

Now we can easily finish the proof of Theorem 1.10. Pick some α ą 0 so that p1` αq2p1´ εq ă 1
and apply Lemma 4.6 to obtain tppuq : u P V u such that for all u P V ,

Er#Spuqs “ p1` αqηk.
Then, by Lemma 4.13, we have

Pr r#Spuq ă ηks ď r|#Spuq ´ Er#Spuqs| ą αηks ď 2 exp
`

´Cα2η2k
˘

,

where C ą 0 may depend on G but not on k. Therefore, we may apply the union bound to get
Pr rS is not an pη,H q-coloring of Gs ď 2n exp

`

´Cα2η2k
˘

ÝÝÝÑ
kÑ8

0,

as desired.

5. Proof of Corollary 1.12
For t P N`, a t-uniform hypergraph H is a pair pV pHq, EpHqq, where V pHq is a set whose elements are
called the vertices of H and EpHq is a set of t-element subsets of V pHq, called the edges of H. (Thus, a
graph is a 2-uniform hypergraph.) A hypergraph H is k-colorable if there is a function f : V pHq Ñ rks
such that for every edge e P EpHq, the restriction of f onto e is not constant. A (Berge) cycle of length
g in a hypergraph H consists of a sequence of distinct vertices v1, . . . , vg and a sequence of distinct
edges e1, . . . , eg with the property that ei Ě tvi, vi`1u for all 1 ď i ď g, where the indices are taken
modulo g. The girth of a hypergraph H is the least integer g ě 2 such that H contains a cycle of
length g (if no such g exists, then the girth of H is set to be 8). The following fact is well-known:

Theorem 5.1 (Erdős–Hajnal [EH66]). For all t, k, g P N`, there is a finite non-k-colorable t-uniform
hypergraph of girth at least g.

In [Des54], Blanche Descartes introduced a simple way of building graphs with girth 6 and arbitrarily
high chromatic number. This construction was generalized in [KN99] using Theorem 5.1 to obtain
graphs whose girth and chromatic number are both arbitrarily high. The graphs produced by this
construction also serve as examples for Corollary 1.12. Start by setting G1 :“ K2 and let D1 be an
orientation of G1. Once Gi and Di are defined, take a |V pGiq|-uniform non-pi`1q-colorable hypergraph
Hi. Build Gi`1 by making V pHiq an independent set, adding |EpHiq| disjoint copies of Gi, establishing
a bijection between the copies of Gi and the edges of Hi, and joining each copy to its corresponding
edge via a perfect matching. Finally, let Di`1 be the orientation of Gi`1 obtained by orienting each
copy of Gi according to Di and directing every remaining edge toward its endpoint in V pHiq.

The graphs Gi have the following properties (see [KN99]):
– Gi is i-degenerate;
– χpGiq “ i` 1;
– if for all j ă i, the girth of Hj is at least g, then the girth of Gi is at least 3g.

Additionally, it is clear from the construction that the orientation Di is acyclic and the out-degree of
every vertex in Di is at most i; in other words, Di witnesses that Gi is i-degenerate. Furthermore, the
(undirected) subgraph of Gi induced by the vertices reachable in Di from any given vertex u P V pGiq,
including u itself, is acyclic; in particular, for all uv P EpDiq, the only directed uv-path is the single edge
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uÑ v. Therefore, condition (D2) of Theorem 1.10 holds and we can conclude χ˚DP pGiq ď p1`op1qqi{ ln i.
Hence, by using hypergraphs Hi of large girth in this construction, we obtain graphs satisfying all the
requirements of Corollary 1.12.
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