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Abstract

We prove that the minimum number of Hamilton cycles in a hamiltonian thresh-

old graph of order n is 2b(n−3)/2c and this minimum number is attained uniquely

by the graph with degree sequence n − 1, n − 1, n − 2, . . . , dn/2e, dn/2e, . . . , 3, 2 of

n− 2 distinct degrees. This graph is also the unique graph of minimum size among

all hamiltonian threshold graphs of order n.
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1 Introduction

There are few results concerning the precise value of the minimum or maximum number

of Hamilton cycles of graphs in a special class with a prescribed order. For example, it is

known that the minimum number of Hamilton cycles in a simple hamiltonian cubic graph

of order n is 3, which follows from Smith’s theorem [1, p.493] and an easy construction [10,

p.479], but the maximum number of Hamilton cycles is not known; even the conjectured

upper bound 2n/3 [2, p.312] has not been proved. Another example is Sheehan’s conjecture

that every simple hamiltonian 4-regular graph has at least two Hamilton cycles [10] (see

also [1, p.494 and p.590]), which is still unsolved.
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In this paper we will determine the minimum number of Hamilton cycles in a hamilto-

nian threshold graph of order n and the unique minimizing graph. Threshold graphs were

introduced by Chvátal and Hammer [3] in 1973. Besides the original definition, seven

equivalent characterizations are given in the book [7].

Definition 1. A finite simple graph G is called a threshold graph if there exists a

nonnegative real-valued function f defined on the vertex set of G, f : V (G) → R and a

nonnegative real number t such that for any two distinct vertices u and v, u and v are

adjacent if and only if f(u) + f(v) > t.

The class of threshold graphs play a special role for many reasons, some of which

are the following: 1) They have geometrical significance. Let Ωn be the convex hull of all

degree sequences of the simple graphs of order n. Then the extreme points of the polytope

Ωn are exactly the degree sequences of threshold graphs of order n [6] (for another proof

see [9]). 2) A nonnegative integer sequence is graphical if and only if it is majorized by

the degree sequence of some threshold graph [9]. 3) A graphical sequence has a unique

labeled realization if and only if it is the degree sequence of a threshold graph [7, p.72].

For terminology and notations we follow the textbooks [1,11]. The order of a graph

is its number of vertices, and the size its number of edges. We regard isomorphic graphs

as the same graph. Thus for two graphs G and H, G = H means that G and H are

isomorphic. N(v) and N [v] denote the neighborhood and closed neighborhood of a vertex

v respectively. For a real number r, brc denotes the largest integer less than or equal to

r, and dre denotes the least integer larger than or equal to r. The notation |S| denotes

the cardinality of a set S.

2 Main Results

Let G = (V,E) be a graph whose distinct positive vertex-degrees are δ1 < · · · < δm

and let δ0 = 0. Denote Di = {v ∈ V |deg(v) = δi} for i = 0, 1, . . . ,m. The sequence

D0, D1, . . . , Dm is called the degree partition of G. Each Di is called a degree set. Some-

times when D0 is empty it may be omitted. These notations will be used throughout. We

will need the following characterization [7, p.11] which describes the basic structure of a

threshold graph.
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Lemma 1. G is a threshold graph if and only if for each v ∈ Dk,

N(v) =
k⋃

j=1

Dm+1−j if k = 1, . . . , bm/2c

N [v] =
k⋃

j=1

Dm+1−j if k = bm/2c+ 1, . . . ,m.

In other words, for x ∈ Di and y ∈ Dj, x is adjacent to y if and only if i+ j > m.

Clearly, Lemma 1 not only implies another characterization that the vicinal preorder

of a threshold graph is a total preorder, but also indicates that every threshold graph is

determined uniquely by its degree sequence [7, p.72].

The following lemma can be found in [7, pp.11-13].

Lemma 2. For any threshold graph,

δk+1 = δk + |Dm−k| for k = 0, 1, . . . ,m, k 6= bm/2c

δk+1 = δk + |Dm−k| − 1 for k = bm/2c.

For two subsets S and T of the vertex set of a graph G, the notation [S, T ] denotes

the set of edges of G with one end-vertex in S and the other end-vertex in T. Here S and

T need not be disjoint. In the case T = S, [S, S] is just the edge set of the subgraph G[S]

of G induced by S. Next we define a new concept which will be used in the proofs.

Definition 2. An edge of a threshold graph G with degree partition D0, D1, . . . , Dm

is called a key edge of G if it lies in [Dk, Dm+1−k] for some k with 1 ≤ k ≤ dm/2e.

Thus when m is even we have only one type of key edges, and when m is odd (m ≥ 3)

we have two types of key edges. For example, if m = 4 then the set of key edges is

[D1, D4]∪[D2, D3] while if m = 5 then the set of key edges is [D1, D5]∪[D2, D4]∪[D3, D3].

We will need the following two lemmas concerning properties of key edges.

Lemma 3. If e is a key edge of a threshold graph G, then G− e is a threshold graph.

Proof. Denote G′ = G−e and let m′ be the number of distinct positive vertex-degrees

of G′. Let e = xy. First suppose that x ∈ Dj and y ∈ Dm+1−j for some 1 ≤ j ≤ bm/2c.
We write TPO for the conditions in Lemma 1 (suggesting total preorder). To prove that

G′ is a threshold graph, by Lemma 1 it suffices to show that the degree sets of G′ satisfy
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TPO. The structural change of the degree partitions depends on the sizes of the two sets

Dj and Dm+1−j. We distinguish four cases.

Case 1. |Dj| = 1 and |Dm+1−j| = 1. The condition |Dj| = 1 implies that j = bm/2c is

possible only if m is odd, since if m is even then |Dm/2| ≥ 2. Hence m− j > j, implying

that Dm−j and Dj are two distinct sets. By Lemma 2,

δj = δj−1 + |Dm+1−j| = δj−1 + 1 and δm+1−j = δm−j + |Dj| = δm−j + 1.

After deleting e, the two sets Dj and Dm+1−j become empty, and they disappear in G′.

x goes to Dj−1 and y goes to Dm−j. Now m′ = m− 2 and the adjacency relations among

the vertices of G′ still satisfy TPO.

Case 2. |Dj| = 1 and |Dm+1−j| ≥ 2. As in case 1, Dm−j and Dj are two distinct sets.

By Lemma 2, we have

δj = δj−1 + |Dm+1−j| ≥ δj−1 + 2 and δm+1−j = δm−j + |Dj| = δm−j + 1.

When deleting e, x stays in Dj and y goes to Dm−j. Thus m′ = m and G′ satisfies TPO.

Case 3. |Dj| ≥ 2 and |Dm+1−j| = 1. We have δj = δj−1 + |Dm+1−j| = δj−1 + 1.

When deleting e, x goes to Dj−1. If m is even, j = m/2 and |Dj| = 2, then δm+1−j =

δm/2 + |Dm/2| − 1 = δj + 1. When deleting e, y goes to Dj and the set Dm+1−j disappears.

Thus m′ = m − 1. In all other cases, we have δm+1−j ≥ δm−j + 2. In fact, if m is odd or

m is even and j < m/2, we have δm+1−j = δm−j + |Dj| ≥ δm−j + 2, while if m is even,

j = m/2 and |Dj| ≥ 3, we have δm+1−j = δm−j + |Dj| − 1 ≥ δm−j + 2. When deleting e, y

remains in Dm+1−j. Thus m′ = m. In each case, G′ satisfies TPO.

Case 4. |Dj| ≥ 2 and |Dm+1−j| ≥ 2. We have δj = δj−1 + |Dm+1−j| ≥ δj−1 + 2. If m is

even, j = m/2 and |Dj| = 2, then δm+1−j = δj+1 = δj + |Dj| − 1 = δj + 1. When deleting

e, x remains in Dj (but with degree δj−1) and a new degree set {y}∪ (Dj \{x}) appears.

Now m′ = m + 1. In all other cases, two new degree sets appear, one containing only x

and the other containing only y, so that m′ = m+ 2. In either case, G′ satisfies TPO and

hence it is a threshold graph.

Now suppose that m is odd and x, y ∈ Dt where t = bm/2c+ 1 = dm/2e. Apply

Lemma 2. If |Dt| = 2, when deleting e, both x and y go to Dbm/2c and the degree set Dt

disappears. Then m′ = m−1 and G′ satisfies TPO. Otherwise |Dt| ≥ 3. When deleting e,

a new degree set {x, y} appears, where x and y are nonadjacent. In this case m′ = m+ 1

and G′ again satisfies TPO.2
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Lemma 4. Every key edge of a hamiltonian threshold graph lies in at least one

Hamilton cycle.

Proof. Let G be a hamiltonian threshold graph with degree partition D1, . . . , Dm. Let

e = xy be a key edge of G with x ∈ Dj and y ∈ Dm+1−j for some 1 ≤ j ≤ dm/2e. Choose

any Hamilton cycle C ofG. If e lies in C, we are done. Otherwise let C = (x, s, . . . , y, t, . . .).

Then s and x are adjacent, and t and y are adjacent. Applying Lemma 1 we deduce that

s and t are adjacent. Now the classical cycle exchange [1, p.485] with x+ = s and y+ = t

yields a new Hamilton cycle containing the edge e.2

Different necessary and sufficient conditions for a threshold graph to be hamiltonian

are given by Golumbic [4], Harary and Peled [5], and Mahadev and Peled [8]. What we

need is the following one by Golumbic [4, p.231] whose proof can be found in [7, p.25].

Lemma 5. Let G be a threshold graph of order at least 3 with the degree partition

D0, D1, . . . , Dm. Then G is hamiltonian if and only if D0 = φ,

k∑
j=1

|Dj| <
k∑

j=1

|Dm+1−j|, k = 1, . . . , b(m− 1)/2c

and if m is even, then
∑m/2

j=1 |Dj| ≤
∑m/2

j=1 |Dm+1−j|.

Definition 3. For every integer n ≥ 3, we denote by Gn the graph with degree

sequence n− 1, n− 1, n− 2, . . . , dn/2e, dn/2e, . . . , 3, 2 of n− 2 distinct degrees.

Gn is a hamiltonian threshold graph. G8 is depicted in Figure 1.

Now we are ready to prove the main results.
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Theorem 6. The minimum number of Hamilton cycles in a hamiltonian threshold

graph of order n is 2b(n−3)/2c and this minimum number is attained uniquely by the graph

Gn.

Proof. We first determine the minimizing graph and then count its number of Hamil-

ton cycles. Let G be a hamiltonian threshold graph of order n having the minimum

number of Hamilton cycles. Let D1, . . . , Dm be the degree partition of G. Note that for

any threshold graph with m ≥ 1, we have |Ddm/2e| ≥ 2. This follows from

1 ≤ δbm/2c+1 − δbm/2c = |Ddm/2e| − 1

by Lemma 2.

The theorem holds trivially for the case n = 3. Next suppose n ≥ 4. m = 1 means

that G is a complete graph, which is impossible. Thus m ≥ 2. We claim that |Dm| = 2.

Lemma 5 with k = 1 implies |Dm| ≥ 2. Hence it suffices to prove |Dm| ≤ 2. To the

contrary suppose |Dm| ≥ 3. Let e be any edge in [D1, Dm]. Then e is a key edge by

definition. By Lemma 3, G− e is a threshold graph. Since G is a hamiltonian threshold

graph, its degree sets D1, . . . , Dm satisfy the inequalities in Lemma 5. Analyzing the

change of degree partitions from G to G− e as in the proof of Lemma 3, we see that the

degree sets of G− e also satisfy the inequalities in Lemma 5. Hence by Lemma 5, G− e
is hamiltonian. Deleting any edge cannot increase the number of Hamilton cycles. By

Lemma 4, the key edge e lies in at least one Hamilton cycle of G. It follows that G − e
has fewer Hamilton cycles than G, contradicting the minimum property of G. This proves

|Dm| = 2.

If m = 2, then by Lemma 5 we have |D1| ≤ 2. Since n ≥ 4, we must have n = 4 and

|D1| = 2. Then applying Lemma 1 we deduce that G has the degree sequence 3, 3, 2, 2,

so that G = G4. Next suppose m ≥ 3. By Lemma 5, |D1| < |Dm| = 2. Hence |D1| = 1.

We first consider the case m ≥ 4 (The case m = 3 will be treated later). We claim that

|Dm−1| = 1. Otherwise, as argued above, deleting any key edge f in [D2, Dm−1] would

reduce the number of Hamilton cycles such that G − f is still a hamiltonian threshold

graph, a contradiction. Then using the fact that |D1| = 1 and |Dm| = 2 and applying

Lemma 5 we deduce that if m is odd or if m is even and m ≥ 6 then |D2| = 1, and

if m = 4 then |D2| = 2. Continuing in this way, by successively deleting a key edge in

[Dj, Dm+1−j] for j = 2, . . . , bm/2c if |Dm+1−j| ≥ 2 we conclude that |Dm+1−j| = 1 for

each j = 2, . . . , bm/2c. Then using the fact that |D1| = 1 and |Dm| = 2 and applying

Lemma 5, we conclude that |Di| = 1 for each i = 2, . . . , bm/2c − 1 and that if m is odd
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then |Dbm/2c| = 1 and if m is even then |Dm/2| = 2. Thus, if m is even then n = m+ 2 is

even, G has the degree sequence n− 1, n− 1, . . . , n/2, n/2, . . . , 3, 2 and hence G = Gn.

If m ≥ 3 and m is odd, we assert that |Ddm/2e| = 2. As remarked at the beginning, we

always have |Ddm/2e| ≥ 2. Thus it suffices to show |Ddm/2e| ≤ 2. To the contrary suppose

|Ddm/2e| ≥ 3. By Lemma 4, any key edge h in G[Ddm/2e] lies in at least one Hamilton

cycle. With the assumption that |Ddm/2e| ≥ 3, applying Lemma 3 and Lemma 5 we see

that G − h is also a hamiltonian threshold graph with fewer Hamilton cycles than G, a

contradiction. This shows |Ddm/2e| = 2. Now n = m+ 2 is odd. Combining all the above

information about G we deduce that G has the degree sequence n − 1, n − 1, . . . , (n +

1)/2, (n+ 1)/2, . . . , 3, 2 and hence G = Gn.

Denote the number of Hamilton cycles of Gn by f(n). Since f(3) = f(4) = 1, to prove

f(n) = 2b(n−3)/2c it suffices to show the following

Claim. For every integer k ≥ 2,

f(2k − 1) = f(2k) and f(2k + 1) = 2f(2k).

In G2k, let Dk = {x, y} and Dk+1 = {z}. By Lemma 5, neither G2k − xz nor G2k − yz
is hamiltonian. Thus the path xzy must lie in every Hamilton cycle of G2k. Deleting the

vertex z and adding the edge xy we obtain a graph which is isomorphic to G2k−1 and has

the same number of Hamilton cycles as G2k. Hence f(2k − 1) = f(2k).

In G2k+1, let Dk+1 = {u, v}. Then the edge uv lies in every Hamilton cycle of G2k+1.

Denote G′ = G − v. Clearly G′ is isomorphic to G2k and hence G′ has f(2k) Hamilton

cycles. Since N(u)\{v} = N(v)\{u} in G, from each Hamilton cycle of G′ we can obtain

two distinct Hamilton cycles of G2k+1 by replacing the vertex u by the edge uv in two

ways. More precisely, a Hamilton cycle (. . . , s, u, t, . . .) of G′ yields two Hamilton cycles

(. . . , s, u, v, t, . . .) and (. . . , s, v, u, t, . . .) of G. Conversely every Hamilton cycle of G2k+1

can be obtained in such a vertex-to-edge expansion from a Hamilton cycle of G′. Hence

f(2k + 1) = 2f(2k). This shows the claim and completes the proof.2

The above proof of Theorem 6 also proves that Gn is the unique graph that has the

minimum size among all hamiltonian threshold graphs of order n. To see this, just replace

the assumption that G has the minimum number of Hamilton cycles by the one that G

has the minimum size. Also note that the size of a threshold graph is easy to count, since

it is a split graph with the clique
⋃m

j=bm/2c+1Dj and the independent set
⋃bm/2c

j=1 Dj. Thus

we have the following result.
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Theorem 7. The minimum size of a hamiltonian threshold graph of order n is(n2 + 2n− 3)/4 if n is odd

(n2 + 2n− 4)/4 if n is even

and this minimum size is attained uniquely by the graph Gn.
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