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Normal edge-colorings of cubic graphs
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Abstract

A normal k-edge-coloring of a cubic graph is an edge-coloring with k colors having the
additional property that when looking at the set of colors assigned to any edge e and the four
edges adjacent it, we have either exactly five distinct colors or exactly three distinct colors.
We denote by χ′

N(G) the smallest k, for which G admits a normal k-edge-coloring. Normal k-
edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring
Conjecture. More precisely, it is known that proving χ′

N(G) ≤ 5 for every bridgeless cubic
graph is equivalent to proving Petersen Coloring Conjecture and then, among others, Cycle
Double Cover Conjecture and Berge-Fulkerson Conjecture. Considering the larger class of all
simple cubic graphs (not necessarily bridgeless), some interesting questions naturally arise.
For instance, there exist simple cubic graphs, not bridgeless, with χ′

N(G) = 7. On the other
hand, the known best general upper bound for χ′

N(G) was 9. Here, we improve it by proving
that χ′

N(G) ≤ 7 for any simple cubic graph G, which is best possible. We obtain this result
by proving the existence of specific nowhere zero Z

2
2-flows in 4-edge-connected graphs.

Keywords: Cubic graph, normal edge-coloring, Petersen coloring conjecture, nowhere zero
flow

1. Introduction

The Petersen Coloring Conjecture is an outstanding conjecture in graph theory which
asserts that the edge-set of every bridgeless cubic graph G can be colored by using as set of
colors the edge-set of the Petersen graph P in such a way that adjacent edges of G receive
as colors adjacent edges of P . The conjecture is well-known and it is largely considered hard
to prove since it implies some other classical conjectures in the field such as Cycle Double
Cover Conjecture and Berge-Fulkerson Conjecture (see [4, 9, 17]). Jaeger, in [9], introduced
an equivalent formulation of the Petersen Coloring Conjecture. More precisely, he proved
that a bridgeless cubic graph is a counterexample to this conjecture, if and only if, it does
not admit a normal edge-coloring (see Definitions 1 and 2 in Section 1) with at most 5 colors.
We call normal chromatic index of G, denoted by χ′

N(G), the minimum number of colors in
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a normal edge-coloring of G. In this terms, Petersen Coloring Conjecture is equivalent to
saying that every bridgeless cubic graph has normal chromatic index at most 5. As far as we
know, the best known upper bound for an arbitrary bridgeless cubic graph is 7 (see Theorem
4). A similar situation appears in the larger class of all simple cubic graphs (not necessarily
bridgeless). Indeed, there exist examples of cubic graphs with normal chromatic index 7,
but the best known upper bound was 9 (see [2]). This bound is obtained by a refinement of
the proof used in [1] to show the existence of a strong edge-coloring of a cubic graph with
10 colors. The upper bound for bridgeless cubic graphs is deduced by the 8-flow Theorem of
Jaeger. Following the same spirit, we approach the problem of finding a better upper bound
for the class of all simple cubic graph by using flow theory. In Section 2, we prove some
technical lemmas which are refinements of some well-known statements in flow theory, such
as the existence of a nowhere-zero 4-flows in graphs with two edge-disjoint spanning trees.
Then, we use such results in Section 3 to prove that every simple cubic graph has normal
chromatic index at most 7. Due to the existence of examples where 7 colors are necessary,
the proved upper bound is best possible. Finally, we propose an Appendix where we present
counterexamples for two possible natural stronger versions of our lemmas in Section 3, by
proving that in some sense the results are optimal.

Now, let us introduce the main definitions and notions used in the paper in some detail.
Graphs considered in this paper are finite and undirected. They do not contain loops, though
they may contain parallel edges. We also consider pseudo-graphs, which may contain both
loops and parallel edges, and simple graphs, which contain neither loops nor parallel edges.
As usual, a loop contributes to the degree of a vertex by two.

For a graph G and a vertex v let ∂G(v) be the set of edges of G that are incident to
v in G. If G is cubic and F ⊆ E(G), then F is a perfect matching of G if and only if
E(G) \ E(F ) is an edge-set of a 2-factor of G. This perfect matching and 2-factor are said
to be complementary to each other.

Let G and H be two cubic graphs. If there is a mapping φ : E(G) → E(H), such that
for each v ∈ V (G) there is w ∈ V (H) such that φ(∂G(v)) = ∂H(w), then φ is called an
H-coloring of G. If G admits an H-coloring, then we will write H ≺ G. It can be easily
seen that if H ≺ G and K ≺ H , then K ≺ G. In other words, ≺ is a transitive relation
defined on the set of cubic graphs.

Figure 1: The graph P10.
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Let P10 be the well-known Petersen graph (Figure 1). The Petersen coloring conjecture
of Jaeger states:

Conjecture 1. (Jaeger, 1988 [10]) For any bridgeless cubic graph G, one has P10 ≺ G.

Note that the Petersen graph is the only 2-edge-connected cubic graph that can color all
bridgeless cubic graphs [12]. The conjecture is difficult to prove, since it can be seen that it
implies the following two classical conjectures:

Conjecture 2. (Berge-Fulkerson, 1972 [4, 16]) Any bridgeless cubic graph G contains six
(not necessarily distinct) perfect matchings F1, . . . , F6 such that any edge of G belongs to
exactly two of them.

Conjecture 3. ((5, 2)-cycle-cover conjecture, [3, 13]) Any bridgeless graph G (not neces-
sarily cubic) contains five even subgraphs such that any edge of G belongs to exactly two of
them.

A k-edge-coloring of a graph G is an assignment of colors {1, ..., k} to edges of G, such
that adjacent edges receive different colors. If c is an edge-coloring of G, then for a vertex
v of G, let Sc(v) be the set of colors that edges incident to v receive.

Definition 1. Let uv be an edge of a cubic graph G and c be an edge-coloring of G. Then the
edge uv is called poor or rich with respect to c, if |Sc(u)∪Sc(v)| = 3 or |Sc(u)∪Sc(v)| = 5,
respectively.

Edge-colorings having only poor edges are trivially 3-edge-colorings of G. Also edge-
colorings having only rich edges have been considered in the last years, and they are called
strong edge-colorings. In this paper, we will focus on the case when all edges must be either
poor or rich.

Definition 2. An edge-coloring c of a cubic graph is normal, if any edge is rich or poor
with respect to c.

It is straightforward that an edge coloring which assigns a different color to every edge
of a simple cubic graph is normal since all edges are rich. Hence, we can define the normal
chromatic index of a simple cubic graph G, denoted by χ′

N(G), as the smallest k, for which
G admits a normal k-edge-coloring. In [9], Jaeger has shown that:

Proposition 1. (Jaeger, [9]) If G is a cubic graph, then P10 ≺ G, if and only if G admits
a normal 5-edge-coloring.

This implies that Conjecture 1 can be stated as follows:

Conjecture 4. For any bridgeless cubic graph G, χ′

N(G) ≤ 5.
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Observe that Conjecture 4 is trivial for 3-edge-colorable cubic graphs. This is true be-
cause in any 3-edge-coloring c of a cubic graph G any edge e is poor, hence c is a normal
edge-coloring of G. Thus non-3-edge-colorable cubic graphs are the main obstacle for Con-
jecture 4. Note that Conjecture 4 is verified for some non-3-edge-colorable bridgeless cubic
graphs in [5]. Finally, let us note that in [14] the percentage of edges of a bridgeless cubic
graph, which can be made poor or rich in a 5-edge-coloring, is investigated.

If we consider the larger class of simple cubic graphs, without any assumption on connec-
tivity, some interesting questions naturally arise. Indeed, examples of simple cubic graphs
with χ′

N(G) > 5 can be constructed in this class, and hence it is natural to ask for a possible
upper bound for this parameter.

Let us remark that any strong edge-coloring is, in particular, a normal edge-coloring.
Andersen has shown in [1] that any simple cubic graph admits a strong edge-coloring with
ten colors, hence ten is also an upper-bound for the normal chromatic index. The result
was improved, following the approach of Andersen, in [2], where it is shown that any simple
cubic graph admits a normal edge-coloring with nine colors. In this paper, we prove that if
G is any simple cubic graph, then χ′

N (G) ≤ 7. We complement this result by constructing
an infinite family of simple cubic graphs with χ′

N(G) = 7. Thus our result is best-possible.

2. Some Auxiliary Results

In this section, we present some results that will be helpful in obtaining Theorem 8 which
is the main result of this paper.

Theorem 1. (Jaeger, [7, 8]) Any bridgeless graph admits a nowhere-zero Z
3
2-flow.

We will also need to recall a classical theorem of Nash-Williams and Tutte about disjoint
spanning trees.

Theorem 2. ([17]) Let G be a graph and k ≥ 1. Then G contains k edge-disjoint spanning
trees, if and only if for any partition P = (V1, ..., Vt) of V (G), |Ec(P )| ≥ k(t − 1). Here
Ec(P ) denotes the set of edges of G that connect two vertices that lie in different Vis.

Below we prove two lemmas about nowhere zero Z
2
2-flows of arbitrary 4-edge-connected

graphs. See exercises 3.13 and 3.14 from [17] for similar statements.
From now on, we denote by {x, y} a set of generators of the group Z

2
2 , while we denote

by {x, y, z} a set of generators of the group Z
3
2.

Lemma 1. Let G be a 4-edge-connected (pseudo)graph, and let e and f be two edges of G.
Then G admits a nowhere zero Z

2
2-flow θ, such that θ(e) = θ(f).

Proof. We will assume that e and f are not loops, otherwise the statement is trivial since the
flow value of a loop can be arbitrarily chosen in {x, y, x+ y}. Consider the graph G− e− f .
Let us show that it has two edge-disjoint spanning trees. We will use Theorem 2. Consider
any partition P = (V1, ..., Vt) of V (G). Let us count the number of edges crossing the sets
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Vis, that is |Ec(P )|. Since G is 4-edge-connected, any fixed Vi is connected with the rest of
the graph G with at least four edges. At most two of these edges can be e and f , therefore

|Ec(P )| ≥
4t

2
− 2 = 2t− 2 = 2(t− 1).

Thus by Theorem 2, G− e− f has two edge-disjoint spanning trees, say T1 and T2. Clearly,
T1 and T2 are also disjoint spanning trees of G. For every edge g ∈ E(G) \E(T1), we denote
by C1

g the unique cycle in T1 + g. Analogously, we denote by C2
h the unique cycle in T2 + h

for every h ∈ E(G) \ E(T2). We construct a nowhere-zero Z
2
2-flow θ of G by adding x on

each edge of the cycles C1
g , where g /∈ E(T1) and by adding y on each edge of the cycles C2

h,
where h /∈ E(T2). Hence, both edges e and f receive value x + y in θ, since both of them
belong neither to E(T1) nor to E(T2).

Lemma 2. Let G be a 4-edge-connected (pseudo)graph, and let e, f, g be three edges incident
to some vertex v of G. Then G has a nowhere zero Z

2
2-flow θ, such that θ(e) 6= θ(f) and

θ(e) 6= θ(g).

Proof. We construct a nowhere zero Z
2
2-flow arising from two disjoint even subgraphs of

G in the standard way (see Theorem 3.2.4 in [17]). One can easily see that if one of the
even subgraphs does not contain e and does contain f, g, then the obtained flow meets our
constraints. Now, we construct two even subgraphs P1 and P2 which satisfy such a condition.

Firstly, we assume that none of e, f, g is a loop, as otherwise the statement of the lemma
is trivial. From the proof of the previous lemma, we have that G−e−f has two edge-disjoint
spanning trees, say T1 and T2, and without loss of generality we can assume g /∈ T2.

Since a spanning tree of a graph contains a parity subgraph of the graph (see Lemma
3.2.8 in [17]), we can choose two parity subgraphs of G, say A1 and A2, contained in T1 and
T2, respectively. Let C be the unique cycle in the subgraph T2 ∪ {e}. It is straightforward
that e ∈ C. Denote by P1 the even subgraph of G which is the complement of A1 and by
P2 the even subgraph of G which is the complement of the parity subgraph A2 △ C. Since
e ∈ C and e /∈ A2, it follows that e does not belong to P2. On the other hand, f, g do not
belong to T2 ∪ e hence they belong to P2.

Corollary 1. Let G be a 4-edge-connected (pseudo)graph, and let e and f be two edges
incident to the same vertex v. Then G has a nowhere zero Z

2
2-flow θ, such that θ(e) 6= θ(f).

3. The Main Result

In this section we present our main result. Conjecture 4 states that χ′

N(G) ≤ 5 for any
bridgeless cubic graph. Combined with Proposition 1 and the fact that any cubic graph
admitting a P10-coloring, has to be bridgeless, we have that if G is a cubic graph with a
bridge, then χ′

N (G) ≥ 6. The following theorem presents a way to construct infinitely many
cubic graphs containing bridges, such that χ′

N (G) ≥ 7.

Theorem 3. Let K be the graph obtained from K4 by subdividing one of its edges once
(Figure 2). Then for any cubic graph G containing K as a subgraph, one has
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Figure 2: A subgraph in a cubic graph that requires 7 colors in a normal coloring.

(a) in any normal edge-coloring of G, the edges of K are rich,

(b) in any normal edge-coloring of G, the edges of K are colored with pairwise different
colors,

(c) χ′

N(G) ≥ 7,

(d) in any normal 7-edge-coloring of G, the colors of v4v5 and the bridge incident to v1 have
to be the same.

Proof. Observe that it suffices to prove only the statement (a). The other three statements
follow easily by a direct check.

Let c be any normal edge-coloring of G. Let us show that the edge v2v5 is rich. Assume
that it is poor. Without loss of generality we can assume that c(v2v5) = 1, c(v2v4) = 2
and c(v1v2) = 3. Since c is an edge-coloring, we have c(v2v4) 6= c(v4v5), hence c(v4v5) = 3
and c(v3v5) = 2. Since c(v3v5) = c(v2v4), we have that the edge v3v4 is poor, too. Hence
3 = c(v4v5) = c(v1v3), which is a contradiction that c is an edge-coloring.

By symmetry of K the edges v2v4, v3v4 and v3v5 are also rich with respect to c.
Now, let us show that the edge v4v5 is also rich. Assume that it is poor. Without

loss of generality, we can assume that c(v4v5) = 1, c(v3v4) = 2 and c(v2v4) = 3. Since
c(v2v5) 6= c(v2v4), we have c(v2v5) = 2 and c(v3v5) = 3. Consider the edge v2v4. Observe
that it is adjacent to two edges of color 2, hence it should be poor, which is a contradiction.

Finally, let us show that the edge v1v2 has to be rich. Again assume that it is poor.
Without loss of generality, we can assume that c(v1v2) = 1 and c(v1v3) = 2. Observe that
one of edges v2v4 or v2v5 has to have color 2. If c(v2v4) = 2, then the edge v3v4 is poor, which
is a contradiction. On the other hand, if c(v2v5) = 2, then the edge v3v5 is poor, which is
a contradiction. Again by symmetry of K we have that v1v3 is also rich with respect to c,
and the assertion follows.

We now proceed with showing that χ′

N(G) ≤ 7 for any simple cubic graph G. Observe
that combined with the previous theorem, we will have that the upper bound seven is best-
possible. First we recall a proof of this bound for bridgeless cubic graphs, which is an easy
application of Jaeger’s 8-flow theorem (Theorem 1). Let us note that this proof has been
already proposed in [2]. (See also Theorem 1.1 in [6]). We start with the following easy
remark:

6



Remark 1. Let G be a cubic graph. If c is an edge-coloring of G, such that c(e3) is uniquely
determined by c(e1) and c(e2), then c is a normal edge-coloring. Here e1, e2, e3 are the three
edges of G incident to the same vertex v.

Theorem 4. If G is a bridgeless cubic graph, then χ′

N(G) ≤ 7.

Proof. By Theorem 1, G admits a nowhere-zero Z
3
2-flow φ. Let e1, e2, e3 be three edges of G

incident to the same vertex v. It is easy to see that the values of φ on any two of e1, e2, e3
uniquely determine the the value of φ on the third one. Thus, φ is a normal 7-edge-coloring
thanks to Remark 1.

Observe that the proof of the previous theorem suggests that any nowhere zero Z
3
2-flow

of the bridgeless cubic graph G gives rise to a normal 7-edge-coloring of G. If an edge is rich
or poor in this coloring, we will simply say that this edge is rich or poor, respectively, in the
corresponding nowhere zero Z

3
2-flow. Our next result states that one can make an arbitrary

fixed edge of a bridgeless cubic graph poor in a nowhere zero Z
3
2-flow.

In the proof, and in the rest of the paper, we will use several times the following standard
operations on cubic graphs.

• Given two cubic graphs G1 and G2 and two edges x1y1 in G1 and x2y2 in G2, the
2-cut-connection of (G1, x1, y1) and (G2, x2, y2) is the graph obtained from G1 and
G2 by removing edges x1y1 and x2y2, and connecting x1 and y1 by a new edge, and x2

and y2 by another new edge. On the other hand, if a cubic graph G has a 2-edge-cut
C, we refer to G1 and G2 as the graphs obtained from G by the 2-cut reduction of

C.

• Given two cubic graphs G1 and G2 and two vertices u1 of G1 and u2 of G2, a star

product of (G1, u1) and (G2, u2) is a cubic graph obtained fromG1 andG2 by removing
vertices u1 and u2, and connecting the three neighbors of u1 inG1 to the three neighbors
of u2 in G2 with three new independent edges. On the other hand, if a cubic graph G
has a non-trivial 3-edge-cut C we refer to G1 and G2 as the graphs obtained from G
by a 3-cut reduction of C.

Remark 2. In what follows, with a slightly abuse of terminology, we will always consider
an edge of G not in C also as an edge of either E(G1) or E(G2). While we will refer to the
other edges of G1 and G2 as the edges which arise from C.

Moreover, the following refinement of Petersen Theorem for perfect matchings in cubic
graphs will be used in the proof of next two lemmas.

Theorem 5. ([15]) Any edge of a bridgeless cubic graph G lies in a perfect matching of G.

Finally, we will also make use several times of some properties of the automorphism group
of the elementary abelian group Z

3
2. In particular, we need to use the following standard

remark.
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Remark 3. If S1 and S2 are sets of generators of Z3
2 of cardinality three, then any bijective

map from S1 to S2 can be uniquely extended to an automorphism of Z3
2.

Lemma 3. Let G be a bridgeless cubic graph, and e be a prescribed edge. Then there is a
nowhere zero Z

3
2-flow θ, such that e is poor in θ.

Proof. Consider a possible counterexample G with the minimum number of vertices. Clearly,
G is connected. Let us show that it has no 2-edge-cuts. By contradiction, assume C is a
2-edge-cut of G. Consider the cubic graphs G1 and G2 obtained by the 2-cut reduction of
C. Since G1 and G2 are smaller than G, we have that they are not counterexamples.

If e /∈ C, we can assume that e ∈ E(G1) (see Remark 2). Take a nowhere zero Z
3
2-flow

θ, where e is poor in G1, and any nowhere zero Z
3
2-flow µ of G2. By choosing a suitable

automorphism of Z3
2 (Remark 3), we can assume that θ and µ agree on edges arising from

C. Thus, we can easily construct a nowhere zero Z
3
2-flow of G, where e is poor.

On the other hand, if e ∈ C, then assume e = uv and let e′ = u′v′ be the other edge of
C. We assume that u and u′ belong to the same component of G−C. A similar statement
holds for v and v′. Consider the cubic graphs G1 and G2 obtained by the 2-cut reduction
of C by adding possibly parallel edges e1 = uu′ and e2 = vv′. Since G1 and G2 are smaller
than G, we can make e1 poor in a nowhere zero Z

3
2-flow of G1, and e2 poor in a nowhere

zero Z
3
2-flow of G2. By choosing a suitable automorphism of Z3

2 (Remark 3), we can assume
that these two flows have the same value on e1 and e2. Moreover, the values of these flows
are the same on edges incident to u and v (hence on edges incident to u′ and v′). Now, we
can easily construct a nowhere zero Z

3
2-flow of G, where e is poor.

Thus, our counterexample is 3-connected. Let us show that all 3-edge-cuts in G are
trivial. Assume that there is a non-trivial 3-edge cut C. Let us show that e ∈ C. On the
opposite assumption, consider the two 3-connected cubic graphs G1 and G2 obtained by a
3-cut reduction of C. Assume that e ∈ E(G1). Since G1 is not a counterexample, we have
that e can be made poor in a nowhere zero Z

3
2-flow θ of G1. Take an arbitrary nowhere zero

Z
3
2-flow of G2. By choosing a suitable automorphism of Z3

2 (Remark 3), we can have that
these two flows agree on edges of C. But then, we will get a nowhere zero Z

3
2-flow of G,

where e is poor contradicting our assumption that G is a counterexample.
Thus, we can assume that e ∈ C. Again, consider the two 3-connected cubic graphs G1

and G2 obtained by a 3-cut reduction of C. Since G1 and G2 are smaller than G, we have
that they are not counterexamples, hence e can be made poor in a nowhere zero Z

3
2-flow θi

of Gi, i = 1, 2. By choosing a suitable automorphism of Z3
2 (Remark 3), we can assume that

θ1 and θ2 agree on edges of C. Now consider the nowhere zero Z
3
2-flow φ arising from θ1 and

θ2. Since e is poor in both θi, θ1 and θ2 agree on edges of C, we have that e is poor in φ.
This contradicts our assumption that G is a counterexample.

Thus, we can assume that G is cyclically 4-edge-connected. Let g be an edge adjacent
to e. Consider a perfect matching M containing g (Theorem 5). Observe that M , the 2-
factor complementary to M , contains the edge e. Consider the pseudo-graph H = G/E(M)
obtained from G by contracting the edges of M . We keep the parallel edges and loops
arising as a result of this. Since G is cyclically 4-edge-connected, we have that H is 4-edge-
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connected. Let ge be the edge of M that is adjacent to e, and is different from g. By Lemma
1, H admits a nowhere zero Z

2
2-flow θ, such that θ(g) = θ(ge).

We now extend θ to a nowhere zero Z
3
2-flow µ of G as follows (see the proof of Lemma

5.2 in [6]): first for any edge h ∈ M , we define the triple µ(h) as follows: µ(h) = (0, θ(h)).
Now, let C be any cycle of M . Let x0 be any element of Z3

2, whose first coordinate is 1.
Assign x0 to an edge of C. Then observe that the rest of the values of edges of C are defined
uniquely in µ. Moreover, the first coordinate of the values of µ on C is 1. Hence for any
edges h1 ∈ M and h2 ∈ M , we have µ(h1) 6= µ(h2). Also observe that for different cycles of
M we can choose x0 differently.

Now, let us show that µ meets our constraints. Since θ(g) = θ(ge), we have µ(g) = µ(ge).
Hence the two edges of M adjacent to e must have the same value in µ. Hence the edge e
is poor in µ.

Our next statement shows that any two adjacent edges of a 3-connected cubic graph can
be made rich in a nowhere zero Z

3
2-flow. Note that the statement cannot be proved for all

bridgeless cubic graphs (see example in Figure 6).

Lemma 4. Let G be a 3-connected cubic graph, and let e and f be two adjacent edges of
G. Then, G admits a nowhere zero Z

3
2-flow such that e and f are rich.

Proof. Consider a possible counterexample G with the minimum number of vertices. Since
G is 3-connected, we have that any non-trivial 3-edge cut should be a matching. Let us
show that there are no non-trivial 3-edge cuts in G.

Assume C is a non-trivial 3-edge cut. Let us show that C ∩ {e, f} 6= ∅. On the opposite
assumption, consider the two 3-connected cubic graphs G1 and G2 obtained by a 3-cut
reduction of C. Assume that e, f ∈ E(G1). Since G1 is not a counterexample, we have that
e and f can be made rich in a nowhere zero Z

3
2-flow θ of G1. Take arbitrary nowhere zero

Z
3
2-flow of G2. By choosing a suitable automorphism of Z3

2 (Remark 3), we can have that
these two flows agree on edges of C. But then, we will get a nowhere zero Z

3
2-flow of G,

where e and f are rich contradicting our assumption that G is a counterexample.
Thus, we can assume that C∩{e, f} 6= ∅. Since C is a matching, and e and f are adjacent

to the same vertex, we have that only one on them belongs to C. Assume that it is e. Again,
consider the two 3-connected cubic graphs G1 and G2 obtained by a 3-cut reduction of C.
Assume that f ∈ E(G1). Since G1 is smaller than G, G1 is not a counterexample, hence e
and f can be made rich in a nowhere zero Z

3
2-flow θ of G1. By Lemma 3, we can make e poor

in a nowhere zero Z
3
2-flow µ of G2. By choosing a suitable automorphism of Z3

2 (Remark 3),
we can assume that θ and µ agree on edges of C. Now consider the nowhere zero Z

3
2-flow

arising from θ and µ. Since e and f were rich in θ, θ and µ agree on edges of C, and e was
poor in µ, we have that e and f are rich in G. This contradicts our assumption that G is a
counterexample.

Thus, we can assume that all 3-edge-cuts of G are trivial. Hence G is cyclically 4-edge-
connected. Let g be the third edge adjacent to e and f . Consider a perfect matching M
containing g (Theorem 5). Observe that M , the 2-factor complementary to M , contains the
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edges e and f . Moreover, they lie in the same cycle of the 2-factor. Consider the pseudo-
graph H = G/E(M) obtained from G by contracting all edges of M . We keep the parallel
edges and loops arising as a result of this. Since G is cyclically 4-edge-connected, we have
that H is 4-edge-connected. Let ge and gf be the edges of M that are adjacent to e and f ,
respectively, and are different from g. By Lemma 2, H admits a nowhere zero Z

2
2-flow θ,

such that θ(g) 6= θ(ge) and θ(g) 6= θ(gf).
We now extend θ to a nowhere zero Z

3
2-flow µ of G exactly in the way we did in the

proof of Lemma 3. We have µ(ge) 6= µ(g). Thus, the edge e is rich in µ. Similarly, since
θ(g) 6= θ(gf) by our choice, one can easily show that f is rich in µ.

Corollary 2. Let G be a 3-connected cubic graph, and let e be an edge. Then G admits a
nowhere zero Z

3
2-flow θ, such that e is rich in θ.

Now, we are going to consider simple graphs which are obtained from any bridgeless
cubic graph by subdividing one of its edges and attaching a bridge to the new degree two
vertex. The other end-vertex of the bridge has degree one. We are going to show that
any such graph admits a normal edge-coloring with at most 7 colors. Here the normality
is understood in the following way: in the coloring adjacent edges receive different colors,
all edges of the graph except the unique bridge must be poor or rich. However we do not
impose any constraint on the bridge.

Theorem 6. Let G′ be a simple graph obtained from a bridgeless cubic graph G by subdivid-
ing one of its edges once, adding a new vertex and adding an edge connecting the degree-two
vertex with the new vertex. Then χ′

N(G
′) ≤ 7.

Proof. Let G be a bridgeless cubic graph, and let e = uw be any edge of G. We can assume
that G is connected. Consider the graph G′ obtained from G by subdividing e with a vertex
ve. The vertex ve is incident to the unique bridge in G′. We have that all degrees in G′ are
three except the new vertex adjacent to ve which has degree one. Moreover, assume that w1

and w2 are the other two neighbors of w in G that differ from u.
First, we consider the case when G is 3-edge-connected. By Lemma 4, there is a nowhere

zero Z
3
2-flow θ, such that ww1 and ww2 are rich. Observe that since θ(ww1) 6= θ(ww2), the

two values of θ on edges incident to w1 that differ from ww1 cannot coincide with the two
values of θ on edges that are incident to w2 and differ from ww2. Let us show that the
intersection of these two sets is exactly one. We need to rule out the case when they are
disjoint.

Assume that w1 is incident to edges with flow values x and y, and let θ(ww1) = x + y.
Observe that x + y cannot appear around w2, as θ(ww1) 6= θ(ww2) and ww2 is rich. Let
z be an element of Z3

2 such that z /∈ {0, x, y, x+ y}. Then, Z3
2 = {0, x, y, x+ y} ∪ {z, x +

z, y + z, x + y + z}. The edges incident to w2 that differ from ww2 have flow value in
{z, x+ z, y+ z, x+ y+ z}. Then, in any case, the flow value of ww2 belongs to {x, y, x+ y},
which is a contradicion since either we have two incident edges with the same flow value or
ww1 is not rich.

Thus, without loss of generality, we can assume that w1 is incident to edges with flow
values x, y and θ(ww1) = x+ y, w2 is incident to edges with flow values x, z and θ(ww2) =
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x+ z, and y 6= z. By considering ∂({w,w1, w2}), we have that θ(e) = y+ z. Let t1 and t2 be
the two values of θ on edges incident to u that differ from e. Clearly, t1 + t2 = y + z. Now,
we are going to obtain a normal 7-edge-coloring of G′ using the seven non-zero elements of
Z
3
2. We will consider two cases.

Case 1: {t1, t2}∩{x, y, z} = ∅. Let us show that we can assume that {t1, t2}∩{x, y, z, x+
z, x+ y} = ∅. If not, we have that {t1, t2} = {x+ y, x+ z} and edge e is poor in θ. Extend
θ to a normal 7-edge-coloring c of G as follows: take c equal to θ everywhere in G′, except
c(uve) = y+ z, c(vew) = x+ y+ z and the value of c on the unique bridge of G′ is x. It can
be easily seen that c is a normal 7-edge-coloring of G′.

Thus we can assume that {t1, t2} ∩ {x, y, z, x + z, x + y} = ∅, that is {t1, t2} = {y +
z, x+ y+ z}. Again, we have a contradiction since θ(e) = y+ z and then we have two edges
incident u with value y + z.

Case 2: {t1, t2}∩ {x, y, z} 6= ∅, that is either {t1, t2} = {x, x+ y+ z} or {t1, t2} = {y, z}.
Extend θ to a normal 7-edge-coloring c of G as follows: take c equal to θ everywhere in G′,
except c(uve) = y+ z, c(vew) = x+ y+ z and the value of c on the unique bridge of G′ is x.
It can be easily seen that c is a normal 7-edge-coloring of G′ in both cases: more precisely,
if {t1, t2} = {x, x+ y + z} then uve is poor and if {t1, t2} = {y, z} then uve is rich.

Thus, it remains to consider the case when G has a 2-edge-cut. Let us prove the statement
by induction on the number of vertices.

u0

v0

u1

v1

u2

v2

um−1

vm−1

um

vm

Figure 3: The m-ladder L with initial vertices u0, v0 and terminal vertices um, vm.

For a positive integer m define an m-ladder of G as a subgraph L (Figure 3) of G, such
that:

• V (L) = {u0, v0, ..., um, vm},

• E(L) = {u0u1, u1u2, ..., um−1um, v0v1, v1v2, ..., vm−1vm, u1v1, ..., um−1vm−1},

• u0v0 /∈ E(G), umvm /∈ E(G),

• the set {uiui+1, vivi+1} is a 2-edge-cut of G for all i ∈ {0, 1, . . . , m− 1},

• u0, v0 belong to the same component of G− u0u1 − v0v1,

• um, vm belong to the same component of G− um−1um − vm−1vm.

Observe that since G is bridgeless and cubic, for each 2-edge-cut C in G there is a positive
integer m and anm-ladder L of G, such that C ⊆ E(L). Moreover, L is an induced subgraph
of G. Indeed, following the notation for vertices and edges of L introduced above, for each
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i ∈ {0, 1, . . . , m − 1} the pair of edges uiui+1 and vivi+1 is a 2-edge-cut of G (and C is one
of such pairs) and we have that u0, v0 belong to the same component of G− uiui+1 − vivi+1

for any i (and the same holds for um, vm).
Assume that there exists a ladder L such that the edge e does not belong to E(L).

Denote by u0 and v0 the initial vertices of L, which belong to a component G1 of G−E(L).
Similarly, denote by um and vm the terminal vertices of L, which belong to a component G2

of G− E(L). Since e does not lie in L, then it must lie either in G1 or G2. For the sake of
definiteness, let e ∈ E(G1). Consider the cubic graph H obtained from G1 by adding the
edge u0v0. By the definition of L, we have that |V (H)| < |V (G)| and the graph H ′ obtained
from H by subdividing the edge e and attaching a pendant edge to ve is simple. Thus, by
induction hypothesis, χ′

N(H
′) ≤ 7. Let x be a non-zero element of Z3

2 such that the color of
u0v0 in H ′ is x. Now, consider a graph H1 obtained from G by removing the vertices of G1

and adding a possibly parallel edge u1v1. Observe that H1 is a bridgeless cubic graph, hence
by Theorem 4 it has a normal 7-coloring arising from a nowhere zero Z

3
2-flow of H1. By

renaming the colors in H ′, we can assume that the color of u1v1 is x, and that the two colors
incident to u1 in H1 coincide with two other colors incident to u0 in H ′. Now, consider an
edge-coloring of G′ obtained from normal edge-colorings of H ′ and H1 by coloring the edges
u0u1 and v0v1 with x. Observe that u0u1 is poor in G′, moreover, if u0v0 was poor in H ′ or
u1v1 was poor in H1, then the new coloring is a normal 7-edge-coloring of G′. On the other
hand, if both u0v0 and u1v1 were rich in H ′ and H1, respectively, then we can always rename
the colors in H ′, so that the colors incident at v0 in H ′ coincide with the colors incident at
v1 in H1. In the latter case, we will have that the edge v0v1 is poor.

Thus, we can assume that in G for any ladder L we have e ∈ E(L). Consider a 2-edge-cut
in G and a ladder L containing it. Define G1, G2 as the components of G − E(L) which
contain u0, v0 and um, vm, respectively. Observe that the graphs G1 + u0v0 and G2 + umvm
are simple. Let us show that they are 3-edge-connected. We prove this only for G1 + u0v0.
Observe that G1 + u0v0 is bridgeless. Let us show that it has no a 2-edge-cut. On the
opposite assumption, consider a 2-edge-cut C1 of G1 + u0v0. If u0v0 /∈ C1, then consider
the ladder L1 of G containing the edges of C1. Observe that C1 is a 2-edge-cut of G, such
that the ladder L1 containing it does not contain the edge e. This is a contradiction that e
must lie in all such ladders of G. Thus, we can assume that u0v0 ∈ C1. In this case the sets
C1 = (C − u0v0) + u0u1 and C2 = (C − u0v0) + v0v1 are 2-edge-cuts of G. Let L1 and L2 be
the ladders of G containing C1 and C2, respectively. Observe that at least one of them does
not contain the edge e, which again contradicts our assumption. Thus, the graphs G1+u0v0
and G2 + umvm are 3-edge-connected.

Now, we are going to show a normal 7-edge-coloring of G′. The edges u0u1, v0v1, um−1um

and vm−1vm are called initial edges of L. The other edges of L are called internal edges.
First let us show the coloring of G′, when e is an initial edge. Observe that this case
includes the case when L is comprised of two disjoint edges forming a 2-edge-cut. Assume
that e = um−1um, where um−1 = u and um = w. Let us consider two graphs H1 and H2

obtained as follows: H1 is obtained from the component of G−um−1um−vm−1vm containing
the vertex u by adding a possibly parallel edge um−1vm−1, and H2 is the 3-edge-connected
graph G2 + umvm. Observe that H1 is a bridgeless cubic graph. Let θ1 be any nowhere
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zero Z
3
2-flow of H1, and let θ2 be a nowhere zero Z

3
2-flow of H2, such that the edges ww1

and ww2 are rich in θ2 (Lemma 4). Here w1 and w2 are the neighbors of w in H2 that
differ from vm. By choosing a suitable automorphism of Z3

2 (Remark 3), we can assume that
θ1(um−1vm−1) = θ2(umvm) = x. Moreover, the values of θ1 on the other two edges incident
to vm−1 agree with the values of θ2 on the other two edges incident to vm. Now, we color the
edge vm−1vm and uve with x, and extend it to a normal 7-edge-coloring of G′ by considering
the same strategy as we had in the case of 3-connected graphs.

Thus, it remains to consider the case when e is an internal edge of L. The internal edges
of L are of two types, which we will naturally call horizontal and vertical edges (see Figure
3). For each of these cases we will exhibit a normal 7-edge-coloring.

First, let us consider the case when the edge e is a horizontal edge of L. We can assume
that e = ui−1ui. As above, let G1 be the component of G − E(L) containing u0 and v0,
and similarly, let G2 be the component of G − E(L) containing um and vm. We have that
the cubic graphs G1 + u0v0 and G2 + umvm are 3-edge-connected. Let P1 be the shortest
path of L connecting u0 and ui−1, and let P2 be the shortest path of L connecting ui and
um. Define the vertices w′ ∈ {u0, v0} and w′′ ∈ {um, vm} as follows: if the length of P1 is
odd, then w′ = v0, otherwise, w

′ = u0, similarly, if the length of P2 is odd, then w′′ = vm,
otherwise, w′′ = um. Since the cubic graphs G1+u0v0 and G2+umvm are 3-edge-connected,
Lemma 4 implies that these graphs have nowhere zero Z

3
2-flows θ1 and θ2, such that the

two edges incident to w′ and the two edges incident to w′′ that differ from u0v0 and umvm,
respectively, are rich. By choosing a suitable automorphism of Z

3
2 (Remark 3), we can

assume that θ1(u0v0) = θ2(umvm) = x. Consider the four edges of G1 that are adjacent to
an edge that is incident to w′. As we have shown in the analysis of the 3-edge-connected case
(third, forth paragraphs), θ1 cannot have seven different values on these four edges together
with two edges incident to w′ and the edge u0v0. Thus, there is a non-zero element y of
Z
3
2, that does not appear on these seven edges. Similarly, define the element z of Z3

2 as a
value such that θ2 does not attain it on four edges of G2 that are adjacent to an edge that
is incident to w′′, the two edges incident to w′′ and the edge umvm. Observe that y 6= x
and z 6= x, and by choosing a suitable automorphism (Remark 3), we can not only assume
θ1(u0v0) = θ2(umvm), but also y 6= z.

G1 G2

y z

xy

x

z

x

x

y z

x

x+ y x+ y y + z y + z

y + z

Figure 4: The normal 7-edge-coloring in the horizontal case.

We extend the flows θ1 and θ2 to a normal 7-edge-coloring of G′ as it is shown on Figure
4. Moreover, the u0 − ui−1 and v0 − vi−1 subpaths of L are colored x − y, alternatively.
Similarly, the ui − um and vi − vm subpaths of L are colored x− z, alternatively.

Finally, we consider the case when e is a vertical edge of the ladder. We assume the
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G1 G2x+ y x+ z
x+ y
x+ z

y + z
y x y x z x

x y x z x z

Figure 5: The normal 7-edge-coloring in the vertical case.

same notations that we had in the horizontal case. Now, we extend the flows θ1 and θ2 to a
normal 7-edge-coloring of G′ as it is shown on Figure 5.

Our next theorem generalizes the result of the previous theorem for the case when we
may have many pendant edges.

Theorem 7. Let G′ be a simple graph such that any of its vertices is of degree one or degree
three. Moreover, assume that all bridges of G′ are incident to vertices of degree one. Then
χ′

N(G
′) ≤ 7.

Proof. We follow the strategy of the proof of Lemma 6.3 from [11]. Our proof is by induction
on the number of pendant edges. Clearly, we can assume that G′ is a connected graph. If
the number of pendant edges of G′ is zero or one, then the statement follows from Theorem
4 and Theorem 6. Let us consider the case when this number is two. Let u and v be the
two vertices of G′ that are incident to pendant edge. Consider a graph H obtained from G′

by removing the degree-one vertices of G′ and adding (a possibly parallel) edge uv. Observe
that H is a bridgeless cubic graph. Hence by Theorem 4 it admits a normal 7-edge-coloring.
Now, consider a 7-edge-coloring of G′ by coloring the pendant edges of G′ with the color of
the edge uv. Clearly, the coloring is normal.

Now, by induction, assume that the statement is true for all simple graphs with fewer
pendant edges, and consider a simple graph G′ with t ≥ 3 pendant edges. Let u, v and w be
any three vertices of G′ incident to pendant edge. If u, v and w are pairwise adjacent, then
since G′ is connected we have that G′ is obtained from a triangle by attaching a pendant
edge to each of its vertices. In this case, we color G′ with three colors. Clearly, it is a normal
3-edge-coloring.

Thus, without loss of generality, we can assume that u and v are not adjacent. Consider
a graph H obtained from G′ by removing the degree-one vertices of G′ incident to u and
v, and adding the edge uv. Observe that H is a simple graph with less than t pendant
edges. By the induction hypothesis, it admits a normal 7-edge-coloring. Now, consider a
7-edge-coloring of G′ by coloring the pendant edges of G′ with the color of the edge uv.
Clearly, the coloring is normal.

Let k be the smallest constant, such that any simple cubic graph G admits a normal
k-edge-coloring. Theorem 3 suggests that k ≥ 7. A k-edge-coloring of a simple cubic graph
is said to be strong, if any edge is rich in this coloring. In [1] Andersen has shown that
any simple cubic graph admits a strong edge-coloring with ten colors. Thus, we have that
k ≤ 10. Following the approach of Andersen, in [2], it is shown that any simple cubic graph
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admits a normal edge-coloring with nine colors. Thus k ≤ 9. Now, using Theorem 6, we
further improve the latter result by obtaining the best-possible upper bound.

Theorem 8. For any simple cubic graph G, we have χ′

N (G) ≤ 7.

Proof. Consider a graph H obtained from G by removing all the bridges of G. Observe
that each component C of H is either an isolated vertex or a bridgeless graph in which all
degrees are two or three. Fix a component with at least one edge. Attach to any of its
degree two vertices one pendant edge such that the resulting graph meets the condition of
Theorem 7. We have that the resulting graph admits a normal 7-edge-coloring. Now, in
order to complete the proof, observe that we can rename the colors in each component of
H , glue the colorings in each of the components so that the resulting coloring is a normal
7-edge-coloring of G.
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Appendix

In this section we discuss possible directions that our Lemma 4 can be strengthened. We
present some examples which show that our lemma is best-possible.

One may wonder whether the statement of Lemma 4 can be strengthened to prove that
the three edges of a 3-connected cubic graph incident to a vertex can be made rich in a
nowhere zero Z

3
2-flow. This statement is not true as the following proposition shows.

Proposition 2. The complete bipartite graph K3,3 does not admit a nowhere zero Z
3
2-flow,

such that its three edges incident to a vertex are rich.

Proof. Assume the opposite, and let θ be a nowhere zero Z
3
2-flow of K3,3 such that the three

edges incident to the vertex v are rich. Assume that the flow values of edges incident to v
are x, y, x+ y. Consider the graph K3,3− v, which is isomorphic to K2,3. Observe that since
the edges incident to v are rich, x, y and x + y cannot appear on edges of K3,3 − v. Thus,
there are only four non-zero values of Z3

2, that can appear on six edges of K3,3 − v. Hence,
there are at least two edges e1 and e2 of K3,3 − v which have the same flow value. Observe
that e1 and e2 cannot be adjacent. Let the flow value of e1 and e2 be z1, and let z2 be the
flow of the edge that connects e1 and e2. Observe that we have two edges of K3,3 which must
have flow value z1 + z2. One of these edges in incident to v, hence z1 + z2 ∈ {x, y, x + y}.
On the the hand, the second edge of K3,3 with flow value z1 + z2 belongs to K3,3 − v. Hence
z1 + z2 /∈ {x, y, x+ y}. This is a contradiction.

v0 v1 v2 v3 v4

v5 v6 v7 v8 v9

Figure 6: The vertical edge is poor in any normal 6-edge-coloring.

Another question that arises is the following: can we show that any edge of a bridgeless
cubic graph can be made rich in a normal 6-edge-coloring? Our next proposition addresses
this question by giving a negative answer to it.
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Proposition 3. The edge v2v7 is always poor in any normal 6-edge-coloring of the graph
G from Figure 6.

Proof. Assume that there is a normal 6-edge-coloring c of G such that v2v7 is rich. Without
loss of generality, we can assume that c(v2v7) = 1, c(v1v2) = 2, c(v6v7) = 3, c(v2v3) = 4 and
c(v7v8) = 5. Let us show that the edge v0v5 is rich.

On the opposite assumption, assume that v0v5 is poor. Then c(v0v1) = c(v5v6) = α and
c(v0v6) = c(v1v5) = β. Consider the edge v1v5. It has to be poor, as it is adjacent to two
edges of color α. Hence c(v0v5) = 2. Now, consider the edge v0v6. Similarly, one can show
that c(v0v5) = 3. This gives the required contradiction.

Thus, the edge v0v5 has to be rich, which in particular means that the colors of edges
v0v1, v0v6, v1v5 and v5v6 are pairwise different. Let us show that the colors of these edges
and the edge v0v5 cannot be 2 or 3. Clearly, since the graph is symmetric, we can show only
for the case of color 2. Note that the edges v0v1 and v1v5 cannot have color 2. If the edge
v0v5 has color 2, then the edge v1v5 has to be poor, hence the colors of edges v0v1 and v5v6
has to be the same, which gives the required contradiction. If the edge v5v6 has color 2,
then the edge v1v5 has to be poor, hence the edges v0v5 and v0v1 must have the same color,
which gives the required contradiction. Finally, if the color of v0v6 is 2, then the edge v0v1
has to be poor, hence the colors of edges v0v5 and v1v5 have to be the same, which gives the
required contradiction.

Thus, none of the five edges of G that belong to the subgraph induced by v0, v1, v5, v6 can
have color 2 or 3. Hence, G requires at least 7 colors in such a normal edge coloring, which
in particular means that the edge v2v7 must be poor in any normal 6-edge-coloring.

Finally, one may wonder how important is the assumption of 3-connectivity in Lemma
4? Consider the graph from Figure 6. Observe that the vertical edge is adjacent to two
edges that form a 2-edge-cut. Hence for any nowhere zero Z

3
2-flow, the values of the flow on

these edges should be the same. This means that the vertical edge is going to be poor in
any nowhere zero Z

3
2-flow.
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